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Key Points:

• A hybrid model incorporating machine learning produces more accurate forecasts

and more realistic climate than the host physics-based model.

• The hybrid model states are more realistically balanced and have substantially lower

biases than the host model.

• The hybrid model produces more realistic atmospheric variability than the host

model at time scales shorter than about a week.
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Abstract

This paper describes an implementation of the Combined Hybrid-Parallel Prediction (CHyPP)

approach of Wikner et al. (2020) on a low-resolution atmospheric global circulation model

(AGCM). This approach combines a physics-based numerical model of a dynamical sys-

tem (e.g., the atmosphere) with a computationally efficient type of machine learning (ML)

called reservoir computing (RC) to construct a hybrid model. This hybrid atmospheric

model produces more accurate forecasts of most atmospheric state variables than the host

AGCM for the first 7-8 forecast days, and for even longer times for the temperature and

humidity near the earth’s surface. It also produces more accurate forecasts than a purely

ML-based model, or a model that combines linear regression, rather than ML, with the

AGCM. The potential of the approach for climate research is demonstrated by a 10-year

long hybrid model simulation of the atmospheric general circulation, which shows that

the hybrid model can simulate the general circulation with substantially smaller system-

atic errors and more realistic variability than the host AGCM.

Plain Language Summary

This paper presents a computationally efficient novel approach to construct a hy-

brid model of the atmosphere by combining a physics-based model of the global atmo-

spheric circulation with a machine learning component. The primary purpose of the hy-

brid model is to produce quantitative weather forecasts on the same grid as the physics-

based model. It is found that the hybrid model produces more accurate forecasts than

the host physics-based model for the first 7-8 forecast days for most forecast variables,

and for even longer times for the temperature and humidity near the earth’s surface. Fur-

thermore, the hybrid model is found to simulate the climate with substantially smaller

systematic errors and more realistic temporal variability than the host model.

1 Introduction

Numerical weather prediction (NWP) models have been the backbone of operational

weather prediction for several decades now (e.g., Lynch, 2006; Harper, 2008). A partic-

ular model implements a numerical solution algorithm for the physics-based set of cou-

pled partial differential equations that govern atmospheric motion (e.g., Szunyogh, 2014).

The resulting numerical equations form the dynamical core of the model. The effects of

processes not resolved explicitly by the dynamical core are taken into account by param-
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eterization schemes that contribute to the forcing terms of the equations. These schemes

are based on some combination of theoretical and empirical considerations (e.g., Sten-

srud, 2007). The initial conditions of the numerical model solutions are observation-based

estimates (analyses) of the state of the atmosphere, and the process that produces these

estimates is called data assimilation (e.g., Szunyogh, 2014). The advances in modeling

and data assimilation techniques, alongside with the increase of computing power and

the number of observations available for assimilation, led to a “quiet revolution of NWP”

(Bauer et al., 2015). The incorporation of machine learning (ML) techniques into the

NWP process promises to lead to further forecast accuracy gains by extracting additional

information from the observations.

The earliest applications of machine learning (ML) to atmospheric modeling focused

on improving the computational efficiency of the physics-based numerical models (e.g.,

V. Krasnopolsky et al., 2005; V. Krasnopolsky & Fox-Rabinovitz, 2006; V. M. Krasnopol-

sky, 2013). These applications employed neural networks to emulate the computation-

ally most expensive physics-based parameterization schemes at a reduced computational

cost. The term hybrid model was first used in reference to models using this technique.

One approach employed by this type of hybrid models is to use a single neural network

to emulate the combined effect of multiple parameterized processes, such as cumulus con-

vection, radiation, boundary layer transport, etc. (e.g., V. Krasnopolsky et al., 2010; V. M. Krasnopol-

sky, 2013; Brenowitz & Bretherton, 2018, 2019; Rasp et al., 2018). For this purpose, the

ML systems are often trained on data produced by model simulations at higher resolu-

tions, or with more sophisticated physical parameterization schemes.

Another type of ML-based parameterization scheme (e.g., Gentine et al., 2018; Rasp

et al., 2018; Chattopadhyay et al., 2020) is trained on observations or observations-based

reanalyses. Such a scheme has the potential to learn about the effects of processes that

the higher resolution and more sophisticated model simulations are still unable to cap-

ture. ML techniques have also been considered for the estimation of the free parameters

of physics-based parameterization schemes (Schneider et al., 2017). This approach takes

advantage of the knowledge built into the parameterization schemes, but may suffer from

the assumptions and approximations made by the schemes.

The hybrid approach we propose to use is different from the techniques mentioned

thus far. It uses ML for the frequent periodic interactive correction of the spatiotempo-
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rally evolving physics-based numerical model solution. It is more closely related to the

techniques used in purely ML based atmospheric models (e.g., Arcomano et al., 2020;

Rasp & Thuerey, 2021; Weyn et al., 2020) than the aforementioned hybrid techniques.

It was originally developed by Pathak, Wikner, et al. (2018) and later adapted to large

dynamical systems by Wikner et al. (2020), who named it Combined Hybrid-Parallel Pre-

diction (CHyPP). Similar to a physics-based numerical model, it evolves the forecasts

iteratively, combining a short-term numerical forecast with a state-dependent ML cor-

rection in each “time step” of the “hybrid model integration”. We demonstrate the po-

tentials of CHyPP for weather prediction by an implementation of the approach on the

Simplified Parameterization, primitive-Equation Dynamics (SPEEDY) (Molteni, 2003;

Kucharski et al., 2006) atmospheric global circulation model (AGCM). The results of fore-

cast experiments with this implementation show that the forecast performance of the hy-

brid model is superior to that of either SPEEDY, an ML-based model, or a model that

uses linear regression rather than ML for the correction. We also demonstrate that, in

addition to weather prediction, the approach has the potential to improve climate sim-

ulations.

In what follows, we first describe the hybrid approach and its implementation on

SPEEDY in detail (section 2). Then, we discuss the results of the forecast experiments

(section 3), and then the climate simulation (section 4). Finally, we summarize our key

findings and draw our conclusions (section 5).

2 The Hybrid Model

In CHyPP, the physics-based numerical model state is evolved globally, while the

ML correction is done in parallel, in small local sub-domains (Pathak, Hunt, et al., 2018).

The model state of a sub-domain is represented by a local state vector composed of the

relevant components of the global state vector. The global hybrid prediction is obtained

by piecing together the local hybrid predictions at the end of each ∆t-long “time step”

of the “hybrid model integration”. This approach can be easily implemented on any nu-

merical model by adjusting the definition of the local state vectors to the spatial discretiza-

tion strategy of the model. We note that the localization strategy of CHyPP is similar

to that employed by the Local Ensemble Transform Kalman Filter (LETKF) data as-

similation scheme (Ott et al., 2004; Hunt et al., 2007; Szunyogh et al., 2008), which has
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been found to scale efficiently even for very high (kilometer) resolution operational weather

prediction models (e.g., Schraff et al., 2016).

2.1 The Global State Vector

SPEEDY is a spectral transform AGCM that was developed to produce rapid cli-

mate simulations, using simplified, but modern physical parameterization schemes (Molteni,

2003). We implement CHyPP on the standard configuration of Version 41 of the model:

the spectral horizontal resolution is T30, while the grid used for the computation of the

nonlinear terms and parameterizations has a nominal horizontal spatial resolution of 3.75◦×3.75◦

with state variables defined at eight vertical σ-levels (0.025, 0.095, 0.20, 0.34, 0.51, 0.685,

0.835, and 0.95), where σ is the ratio of pressure to the surface pressure. The three-dimensionally

varying state variables of the model are the two components of the horizontal wind vec-

tor, temperature, and specific humidity, while the single two-dimensionally varying state

variable is the natural logarithm of surface pressure. The global computational grid and

the state variables of the hybrid model are the same as those of SPEEDY.

2.2 The Local State Vectors

In our implementation of CHyPP on SPEEDY, each local state vector represents

the atmospheric state in a three-dimensional local domain that has the shape of a rect-

angular box with a 7.5◦×7.5◦ (2 × 2 horizontal grid points) base (Fig. 1) and extends

vertically from ground level to σ = 0.025. In what follows, we describe the computa-

tions carried out in parallel for each of the L = 1, 152 sub-domains, to evolve the hy-

brid model state from time t to t+ ∆t.

Let v(t) be the local state vector for an arbitrary sub-domain at time t. The di-

mension of this state vector is 4×(8×4+1)=132 (resulting from the 4 grid points of a sub-

domain, the 8 σ-levels, the 4 volume distributed state variables, and the natural loga-

rithm of surface pressure state variable). Because the different state variables have dif-

ferent units and range of values, where the range also depends on the geographical lo-

cation and vertical level, each grid-point value of each state variable is standardized to

have a mean of 0 and a standard deviation of 1 before forming v(t). The standardiza-

tion is done by using ERA5 reanalysis data (Hersbach et al., 2020) for the computation

of the climatological mean and standard deviation of each grid-point variable. We in-
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troduce the notation vp(t), vh(t), and va(t) for the local state vector v(t) of SPEEDY,

the hybrid model, and the reanalysis, respectively. We also introduce the notations vgp(t),

vgh(t), and vga(t) for the related global state vectors. For instance, the components of

vga(t) in an arbitrary sub-domain are the components of va(t).

Figure 1. Illustration of the localization strategy. The black dots indicate the horizontal loca-

tions of the grid-points of the model. The blue rectangles mark the boundaries of nine adjacent

sub-domains. The red rectangle indicates the boundaries of the extended sub-domain for the

sub-domain in the center. Reproduced from Arcomano et al. (2020)

2.3 Reservoir Dynamics

The ML model uses reservoir computing (RC) (Jaeger, 2001; Lukoševičius & Jaeger,

2009; Lukoševičius, 2012) to evolve the ML model component from time t to t+ ∆t. In

RC, the ML model state is evolved by a high-dimensional dynamical system which, for

our RC implementation, is defined by the discrete time map

r(t+ ∆t) = tanh [Ar(t) + Bu(t)]. (1)

This dynamical system is the reservoir, and r(t) is the reservoir state vector. The dimen-

sion Dr of r(t) is much higher than that of a local state vector v(t) (e.g., 6,000 vs. 132

in the present article). The activation function with a vector argument, tanh [·], is a vec-

tor of the same dimension (Dr) as its argument, and a component of this vector is the

hyperbolic tangent of the corresponding component of the argument vector. The ma-

trix A is a Dr×Dr weighted adjacency matrix that represents a low-degree, directed,
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random graph (Gilbert, 1959). Each entry of A is randomly chosen with a probability

κ/Dr of being nonzero, where κ is the average number of incoming connections (edges)

per vertex, and with the nonzero entries of A randomly drawn from a zero-mean uni-

form distribution. After randomization, the entries of A are scaled such that the largest

eigenvalue of A is a prescribed number ρ. The “hyperparameter” ρ controls the dura-

tion of the memory of the ML model dynamics, and is called the spectral radius. The

input u(t) is a k-dimensional extended local state vector, which is composed of the com-

ponents of the local state vector v(t), and additional components of the global state vec-

tor from the neighboring sub-domains (see the red box in Fig. 1 for illustration), plus

the prescribed incoming solar radiation at the top of the atmosphere for the extended

sub-domain. For all of the subdomains, k = 16×(8×4+1+1), except at domains ad-

jacent to the poles where k = 12×(8×4+1+1). The matrix-vector product Bu(t) is

the RC input layer. In our model B is a k × Dr sparse random matrix with an equal

number of nonzero entries in each row. These nonzero entries, which are chosen randomly

from a uniform distribution on the interval [−α, α], couple the components of u(t) to the

reservoir nodes. The input strength α is an adjustable parameter that controls the de-

gree of non-linearity experienced by the input signal u(t) from the activation function.

2.4 The Hybrid Model

The hybrid model prediction is obtained by

vh(t+ ∆t) = W

vp(t+ ∆t)

r̃(t+ ∆t)

 , (2)

where the components of the column vector r̃i(t + ∆t), i = 1, 2, ...Dr are defined by

r̃i(t+∆t) = ri(t+∆t), if i is odd, and r̃i(t+∆t) = r2i (t+∆t), if i is even, and the col-

umn vector vp(t+∆t) represents the local state corresponding to the global SPEEDY

forecast vgp(t+∆t). The matrix-vector product on the right-hand side is the RC out-

put layer. The matrix W is a matrix of parameters to be determined by training.

Equation (2) can be written in the equivalent form

vh(t+ ∆t) = Wmodv
p(t+ ∆t) + Wresr̃(t+ ∆t), (3)

which corresponds to W = [Wmod Wres]. In the extreme case that Wmod = 0, which

should be the result of training when the numerical model has no skill according to the

training data, the hybrid prediction completely ignores the numerical model forecast vp(t+
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∆t). The other extreme case is when Wmod = I and Wres = 0, which should occur

when the numerical model is perfect according to the training data. In a typical case,

which falls between the two extremes, the ML output and the ∆t-long numerical pre-

diction are combined to maximize agreement with the training data.

2.4.1 Training

To prepare for training, we generate a sequence of perturbed global analyses vga(k∆t)

+ εg(k∆t), k = −K −Kt,−K −Kt + 1, ...,−1, where εg(k∆t) is a small-magnitude,

zero-mean, normally distributed random noise vector, uncorrelated in time and uncor-

related between components of the noise vector. The role of this noise is to help the ML

model learn to return to the bounded set of realistic atmospheric states (the “attractor”)

in the presence of perturbations that may arise in future forecasts (e.g., Jaeger, 2001;

Wikner et al., 2020). The addition of noise to the global analyses during training is es-

sential for the hybrid model to produce stable, realistic predictions; predictions rapidly

become unstable without it. Similar behavior has been observed in RC applications in-

volving the prediction of spatio-temporal systems (e.g., Patel et al., 2021; Arcomano et

al., 2020).

Next, the reservoir equation (Eq. (1)) is iterated by setting u(k∆t) equal to the

extended local state vector for vga(k∆t) + εg(k∆t), for k = −K − Kt,−K − Kt +

1, ...,−1. The initial state r[(−K − Kt)∆t] of the reservoir can be chosen arbitrarily,

since only the evolved reservoir states r[(k+1)∆t], k = −K,−K+1, . . . ,−1, are used

for training. The purpose of discarding the reservoir state of the first Kt (Kt � K) it-

erations is to ensure that the reservoir state r(t) has sufficient time to settle on its at-

tractor. The unperturbed global analysis vga(k∆t) is also used as the initial conditions

for SPEEDY to forecast vgp[(k + 1)∆t], for k = −K,−K + 1, ...,−1.

Formally, the training is carried out by computing the weight matrix W = [Wmod Wres]

that minimizes the cost-function

J(W) =
0∑

k=−K+1

‖vh(k∆t,W)−va(k∆t)‖2 +βmod‖Wmod−Wprior‖2 +βres‖Wres‖2. (4)

The local hybrid states vh(k∆t,W), k = −K+1,−K+2, ..., 0, represent the results of

Eq. (2) at those times for a particular W, and va(k∆t) is the local state vector for the

unperturbed global analysis vga(k∆t). (Notice that we use the notation W for both the

variable and the solution of the minimization problem.) The last two terms of the cost
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function, in which ‖·‖2 denotes the sum of the squares of the entries of a matrix (the

Frobenius norm), are regularization terms meant to prevent overfitting, with βmod and

βres being the regularization parameters for the numerical model and reservoir compo-

nent, respectively. With these terms, the direct solution of the least-square problem is

a ridge regression (Tikhonov & Arsenin, 1977). The prior matrix Wprior represents the

most likely Wmod based on prior knowledge. For a high quality numerical model with

no prior information about likely model errors, Wprior = I is a reasonable and simple

choice.

To obtain the direct solution for the matrix W that minimizes the cost function

J , we define matrix R̃ by choosing its column k to be r̃(k∆t) (see Eq. (2)), matrix Vp

by choosing its column k to be the local state vector vp(k∆t) that corresponds to the

global SPEEDY forecast from vga((k− 1)∆t), and matrix Va by selecting its column

k to be the local analysis va(k∆t). Then, it can be shown that the minimizing W is the

solution of the linear problem

W

VpV
T
p + βmodI VpR̃

T

R̃VT
p R̃R̃T + βresI

 =

[
VaV

T
p + βmodWprior VaR̃

T

]
(5)

for W. Because the dimension of the matrix products in this problem does not depend

on the length K∆t of the training period, the matrix products can be computed incre-

mentally, without simultaneously storing every column of R̃, Vp, or Va in memory (e.g.,

Lukoševičius, 2012). That is, in terms of computer memory usage, the resources used

by the training do not depend on the length of the training period. This is a highly de-

sirable property for Earth system modeling, in which long training periods are expected

to be necessary. In addition, the corresponding columns of R̃, Vp, and Va can be ob-

tained by training on multiple time series of training data. For example, suppose that

the global analyses vga have a temporal resolution ∆ta that is finer than the ∆t tem-

poral resolution of the hybrid model with ∆t = J∆ta, where J is an integer. Then, the

number of time series available for training is J ; i.e., the first term in Eq. (4) can be re-

placed by
J−1∑
j=0

0∑
k=−K+1

‖vh(k∆t− j∆ta,W)− va(k∆t− j∆ta)‖2. (6)

2.4.2 Synchronization and Prediction

Once the training period has ended, the reservoir equation is evolved by using u(k∆t) =

ua(k∆t) in Eq. (1) for k = 0, 1, 2, . . . This procedure keeps the state of the reservoir
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synchronized with the atmospheric state between the end of the training and the begin-

ning of the forecasts. Piecing together the local hybrid forecasts yields the global “one-

step” hybrid forecast vgh[(Kf+1)∆t], if the forecast start time is Kf . The forecast can

be extended arbitrarily far into the future by using an iterative process for k = Kf +

1,Kf+2, . . . , in which the extended local state vector uh(k∆t) extracted from vgh(k∆t)

is used as u(k∆t) in the reservoir equation to compute r[(k+1)∆t]. The global “one-

step” hybrid forecast vgh(k∆t) is also used as the initial condition of the vgh[(k+1)∆t]

SPEEDY forecast.

2.5 Implementation on ERA5 Reanalysis Data

We use interpolated hourly global ERA5 reanalyses to train and synchronize the

hybrid model. We do the horizontal interpolation of the reanalysis fields onto the com-

putational grid of SPEEDY by a 2-dimensional quadratic B-spline interpolation. We then

compute the value of σ at each horizontal grid point and use a 1-dimensional cubic B-

spline for the vertical interpolation of the model state variables to the eight prescribed

constant σ levels of SPEEDY. The training starts at 0000 UTC on January 1, 1990 and

ends at 2300 UTC on June 26, 2011 (K ≈ 3.14×104), with the data discarded for the

first 6.25 days (K = 31355 and Kt = 25).

2.6 Selection of the Hyperparameters

We found suitable combinations of the adjustable hyperparameters : Dr, κ, ρ, α,

ε, βres, βmod, Wprior, and ∆t by trial and error, monitoring the stability and accuracy

of the forecasts. All results reported in this paper for the hybrid model are for Dr =

6, 000, κ = 6, α = 0.5, βres = 10−2, βmod = 10−4, Wprior = I, and ∆t = 6 h, while

the spectral radius ρ monotonically increases toward the poles from 0.3 at the equator

to 0.7 at 45◦ and beyond. The components of ε are normally distributed with standard

deviation 0.2 for the entire globe. We use a time step of ∆t/24 = 0.25 h in the numer-

ical integration of SPEEDY. Because the temporal resolution of the ERA5 reanalyses

is 1 h (∆ta = 1), the training is done on ∆t/∆ta = 6 time series of data.
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3 Forecast Experiments

We compute forecast error statistics based on 100 21-day forecasts, with start times

equally spaced every 4 days between 0000 UTC, June 27, 2011 and 0000 UTC, July 28,

2012. We evaluate the forecast performance of the hybrid model by comparing it to that

of a variety of benchmark forecasts started from interpolated ERA5 reanalyses.

3.1 Benchmark Forecasts

The set of benchmark forecasts includes numerical forecasts produced by SPEEDY,

a (pure) ML model, and a model in which the 6 h SPEEDY forecasts are corrected by

linear regression rather than by ML. We call the latter benchmark SPEEDY-LLR, where

LLR stands for local linear regression.

The ML model is formally the same as the hybrid model except that we constrain

Wmod = 0 in Eq. (3), with Eqs. (4) and (5) modified accordingly, and the hyperpa-

rameters are different: Dr = 9, 000, βres = 3 × 10−3, ∆t = 3 h, and ε has a standard

deviation of 0.28. (The smaller reservoir size necessary to obtain good results from the

hybrid as compared to the ML model is an important advantage of the hybrid model.)

While this purely ML model is formally identical to the one described by Arcomano et

al. (2020), its forecast performance is better, thanks mainly to using a time step of ∆t =3 h

rather than ∆t =1 h and the addition of the incoming solar radiation to the input of

the reservoir. The SPEEDY-LLR is the same as the hybrid except that Wres = 0. In

this model, a large regularization parameter (βmod = 40000) is necessary to produce

stable forecasts for at least 11 days. (For βmod →∞, SPEEDY-LLR becomes SPEEDY,

which produces stable forecasts for indefinitely long lead times). Since, SPEEDY-LLR

does not include the nonlinear ML correction of the hybrid model (the second term on

the right side of Eq. (3)), the problem becomes a simple linear regression of the numer-

ical model forecast. With the help of this benchmark, we can assess the relative impor-

tance of making periodic corrections to the numerical forecasts based on linear regres-

sion of the model state alone versus making those corrections by the proposed hybrid

technique.

To assess whether a model forecast has skill, the figures also include comparisons

to forecasts based on persistence and daily climatology. The persistence forecasts are based

on the assumption that the initial state of the atmosphere persists for the entire fore-
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cast, while the climatological forecasts are based on the daily climatological mean for the

calendar day at the particular geographical location and pressure level for years 1990-

2010.

3.2 The Measure of the Forecast Error

The error of each forecast is measured by the area-weighted root-mean-square er-

ror,

RMSE =

√√√√ 1

NlonNlat

Nlon∑
i=1

Nlat∑
j=1

a(j)(V f
i,j − V a

i,j)
2, (7)

where,

a(j) =
cos (ϕ(j))

1
Nlat

∑Nlat

j=1 cos (ϕ(j))
. (8)

Here the subscript i, j refers to the value of a scalar state variable V for a specific fore-

cast lead time at a particular pressure level at grid point i, j of the verification region

defined by Nlon discrete longitudes and Nlat discrete latitudes. The RMSE is averaged

over the 100 forecasts to obtain a single scalar measure of the forecast error for each state

variable, pressure level, and forecast lead time. In what follows, the term forecast errors

refers to this scalar measure. We call a forecast more accurate than another, if the fore-

cast error is lower for the former than the latter forecast. In addition, we say that a model

forecast has forecast value, if its forecast error is lower than that of both persistence and

climatology (the latter two are available without the substantial cost of preparing model

forecasts). The qualitative behavior of the errors of the model forecasts with respect to

the errors of these two references is well understood. In particular, if the model has re-

alistic climatology, in the sense that it represents the atmospheric variability (the vari-

ability of the weather) correctly, the error of the model forecasts and the error of per-

sistence saturate at the same level. While the error is initially lower for persistence than

climatology, its saturation value is higher by a factor of
√

2 (e.g., section 3.8 of Szunyogh

(2014)).

3.3 Comparisons of the Forecast Accuracy

3.3.1 Synopsis of the Forecast Verification Results

Figures 2 and 3 illustrate the temporal evolution of the forecast errors for the first

five forecast days in the NH midlatitudes and Tropics, respectively. The errors are shown

for the temperature (top row), meridional component of the wind vector (middle row)
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and specific humidity (bottom row) at forecast lead times day 1 (left column), day 3 (mid-

dle column), and day 5 (right column). In general, the hybrid forecasts (blue curves) have

forecast value, except for the specific humidity at day 5, for which they are only about

as accurate as the forecasts based on climatology. In addition, the hybrid forecasts are

either more accurate than all benchmark forecasts, or similarly accurate to the most ac-

curate benchmark forecast. The hybrid model performance in the SH midlatitudes (not

shown) is similar to that in the NH midlatitudes. The advantage of the hybrid model

compared to the different benchmarks, however, strongly depends on the forecast vari-

able and lead time. Next, we discuss this dependence, as it provides important insight

into the mechanisms by which CHyPP improves the numerical forecasts.

3.3.2 Hybrid Versus SPEEDY Forecasts

Compared to SPEEDY, the advantage of the hybrid model is the largest for the

temperature. While all hybrid temperature forecasts have substantial forecast value for

the first 5 forecast days, the SPEEDY day 5 temperature forecasts have no forecast value

in the Tropics and in the stratosphere in the NH midlatitudes. In addition, the SPEEDY

forecasts have little forecast value at day 5 in the midlatitudes. The benefit of the ML

correction is particularly striking in the tropical upper troposphere, where the SPEEDY

forecasts have a large error with a maximum of 6 K at 200 hPa, while the error of the

hybrid forecasts remains below 1 K.

In addition to the temperature, the hybrid forecasts are also substantially more ac-

curate than the SPEEDY forecasts for the specific humidity, especially, in the lower tro-

posphere, where parameterizations play an important role in modeling the effects of moist

atmospheric processes. While the hybrid forecasts degrade only to the level of the fore-

casts based on climatology by day 5, the error of the SPEEDY forecasts reaches satu-

ration by that time.

In the two midlatitudes, the state variable for which the advantage of the hybrid

model is the smallest compared to SPEEDY is the meridional component of the wind

vector. This result is not surprising, as numerical models are known to capture synoptic-

scale Rossby wave dynamics, which dominate the variability of weather in the midlat-

itudes. In contrast, in the Tropics, where wave dynamics is coupled to the parameter-
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Figure 2. Northern Hemisphere midlatitudes (between 30◦N and 70◦N) forecast verifica-

tion results. Results are shown for the (blue) hybrid model, (green) SPEEDY, (orange) ML

model, (purple) SPEEDY-LLR model, (red) persistence, and (black) climatology. Shown is the

area-weighted root-mean-square error at the different atmospheric levels for (top row) the tem-

perature, (middle row) meridional wind, and (bottom row) specific humidity at (left column) day

1, (middle column) day 3, and (right column) day 5 forecast time.

ized process of deep convection, the advantage of the hybrid model for the meridional

wind component is more substantial.

To explore the scale-dependence of the performance of the hybrid and benchmark

forecasts, we examine the spectrum of the errors for the meridional component of the

wind at 500 hPa with respect to the zonal wave number (Figure 4). (This figure also shows
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Figure 3. As in Fig. 2 for the Tropics (between 30◦S and 30◦N)

results for day 10, in addition to the results for forecast days 1, 3, and 5.) The left panel

shows the results for the hybrid and the SPEEDY model. Because SPEEDY is a spec-

tral transform model with cut-off wave number 30, the spectrum for SPEEDY has no

power at all beyond that wave number, and it is heavily dampened at wave numbers larger

than about 20. Therefore, the errors of the hybrid forecasts, which have realistic power

at all wave numbers, are expected to saturate at a level that is higher than that for SPEEDY

at the tail-end of the spectrum. At day 1, the hybrid forecasts have a clear advantage

over the SPEEDY forecasts at the synoptic and large scales (zonal wave numbers lower

than about 20). A smaller, but spectrally similar advantage still exists at day 3, while

the advantage of the hybrid forecasts disappears, except at wave numbers 5 and 6, by

about day 5.
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3.3.3 Hybrid Versus ML Forecasts

While the errors of the ML forecasts (orange curves in Figs. 2-4) are only slightly

larger than that of the hybrid forecasts at day 1, they grow much faster in the next four

days and the ML forecasts typically have no value by day 3. This result suggests that

while the RC-based ML technique can produce accurate forecasts in the short range (day

1-2), it is more effective in assisting SPEEDY than directly predicting the weather be-

yond that range. A comparison of the left and middle panel of Fig. 4 suggests that the

information provided by SPEEDY to the hybrid is particularly beneficial at the large

scales (wave numbers lower than about 6).

3.3.4 Hybrid Versus SPEEDY-LLR Forecasts

Next to the hybrid model, the benchmark that performs the best in the medium

(day 2-5) forecast range is the SPEEDY-LLR (purple curves). While the hybrid fore-

casts are more accurate than the SPEEDY-LLR forecasts, the forecast error differences

between the two models are modest, except for those in the stratosphere. The fact that

the forecast error differences are smaller for the hybrid model versus SPEEDY-LLR than

for the hybrid model versus SPEEDY indicates that the periodic interactive correction

of the SPEEDY forecasts itself makes an important contribution to the good performance

of the hybrid model. The additional forecast improvement, however, is not the only ben-

efit of using ML rather than local linear regression for the forecast correction: while the

hybrid forecasts remain stable indefinitely (see section 4), some of the SPEEDY-LLR fore-

casts fail as early as day 11 lead time, with only about half of the forecasts reaching the

intended 21 days. The stability of the SPEEDY-LLR forecasts can be improved by in-

creasing the βmod regularization parameter, but only at the price of degrading the fore-

cast accuracy.

It should be noted that the fact that local linear regression can efficiently correct

the errors of a 6 h forecast is not completely surprising, considering that it can be used

to model the short-term forecast error dynamics for even a state-of-the-art NWP model

(Bishop et al., 2017), in which nonlinear effects are expected to play a more important

role even at short lead times. It is a nontrivial result, however, that the information pro-

vided by such a linear approach can be used for the periodic, interactive correction of

an evolving numerical forecast. It is also a nontrivial result that an RC-based ML tech-
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nique stabilizes the resulting hybrid model indefinitely, and leads to further forecast im-

provement in the short and medium (day 1-5) range.
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Figure 4. Spectral distribution of the 500 hPa meridional wind forecast error in the NH mid-

latitudes (between 30◦N and 70◦N) with respect to the zonal wave number. The power spectra of

the forecast errors are shown (left) for the the hybrid model (blue) vs SPEEDY (green), (middle)

the hybrid model (blue) vs the ML model (orange), and (right) hybrid model (blue) vs SPEEDY-

LLR (purple) at day 1 (solid square), day 3 (open circle), day 5 (solid triangle), and day 10 (open

diamond).

3.4 Global Mean and Spatially Varying Errors

To gain further insight into the ways the hybrid approach improves forecast per-

formance, we decompose the global RMSE into a bias and a standard deviation compo-

nent. (The sum of the squares of the two components is equal to the square of the RMSE.)

The bias measures the global mean error, while the standard deviation measures the spa-

tially varying part of the forecast error. The time evolution of the two error components,

averaged over the 100 forecasts is shown for three representative state variables in Fig.

5.

For the temperature near the surface (at 950 hPa, top panel), SPEEDY rapidly de-

velops a warm bias that oscillates around a mean of 0.75 K with the diurnal cycle. (The

diurnal variation of the bias is the result of SPEEDY using a single daily average value

of the incoming solar radiation at the top of the atmosphere at all times.) The hybrid
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model greatly reduces the magnitude of the bias and also removes its diurnal oscillation.

The biases of the ML model and SPEEDY-LLR are comparable to that of the hybrid

model in magnitude, but the SPEEDY-LLR bias exhibits diurnal variability.

The spatially variable component of the low-level temperature error remains lower

for the hybrid model than for SPEEDY throughout the 14-day period shown in the fig-

ure. The same component is initially similarly low for the hybrid and ML models, but

increases much more rapidly for the ML model. (Even with this rapid increase, the ML

forecasts remain more accurate than the SPEEDY forecasts until about day 4). This com-

ponent is initially lower for the hybrid model than for SPEEDY-LLR, but their accu-

racies are essentially the same after about day 8. Also, while the curves for SPEEDY

and the hybrid model saturate at the same level as persistence, the curve for the ML model

saturates at a higher level, indicating that the ML model overestimates the spatial vari-

ability of the low-level temperature at the longer forecast times.

SPEEDY rapidly develops a positive specific humidity bias near the surface (950

hPa, middle panel) that saturates at about 1 g/kg at day 7 lead time. Both the hybrid

model and the other two benchmarks eliminate most of this bias. The spatially varying

component of the error behaves similarly to that for the low level temperature, with the

hybrid model outperforming the benchmarks for lead times from 1-7 days.

For the meridional wind component in the upper troposphere (200 hPa, bottom

panel) none of the models develop a noteworthy bias. Thus, the differences in forecast

performance are solely due to differences in the spatially varying component of the fore-

cast error. This error component is still smaller for the hybrid than SPEEDY and the

other benchmarks for the first 9 forecast days, even though the advantage of the hybrid

model is smaller than for the other two variables shown in the figure.

3.5 Atmospheric Balance

Maintaining the delicate balance between the wind (momentum) and mass field in

a numerical model, especially at short forecast lead times, has been one of the biggest

challenges of atmospheric modeling since the dawn of NWP (e.g., Lynch, 2006). In a mod-

ern NWP model, a weakened balance is a short-lived transient property and the mag-

nitude of the initial transient can be greatly reduced by the technique known as “ini-

tialization” (e.g., section 8 of Lynch (2006)). In the hybrid model and SPEEDY-LLR,
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Figure 5. The time evolution of the (dashed) standard deviation and (solid) mean of the

forecast errors. Each color indicates forecasts by a particular model: (blue) hybrid model, (green)

SPEEDY, (purple) SPEEDY-LLR model, (orange) ML model, and (red) persistence. Results are

not shown for SPEEDY-LLR beyond day 11, at which time some of the the forecasts for that

model fail.
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however, no initialization is done before a corrected 6 h forecast is used as the initial con-

dition of the next 6 h numerical forecast. Hence, the corrections inevitably upset the bal-

ance in the numerical component of the hybrid forecasts every 6 h. The forecast veri-

fication results discussed thus far suggest that these imbalances do not outweigh the pos-

itive effects of the corrections on the accuracy of the hybrid forecasts. But, can the hy-

brid model produce realistic surface pressure tendencies by also correcting the surface

pressure field for the effects of gravity waves? We investigate this possibility by exam-

ining the global root-mean-square of surface pressure tendencies in the forecasts for the

hybrid and the benchmark models (Fig. 6). We assume that the value computed for ERA5

(red curve), which is about 0.4 hPa/h, provides a realistic estimate of the global root-

mean-square of surface pressure tendency in the atmosphere.

As can be expected from a numerical model started from an “uninitialized” initial

condition, the initial tendency for SPEEDY (about 1 hPa/h) is higher than desired. As

forecast time increases, the the magnitude of the mean tendency drops, first rapidly, and

then at a decreasing rate until it settles below the natural level, at about 0.28 hPa/h.

The latter behavior suggests that the diffusion built into the model to combat imbalances

over-smooths the temporal variability of the forecasts beyond day 1. While the magni-

tude of the mean tendency for the hybrid forecasts (about 0.38 hPa/h) is initially slightly

smaller than the natural value, and further decreases in the first 72-84 h (to about 0.36

hPa/h), it is closer to the natural value than those for the benchmark forecasts. The SPEEDY-

LLR is less effective than the hybrid model in eliminating the initial transient and it also

produces an average tendency at the later forecast times (about 0.30 hPa/h) that is fur-

ther below the natural level. The ML model behaves similarly to the hybrid model for

the first two forecast days, but the saturation value is clearly lower (about 0.33 hPa/h),

though still higher than for the other benchmarks, than for the hybrid model.

4 Climate Simulation Experiment

To evaluate the stability of the hybrid model and its ability to simulate the climate,

we compute an 11 year long free run with this model. For this simulation experiment,

the hybrid model is trained on ERA5 reanalyses for the 19-year period from January 1,

1981 to December 27, 1999. The simulation starts from the ERA5 reanalysis valid at 0000 UTC,

January 1, 2000. To suppress the effects of initial transients and the initial condition on

the model diagnostics, we discard the data from the first year of the simulations before
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Figure 6. Atmospheric balance in the model forecasts. Shown is the global root-mean-square

of the approximate surface pressure tendency computed by finite-differences based on 6-hourly

data for the (blue) hybrid model, (green) SPEEDY, (orange) ML model, and (purple) SPEEDY-

LLR model. The (red) value computed for 2011-2012 based on the ERA5 reanalyses is also

shown for reference.

computing the diagnostics. To compare the performance of the hybrid model and SPEEDY

in simulating the climate, we assume that the two simulations attempt to simulate the

climate of the 10-year period from 2001-2010 as represented by ERA5.

4.1 Zonal Mean Biases

Figures 7 and 8 show the zonal mean biases of the simulations by SPEEDY (left

panels) and the hybrid (right panels) for the boreal winter (December, January, and Febru-

ary) and boreal summer (June, July, and August), respectively. These figures can be used,

not only to compare the quality of the two simulations, but also to assess the average

magnitude of the corrections made by the ML component of the hybrid model. In par-

ticular, the difference between a left panel and the corresponding right panel is the zonal

mean of the ML correction for a particular state variable.

The top left panels show that SPEEDY has a large upper tropospheric warm bias

for the tropical regions, during both the boreal winter and summer. In both polar re-
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gions SPEEDY has a cold bias for the upper troposphere and stratosphere during the

boreal winter and a warm (cold) bias in the southern (northern) polar region during the

boreal summer. The magnitude of the bias is not surprising given the coarse resolution

and simplified parameterizations used in SPEEDY (Molteni, 2003). The top right pan-

els show that the hybrid model greatly reduces, but does not completely eliminate, these

biases when the model is cycled over a long period of time. The bias reduction is par-

ticularly notable in the the tropics and the midlatitudes. The largest remaining biases

are in the polar regions.

The hybrid model reduces the zonal component of the wind bias, especially in the

stratosphere and upper troposphere, and in the lower troposphere in the SH midlatitudes

in the boreal summer. The hybrid model also greatly reduces the large positive humid-

ity bias of SPEEDY with maxima in the tropics.
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Figure 7. Comparison of the zonal mean biases of the SPEEDY and hybrid simulation sim-

ulations for the boreal winter (December, January, February). Results are shown for (top) the

temperature (middle) zonal wind, and (bottom) specific humidity for (left) SPEEDY and (right)

the hybrid model.

Figure 9 shows the mean surface pressure biases for the simulations by SPEEDY

(left panels) and hybrid model (right panels) for the boreal winter (top row) and boreal

summer (bottom row). The mottled short scale patterning seen in the two left panels

of the figure are due to the spectrally truncated topography of SPEEDY, which is much
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Figure 8. Same as Fig. 7, except for the boreal summer (June, July, August).

smoother than the topography determining the interpolated ERA5 reanalyses used for

the evaluation of the simulations, and for the training of the hybrid model. In combi-

nation with the artifacts caused by the spectral truncation in SPEEDY, the large local

differences in the mountainous regions lead to substantial surface pressure biases in the

SPEEDY simulations. The hybrid model corrects the large local biases, but still has smaller

magnitude large scale biases. The wave-number-two structure of the large-scale hybrid

model bias in the NH suggests that these biases are related to the low resolution rep-

resentation of the topography and the land-sea contrasts in the numerical model. The

remaining biases are also relatively large in the polar regions, especially in the boreal sum-

mer. We speculate that the bias of the hybrid model in the polar regions might be re-

lated to our particular strategy to do the localization on a cylindric (Mercator) map pro-

jection. On the other hand, the bias is not concentrated at the poles for the variables

shown in Figures 8 and 9.

4.2 Temporal variability

To investigate the temporal variability of the atmosphere in the SPEEDY and hy-

brid climate simulations, we examine the temporal dependence of the 950 hPa temper-

ature at the four model grid points that fall in the Sahara Desert. The top two panels

of Fig. 10 show the power spectra of the temporal variability for the two models. These

–23–

ESSOAr | https://doi.org/10.1002/essoar.10507548.1 | CC_BY_NC_4.0 | First posted online: Tue, 20 Jul 2021 09:04:07 | This content has not been peer reviewed. 



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

180° 90°W 0°W 90°E 180°

SPEEDY Surface Pressure Bias DJF

180° 90°W 0°W 90°E 180°

Hybrid Surface Pressure Bias DJF

180° 90°W 0°W 90°E 180°

SPEEDY Surface Pressure Bias JJA

180° 90°W 0°W 90°E 180°

Hybrid Surface Pressure Bias JJA

20

10

0

10

20

hP
a

20

10

0

10

20

hP
a

20

10

0

10

20

hP
a

20

10

0

10

20

hP
a

Figure 9. The mean surface pressure bias in the SPEEDY and hybrid climate simulations.

Shown is the bias for (top) the boreal winter (December, Januar, February) and (bottom) boreal

summer (June, July, August) for (left) SPEEDY and (right) the hybrid model.

power spectra are computed by applying a Hamming filter first, and then a discrete Fourier

transform to the 10 years of 6-hourly simulation data, and finally computing the square

of the absolute value of the Fourier coefficients. The results show that both simulations

correctly capture the variability at time scales longer than about a week. At the shorter

time scales, however, SPEEDY increasingly underestimates the variability. The ML cor-

rection greatly reduces, but does not completely eliminate, this problem: the hybrid model

underestimates the variability at the scales between one week and one day only slightly,

and reduces the underestimation by SPEEDY at the even shorter scales. Most impor-

tantly, unlike SPEEDY, the hybrid model has a strong diurnal cycle. It should be noted

that an earlier version of the hybrid model, which did not include the incoming solar ra-

diation at the top of the atmosphere as an input to the reservoir, lost the diurnal cycle

at around the end of year 4. This motivated us to add the incoming solar radiation as

an input parameter, even though it had no significant effect on the forecast accuracy. We

find it a noteworthy, nontrivial result that the earlier version of the hybrid model was

able to learn the diurnal cycle strictly from the training data.

The fact that a simulation correctly captures the variability at a number of frequen-

cies does not guarantee that the phases of the temporal changes (e.g. the timing of the
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seasons) are also correct. To exclude the possibility of such a flaw of the simulations, we

plot (bottom panel of Fig. 10) the time series of the average 950 hPa temperature for

the same four Saharan grid points for the last full year of the simulations. The points

along these curves should fall within two standard deviations from the mean for the given

date and time (the interval marked by gray shading) with a 95% observed frequency. Based

on the full ten years of data, the observed frequency is 88.2% for SPEEDY and 91.9%

for the hybrid model.
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Figure 10. Temporal variability of the 950 hPa temperature in the Sahara Desert for the

ten years of simulations. Shown are the power spectra for (top) the hybrid model and ERA5

and (middle) SPEEDY and ERA5. The bottom panel shows the time series of simulated tem-

peratures for the last full year of the simulations. The gray shading represents the range of

plus/minus two standard deviations from the mean in the ERA5 reanalyses for 2001-2010.

5 Conclusions

In this paper, we described an implementation of the hybrid modeling approach

CHyPP of Wikner et al. (2020) on a low resolution AGCM. We demonstrated that the

approach has great potential for both NWP and climate modeling. The spatio-temporal

structure of the improvements of the forecasts and simulations suggests that the ML com-

ponent of the model primarily corrects for errors caused by the limitations of the param-

eterization schemes of the AGCM. Because the ML component of the hybrid model is

based on RC, training the model is computationally highly efficient. Specifically, the train-
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ing described in this paper requires only 30 minutes wall-clock time using 1,152 Intel Xeon

E5-2670 v2 processors on a supercomputer that is much less powerful than those at the

operational NWP centers. Because of the parallel nature of the algorithm, we expect it

to scale well for higher model resolutions and larger number of processors. The high com-

putational efficiency of the approach would allow for a large number of experiments to

find the optimal configuration of a future operational hybrid model. Developing an ef-

ficient systematic approach to find a near optimal combination of the hyper-parameters,

nevertheless, would be highly desirable and is one of the subjects of our ongoing research

efforts.

We emphasize that while the ML component of the hybrid model is highly efficient

in correcting the biases of the forecasts and simulations prepared by the host model, it

is not a ML-based postprocessing technique. While a technique of the latter type cor-

rects the numerical-model-based forecasts of a specific forecast variable or phenomenon

(e.g., Rasp & Lerch, 2018; Chapman et al., 2019; Kim et al., 2021) without interacting

with the numerical model, the ML component of the hybrid model makes frequent pe-

riodic interactive corrections to the numerical model solution. Hence, it also greatly im-

proves the representation of the spatiotemporal variability of the atmospheric state by

the model.

We expect that the performance of the hybrid model can be further improved by

investigating the relationship between the parameters of the ML model and the repre-

sentation of basic atmospheric processes. Such an investigation could lead to further im-

provements of the model, similar to the way studies of the interactions between numer-

ics and dynamics (e.g., Arakawa & Lamb, 1977) led to much improved physic-based nu-

merical models. For instance, one potentially important fundamental question is the op-

timal relationship between the size of the local sub-domains, the overlap between the sub-

domains in the input of the reservoir, and the length of the time step ∆t. The fact that

the ML component is more effective in correcting localized errors than errors at the larger

scales in the current version of our hybrid model may be partly the result of using sub-

domains and an overlap that are less than optimal for the selected time step. In our ex-

periments, the size of the overlap was primarily dictated by the structure of our code and

the available computer resources, but larger sub-domains and a larger overlap could be

used in the future.
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An intriguing possibility is to use the hybrid model for data assimilation in addi-

tion to forecasting, as data assimilation could greatly benefit from the higher accuracy

and smaller biases of the short term hybrid forecasts used as background. Furthermore,

integrating ML and data assimilation may allow in the future to do online training of

the ML component of the hybrid model on real-time observations rather than canned

reanalyses data. The availability of such training procedure would make it possible to

extend the hybrid modeling approach to numerical models for which high-quality reanal-

ysis data are not available (e.g., an AGCM that also includes a sophisticated model of

the upper atmosphere well beyond the lower stratosphere). It could also allow the ML

component of the model to adjust to variability and changes of the climate. We have made

a first step toward this ambitious goal, in which we iteratively use the hybrid model to

prepare an updated set of analyses, which is then used to train the next iteration of the

hybrid model (Wikner et al., 2021). Our plan is to test this approach with the hybrid

model of the current paper.
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