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Abstract
Examining complex cognitive-motor performance in humanoid robots and humans can inform their interactions in a social 
context of team dynamics. Namely, the understanding of human cognitive-motor control and learning mechanisms can inform 
human motor behavior and also the development of intelligent controllers for robots when interacting with people. While 
prior humans and humanoid robot studies mainly examined motion planning, only a few have investigated high-level motor 
planning underlying action sequences for complex task execution. This sparse work has largely considered well-constrained 
problems using fairly simple performance assessment methods without detailed action sequence analyses. Here we qualita-
tively and quantitatively assess action sequences generated by humans and a humanoid robot during execution of two tasks 
providing various challenge levels and learning paradigms while offering flexible success criteria. The Levenshtein distance 
and its operators are adapted to the motor domain to provide a detailed performance assessment of action sequences by 
comparing them to a reference sequence (perfect sequence having a minimal number of actions). The results reveal that (i) 
humans produced a large variety of action sequences combining perfect and imperfect sequences while still reaching the 
task goal, whereas the robot generated perfect/near-perfect successful action sequences; (ii) the Levenshtein distance and the 
number of insertions provide reliable performance markers capable of differentiating perfect and imperfect sequences; (iii) 
the deletion operator is the most sensitive marker of action sequence failure. This work complements prior efforts for complex 
task performance assessment in humans and humanoid robots and has the potential to inform human–machine interactions.

Keywords  Cognitive-motor control and learning · High-level motor planning · Humanoid robot · Human · Imitation · 
Action sequence

1  Introduction

Contrary to low-level sensorimotor planning, a limited effort 
has examined high-level cognitive-motor planning functions, 
which involve multi-step motor action sequences for achiev-
ing complex tasks. New measures of performance on com-
plex cognitive-motor tasks executed by humans or robots 
can provide new means for robots to detect and adapt to a 
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human teammate’s skill level promoting thus cooperation 
and trust. In particular, distance-based measures facilitate 
this goal by quantifying how similarly a human and a robot 
execute a task [1]. Such distance-based assessment can also 
be used by communities of robots to relate and share knowl-
edge about their respective human collaborators to become 
socially knowledgeable partners [2, 3].

Most prior study of human high-level motor planning has 
mainly considered constrained tasks where individuals plan 
action sequences following specific rules and without vary-
ing conditions of challenge and/or practice paradigms (e.g., 
Towers of Hanoi). Also, behavioral analyses were largely 
based on basic metrics (e.g. response time, total number of 
moves, [4–6]). This prior work provides limited informa-
tion about the action sequences since there is no indication 
of which specific actions were added, removed or switched, 
at which specific positions, in the sequences—information 
that is critical to assess high-level planning performance [4, 
6]. This limited examination inadequately informs human 
neurocognitive processes, the development and assessment 
of smart robotic controllers, and human–robot interactions 
during complex task performance (e.g., equipment mainte-
nance and cleaning [7, 8]).

Similarly, many robotic studies have assessed perfor-
mance with fairly simple subjective (e.g., surveys; [9–15]), 
objective (e.g., time; [10, 13, 16, 17]), and coarse-grained 
measures (e.g., total step count; [13, 18–21]). These met-
rics cannot inform a fine-grained performance comparison 
between humans and humanoid robots. To our knowledge 
only one prior study has conducted a more refined analy-
sis of high-level motor plans using alignment algorithms to 
compare action sequences executed in humanoid robots [1]. 
However, this effort did not examine the human or humanoid 
performance in a context where both agents learn to execute 
action sequences. Such a detailed analysis is critical since 
it can inform human and robot training needs and predict 
their interactions in situations where flexible solutions can 
be identified for learning to complete a complex task under 
various demands.

Thus, there is a need to examine the performance in 
both humans and humanoid robots, during complex action 
sequences. Here we focus on action sequences that can be 
performed with few constraints and flexible success criteria 
(the sequence can be executed in multiple ways while still 
reaching its goal) under various conditions of challenge and 
learning paradigms. Our primary interest is to improve char-
acterization and understanding of high-level motor planning 
in both humans and humanoid robots when they must learn a 
complex task. Indeed, in real-world settings many tasks can 
be executed with action sequences which can fail to reach 
the task goal but also be completed in many ways while 
still reaching the same goal. There may also exist one (or 
more) way(s) to efficiently execute the task with a minimum 

number of actions. As such, learning could result in perfor-
mance with various levels of success and efficiency depend-
ing on whether the sequence generated has a minimum num-
ber of actions or not. Thus, the performer could produce (i) a 
successful action sequence reaching the prescribed task goal 
with a minimal number of actions, (ii) an action sequence 
with additional steps (e.g., adding extraneous actions) but 
still reaching successfully the goal, or (iii) a failed attempt 
to reach the goal.

Learning action sequences through trial-and-error or imi-
tation is highly relevant to fundamental human cognitive-
motor mechanisms and allows humanoid robots to learn via 
a social exchange, avoiding burdensome manual program-
ming [3, 7]. Here we take some first steps in examining 
in detail complex action sequence performance in both a 
humanoid robot and humans who practice a complex task 
where humans provide task goals and/or features to be 
replicated.

This work primarily aims to deploy a computational 
method that measures action sequence similarity, to exam-
ine the high-level structure of complex action sequences 
for assessing the performance under various conditions of 
challenge and learning in humans and a humanoid robot.1 
Specifically, we used action sequence similarity to determine 
the functional reasons for: (i) performance failure of com-
plex action sequences (which action operations drove this 
failure) and (ii) performance differences between successful 
sequences with and without a minimum number of actions. 
Interestingly, other scientific fields, such as DNA sequence 
analysis in biology or phoneme sequence analysis in linguis-
tics, encounter similar issues. These fields proposed solu-
tions for sequence comparisons based on edit distance (e.g., 
Levenshtein distance (LD)) which computes the number of 
additions, deletions and substitutions of the bases/phonemes 
needed to transform one sequence into another that serves 
as a reference (a larger number of alterations indicates that 
both sequences further differ; [22]). The LD has been previ-
ously employed for comparing different gaze signals during 
human–robot interactions without however focusing on high 
level motor plan generation for upper extremity performance 
[23]. Among multiple potential applications for humans and/
or robots, such a LD-based methodology could quantify how 
efficiently (here expressed as a minimal number of actions 
generated) humans and robots solve the same problem as 
well as how their solutions differ. This can inform their 
respective training and inform their human–robot team 
mental models. Indeed, if a human and a robot solve a task 
using a very different strategy, it is likely difficult for both to 

1  While the direct comparison between humans and the robot is con-
ducted here, this is secondary and rather of an exploratory nature in 
this work.
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predict or infer efficiently the future states and goal under-
standing of each other’s behavior, leading ultimately to poor 
team dynamics [24–26].

Thus, taking inspiration from biology and linguistic 
fields, here we deployed a LD-based computational method 
to examine how adding, omitting or replacing actions in an 
action sequence can affect the learning task performance 
outcome (i.e., failure vs. success). We consider tasks where 
there exist (i) only one unique sequence that reaches the 
goal with a minimum number of actions and serves as a 
reference and (ii) an infinite number of action sequences 
that can be generated to successfully reach the goal while 
differing from the minimal sequence. Such a quantitative 
analysis is qualitatively complemented with graphical 
representations (sequence alignment display) to further 
illustrate any alterations of produced action sequences by 
humans and the humanoid robot compared to the reference 
sequence. Namely, it may be possible that the addition of 
extraneous actions even between the critical elements of the 
reference sequence is not a major determinant of failure, 
despite increased action sequence length, since the order 
of those critical components is preserved (the task may still 
be correctly performed and its goal reached). However, 
omitting or replacing an action of the reference sequence, 
unless compensated, may represent a greater threat to suc-
cessful task completion. If these assumptions are correct, 
we predict that the occurrence of action omission and/or 
replacement should be more prominent during failure, and 
should be minimal or null when successfully executing (with 
a minimum of steps or not) complex action sequences. The 
results should be consistently observed both via qualitative 
(e.g., sequence alignment display) and quantitative (e.g., 
frequency of action omissions or additions) analyses. If the 
computational method proposed here is somewhat generaliz-
able, it should provide consistent qualitative and quantitative 

results in different tasks involving various conditions of 
challenge and learning paradigms, whether the performer is 
a humanoid robot or human.

2 � Materials and Methods

To examine whether our computational method was general 
enough to successfully assess action sequence performance 
in various situations facilitating or not mistakes and/or strat-
egy diversifications, two tasks involving various conditions 
of challenge and learning were considered. The first task 
involved a fairly short motor sequence composed of eight 
actions to maintain a hard drive docking station (HDDS) 
along with limited rules and flexible success criteria and on 
which the robot and humans were trained in a similar way 
using imitation learning. Compared to the HDDS task, the 
second task aimed to substantially increase the conditions 
of challenge and allowed for different learning paradigms 
to solve a modified Tower of Hanoi (TOH) task. This task 
was manipulated to ensure that both humans and the robot 
were challenged as much as possible while considering their 
respective learning capabilities to still provide them a chance 
to perform the task. Both tasks are explained in detail below.

2.1 � Hard Drive Docking Station Task

2.1.1 � Experimental Set‑Up

Twelve human participants (see section S2.1 of the supple-
mentary material for details) and a humanoid robot (Baxter; 
Rethink Robotics™) had to perform a complex task that 
involved a mock-up hard drive docking station. This sta-
tion (Fig. 1a) was composed of a drawer that, when opened, 
allowed to manipulate disks in four hard drive slots, each 

Fig. 1   Top row: The disk drive dock task. a A screen shot from the 
interactive virtual world supported by SMILE where the objects on 
a table top (here a simulation of the disk-drive dock) can be manipu-
lated by a demonstrator and those manipulations can be subsequently 
viewed by a human or a robot imitator. b The bimanual humanoid 
cognitive robot used in this work. c The disk drive dock (physical 
mock-up) used here was manipulated by a human. The drawer is par-

tially opened showing three of the four slots occupied by drives, each 
with a corresponding black fasten-release toggle switch and a corre-
sponding red-green indicator LED (red: malfunctioning; green: func-
tioning correctly). A spare disk sits on the top of the cabinet. Pressing 
a toggle switch can change the state of the corresponding LED (red, 
green, off) controlled by a built-in Arduino microprocessor

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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being associated with a LED indicator and a toggle switch, 
which had to be switched off before inserting or removing 
the corresponding drive. A red LED associated with each 
drive indicated a faulty disk that had to be replaced with a 
new one. If a red LED was initially on and its correspond-
ing switch was pressed, then this LED turned off, indi-
cating that this drive was now disengaged and thus could 
be replaced. When a disk is successfully replaced and its 
switch is pressed, then its green LED turns on indicating 
that the corresponding disk is now engaged and functioning 
properly. The custom-made mock-up was controlled by an 
Arduino processor.

2.1.2 � Task Description

The HDDS task had flexible successful completion criteria, 
and limited constraints allowing for performing a real-world 
task in a very versatile manner. It was used in prior cogni-
tive robotic research to examine high-level plan generation 
in humanoid robots [7, 8], and is well-suited for examin-
ing action sequences deployed by the various performers 
(humans and a humanoid robot) during action sequence imi-
tation. It uses a given demonstration as an action sequence 
of reference having a minimal number of actions.

A humanoid robot (Baxter; Rethink Robotics™) and the 
human participants had to learn2 to perform a complex task 
which consisted of operations on the HDDS task. Specifi-
cally, the participants had to learn to discard a faulty hard 
disk which was indicated by a red LED being on and replace 
it with a new one. First the action sequence needed to per-
form the task was demonstrated to the performer (humans 
or robot) via computer software used to record demonstra-
tions in an artificial environment (SMILE; [28, 29]; see sec-
tion S2.1 for details). After observing the demonstration, 
the performers (humans or robot) have to imitate the task 
immediately while employing the physical mock-up hard 
drive station placed in front of them (Fig. 1b, c).

Specifically, via the SMILE virtual environment oper-
ated by a human-controlled interface [28, 29], the video 
provides a demonstration of this complex action sequence 
composed of eight atomic actions executed in the follow-
ing order: (1) the drawer was pulled to open the dock to 
make available the four hard drive slots, their correspond-
ing toggle switches and LEDs (abbreviated dro, for drawer 
opened); (2) the faulty drive (here the first drive), which 
could be identified by its red LED, had to be turned off by 
pressing its toggle switch (i.e., t1, first toggle); (3) the hard 
drive had to be picked up to be removed from its slot (ud1), 

and (4) discarded in a bin (db); (5) a new spare drive was 
picked up (usp) and then (6) inserted in the empty first slot 
(ds1); (7) the same toggle switch was pressed again (t1) to 
turn on the green LED and (8) the drawer was closed (drc) 
(see supplementary material Table S1 for the atomic actions 
of this sequence). For human-readability we have chosen 
strings like ‘dro’ or ‘t1’ that contain more than one letter, 
but each atomic action is thought of as a single symbol, and 
thus the smallest unit of activity in this task. This particular 
demonstrated sequence is called the demonstrated sequence 
or reference sequence.

While the human participants in this study practiced 
this task by watching a SMILE video, the humanoid robot 
did not process raw video footage. Specifically, while for 
humans multiple brain regions (e.g., dorsal and ventral 
stream) would be engaged to visually process and encode the 
actions composing the sequences shown in the video, such a 
process was not modeled in the neurocognitive architecture 
controlling the robot since the focus was on implementing 
high-level planning mechanisms. However, for the robot, 
the SMILE event record, which is auto-generated, provided 
a text-based transcription of the video to its neurocogni-
tive architecture. This event record amounts to a transcribed 
demonstrated low-level action sequence, and the robot draws 
on its prior knowledge to infer the demonstrator’s goals 
based on their actions. It then imitates by planning its own 
(potentially different) actions to achieve the same goals.

These robotic reasoning processes use rich knowledge 
representations including first-order logic with continuous 
variables, preconditions and temporal ordering constraints, 
and hierarchical action and task relationships. However, 
once a plan is generated, each constituent action is grounded 
(its variables are all bound to constants) and it can be treated 
as an atomic element of an alphabet for the purposes of LD 
computation (for more details for this inference and plan-
ning process see [8]). After learning, the robot produces 
a motor sequence that successfully imitates the complex 
action sequence and that is stored for further analysis. Thus, 
although compared to human participants, the neurocogni-
tive architecture has enhanced pure memorization capabili-
ties, it does not simply memorize the demonstrated action 
sequences but instead learns to understand their goals using 
cause-effect reasoning and decomposes them into actions 
that are then executed.

The human participants practiced the same imitation task. 
First, before watching any demonstration, an acclimation 
stage allowed the participants to become familiar with the 
physical disk drive dock station (see section S2.1 for details). 
A prompt provided the instructions including the meaning of 
the red and green LEDs and, importantly, also indicating that 
the LED should be turned off when adding or removing the 
hard drives. Once this familiarization phase was complete, 
the video was shown, demonstrating the action sequence 

2  For consistency between humans and the humanoid robot, here the 
term learning is employed in a general manner and reflects perfor-
mance during the practice throughout the trials [27].
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to the human participants who had to learn to imitate it. 
Five trials were performed by each human participant, each 
having the following structure and using the same video in 
order to avoid any possible confounding factors due to a 
potential transfer of learning from one task to another. At 
the start of each trial, the instructions were provided on a 
computer monitor via the prompt (and also verbally). Once 
the demonstration was over, the participants had to imitate 
the action sequence previously observed.

As the participants performed the task, a video recording 
using a digital camera was employed to collect the action 
sequences they performed, and these actions were sub-
sequently manually transcribed into a sequence of single 
symbols as previously indicated (see supplementary material 
Table S2 for details). At the end of each trial, the hard drive 
dock station was reset to its initial state and the demonstra-
tion in the video ready to be played again in preparation for 
the next trial.

Success in this task required both: (i) the completion of 
the goal, which was to replace the faulty hard drive with a 
spare one placed on the top of the docking station, as well 
as (ii) following the basic principle that the LED should be 
turned off when hard drives are added or removed. If these 
two criteria were not met, a motor sequence was classified 
as a failure. It is critical to note that the combination of 
providing only two success criteria combined with a mini-
mum number of instructions was chosen to minimize the 
constraints on action performance. Thus, it was possible for 
the participants to successfully perform the demonstrated 
action sequence without having to exactly imitate the dem-
onstrated motor sequence (which had the minimum number 
of eight atomic actions executed in the specific order <dro, 
t1, ud1, db, usp, ds1, t1, drc> (see Table S2 for the complete 
set of abbreviations used) but also by performing the task in 
various manners while still reaching the goal (i.e., replacing 
the drive next to an initially red LED), and respecting the 
basic rule that LEDs should be switched off while insert-
ing or removing drives. Although the reference sequence 
was fairly short, it still promoted real-world flexibility in its 
execution allowing to capture various high-level plans (i.e., 
motor sequences) deployed by the humans and the humanoid 
robot to complete the proposed cognitive-motor task.

2.2 � Tower of Hanoi Task

2.2.1 � Experimental Set‑Up

Twenty participants faced the Tower of Hanoi (TOH) setup 
which included four or five disks stacked atop each other of 
gradually increasing diameters from top to bottom (denoted 
from 1 to 4 or from 1 to 5; 1 being the smallest disk atop) 
and three pegs (denoted A to C from the left to the right of 
the performer) (see section S2.2 for details on participants).

2.2.2 � Task Description

The TOH task consisted of moving the entire tower from 
the leftmost (first peg, denoted A) to the rightmost (third 
peg denoted C) peg by performing an action sequence with 
a minimum number of moves. As previously mentioned the 
conditions of execution of the TOH were chosen to chal-
lenge as much as possible both the robot and humans while 
accounting for their own capability so that they could still 
be able to perform the task. Typically, to perform the TOH 
task, the three following rules are provided: (i) only one disk 
can be moved at a time; (ii) a disk may not be placed on the 
table or held in the hand while another disk is manipulated 
in space and (iii) a larger disk may not be stacked on top of a 
smaller disk. However to elevate the challenge relative to the 
HDDS task, the humanoid robot had to complete the TOH 
task with five disks and learning it through imitation with-
out knowing the three rules. As such its success depended 
only on its capability to successfully imitate the sequence. In 
addition, it was required to perform the task with five disks 
resulting in a reference sequence having thirty-one atomic 
actions which had to be executed in a specific order to reach 
the task goal. Thus the reference sequence to be imitated was 
almost four times longer than that to complete the HDDS 
task, increasing substantially the computational cost for the 
cognitive control system of the robot while still promoting 
strategy diversification (2i − 1 where i is the number of disks; 
here i = 5; [30]) (see Table S1 for further details). No infor-
mation about the recursive solution was provided. Under 
these conditions, the robot had to learn the TOH task via 
the SMILE virtual environment. After learning, the robot 
was able to successfully replicate the demonstrated complex 
action sequence and was stored for further analysis.

The human participants had also to perform the TOH 
task but with four disks since preliminary results revealed 
that, although being challenging, this amount was appropri-
ate (five disks being too difficult). As a result the reference 
sequence included fifteen atomic actions which had to be 
executed in the particular order <1B, 2C, 1C, 3B, 1A, 2B, 
1B, 4C, 1C, 2A, 1A, 3C, 1B, 2C, 1C> to reach the task goal 
(2i − 1; here i = 4; [30]; see Table S1). As such, compared to 
the HDDS task, the action sequence with this TOH task was 
almost twice as long offering thus a greater challenge while 
promoting strategy diversification (see Table S1). To further 
increase the task difficulty relative to the HDDS task, while 
the three rules were explained to the human participants, 
they were trained via a trial-and-error learning paradigm 
where only the task goal was provided (i.e., stacking up the 
disks in increasing size from top to bottom) but without 
demonstrating the reference sequence. As for the robot no 
information regarding the recursive solution was provided.

Before practice human participants became accustomed 
to the set-up during a familiarization period (see section 
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S2.2 for details). As previously done for the HDDS task 
the same video data collection and analysis was conducted. 
After each trial, the participants were informed if they had 
violated one or more execution rules, then the TOH setup 
was reset to its initial state and the prompt was shown again 
in preparation for the next trial. Success in this task required 
the completion of the task goal without violating the three 
execution rules. If these criteria were not met, the motor 
sequence was considered as a failure.

2.3 � The Levenshtein Distance Applied to Complex 
Action Sequences

The LD can be applied to the domain of complex motor 
action sequences by appropriately defining the correspond-
ing alphabet of symbols, sequences, and operations. Thus 
each atomic “symbol” is here defined as an elementary 
action that is part of an action sequence. In general, the per-
formance of a complex action sequence can be associated 
with an alphabet that can be defined as a finite set {A1, A2,… 
Ai,…, An-1, An} where Aj is the jth atomic action among all 
N possible actions. A motor sequence would be defined as 
a finite, ordered list of zero or more actions from the alpha-
bet, potentially with repeats (see section S2.3 for a simple 
example of motor action alphabet).

In a motor context, the computation of the LD can be 
associated with three possible operators: (i) insertion of one 
action, (ii) deletion of one action, and (iii) substitution of 
one action for another one (i.e., this can be seen as a replace-
ment). These three operations can be employed to transform 
any motor sequence into another one, by modifying only 
one action at a time. The insertion operator inserts a new 
action at any position in the action sequence, increasing the 
length of the motor sequence by one. The deletion operator 
removes an action at any position in the action sequence, 
decreasing the length of the sequence by one. The substitu-
tion operator replaces an existing action with a new action at 
the same position in the sequence, leaving thus the sequence 
length unchanged (see Fig. S1 of the supplementary mate-
rial for an example of these operators).3 In a motor context, 
the LD measures the overall distance between two different 
motor sequences, which is defined as the minimum number 
of atomic operations required to transform one sequence 
into the other [31, 32]. The computation of the LD can be 
efficiently performed by well-established dynamic program-
ming methods such as the Wagner-Fischer algorithm [33]. 
The same computational analysis was employed for both 
the HDDS and the TOH tasks. Insertions, deletions, and 
substitutions are not part of the robot’s planning process, 

but rather, conceptual edits that could be made to the 
“result” of the robot’s planning process (i.e., the resulting 
planned action sequence), which would transform it into 
a demonstrated reference sequence. The robot’s planning 
process involves prior knowledge about the preconditions 
and postconditions of each action, encoded in a hierarchi-
cal task network planning formalism. This prior knowledge 
includes symbolic conditions (e.g., a gripper must be empty 
to pick something up) and sub-symbolic computations (e.g., 
a motion planner must compute a successful reach motion to 
an object in order for it to be picked up) (for details of this 
planning process see [8]).

2.4 � Action Sequence Performance Analysis

To capture the various ways of successfully completing the 
HDDS and the TOH tasks, the set of all potential actions 
that can be executed (i.e., the alphabet) had to be defined 
(see Table S2). For the HDDS task as well as the TOH task 
with four and five disks, an alphabet consisting of 17, 12 
and 15 possible actions was identified (see section S2.4 and 
Table S2 of the supplementary material for details). After 
data collection, for the HDDS and TOH tasks, a total of 62 
(60 from humans, 1 from the robot and 1 reference sequence 
from SMILE) and 77 (75 from humans, 1 from the robot and 
1 reference sequence from SMILE) action sequences were 
examined, respectively. In each task, sequences included 
both successes and failures, based on the criteria defined 
above.

2.4.1 � Graphical Representation of Complex Action 
Sequences

Action sequence alignments were generated to provide 
a combined visualization of the various action sequences 
generated by human participants and the humanoid robot 
with respect to the reference sequences. The action sequence 
alignments were generated for both the failed and successful 
(perfect and imperfect) action sequences. This representation 
allows one to identify where divergences between the motor 
sequences occur, by aligning all sequences side by side. The 
spacing between successive actions in each sequence is sys-
tematically varied so that the common sub-sequences across 
all sequences are aligned as well as possible. The alignment 
allows both a visualization of the generated action sequences 
at a global level as well as a focus on details in a particular 
sequence.

2.4.2 � Levenshtein Distance and Operator Occurrence 
Analyses

In order to assess the performance for the humans and 
the humanoid robot for both tasks, each action sequence 

3  For consistency with prior work the standard LD considering only 
these three operators was employed.
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performed by the humans or the robot was compared to the 
reference sequence by computing both the LD as well as 
the number of occurrences of each of the three operators 
(i.e., insertions (I), deletions (D) and substitutions (S); where 
LD = I + D + S). Then, three types of action sequence perfor-
mance were identified and considered for statistical analyses: 
(i) failed action sequences where either the goal was not 
reached or it was reached by violating at least one of the exe-
cution rules, (ii) successful but imperfect action sequences 
where the goal was successfully reached by employing a 
different sequence than the reference sequence, and (iii) suc-
cessful perfect action sequences that exactly matched the 
reference sequence (i.e., those have a LD = 0).

A first analysis examined the extent to which insertions, 
deletions and substitutions are markers of performance 
success or failure in the humanoid robot and humans. The 
average (computed across all trials and participants) LD 
and the occurrence of its three operators (insertion, dele-
tion and substitution) for the failed action sequences were 
compared to (i) all the successful sequences; (ii) the success-
ful imperfect sequences only and (iii) the successful perfect 
sequences only using a reference value of zero (representing 
a perfect performance having a zero LD with I = D = S = 0) 
via a series of Wilcoxon signed rank tests. Then the suc-
cessful perfect and imperfect action sequences were further 
examined. To do this, the average LD and the occurrence 
of its three operators for the imperfect action sequences 
were compared to the value zero (LD = I = D = S = 0) via a 
series of one sample Wilcoxon signed rank tests. Finally, 
to assess the contribution of the three operators (insertion, 
deletion, substitution) to the LD for all action sequences 
(failed, imperfect/perfect successful) the LD and its operator 
occurrences were compared via a series of Wilcoxon signed 
rank tests. Also, a correlational analysis allowed to assess 
the relationships between each of the four metrics and the 
success or failure of action sequence.

A second analysis investigated the change in performance 
during the five practice trial. The average values of each of 
the four metrics plus the number of failed sequences were 
computed across participants for each single trial and then 
examined by employing a series of one way Friedman tests 
(with 5 repetitions for the factor trial).

A third analysis applied to the successful and failed action 
sequences assessed the ability of the performers to recall 
more items correctly at the beginning (i.e., primacy) and/or 
at the end (i.e., recency) of the action sequences [34, 35]. 
The occurrence of the LD operators at each of the positions 
of the atomic actions (eight and fifteen for the HDDS and the 
TOH, respectively) in the reference sequence to transform 
it into any given human sequence were computed. Then, to 
compare if some operators were employed more frequently 

than others at the beginning, middle or end4 of the failed and 
imperfect successful action sequences, the number of inser-
tions, deletions and substitutions were compared for these 
three periods via Wilcoxon signed rank tests.

Finally, an additional exploratory analysis directly com-
pared the humans and robot action sequences to assess how 
the human motor plans differed from that employed by the 
humanoid robot and under which conditions (i.e., failed, suc-
cessful imperfect/perfect outcome). While such comparison 
is appropriate for the HDDS task since humans and the robot 
were trained in the same way, for the TOH task the same 
comparison was more delicate since the humans and robots 
were trained differently and thus the results of this specific 
analysis has to be taken with caution. The average (com-
puted across trials and participants) LD and the occurrence 
of its four operators obtained between the action sequence 
generated by the humanoid robot and those successfully 
produced by the humans were compared via a series of Wil-
coxon signed rank tests due to the low power to detect any 
departure from a normal distribution with a limited sample 
size.

For all the statistical analyses mentioned above, the false 
discovery rate (FDR; [36]) was employed to control for the 
multiple statistical tests conducted on all the metrics that 
indexed the humans and humanoid robot performance. The 
same statistical analysis was employed for both the HDDS 
and the TOH task.

2.5 � Robotic Imitation Learning System

Our robotic imitation learning system, CERIL, is an AI sys-
tem that performs non-trivial causal inference. It has been 
described in detail elsewhere [7, 8, 28, 29], so we briefly 
summarize it here. It uses built-in cause-effect knowledge to 
infer the high-level goals of a demonstrator and imitate the 
goals rather than the actions. As opposed to rote mimicry 
of a demonstrator, imitating the goals allows the robot to 
generalize to new situations (e.g., different number of drives 
in different slots with different LED colors, and different 
number and positions for spare drives). A consequence of 
the robot’s generalization ability is that, when presented with 
a new situation different from the demonstration, the robot 
may potentially choose a sequence of actions quite differ-
ent from the sequence that was demonstrated. These differ-
ences can include manipulating different objects in different 
orders, and can also include changes that reflect the differ-
ences in the robot’s and the demonstrator’s embodiment and 

4  The beginning, middle and end of the sequence were defined as 
25% of the total number of actions forming the reference sequence 
(e.g., the beginning included the actions #1–2 and #1–4 for the 
HDDS and TOH task, respectively.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



988	 International Journal of Social Robotics (2021) 13:981–998

1 3

constrained ranges of motion. For example, the robot may 
hand off a drive between grippers when only one gripper can 
reach a target location, while this hand off might have been 
unnecessary for a person. For similar reasons, the action 
sequence employed by a robotic imitator might be quite dif-
ferent than that of human learners imitating the same dem-
onstration (see section S2.5 of the supplementary material 
for details on the robot’s imitation processes).

3 � Results

Analysis of the action sequences revealed that for both tasks, 
trials performed included a large variety of sequences among 
which the successful sequences do not include any deletion 
and no or few substitution operators contrary to the failed 
sequences (Fig. 2; compare the sequence 10, 12 vs. 13, 17 
for the HDDS task as well as the sequences 4, 13 vs. 39, 
40 for the TOH task; see Figs. S2, S3 and Tables S3, S4 
and section S3 of the supplementary material for further 
information). Based on the criteria previously established, 
65% and 96% of the trials were successful (either com-
pletely matched the demonstration reference sequence or 
differed but were still successful) whereas 35% and 4% of 
them were not successful in completing the HDDS and the 
TOH task, respectively (Fig. 3, see pie chart and Table 1 
for details). For both tasks the humanoid robot successfully 
performed the action sequence in one single trial. While for 
the TOH task the humanoid robot perfectly replicates the 
sequence (i.e., LD = I = D = S = 0), for the HDDS task the 
robot did not strictly follow the demonstration with a LD 
and a number of insertions equal to one and no deletions or 
substitutions (i.e., LD = I = 1; D = S = 0; see Fig. 2a action 
sequence #12). For both tasks the number of insertions was 
significantly greater than the number of deletions and sub-
stitutions for the successful imperfect sequences indicating 
that increased LD was mainly driven by insertions. For the 
failed action sequences the contributions to the LD to both 
tasks tended to be more distributed among the three opera-
tors while the number of insertions was significantly larger 
than the number of substitutions for both the HDDS and 
TOH tasks (see section S3 of the supplementary material 
for further details).

3.1 � Assessment of Failed and Successful action 
Sequences in Humans and the Humanoid Robot

3.1.1 � Hard Drive Docking Station

Statistical analysis revealed that the LD and the number 
of insertions for the failed action sequences generated by 
human individuals differ from those obtained with the 
perfect successful sequence (z ≥ 2.668, p < 0.023 for both 

metrics; compare F and SP in Fig. 3a, b). Also, the num-
ber of deletions was significantly greater for the failed 
action sequences relative to those obtained for the suc-
cessful imperfect or perfect (z = 2.410; p = 0.030 for both 

Fig. 2   The full sequence alignment for the reference sequence T, 
two instances of successful and failed sequences for the HDDS 
(panel a) and the TOH (panel b) task. Each column shows an exam-
ple sequence; each row shows different actions performed within the 
sequences. In the first column of each panel, “T” indicates that this is 
the “target” sequence (i.e., the reference sequence). The black actions 
indicate actions used in the reference sequence; these were the actions 
used for alignment. The red actions indicate extraneous actions that 
were not part of the reference sequence and instead were inserted dur-
ing the human or robot trial. The red full boxes indicate a deletion for 
the corresponding action. The action denoted in red and boxed in red 
illustrate a substitution for the corresponding action by another one. 
For the HDDS task (panel a), the sequences 10 and 12 are imperfect 
whereas the sequences 13 and 17 are failed. For the TOH task (panel 
b), the sequences 4 and 13 are imperfect whereas the sequences 39 
and 40 are failures. See Fig. S2, S3 and Table S3, S4 in the supple-
mentary material for the alignment of all the sequences generated in 
both tasks
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comparisons; compare F vs. SI and F vs. SP in Fig. 3c) 
action sequences. The same comparison did not reach the 
significance level for the number of substitutions (p > 0.303 
all comparisons considered; Fig. 3d).

Such prominence of deletions in the failed action 
sequences was confirmed by the correlational analysis that 
revealed that the number of deletions (r = 0.681, p < 0.001) 
was positively and significantly correlated to action 

sequence failure. This was also observed for the number of 
substitutions (r = 0.495, p < 0.001) but not that of insertions 
(r = 0.219, p = 0.090). The LD was also positively and sig-
nificantly correlated with action sequence failure, likely due 
to the contribution of deletion and substitution (r = 0.519, 
p < 0.001) (Fig. 4a; first row). The pronounced presence of 
deletion during failed action sequences is also consistent 
with the observation that this operator was absent whereas 
the humanoid robot successfully complete, although imper-
fectly (use of an extraneous action) this task (Fig. 3).

3.1.2 � Towers of Hanoi

Considering performance of human individuals, the same 
statistical analysis performed for the TOH task revealed that 
although the LD and its operators were larger for the failed 
compared to the perfect successful action sequences, none 
of these differences reached the significance level (p > 0.05; 
compare F and SP in Fig. 3e–g). Despite the lack of signifi-
cance for the number of deletions, which was likely due to 
a small sample of failed trials leading to a lack of statistical 
power (n = 3 representing 4% of all trials executed), it is the 
only metric which was found as non-zero for the failed trials 
compared to the perfect and imperfect sequences (i.e., see 
F vs. SI; F vs. SP; Fig. 3g). The specific presence of dele-
tions in the failed action sequences was confirmed by the 
correlational analysis that revealed that the number of dele-
tions (r = 0.990, p < 0.001) was the only metric which was 
positively and significantly correlated with action sequence 
failure (LD: r = 0.102, p = 0.461; I: r = − 0.024, p = 0.912; S: 
r = 0.006, p = 0.961) (Fig. 4a; second row). As for the HDDS 
task, the specific presence of deletions in action sequence 
failure is also in agreement with the result that this operator 
was absent while the humanoid robot generated a successful 
action sequence to execute the TOH task (see Fig. 3).

Fig. 3   Average LD and numbers of the three operators for human 
participants for the failed (dark gray bars), imperfect (gray bars) and 
perfect (black bars; perfect replica of the demonstration) successful 
action sequences. The LD and its three operator for the humanoid 
robot action sequences (light gray bars). The panels a, b, c and d, rep-
resent the LD, the number of occurrences of insertion, deletion and 
substitution operators for the HDDS task, respectively. The panels e, 
f, g and h, represent the LD, the number of occurrences of insertion, 
deletion and substitution operators for the TOH task, respectively. F: 
failed action sequence; SI: successful imperfect action sequence; SP: 
successful perfect action sequence (including the reference sequence 
by definition) and R: action sequence generated by the humanoid 
robot. ***p < 0.001; **p < 0.01; *p < 0.05

Table 1   Performance outcome, average LD, I, D and S for the per-
fect, imperfect and failed action sequences for human execution

Perfect Imperfect Failed

HDDS
Trial distribution 33.33% 31.67% 35%
Average LD 0 3.262 ± 1.805 3.359 ± 2.396
Average I 0 3.262 ± 1.805 2.415 ± 2.353
Average D 0 0 0.741 ± 0.501
Average S 0 0 0.204 ± 0.351
TOH
Trial distribution 20% 76% 4%
Average LD 0 7.128 ± 3.675 8.667 ± 5.508
Average I 0 5.582 ± 3.206 3.667 ± 5.508
Average D 0 0 2.667 ± 1.202
Average S 0 1.545 ± 0.763 2.333 ± 2.082
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3.2 � Successful Perfect and Imperfect Action 
Sequences in Humans and the Humanoid Robot

3.2.1 � Hard Drive Docking Station

Statistical analysis conducted on the human data also 
revealed that the LD and the number of insertions (which 
was the sole contributor to the LD for imperfect sequences) 
were both greater for the imperfect compared to the per-
fect action sequences (z = 2.371, p = 0.030; for both met-
rics; compare SI and SP in Fig. 3a, b). This prominence 
of insertion as the main contributor of the LD was also 
observed with the humanoid robot performance since its 
LD exactly reflected the number of insertions which were 
generated to successful complete the HDDS task (Fig. 3a, 
b).

As expected, the four metrics (LD, I, D, S) were all 
negatively correlated with the successfully perfect action 
sequences. Significant correlations were obtained for 
the LD (r = − 1.00, p < 0.001), the number of insertions 
(r = − 0.809, p < 0.001), and of deletions (r = − 0.354, 
p = 0.013), while only a tendency was detected for the 
substitutions (r = − 0.257, p = 0.056) (Fig. 4b, first row). 
The LD (r = 0.481, p < 0.001) and the number of insertions 
(r = 0.595, p < 0.001) were positively and significantly cor-
related with the successful imperfect action sequences. 
However, the number of deletions and substitutions were 
negatively correlated with successful imperfect action 
sequences, while significant correlations were obtained 

for the number of deletions (r = − 0.340, p = 0.013) and 
a tendency was detected for substitutions (r = − 0.247, 
p = 0.062) (Fig. 4c, first row).

3.2.2 � Towers of Hanoi

The same statistical analysis conducted for the TOH task 
revealed that the LD, the number of insertions (which was 
the main contributor to the LD for imperfect sequences) 
and the number of substitutions were larger for the 
imperfect relative to the perfect sequences for humans 
(z ≥ 3.625, p < 0.001; for these three metrics; compare SI 
vs. SP in Fig. 3e, f, h). For this task, the robot replicated 
the reference sequence (Fig. 3).

As anticipated, the four metrics were all negatively cor-
related with the successful perfect action sequences. Sig-
nificant correlations were detected for the LD (r = − 1.00, 
p < 0.001), the number of insertions (r = − 0.802, 
p < 0.001), and substitutions (r = − 0.686, p < 0.001) but 
not deletions (r = − 0.102, p = 0.461) (Fig.  4b, second 
row). The same examination performed for the successful 
imperfect action sequences revealed that the LD (r = 0.890, 
p < 0.001), the number of insertions (r = 0.762, p < 0.001) 
and substitutions (r = 0.640, p < 0.001) were positively 
and significantly correlated with performance outcome. 
The number of deletions was negatively and significantly 
correlated with successful imperfect action (r = − 0.363, 
p = 0.002) (Fig. 4c, second row).

Fig. 4   Correlations between 
the LD, number of insertions, 
deletions and substitutions and 
the failed (a), perfect (b) and 
successful but imperfect (c) 
execution of action sequences. 
The first and second rows rep-
resent the correlations obtained 
for the HDDS and the TOH 
tasks, respectively. I: Inser-
tion; D: Deletion; S: Substitu-
tion. ***p < 0.001; **p < 0.01; 
*p < 0.05
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3.3 � Practice, Primacy and Recency Effects

3.3.1 � Hard Drive Docking Station

Statistical analysis conducted for the human individuals dur-
ing the practice period revealed that the number of failed 
trials, the LD, and the occurrence of the three operators 
remained relatively unchanged throughout practice (p > 0.05; 
all metrics considered).

The humanoid robot did not reveal any change over the 
five trials since it was able to successfully perform the task 
after one trial and maintain this performance for the four 
remaining trials.

Finally, analysis of human data to explore any recency 
and primacy effects by examining whether the occurrence of 
the operators was more pronounced at the beginning, middle 
or end of the eight actions composing the reference sequence 
did not reveal any significant differences for the failed or 
imperfect successful action sequences (p > 0.05; all condi-
tions considered). However, for the imperfect successful 
action sequences, the visual examination suggested that the 
insertions tended to further occur at the beginning and end 
of the sequences (Fig. 5a). The same visual examination of 
the results suggests that for the failed action sequences the 
deletions tend to occur more at the end and beginning of the 
sequence while the substitutions tend to rather occur in the 
middle of the sequence (see Fig. S4 in the supplementary 
material for further details). No primacy or recency effect 
was observed for the humanoid robot.

3.3.2 � Towers of Hanoi

The same statistical analysis performed to assess changes 
during the practice period for the TOH task did not reveal 
any difference in the number of failed trials, the LD, and the 
occurrence of its three operators (p > 0.05; all metrics con-
sidered). As for the HDDS task, the humanoid robot did not 
reveal any change over the five trials since it was able to suc-
cessfully perform the TOH task the first time and maintained 
the performance for the four other trials. However the analy-
sis conducted for the imperfect successful action sequences 
revealed that the LD and the occurrence of the substitu-
tion operator were significantly larger in the middle rela-
tive to the beginning of the reference sequence (z ≥ 2.202, 
p < 0.026; for all comparisons; see Fig. 5b). Similarly, the 
LD, as well as the number of insertion and substitutions 
were significantly greater in the middle compared to the 
end of the reference sequence (z ≥ 2.381, p < 0.015; for all 
comparisons; see Fig. 5b). The same recency and primacy 
analysis did not detect any changes in the number of occur-
rence of the operators between the beginning, middle or end 
of the reference sequence for the failed action sequences 
(p > 0.05; all conditions considered; see Fig. S4 for further 

details). No primacy or recency effect was detected for the 
humanoid robot.

3.4 � Direct Performance Comparison Between 
Humans and the Humanoid Robot

This work primarily aimed to deploy a computational tool 
to assess action sequence performance under various condi-
tions of challenge and learning in humans and a humanoid 
robot. Thus the direct human versus humanoid robot com-
parison discussed in this section was secondary in this work 
and exploratory. When considering the HDDS task, the LD 
and number of deletions between the reference sequence 
and the human action sequences were significantly larger 
than those obtained between the reference sequence and 
the humanoid robot action sequence during task failure 
(LD: z ≥ 2.415, p < 0.030 for both metrics; see F vs. R in 
Fig. 3a, c) while a similar number of insertions and sub-
stitutions was detected (p > 0.281 for all comparisons; see 
Fig. 3b, d). The same comparison for the imperfect suc-
cessful sequences did not reveal any significant difference 
(p > 0.05; see SI vs. R in Fig. 3a–d). The same analysis for 
the TOH task did not reveal any human–robot difference 
for the failed sequences (p > 0.05 for all comparisons; see 
F vs. R in Fig. 3e–h) whereas for the imperfect successful 
human action sequences the LD, number of insertions and 
substitution significantly differed from those generated by 
the humanoid robot (z ≥ 3.625; p < 0.001; see SI vs. R in 
Fig. 3e, f, h).

4 � Discussion

Overall, when examining the action sequences generated by 
the human individuals and the humanoid robot in both tasks, 
which involved different amounts of challenge and learning, 
the main findings were that: (i) human participants gener-
ated a wide variety of action sequences in both tasks not 
only in terms of success versus failure, but also in terms of 
the different strategies used in imperfect successful trials, 
whereas the humanoid robot typically produced perfect or 
near-perfect sequences after just one trial; (ii) the LD and 
number of insertions reliably differentiate perfect and imper-
fect successful attempts and, (iii) deletion was the most sen-
sitive marker of failure, representing the main contributor to 
performance failure independently of the level of challenge, 
learning paradigm and types of performer considered here.

4.1 � Assessing Complex Action Sequence 
Performance in Human and Humanoid Robots

By assessing in detail the structure of each action sequence 
produced by the humans and the humanoid robot in both 
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tasks it was possible to not only detect if the sequence 
was a perfect, imperfect (but still reaching the task goal) 
or failed action sequence, but also to determine specifi-
cally what actions were responsible for the performance 

outcome. For the HDDS task the findings revealed that a 
third of the human action sequences were not correctly 
executed since participants either did not press the release 
switch to turn off the disk before changing it, or simply 

Fig. 5   Average LD and number of occurrences of the three operators 
in humans at each of the eight and fifteen positions in the reference 
(demonstrated) action sequence, for the successful imperfect action 
sequence executed for the HDDS (panel a) and the TOH (panel b) 
task, respectively. For the HDDS task the number of deletions and 
substitutions were zero for the successful imperfect sequences, for 
clarity they are not represented here. For the same reason the success-

ful perfect action sequences are not represented for both tasks since 
their LD and operator occurrences are all zero. Bar heights indicate 
number of operations at a specific position in the case of deletions 
and substitutions, and number of operations immediately after a spe-
cific position in the case of insertion. For example, no actions were 
ever inserted before the very first action (opening the drawer) or after 
the very last (closing the drawer) for the HDDS task
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failed to reach the task goal (i.e., incorrect order and/or 
incomplete sequence). Interestingly for the TOH task only 
4% of the trials failed. Critically, while no statistical sig-
nificance was detected likely due to a lack of statistical 
power because of the very few trials, as predicted, dele-
tions only occurred in and caused failure trials; they may 
thus serve as a robust marker of failure. Possibly one can-
not recover from deletion of a critical operation of the 
reference sequence, without reinserting the missing action 
at the same or a nearby position. The deletion operator as 
a marker of failed action sequence may have some degree 
of generality since consistent results were obtained for the 
two tasks considered here which involved different levels 
of challenge and learning paradigms. However, deletion as 
a marker of performance failure is also probably related to 
the specific type of tasks and learning processes consid-
ered in this work where there was a specific order of the 
actions followed to execute the task, one minimal refer-
ence sequence and few execution rules. While this result 
illustrates how, at least in this study, the proposed method 
can uncover performance markers which can complement 
more basic metrics, it is likely not valid for all tasks and/
or learning types. Contrary to deletions, the substitutions 
revealed a less clear pattern of results. For the TOH task 
the use of the substitution operator was more frequent for 
the imperfect compared to the perfect sequences. This dif-
ference was not observed for the HDDS task.

When considering the distribution of a particular opera-
tor among the action positions that formed the reference 
sequence, no statistical differences were detected for the 
failed action sequences in both the HDDS and TOH tasks 
(Fig. S4). However, regarding the imperfect successful 
sequences, while no change in primacy and regency was 
identified for the HDDS task, some differences in LD, 
insertion and substitution were observed for the TOH task 
(Fig. 5a, b). For this task, the LD and number of substi-
tutions were larger in the middle relative to the beginning 
and end of the sequence while the number of insertions 
was greater in the middle compared to the beginning of the 
sequence which is consistent with prior primacy/recency 
results for working memory (see actions 0–3, 6–9, 12–15 in 
Fig. 5b). Possibly while human individuals explore the high-
level plan for the TOH task, its early and late components 
are better memorized compared to the middle component 
before execution. Although this phenomenon should be fur-
ther examined, these results may potentially extend these 
notions initially identified in pure task memorization to cer-
tain complex motor tasks [37]. In addition, noticing that the 
trailing portion of a 5-disk solution is a 4-disk sub-problem 
and that the trailing portion of a 4-disk solution is a 3-disk 
sub-problem, a complementary possible explanation would 
be that performance improves near the end of the sequence 
since smaller sub-problems are easier to recognize and solve.

Our approach applied to the HDDS and TOH task 
revealed that among the human successful sequences, 
51.27% and 20.83% of those perfectly replicated the dem-
onstrated sequence (demonstration-human LD = 0) while 
48.72% and 79.17% did not (demonstration-human LD > 0), 
respectively. However, it is difficult to identify which task 
had the best performance, since while the HDDS task had 
more flexible execution rules than the TOH task, the latter 
required more steps. Overall, individuals failed less when 
completing the TOH task (TOH: 4% and HDDS: 35% of 
failed trials) although 25% of the TOH trials could not be 
completed on time. However within successful trials, the 
TOH task led to inferior performance (TOH: 20% and 
HDDS: 33.33% perfect trials). Future work could further 
examine this by assessing the level of mental workload 
deployed by the individuals during performance [38–41].

For both tasks these successful but imperfect action 
sequences were of particular interest since they represent 
different ways to complete the task, something that is often 
observed in real-world settings. Our method revealed that 
for both tasks the lack of perfect match of these success-
ful sequences was mainly due to the insertion of additional 
unnecessary actions during sequence imitation (no deletions 
and few substitutions were identified). For instance, instead 
of picking up the disk with the right hand and directly plac-
ing it in the available slot, the disk could be grasped with 
the left and then transferred to the right hand to be finally 
placed in the slot (see sequence #12, Fig. 2a). Such change 
of hands was observed in humans and in the humanoid robot. 
Similarly, for the TOH task two actions were added (disk 
1 moved to the peg B; disk 1 to the peg A; sequence #13, 
Fig. 2b). Adding such extraneous actions (which could be 
done multiple times) increases the length of the sequence 
without however compromising the success of the task com-
pletion. Thus, while the presence of insertions may prevent a 
perfect imitation, they may have a low probability of imped-
ing successful task completion, contrary to deletions. Pos-
sibly, inserting actions before/after each of the core atomic 
actions of the reference sequence is not problematic as long 
as these actions are produced in the correct order (and while 
following the task completion rules).

A possible explanation for production of extraneous 
actions for both the HDDS and TOH tasks by humans 
could be that (i) the multiple actions composing the ref-
erence sequence may be difficult to memorize (HDDS) 
or identify (TOH); (ii) since the task can be executed in 
various ways while still successfully reaching its goal, 
humans potentially learn to solve the task by generating 
multiple plans. Along those lines, while the analysis of 
the memory processes used here was not the primary aim 
of this work, it seems reasonable to ask if pure or logical 
memory processes would have been preferentially engaged 
during performance of failed, perfect and imperfect action 
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sequences. When considering that pure (or rote) memory 
reflects encoding of information without its full under-
standing and/or context whereas logical memory is based 
on an intelligent understanding and logical thinking, it 
could be expected that a short sequence that can be solved 
without using a particular logical procedure may likely 
further promote the engagement of pure memory. Spe-
cifically, here, compared to the TOH, the completion of 
the HDDS task did not involve any particular solution 
to be identified such as a recursive procedure while also 
providing a much shorter sequence length (eight vs. fif-
teen actions) which was somewhat closer to the working 
memory capacity [42]. Thus, the execution of the HDDS 
task may have rather relied on pure memory whereas the 
performance of the TOH task may have further involved 
logical memory mechanisms. Keeping this in mind, and 
the fact that compared to HDDS, the TOH task revealed 
a smaller number of perfect/failed sequences but also a 
much greater number of successful imperfect sequences, it 
could be suggested that the pure and logical memory may 
have a more prevalent role in generating the perfect/failed 
and imperfect sequences, respectively. Although possible, 
the differential engagement of such memory mechanisms 
needs to be further investigated in future work.

Since here there was only one optimal sequence which 
served as a reference, the action sequences with a zero 
LD were all identical to the reference sequence and thus 
between themselves. However, those having the same, 
but non-zero, LD were not necessarily identical to each 
other since it is unknown to which actions the operators 
were applied. In particular, action sequences that have the 
same non-zero LD do not necessarily use the same high-
level motor plan since the action sequence could have the 
same length but include different actions. Thus, having 
the same LD is a necessary but not a sufficient condition 
to have two sequences using the same high-level motor 
plan. To further study high-level plans deployed by the 
human and the humanoid robot for sequences with the 
same LD, the visual representation of actions sequences 
allows us to examine if an exact same path captured two or 
more sequences and which actions drove any discrepancies 
between those sequences. For instance for the HDDS task, 
the sequence generated by the humanoid robot (sequence 
#12, Fig. 2a), and another one produced by a human par-
ticipant (sequence #10, Fig. 2a), both have a LD = 1 from 
the demonstration (both had one single different action 
inserted at a different position). Similarly, for the TOH 
task the sequences # 4 and 13 have the same LD (LD = 2) 
but the former has a substitution followed by an insertion 
whereas for the latter two actions were added. Without any 
visualization the same LD obtained for the two sequences 
would not reveal their different structure.

4.2 � Comparison to Existing Approaches to Assess 
Complex Action Sequences

Our results complement past work by extending prior find-
ings from human motor behavior and robotic studies that 
evaluated human and/or robot performance during execu-
tion of complex tasks (e.g., Towers of Hanoi, equipment 
maintenance and cleaning) with relatively basic task-specific 
metrics (e.g., number of moves, errors). Namely, here we 
have deployed a computational approach able to examine 
in detail the structure of high-level motor plans underlying 
action sequences via qualitative (visualization) and quanti-
tative (LD and its operators) approaches which can poten-
tially be applied to various tasks [1, 4–8]. More specifically, 
our current study complements past robotic work that has 
assessed complex motor tasks via fairly coarse-grained met-
rics (e.g., execution times, success rates) or survey-based 
subjective measures (e.g., trust, mental workload) to assess 
human–robot teaming [9–15, 43]. Our work also comple-
ments more refined metrics based on time-based measure-
ments (e.g., reaction times of the robot/human teammate 
[10, 13, 16, 17]) or the segmentation of task execution into 
action sequences (e.g., number/cost of actions performed [9, 
13, 18–21]). Nikolaidis and colleagues [10] model action 
sequences as a mixed-observability Markov decision process 
and compute distances between their transition probability 
matrices. Their approach works with a closed sensorimotor 
loop, handles both planning and analysis of robotic motion, 
and emphasizes sub-symbolic sensorimotor tasks, such as 
positioning and orienting a single box. It can be viewed as 
complementary to our work, which focuses on cognitive-
level action sequences with many object positioning tasks 
(e.g., pickups, hand-offs, put-downs), and without any 
Markov requirement. The planning system we used with our 
robot, which uses less frequent sensory feedback control, but 
higher-level cognitive reasoning, is detailed in [8]. Com-
plementary to [10], by indicating specific LD operators and 
specific steps in the action sequence where they occurred, 
our approach provides specific descriptions of exactly how 
two action sequences differ. Our approach also includes the 
visual alignment of sequences for qualitative analysis. Our 
distance metric complements this clustering-based approach 
on higher-level cognitive tasks, and since it does not rely on 
a Markov assumption, it can capture longer-term dependen-
cies in action sequences. Only a few prior studies employed 
LD to study human or robot motor control, however the tasks 
considered were simpler compared to those employed here, 
being more sensorimotor in nature and with a limited or no 
cognitive component [44, 45].

The application of the LD to the motor domain can 
account for both the level of abstraction and the physi-
cal constraints. In the motor domain, the “alphabet” can 
include not only the action to be selected depending on the 
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cognitive-motor stage using high-level abstract representa-
tions (e.g., opening the drawer), but also on sensorimotor 
coordination for action implementations (e.g., use of the 
left effectors) which rely on a lower level of abstraction. 
While adding performance constraints (e.g., requirements to 
exactly replicate the demonstration with the right arm only) 
can mitigate or even solve this problem, the task becomes 
less realistic. Also, in the motor domain, humans and/or 
robots interact with physical systems that provide task con-
straints that are naturally enforced (e.g., in the HDDS task, 
the dock must be opened first before any disk manipulation; 
imitators and demonstrators have different physical con-
straints such as the number of degrees of freedom). How-
ever, such specificities may not be encountered for motor 
tasks that are less complex and more constrained, limiting 
the use of different effectors and implicit rules. The studies 
mentioned above that employed LD in humans or robots 
did not face these two problems due to the use of fairly sim-
ple tasks [44, 45]. Thus, our approach can assess complex 
action sequences while still complementing simpler metrics 
currently available to comprehensively assess complex task 
performance by humans and humanoid robots.

4.3 � Applications to Human, Humanoid Robots 
and Human–Robot Interactions

Our approach to analyzing human motor sequences could 
be employed to assess performance in both humans and 
humanoid robots. Specifically, the understanding of how 
human high-level motor plans are generated and adapted 
could inform the design of neurocognitive architectures for 
cognitive robots, enhancing their learning and performance 
capabilities. Our approach could also assess how human 
and humanoid robot high-level motor plans differ, allow-
ing testing and prediction of the quality of human–robot 
team dynamics. Namely, it is possible that a humanoid robot 
learns to perform a complex maintenance task in a certain 
way whereas humans execute it in a very different manner. 
Thus, our approach could accurately quantify and predict 
how much the humanoid robot and humans differ when com-
pleting the task. As such, we could predict that as the level 
of discrepancy between the humanoid robot and a human 
increases (e.g., elevation of LD and of insertions occur-
rences) the human–robot team dynamics would translate 
from an adaptive to a maladaptive state [41, 46, 47]. Thus, 
such a quantification of strategy differences in the humans 
and humanoid robot could inform their respective training 
and also predict or at least inform how their shared mental 
models may differ or not. If a human and a robot solve a 
problem with very different strategies it may be difficult for 
both to predict or infer efficiently the future states and goal 
understanding of each other’s behavior leading ultimately 
to poor team dynamics [24, 26, 48–50]. Such an approach 

focusing on high-level motor planning can complement 
prior work that has examined shared control at lower sen-
sorimotor levels for enhancing human–robot interactions 
[41, 46, 51, 52]. Also, our approach could reveal whether 
some specific changes in the sequence (e.g., insertion of a 
specific action) may be the main drivers promoting adaptive 
or maladaptive team environments. This could be done in a 
context where the humanoid robot and humans perform or 
are trained together. The fact that here the humanoid robot 
could perform consistently the tasks learned after one single 
attempt whereas this was not observed for humans (likely 
needing more practice) suggests that the difference in robot 
and human learning capabilities would likely influence the 
human–robot collaborative learning dynamics. Although 
many factors can lead to a difference between human and 
robot learning capabilities, here a potential factor could be 
the process with which the actions of the sequence shown 
in the video were visually processed and encoded by each 
performer since the former recruit well-established neural 
mechanisms (e.g., dorsal and ventral stream) whereas a text-
based transcription was provided to the robot via SMILE. 
Another source of difference could have been that the neuro-
cognitive architecture of the humanoid robot had enhanced 
pure memorization capabilities relative to humans. How-
ever, it is critical to note that the neurocognitive architecture 
which controls the robot did not simply perform a rote mem-
orization of the demonstrated action sequences, but instead 
inferred the goals, decomposed them into actions, and then 
executed those actions. As suggested earlier (see Sect. 4.1), 
although it is difficult to say if pure or logical memory mech-
anisms would have been preferentially engaged to perform 
the HDDS and TOH tasks in humans, for the neurocogni-
tive architecture, the actions and the goals could potentially 
reflect an analog of pure and logical memory, respectively. 
Thus, the ratio computed between the goals and the actions 
for both HDDS and TOH tasks resulted in about 0.5 (1:2). 
This suggests that for both tasks a combination of pure 
and logical memory processes was employed by the robot. 
Although further examination is needed, both the humanoid 
robot and the human participants likely engaged a combina-
tion of pure and logical memory processes to complete the 
tasks considered here, however the differences in memory 
mechanisms of the humanoid robots and human individuals 
likely contributed to differences in performance.

Also, although our work involved a humanoid robot and 
humans, our approach could be deployed exclusively with 
robots or humans. Regarding the latter, this work could 
serve to compare high-level motor plans in both healthy 
and impaired individuals informing thus the compromised 
underlying cognitive-motor processes. Our approach could 
inform how the motor plan generation and more generally 
the human cognitive-motor processes are adapted during 
performance and learning of new complex tasks.
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5 � Conclusion and Future Work

This work is just a first step in examining qualitatively and 
quantitatively the cognitive-motor performance outcome 
in humans and robots during practice of complex action 
sequences. Our results provide different but complemen-
tary metrics to those already existing to assess complex 
task performance by quantifying the differences between 
action sequences. The LD in the cognitive-motor domain 
can be used with varying levels of abstraction in the con-
text of physical constraints inherent to real-world interac-
tions. While the LD is informative, the occurrence of its 
specific operators may, to some degree, provide a more 
refined assessment of cognitive-motor performance. Also, 
although this work was conducted in both human and robot, 
it can also be exclusively applied to one or the other in a 
context of motor performance and learning. Our approach 
not only allows us to examine cognitive-motor performance 
by assessing similarity between two given sequences, but 
also to identify the sources of these differences (e.g., if 
some specific portions of two sequences are similar/differ-
ent, at which point these sequences differ (where branch-
ing occurs), recency/primacy effects). Thus, although the 
proposed approach, which is fairly simple to implement, 
is not a general measure of performance and further work 
is needed, it provides rich information which extends and 
complements other more basic metrics currently available.

As with any methodology, our approach also has limita-
tions. One possible weakness of this method is the situ-
ation where a task includes many trials with many steps. 
In this case, the visual representation, and in particular 
the action sequence alignment used here, may not be 
able to represent clearly all of the trials at once but only 
under specific configurations. Also, although our compu-
tational tool was tested in two different tasks which taken 
together involved various levels of challenge and learning 
paradigms, only two tasks were employed here. Another 
limitation is related to the definition of optimal sequence. 
Here as a first step only one optimal sequence, defined as 
having a minimum number of actions, was considered. 
While our approach does not account for tasks having mul-
tiple optimal sequences as can be the case in real world 
settings, it can still compare two sequences, regardless 
of whether they are optimal or not. Under such condi-
tions, our method could not determine the optimality of 
the sequence, however it could still assess how sequences 
(optimal or not) differ and ultimately inform how similarly 
two agents solve a given problem. In addition, if a per-
formed action sequence is optimal, it will have a null LD 
to one of the optimal sequences that serve as references. 
Moreover, its distance per-se to other distinct optimal ref-
erences, or the distance from sub-optimal sequences to 

one of these references would be non-zero and thus would 
vary depending on which distance metric is employed. For 
instance, the same limitations would likely arise with a 
more sophisticated LD which would include other opera-
tors (e.g., transposition) although the values of the dis-
tance computed would differ between the traditional LD 
as employed here and those having additional operators. 
Since for now it is uncertain how our approach could han-
dle multiple optimal reference sequences, it is unclear if 
similar results would be obtained under such a condition.

Also, the minimum number of actions as optimality cri-
teria was used since our approach aims to assess high-level 
planning which essentially relates to the number and order of 
actions in a sequence, which are the usual parameters consid-
ered in human planning studies [4, 6, 53, 54]. However, vari-
ous optimality criteria (e.g., energy, kinematics-based) could 
also assess performance with some being possibly better 
suited than others for certain types of tasks [55]. In this case, 
a similar approach could be considered by employing various 
criteria (e.g., energy consumption, motion smoothness) for 
each action to compare two sequences while also computing 
the LD for some metrics resulting in multiple optimality cri-
teria to assess the performance (similarly to multi-objective 
optimization). In this regard, for a given optimality criteria if 
multiple optimal sequences exist, the combination of all opti-
mality criteria may result, at least in some cases, in only one 
unique optimal sequence and thus may solve the limitation 
mentioned above that our approach currently cannot handle 
multiple optimal sequences when using only one optimality 
criteria which is the minimum number of actions. Moreover, 
in some situations the current approach may provide limited 
information as could be the case for some tasks that are simple 
by nature or because of the way they are modeled. For the 
former, there is likely no need to use such an approach which 
however was initially developed to study performance in tasks 
which cannot be executed with basic action sequences. For the 
latter, if an atomic action is defined at a more general level 
the task can appear as simplified and our method may be less 
interesting. However, in this case we would lose the granular-
ity of the action sequence analysis. Also, for certain contexts 
such as in the presence of perturbations or in a situation of 
complex interactions between two agents this approach may 
be more limited. For instance, in a collaborative context where 
two motor sequences are modified online and interleaved as 
two agents perform a task, our approach cannot currently cap-
ture these dynamics. Although, this approach, as a first step, 
did not aim to deal with such interacting contexts, it could 
still compare the action sequences performed by the human 
and the robot independently; this can inform their subsequent 
interactions in executing a given task. Although the usefulness 
of this approach may be limited for some situations, it could 
also compare action sequences executed in two different con-
texts to examine how their alterations are context-dependent. 
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Depending on the nature of the context this approach may 
need to be complemented by other metrics (e.g., energy) that 
altogether can collectively inform the performance.

Finally, we note that only a few trials were considered here 
and as such the same computational method could be employed 
to a larger number of trials to capture the learning dynam-
ics. Future work could further examine performance in both 
humans and humanoid robots while considering (i) additional 
tasks to further assess the performance outcome markers of this 
LD-based method, (ii) more trials to assess learning dynam-
ics throughout practice which should be captured by the LD 
and the occurrence of its operators, (iii) by considering more 
sophisticated LD computation (e.g., transposition operator, nor-
malization [22, 32, 50]) or alternative string distance metrics 
other than LD, and (iv) in a social context of team dynamics.
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