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ABSTRACT
The spiked covariance model has gained increasing popularity in high-dimensional data analysis. A funda-
mental problem is determination of the number of spiked eigenvalues, K . For estimation of K , most attention
has focused on the use of top eigenvalues of sample covariance matrix, and there is little investigation into
proper ways of using bulk eigenvalues to estimate K . We propose a principled approach to incorporating
bulk eigenvalues in the estimation of K . Our method imposes a working model on the residual covariance
matrix, which is assumed to be a diagonal matrix whose entries are drawn from a gamma distribution.
Under this model, the bulk eigenvalues are asymptotically close to the quantiles of a fixed parametric
distribution. This motivates us to propose a two-step method: the first step uses bulk eigenvalues to
estimate parameters of this distribution, and the second step leverages these parameters to assist the
estimation of K . The resulting estimator K̂ aggregates information in a large number of bulk eigenvalues. We
show the consistency of K̂ under a standard spiked covariance model. We also propose a confidence interval
estimate for K . Our extensive simulation studies show that the proposed method is robust and outperforms
the existing methods in a range of scenarios. We apply the proposed method to analysis of a lung cancer
microarray dataset and the 1000 Genomes dataset.
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1. Introduction

The spiked covariance model (Johnstone 2001) has been widely
used to model the covariance structure of high-dimensional
data. In this model, the population covariance matrix has K
large eigenvalues, called spiked eigenvalues, where K is presum-
ably much smaller than the dimension. Estimation of K is of
great interest in practice, as it helps determination of the latent
dimension of data. For example, in a clustering model with K0
clusters (Jin, Ke, and Wang 2017), the pooled covariance matrix
has (K0 − 1) spiked eigenvalues; therefore, an estimate of K tells
the number of clusters. Similarly, in Genome-Wide Association
Studies (GWAS), the number of spiked eigenvalues of a genetic
covariance matrix reveals the number of ancestry groups in the
study (Patterson, Price, and Reich 2006). In high-dimensional
covariance matrix estimation, K is often required as input for
factor-based covariance estimation (Fan, Liao, and Mincheva
2013).

In this article, we assume the data vectors X1, X2, . . . , Xn ∈
Rp are independently generated from a multivariate distribution
with covariance matrix ! ∈ Rp×p, which has positive values
µ1 ≥ µ2 ≥ · · · ≥ µK and mutually orthogonal unit-norm
vectors ξ 1, ξ 2, . . . , ξK ∈ Rp such that
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! =
K∑

k=1
µkξ kξ

⊤
k +D, where D = diag(σ 2

1 , σ 2
2 , . . . , σ 2

p ). (1)

Here, D is called the residual covariance matrix. The goal is to
estimate K from X1, X2, . . . , Xn. We are primarily interested in
the settings where K is finite and p/n → γ , for a constant γ > 0.
Throughout the article, we denote by λ1 ≥ λ2 ≥ · · · ≥ λp the
eigenvalues of !, and denote by λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂n∧p the
nonzero eigenvalues of the sample covariance matrix.

In the literature, there are several approaches for estimating
K. The first is the information criterion approach, which finds
K̂ that minimizes an objective of the form Ln(K) + Pn(K),
where Ln(K) is a measure of goodness of fit and Pn(K) is a
penalty on K. An influential work is Bai and Ng (2002), who
let Ln(K) be the sum of squared residuals after fitting a K-
factor model and studied a few choices of the penalty function
Ln(K). Other examples include Wax and Kailath (1985), where
Ln(K) is a function of the arithmetic and geometric means of the
(n−K) smallest eigenvalues. However, the information criterion
approach requires the spiked eigenvalues to be sufficiently large.
In Bai and Ng (2002), the spiked eigenvalues are at the order
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of p, which is much larger than the necessary order. It has
been recognized that correct estimation of K is possible even
when the spiked eigenvalues are at the constant order (Baik,
Ben Arous, and Peche 2005).

The second approach finds a big “gap” between eigenvalues of
the sample covariance matrix. Recall that λ̂k is the kth eigenvalue
of the sample covariance matrix. Onatski (2009) introduced
a test statistic, maxK0<k≤Kmax(λ̂i − λ̂i+1)/(λ̂i+1 − λ̂i+2), for
testing against the null hypothesis K = K0 and then applied it
sequentially to estimate K. Cai, Han, and Pan (2020) proposed
an iterative algorithm for estimating K that searches for a gap
of ! O(n−2/3) between eigenvalues. Passemier and Yao (2014)
suggested estimating K by finding two consecutive gaps in
eigenvalues. Such methods rely on sharp limiting distributions
of the first K empirical eigenvalues, which theoretically requires
a large magnitude of the spiked eigenvalues. Additionally, while
utilizing eigengap is a neat idea in theory, its practical use faces
challenges, since the actual eigengaps in many real datasets are
slowly varying, without a clear cut.

The last approach estimates K by thresholding the empirical
eigenvalues. For this approach, the key is to calculate a proper
data-driven threshold. The threshold should reflect the “scaling”
of the residual matrix D. One idea is to the first standardize the
data matrix so that each variable has a unit variance and then use
a scale-free threshold. Examples include the empirical Kaiser’s
criterion (Braeken and Van Assen 2017) and parallel analysis
(Horn 1965), where the scale-free threshold is determined by
asymptotic behavior of the largest eigenvalue of sample covari-
ance matrix associated with Xi

iid∼ N(0, Ip). Another idea is
to estimate D by the diagonal of the sample covariance matrix
and then calculate the threshold via a deterministic algorithm
(Dobriban 2015). The success of both ideas relies on regular-
ity conditions to ensure that the low-rank part in Model (1)
has a negligible effect on the diagonal of !; for example, the
population eigenvalues cannot be enormously large and the
population eigenvectors have to satisfy “delocalization” condi-
tions. Dobriban and Owen (2019) improved the algorithm in
Dobriban (2015) by a recursive procedure to remove leading
eigenvalues and eigenvectors, but their method still requires
some “delocalization” conditions on eigenvectors. Other related
work includes Onatski (2010), which used a convex combina-
tion of λ̂Kmax+1 and λ̂2Kmax+1 as the threshold, where Kmax is a
prespecified upper bound of K, and Fan, Guo, and Zheng (2020),
which introduced an unbiased estimator for each of the first few
eigenvalues of the population correlation matrix, and estimated
K by thresholding these unbiased estimators at 1 +

√
p/n.

To address the limitations of these methods, we propose a
new estimator of K. Different from the existing work, our atten-
tion is largely focused on how to better use the bulk empirical
eigenvalues in the estimation of K, especially those eigenvalues
in the middle range

{
λ̂k : α(n ∧ p) ≤ k ≤ (1 − α)(n ∧ p)

}
,

for some constant α ∈ (0, 1/2).

It is well known in random matrix theory that these bulk eigen-
values are almost not affected by the low-rank part in Model (1)
(see, e.g., Bloemendal et al. 2016). We can use these eigenval-
ues to gauge the “scaling” of D and determine an appropriate

threshold for top eigenvalues. To this end, we impose a working
model on the diagonal matrix D. Let Gamma(a, b) denote the
gamma distribution with shape parameter a and rate parameter
b. Fixing σ > 0 and θ > 0, we assume

σ 2
j

iid∼ Gamma(θ , θ/σ 2), 1 ≤ j ≤ p. (2)
The mean and variance of Gamma(θ , θ/σ 2) is σ 2 and σ 4/θ ,
respectively. As a result, the diagonal entries of D are centered
around σ 2, where the level of dispersion is controlled by θ .
As θ → ∞, Gamma(θ , θ/σ 2) converges to a point mass at
σ 2, and it yields D = σ 2Ip. This case corresponds to the
standard spiked covariance model which is frequently studied in
the literature (Johnstone 2001; Donoho, Gavish, and Johnstone
2018). Combining Model (2) with Model (1), we now have
a flexible spiked covariance model that includes the standard
spiked covariance model as a special case.

Under Models (1) and (2), the empirical spectral distribution
(ESD) converges to a limit, which is a fixed distribution with
two parameters (σ 2, θ) (Silverstein 2009). Since the empirical
eigenvalues are nothing but quantiles of the ESD, we expect
that all the bulk eigenvalues are asymptotically close to the
corresponding quantiles of the limit of ESD. We thus estimate
(σ 2, θ) by minimizing the sum of squared differences between
bulk eigenvalues and quantiles of the limiting distribution. Once
(σ̂ 2, θ̂) are available, we borrow the idea of parallel analysis
(Horn 1965) to decide a threshold for the top eigenvalues by
Monte Carlo sampling. This gives rise to a new method for
estimating K, which we call bulk eigenvalue matching analysis
(BEMA). Analogous to the orators’ bema in Athens, our BEMA
is a platform for gathering a large number of bulk eigenvalues
and utilizing them efficiently in the estimation of K. Additional
to the point estimator, we also propose a confidence interval for
K.

Our method has an intuitive explanation in terms of a scree
plot. Figure 1 shows the scree plot of a simulated example. There
are multiple elbow points, and it is hard to decide where the true
K is. The core idea of our method is to explore the “shape” of the
scree plot in the middle range and fit it with a parametric curve;
this curve is determined by the theoretical quantiles of the limit
of ESD, governed by two parameters σ 2 and θ . Then, this curve
can be extended to the left boundary of the scree plot to produce
a threshold for top eigenvalues.

The goodness-of-fit check of Model (2) on real datasets can
also be done via the scree plot. If the middle range of the
scree plot can be well approximated by the estimated parametric
curve, then it suggests that the model indeed fits the real data.
In Section 6, we shall see that Model (2) is well suited to gene
microarray data and GWAS data. We remark that assuming the
diagonal entries of D are generated from a fixed distribution is
only a mild assumption. Similar conditions appear in the litera-
ture (often implicitly as regularity conditions in the theory); for
example, Dobriban and Owen (2019) and Fan, Guo, and Zheng
(2020) assumed that the histogram of population eigenvalues of
D converges to a fixed limit. We make one step ahead by assum-
ing that this fixed distribution is a gamma distribution. At the
first glance, restricting to the gamma family seems restrictive,
but Model (2) is in fact much more flexible than expected. With
only two parameters (σ 2, θ), it can accommodate various kinds
of real data and even misspecified models (see Section 5).
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Figure 1. Illustration of BEMA via a scree plot. The red solid curve shows the
quantiles of the theoretical limit of Empirical Spectral Distribution (ESD) under
Models (1) and (2). It is a parametric curve with two parameters (σ 2, θ), and by
random matrix theory, it should fit the bulk eigenvalues well. BEMA first uses bulk
eigenvalues to estimate (σ 2, θ) and then extends the estimated curve to the left
boundary to get a threshold for top eigenvalues.

The special case of θ = ∞ is of independent interest. It
corresponds to the standard spiked covariance model (John-
stone 2001), where D = σ 2Ip. This model has attracted a lot of
attention (Baik, Ben Arous, and Peche 2005; Paul 2007; Donoho,
Gavish, and Johnstone 2018). In this special case, BEMA reduces
to a simpler algorithm. We conduct theoretical analysis under
this model. First, we give an explicit error bound for estimating
σ 2. This is connected to the robust estimation of σ 2 in the liter-
ature of reconstruction of spiked covariance matrices (Donoho,
Gavish, and Johnstone 2018; Shabalin and Nobel 2013). In our
method, we obtain a new robust estimator of σ 2 as a byproduct,
and we study it theoretically. Second, we prove the consistency
of estimating K under minimal conditions. Our results impose
no assumptions on the population eigenvectors ξ1, . . . , ξK and
only require the spiked eigenvalues λ1, . . . , λK to be larger than
a constant. In comparison, literature works often either require
some regularity conditions on eigenvectors or need much larger
spiked eigenvalues. We also provide theory for the general case
of θ < ∞, which has never been studied before.

The remaining of this article is organized as follows: In
Section 2, we describe BEMA for the standard spiked covariance
model (i.e., θ = ∞); in this case, the idea is easier to understand
and the algorithm is simpler. In Section 3, we describe BEMA
for the general case. Section 4 states the theoretical properties.
Section 5 and Section 6 provide simulation study results and real
data analysis, respectively. Section 7 concludes the article. Proofs
are relegated to the appendix.

2. BEMA for the Standard Spiked Covariance Model

In this section, we consider the standard spiked covariance
model (Johnstone 2001), a special case of Models (1) and (2)
with θ = ∞. Since each σ 2

j is equal to σ 2, the model is rewritten
as

! =
K∑

k=1
µkξ kξ

⊤
k + σ 2Ip. (3)

The first K eigenvalues of ! are λk = µk + σ 2, and the
remaining eigenvalues are σ 2. The sample covariance matrix is
S = 1

n
∑n

i=1(Xi − X̄)(Xi − X̄)⊤, where X̄ = 1
n

∑n
i=1 Xi. With

probability 1, S has n ∧ p distinct nonzero eigenvalues (Uhlig
1994), denoted as λ̂1 > λ̂2 > · · · > λ̂n∧p.

Figure 2. The asymptotic behavior of empirical eigenvalues. The histogram of bulk
eigenvalues converges to an MP distribution, and K top eigenvalues are outside the
support.

We first review some existing results about the asymptotic
behavior of empirical eigenvalues.

Definition 1. Given a parameter γ > 0, the zero-excluded
Machenko-Pastur (MP) distribution is defined by the density

fγ (x; σ 2) = 1
2πσ 2

1
x(γ ∧ 1)

√
(x − σ 2h−)(σ 2h+ − x)

· 1
{
σ 2h− < x < σ 2h+

}
, (4)

where h± = (1 ± √
γ )2. We let Fγ (x; σ ) denote its cumulative

distribution function.

When γ ≤ 1, this definition is the same as the classical MP
law; when γ > 1, it excludes the point mass at zero in the
classical MP law. The zero-excluded ESD is given by Fn(x) =

1
n∧p

∑n∧p
i=1 1{λ̂i ≤ x}. For convenience, we shall omit the word

“zero-excluded” and still call them MP and ESD.
When ! satisfies Equation (3), K is fixed and p/n → γ for

a constant γ ∈ (0, ∞), under mild regularity conditions, the
following statements are true (Bloemendal et al. 2016):

• The ESD converges to the MP distribution with parameter
γ ; more precisely, it holds that E[supx |Fn(x) − Fγ (x)|] =
O(n−1/2) (Götze et al. 2004).

• If µK ≥ σ 2√γ +n−1/3, then the first K empirical eigenvalues
are located outside the support of the MP distribution with
high probability.

See Figure 2 for an illustration via simulated data (n = 1000,
p = 500).

Inspired by the asymptotic behavior of empirical eigenvalues,
we propose a two-step approach to estimating K. In the first
step, we use bulk eigenvalues to fit an MP distribution. The
density fγ (x; σ 2) in Equation (4) has two parameters (γ , σ 2),
where γ can be approximated by γn = p/n. It reduces to
considering fγn(x; σ 2), for all possible σ 2. We aim to find σ̂ 2

such that fγn(x; σ̂ 2) is the best fit to the histogram of empirical
eigenvalues. In the second step, we determine K by comparing
top eigenvalues with the right boundary of the support of the
estimated MP density, namely, σ̂ 2(1 + √

γn)2.
Now, we describe the method in detail. First, consider the

estimation of σ 2. Fixing a constant α ∈ (0, 1/2), we take only
a fraction of nonzero eigenvalues

{λ̂k : α(n ∧ p) ≤ k ≤ (1 − α)(n ∧ p)}.
Since K is fixed and n ∧ p → ∞, any α guarantees that the first
K eigenvalues are excluded. The choice of α does not matter.
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Algorithm 1. BEMA for the standard spiked covariance
model.
Input: Nonzero eigenvalues λ̂1, . . . , λ̂n∧p, α ∈ (0, 1/2) and
β ∈ (0, 1).
Output: An estimate of K.
Step 1: Write p̃ = n ∧ p. For each αp̃ ≤ k ≤ (1 − α)p̃,
obtain qk, the (k/p̃)-upper- quantile of the MP distribution
associated with σ 2 = 1 and γn = p/n. Compute

σ̂ 2 =
∑

αp̃≤k≤(1−α)p̃ qkλ̂k
∑

αp̃≤k≤(1−α)p̃ q2
k

.

Step 2: Obtain t1−β , the (1 − β)-quantile of Tracy-Widom
distribution. Estimate K by

K̂ = #
{

1 ≤ k ≤ p̃ : λ̂k > σ̂ 2[(1 + √
γ n)

2

+ t1−β · n− 2
3 γ

− 1
6

n
(
1 + √

γn
) 4

3
]}

.

We usually set α = 0.2, so that 60% of the nonzero eigenvalues
in the middle range are used. Write for short p̃ = n ∧ p. By
definition, λ̂k is the (k/p̃)-upper-quantile of the ESD. Let qk =
qk(γn) denote the (k/p̃)-upper-quantile of the MP distribution
associated with γ = γn and σ 2 = 1, that is,

qk is the unique value such that
∫ (1+√

γn)2

qk
fγn(x; 1)dx = k/p̃.

(5)
These qk’s can be easily computed (e.g., via the R package
RMTstat). For an MP distribution with a general σ 2, its (k/p̃)-
upper-quantile equals to σ 2qk. Since the ESD is asymptotically
close to the MP distribution, we expect that

λ̂k ≈ σ 2 · qk.

It motivates us to use {(qk, λ̂k)}αp̃≤k≤(1−α)p̃ to fit a line without
intercept, and this can be done by a simple least square. The
slope of this line is an estimator of σ 2.

Next, we use σ̂ 2 to determine a threshold for the top eigen-
values. A natural choice of threshold is σ̂ 2(1 + √

γn)2, but it

has a considerable probability of over-estimating K. We slightly
increase this threshold by taking an advantage of another result
in random matrix theory. When µK > σ 2√γ , it is known that
(Johnstone 2001; Bloemendal et al. 2016)

λ̂K+1 − σ 2(1 + √
γn)2

σ 2n− 2
3 γ

− 1
6

n
(
1 + √

γn
) 4

3

d→

type-I Tracy-Widom distribution. (6)

We propose thresholding the top eigenvalues at

T̂ = σ̂ 2
[
(1 + √

γ n)
2 + t1−β · n− 2

3 γ
− 1

6
n

(
1 + √

γn
) 4

3
]

,

where t1−β denotes the (1 − β)-quantile of the Tracy-Widom
distribution. Then, the probability of over-estimating K is con-
trolled by β .

Algorithm 1 has two tuning parameters (α, β). The output of
the algorithm is insensitive to α if α is not too small, and we set
α = 0.2 by default. β controls the probability of over-estimating
K and is specified by the user. In theory, the ideal choice of β

should satisfy that β → 0 at a properly slow rate (see Section 4).
In practice, choosing a moderate β often yields the best finite-
sample performance. Our numerical experiments suggest that
β = 0.1 is a good choice for most settings.

A simulation example. We illustrate Algorithm 1 on a simula-
tion example. Fix (n, p, K) = (1000, 500, 10). We generate Xi

iid∼
N(0, !), where ! is a diagonal matrix whose first K diagonals
equal to 5.4 and the remaining diagonals equal to σ 2 = 2. In
the left panel of Figure 3, we plot λ̂k vs. qk. Except for a few
top eigenvalues, it fits well to a straight line crossing the origin.
We use 300 bulk eigenvalues {λ̂k}100<k≤400 (the blue dots) to
fit a regression line (the red dotted line). The slope of this line
gives the estimate σ̂ 2 = 2.04. In the middle panel of Figure 3,
we plot λ̂k vs. k. The red solid line is the curve of σ̂ 2qk vs. k.
Although it is estimated using the blue dots only, we can extend
this curve to the left boundary, which gives rise to the value
σ̂ 2(1 + √

γn)2. We then use this value and the Tracy-Widom
distribution to calculate a threshold for the top eigenvalues. The
estimator K̂ equals to the number of top eigenvalues that exceed
this threshold. The right panel of Figure 3 is a zoom-in of the

Figure 3. Illustration of BEMA for the standard spiked covariance model (simulated data, n = 1000, p = 500, K = 10). The left panel plots λ̂k versus qk , where qk is the
(k/p̃)-upper-quantile of the standard MP distribution. The dashed red line is the fitted regression line on bulk eigenvalues (blue dots), whose slope is an estimate of σ 2.
The middle panel plots λ̂k versus k, which is the scree plot. The red solid curve is σ̂ 2qk versus k. It fits the bulk eigenvalues (blue dots) very well. When this curve is extended
to the left boundary, it hits σ̂ 2(1 + √

γn)2. Our threshold for the top eigenvalues, which is the (1 − β)-quantile of the Tracy-Widom distribution, is slightly larger than this
value and shown by the dotted red line. The right panel zooms into the gray square area of the middle panel. It shows that 10 empirical eigenvalues exceeds the threshold,
resulting in K̂ = 10.
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middle panel. As k gets smaller (e.g., k < 50), the eigenvalues
stay above the fitted MP quantile curve. This is because these λ̂k
are influenced by the spiked eigenvalues of !. Such eigenvalues
are already excluded in the estimation of σ 2. The right panel
can also be viewed as a scree plot. Finding the elbow point of
the scree plot is a common ad-hoc method for estimating K. In
this plot, the elbow points are {6, 7, 10, 11}, hard to decide the
true K. In contrast, our method correctly picks K̂ = 10.

Remark (Connection to the robust estimation of σ 2). As a
byproduct, the BEMA algorithm yields a new estimator for σ 2

in the standard spiked covariance model, which can be useful
for other problems such as reconstruction of spiked covariance
matrices. Gavish and Donoho (2014) proposed a robust estima-
tor of σ 2, which is the ratio between the median of eigenvalues
and the median of a standard MP distribution. Viewed in the
Q–Q plot (left panel of Figure 3), their method is equivalent
to using a single point to decide the slope. In comparison, our
method uses a number of bulk eigenvalues to decide the slope
and is thus more robust. Kritchman and Nadler (2009) proposed
an estimator of σ 2 by solving a non-linear system of equations,
and Shabalin and Nobel (2013) estimated σ 2 by minimizing
the Kolmogorov–Smirnov distance between the ESD and its
theoretical limit. In comparison, our estimator of σ 2 is from a
simple least square and is much easier to compute. In Section 4,
we also give an explicit error bound for our estimator.

3. BEMA for the General Spiked Covariance Model

We now consider the general case where the residual covariance
matrix can have unequal diagonal entries. We shall modify
Algorithm 1 to accommodate this setting. Rewrite Models (1)
and (2) as

! =
K∑

k=1
µkξ kξ

⊤
k + diag(σ 2

1 , σ 2
2 , . . . , σ 2

p ),

where σ 2
k

iid∼ Gamma(θ , θ/σ 2). (7)

Same as before, let λ̂1 > λ̂2 > · · · > λ̂n∧p denote the
nonzero eigenvalues of the sample covariance matrix. Below,
in Section 3.1, we first state some well-known results from
random matrix theory and motivate our methodology idea. In
Section 3.2, we formally introduce the BEMA algorithm. In
Section 3.3, we provide an asymptotic confidence interval for K.

3.1. The Asymptotic Behavior of Empirical Eigenvalues

Under Model (7), the asymptotic behavior of bulk eigenvalues
and top eigenvalues exhibit some similarity to the case of stan-
dard spiked covariance model:

• The ESD converges to a fixed limit.
• The first K empirical eigenvalues stand out of the bulk.

However, the precise statement is more sophisticated.
We first consider the ESD. When K is finite and p/n →

γ , the ESD converges to a distribution Fγ (x; σ 2, θ). This dis-
tribution is parametrized by (σ 2, θ), but it does not have an
explicit form. It is defined implicitly by an equation of its Stieltjes

transform (Marcenko and Pastur 1967). Let Hσ 2,θ (t) be the CDF
of Gamma(θ , θ/σ 2). For each z ∈ C+, there is a unique m =
m(z; γ , σ 2, θ) ∈ C+ such that

z = − 1
m + γ

∫ t
1 + tm dHσ 2,θ (t). (8)

The density of Fγ (x; σ 2, θ), denoted by fγ (x; σ 2, θ), satisfies that

fγ (x; σ 2, θ) = lim
y→0+

{ 1
π(γ ∧ 1)

ℑ
(
m(x + iy; γ , σ 2, θ)

)}
, 1 (9)

where ℑ(·) denotes the imaginary part of a complex number.
We aim to estimate (σ 2, θ) by comparing the bulk eigenval-

ues with the corresponding quantiles of Fγ (x; σ 2, θ). In the spe-
cial case of θ = ∞, Fγ (x; σ 2, θ) reduces to the MP distribution.
Therefore, we can compute its quantiles explicitly and estimate
σ 2 by a simple least square. For the general case, we have to
compute the quantiles of Fγ (x; σ 2, θ) numerically. There are two
approaches, one is solving the density from Equations (8) and
(9), and then computing the quantiles, and the other is using
Monte Carlo simulations. We will describe them in Section 3.2.

Next, we consider the top eigenvalues. It requires a precise
definition of “standing out” of the bulk. We use the distribution
of λ̂K+1 under Model (7) as a benchmark, that is, λ̂k needs to
be much larger than a high-probability upper bound of λ̂K+1
in order to be called “standing out.” Fortunately, the behavior of
λ̂K+1 has been studied in the literature of random matrix theory.
We define the following null model, which is a special case of
Model (7) with K = 0

! = diag(σ 2
1 , σ 2

2 , . . . , σ 2
p ),

where σ 2
k

iid∼ Gamma(θ , θ/σ 2). (10)

Let λ̂∗
1 denote the largest eigenvalue of the sample covariance

matrix under this null model. By eigenvalue sticking result (see
Bloemendal et al. 2016, Knowles and Yin 2017 and a detailed
discussion in Section 4.3), the distribution of λ̂K+1 is asymp-
totically close to the distribution of λ̂∗

1. We now reframe the
statement that “the first K empirical eigenvalues stand out” as
follows: Under some regularity conditions, each of λ̂1, . . . , λ̂K is
significantly larger than λ̂∗

1 associated with Model (10).
We aim to threshold the top eigenvalues by the (1 − β)-

quantile of the distribution of λ̂∗
1, where β controls the prob-

ability of over-estimating K. In the special case of θ = ∞,
the distribution of λ̂∗

1 converges to a Tracy-Widom distribution,
so that we have a closed-form expression for the threshold. In
the general case, we calculate this threshold by Monte Carlo
simulation, where we simulate data from the null model to
approximate the distribution of λ̂∗

1. We relegate the details to
Section 3.2.

3.2. The Algorithm of Estimating K

Same as before, the BEMA algorithm has two steps: Step 1
estimates (σ 2, θ) from bulk eigenvalues, and Step 2 calculates
a threshold for the top eigenvalues.

1The factor 1/(γ ∧ 1) is due to considering the zero-excluded ESD. If we
consider the classical ESD, this factor should be 1/γ .
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Consider Step 1. Write p̃ = p ∧ n and γn = p/n. For
a constant α ∈ (0, 1/2), we take the (1 − 2α)-fraction of
bulk eigenvalues in the middle range, that is, {λ̂k : αp̃ ≤
k ≤ (1 − α)p̃}. Each empirical eigenvalue λ̂k is also the
(k/p̃)-upper-quantile of the ESD. We recall that Fγn(x; σ 2, θ)

is the theoretical limit of ESD as defined in Equations (8) and
(9). Let F̄−1

γn (k/p̃; σ 2, θ) denote the (k/p̃)-upper-quantile of this
distribution. We expect to see

λ̂k ≈ F̄−1
γn (k/p̃; σ 2, θ).

It motivates the following estimator of (σ 2, θ):

(σ̂ 2, θ̂) = argmin(σ 2,θ)

{ ∑

αp̃≤k≤(1−α)p̃

[
λ̂k − F̄−1

γn (k/p̃; σ 2, θ)
]2

}
.

(11)
We now describe how to solve Equation (11). This is a

two-dimensional optimization. As long as we can evaluate the
objective function for arbitrary (σ 2, θ), we can solve it via a
simple grid search. To further simplify the objective, we first
get rid of σ 2 and reduce it to an optimization on θ only. Note
that Gamma(θ , θ/σ 2) is equivalent to σ 2 · Gamma(θ , θ). We
can deduce from (8)-(9) that a similar connection holds between
Fγn(x; σ 2, θ) and Fγn(x; 1, θ). Then, their quantiles satisfy

F̄−1
γn (k/p̃; σ 2, θ) = σ 2 · F̄−1

γn (k/p̃; 1, θ).

We rewrite Equation (11) as

min
θ

H(θ), where

H(θ) ≡ min
σ 2

{ ∑

αp̃≤k≤(1−α)p̃

[
λ̂k − σ 2F̄−1

γn (k/p̃; 1, θ)
]2

}
.

As long as we can compute F̄−1
γn (y; 1, θ) for any θ > 0 and y ∈

[0, 1], we can obtain H(θ) for each θ by least-square regression
of the λ̂k’s on the F̄−1

γn (k/p̃; 1, θ)’s. Given H(θ), we can solve the
optimization by a grid search on θ .

This is described in Step 1 of Algorithm 2. Suppose there
is an available algorithm GetQT that computes F̄−1

γn (y; 1, θ) for
any θ > 0 and y ∈ [0, 1]. Fix a set of grid points {θj}N

j=1.
For each θj, we first compute F̄−1

γn (k/p̃; 1, θj) for all αp̃ ≤ k ≤
(1−α)p̃. Given θj, the value of σ 2 that minimizes (11) is obtained
by regressing {λ̂k}αp̃≤k≤(1−α)p̃ on {F̄−1

γn (k/p̃; 1, θj)}αp̃≤k≤(1−α)p̃
with a least square. Let σ̂ 2(θj) denote this optimal value of σ 2,
and let vj denote the objective in Equation (11) associated with
{θj, σ̂ 2(θj)}. We select j∗ so that vj is minimized and set θ̂ = θj∗
and σ̂ 2 = σ̂ 2(θj∗).

What remains is the design of an algorithm GetQT(y, γn, θ)
to compute the y-upper-quantile of the distribution Fγn(·; 1, θ)

for arbitrary (θ , y). We note that Fγn(x; 1, θ) only has an implicit
definition through Equations (8) and (9). In the appendix, we
propose two algorithms that serve for this purpose

• GetQT1 takes advantage of the fact that Fγn(x; σ 2, θ) is also
the theoretical limit of the ESD of the null model (10). This
algorithm simulates data from Model (10) with σ 2 = 1 to get
the Monte Carlo approximation of the target quantile.

Algorithm 2. BEMA for the general spiked covariance
model.
Input: Nonzero eigenvalues λ̂1, . . . , λ̂n∧p, α ∈ (0, 1/2),
β ∈ (0, 1), a grid of values 0 < θ1 < θ2 < . . . < θN , an
algorithm GetQT, and an integer M ≥ 1.
Output: An estimate of K.
Step 1: Write p̃ = n ∧ p and γn = p/n. For each 1 ≤ j ≤ N:

• For each αp̃ ≤ k ≤ (1 − α)p̃, run the algorithm
GetQT(k/p̃, γn, θj) to obtain qkj.

• Compute
σ̂ 2(θj) = (

∑
αp̃≤k≤(1−α)p̃ qkjλ̂k)/(

∑
αp̃≤k≤(1−α)p̃ q2

kj).
• Let vj = ∑

αp̃≤k≤(1−α)p̃[λ̂k − σ̂ 2(θj) · qkj]2.

Find j∗ = argmin1≤j≤Nvj. Let θ̂ = θj∗ and σ̂ 2 = σ̂ 2(θj∗).
Step 2: For 1 ≤ m ≤ M:

• Sample d∗
j ∼ Gamma(θ̂ , θ̂), independently for 1 ≤ j ≤ p.

Sample X∗
i (j) ∼ N(0, σ̂ 2d∗

j ), independently for 1 ≤ i ≤ n
and 1 ≤ j ≤ p.

• Compute the largest singular value of n−1/2X∗, where
X∗ = [X∗

1 , X∗
2 , . . . , X∗

n]⊤. Let λ̂∗
1(m) be the square of this

singular value.

Let T̂ be the (1 − β)-quantile of {λ̂∗
1(m)}1≤m≤M . Output

K̂ = #{1 ≤ k ≤ p̃ : λ̂k > T̂}.

• GetQT2 directly uses Equations (8) and (9) to solve the
density fγn(x; 1, θ): For any given θ , H1,θ (t) is the CDF
of Gamma(θ , θ), which is known. Therefore, we can solve
fγn(x; 1, θ) from Equations (8) to (9) for a grid of x; next,
the values of fγn(x; 1, θ) for arbitrary x ∈ R are obtained by
linear extrapolation. Once we have the density function, we
can compute the target quantiles.

The two GetQT algorithms have comparable numerical per-
formance, but each has an advantage on running time in some
cases; see the appendix for more discussions.

Consider Step 2. We estimate K by comparing each top eigen-
value with the (1 − β)-quantile of the distribution of λ̂∗

1 under
the null model (10), with (σ̂ 2, θ̂) plugged in. The threshold is

T̂ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1 − β)-quantle of the distribution of λ̂∗
1 under the

null model
! = diag(σ 2

1 , σ 2
2 , . . . , σ 2

p ), where σ 2
j

iid∼ Gamma
(θ̂ , θ̂/σ̂ 2)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
.

(12)
The T̂ here generalizes the threshold in Algorithm 1. The thresh-
old in Algorithm 1 is a special case of T̂ at θ̂ = ∞, which
happens to have an explicit formula.

We compute T̂ via Monte Carlo simulations. We first draw
! from the null model in Equation (12), and then draw the
data matrix from multivariate normal distributions and com-
pute the largest eigenvalue of the sample covariance matrix. By
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repeating these steps multiple times, we obtain the sampling
distribution of λ̂∗

1 in Equation (12). This is described in Step 2 of
Algorithm 2.

The BEMA algorithm has three tuning parameters (α, β , M),
where α controls the percentage of bulk eigenvalues used for
estimating (σ 2, θ) and M is the number of Monte Carlo repe-
titions for approximating T̂. The performance of the algorithm
is relatively insensitive to (α, M) (see Section 5). We set α =
0.2 and M = 500 by default. The parameter β controls the
probability of over-estimating K. Theoretically, if the spiked
eigenvalues are large enough, we should use a diminishing β

(i.e., β → 0 as n → ∞) so that the probability of over-
estimating K tends to zero. In practice, it often happens that the
spiked eigenvalues are only moderately large. We thus need a
moderate β to strike a balance between the probability of over-
estimating K and the probability of under-estimating K. We
leave it to the users to decide. It is analogous to the situation
in false discovery rate control, where the users select the target
false discovery rate. In our numerical experiments, we find that
β = 0.1 is a good choice.

A simulation example. We illustrate Algorithm 2 using a
simulation example. Fix (n, p, K) = (1000, 200, 5) and (σ 2, θ) =
(1, 10). We generate Xi iid from N(0, !), where ! satisfies
model (7) with µk = 2.3 for 1 ≤ k ≤ K. The left panel
of Figure 4 shows the plot of λ̂k vs. the MP quantiles qk. It
does not fit a line crossing the origin, suggesting that Algo-
rithm 1 does not work for this general covariance model. The
middle panel contains the plot of λ̂k vs. F̄−1

γn (k/p̃; 1, θ̂), where
θ̂ is from Algorithm 2. Except for a few top eigenvalues, it fits
very well a line crossing the origin, suggesting that Algorithm
2 is successful in this setting. The estimated parameters are
(σ̂ 2, θ̂) = (1.02, 10.39), which is close to the true values. The
right panel contains the plot of λ̂k vs. k, and the fitted curve of
σ̂ 2 · F̄−1

γn (k/p̃; 1, θ̂) vs. k (solid red line). The threshold T̂ is also
shown by the dashed line. It yields K̂ = 5, which is the same as
the ground truth.

Remark (Connection to parallel analysis). Parallel analysis
(Horn 1965) is a popular method for estimating the number
of spiked eigenvalues in real applications. It samples data from

a null covariance model that has no spiked eigenvalues, and
estimates K by comparing the distribution of top empirical
eigenvalues on simulated data to those actually observed from
the original data. The most common version of parallel analysis
first standardizes the data matrix so that each variable has a
unit variance and then uses ! = Ip as the null model. Our
algorithm has a similar spirit as parallel analysis, but we adopt
a more sophisticated null covariance model, Model (10), and
estimate parameters of this null model carefully from bulk
eigenvalues.

Remark (Memory use of BEMA). The input of BEMA
includes nonzero eigenvalues of the sample covariance matrix.
These eigenvalues can be computed by eigen-decomposition
on either the p × p matrix X⊤X or the n × n matrix XX⊤.
Therefore, the memory use depends on the minimum of n and p.
In many real applications, p is very large but n is relatively small,
and BEMA is still implementable under even strict memory
constraints.

3.3. A Confidence Interval of K

By varying β in Algorithm 2, we get different estimators of K,
where the over-shooting probability is controlled at different
levels. We use these estimators to construct a confidence interval
for K.

Definition 2 (Confidence interval of K). Denote the output of
Algorithm 2 by K̂β to indicate its dependence on β . Given any
ω0 ∈ (0, 1), we introduce the following (1 − ω0)-confidence
interval of K as [K̂ω0/2, K̂1−ω0/2].

We explain why the confidence interval is asymptotically
valid. Let T̂ = T̂β be the threshold in Equation (12), and let
λ̂∗

1 be the largest eigenvalue of the sample covariance matrix
when data are from the null model (10). We use P0 to denote the
probability measure associated with Model (10). By definition of
T̂β , P0

{
λ̂∗

1 ≤ t
}∣∣∣

t=T̂β

= 1 − β . At the same time, the eigenvalue
sticking result (Bloemendal et al. 2016; Knowles and Yin 2017)
states that, under some regularity conditions, the distribution of

Figure 4. Illustration of BEMA for the general spiked covariance model. The left panel plots λ̂k vs. qk , where the qk ’s are quantiles of the standard MP distribution. It fits the
regression line poorly, suggesting that Algorithm 1 is no longer working for this general model. The middle panel plots λ̂k vs. F̄−1

γn (x; 1, θ̂), where θ̂ is an estimate of θ by
Algorithm 2. The bulk eigenvalues (blue dots) fit the regression line very well. The right panel is the scree plot, where the red solid curve is F̄−1

γn (x; σ̂ , θ̂) vs. k. A threshold
(red dotted line) is given by the 90%-quantile of the distribution of λ̂∗

1 from a null model; see Equation (12). There are 5 empirical eigenvalues exceeding this threshold,
which gives K̂ = 5.
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λ̂K+1 is asymptotically close to the distribution λ̂∗
1. It follows that

P
{

K̂ω0/2 > K
}

≤ P
{
λ̂K+1 > T̂ω0/2

}
≈ P0

{
λ̂∗

1 > t
}∣∣∣

t=T̂ω0/2

= ω0/2,
P
{

K̂1−ω0/2 < K
}

≤ P
{
λ̂K ≤ T̂1−ω0/2

}
≤ P

{
λ̂K+1 ≤ T̂1−ω0/2

}

≈ P0
{
λ̂∗

1 ≤ t
}∣∣∣

t=T̂1−ω0/2
= ω0/2.

4. Theoretical Properties

We study in this section the theoretical properties of the pro-
posed BEMA method. In Section 4.1, we focus on the standard
spiked covariance model (θ = ∞), where we derive the error
rate of σ̂ 2 and the consistency of K̂. In Section 4.2, we study the
general spiked covariance model (θ < ∞). This setting is much
more complicated. It connects to an unsolved problem in ran-
dom matrix theory, that is, how to get sharp asymptotic theory
for eigenvalues when the limiting spectrum of ! is unbounded
and has convex decay in the tail. Only partial results are known
(Kwak, Lee, and Park 2019). To overcome the technical difficulty,
in our theoretical investigation, we approximate Model (7) by
a proxy model where σ 2

j are iid generated from a truncated
Gamma distribution. Under this proxy model, we derive the
rate of convergence for (σ̂ 2, θ̂) and the consistency of K̂. In
Section 4.3, we connect Model (7) to the proxy model and
discuss the theory for Model (7).

Through this section, we assume X1, X2, . . . , Xn are gener-
ated as follows:

Assumption 1. Let Y = [Y1, Y2, . . . , Yn]⊤ ∈ Rn×p be a
random matrix with independent but not necessarily identically
distributed entries, where E[Y i(j)] = 0 and Var(Y i(j)) = 1, for
1 ≤ i ≤ n, 1 ≤ j ≤ p. Given σ1, σ2, . . . , σp > 0, µ1 ≥ µ2 ≥
· · · ≥ µK > 0, and orthonormal vectors ξ 1, ξ 2, . . . , ξp ∈ Rp,
let ! = ∑K

k=1(σ
2
k + µk)ξ kξ

⊤
k + ∑p

j=K+1 σ 2
j ξ jξ

⊤
j . We assume

Xi = !1/2Y i, for 1 ≤ i ≤ n.

Under this assumption, each Xi is a linear transform of a
random vector Y i that has independent entries. This is stronger
than assuming Cov(Xi) = ! but is conventional in the litera-
ture.

Assumption 2. For each integer m ≥ 1, there exists a universal
constant Cm > 0 such that sup1≤i≤n,1≤j≤p E[|Y i(j)|m] ≤ Cm.

This assumption can be further relaxed. For example, we do
not actually need the inequality to hold for every m ≥ 1 but
only for 1 ≤ m ≤ M, where M is a properly large integer
(Bloemendal et al. 2016; Knowles and Yin 2017). We use the
current assumption for convenience.

We will use the following notation frequently, which is con-
ventional in random matrix theory:

Definition 3. Let Un and Vn be two sequences of random vari-
ables indexed by n. We say that Un is stochastically dominated
by Vn, if for any ϵ > 0 and s > 0 there exists N = N(ϵ, s) such
that P(Un > nϵVn) ≤ n−s for all n ≥ N. We write Un ≺ Vn.

4.1. The Standard Spiked Covariance Model

The standard spiked covariance model (Johnstone 2001)
assumes D = σ 2Ip. In this case, BEMA simplifies to Algorithm
1. It outputs σ̂ 2 and K̂. We first give an error bound on estimat-
ing σ 2.

Theorem 1 (Estimation error of σ̂ 2). Suppose X1, X2, . . . , Xn
satisfy Assumptions 1–2 with σ 2

j ≡ σ 2. Suppose K ≥ 1 is fixed
and p/n → γ for a constant γ > 0. Let σ̂ 2 be the estimator of
σ 2 by Algorithm 1, where the tuning parameter α is a constant
in (0, 1/2). Then, |σ̂ 2 − σ 2| ≺ n−1.

This result is connected to the robust estimation of σ 2 in a
standard spiked covariance model (Gavish and Donoho 2014;
Kritchman and Nadler 2009; Shabalin and Nobel 2013). In
these work, there are only consistency results available (Donoho,
Gavish, and Johnstone 2018) which say that σ̂ 2 → σ 2 almost
surely, but there are no explicit error rates. Using the recent
advancement in random matrix theory on sharp large-deviation
bounds for individual empirical eigenvalues (see Ke (2016) for a
survey), we can leverage those results to obtain an explicit bound
for |σ̂ 2 − σ 2|.

We then establish the consistency on estimating K.

Theorem 2 (Consistency of K̂). Suppose X1, X2, . . . , Xn satisfy
Assumptions 1 and 2 with σ 2

j ≡ σ 2. Suppose K ≥ 1 is fixed,
p/n → γ ∈ (0, ∞), and µK ≥ σ 2(

√
γ+τn), where τn ≫ n−1/3.

Let K̂ be the estimator of K by Algorithm 1, where the tuning
parameters are such that α ∈ (0, 1/2) is a constant and that β →
0 at a properly slow rate. As n → ∞, P

{
K̂ = K

}
= 1 − o(1).

We compare the conditions required for consistent estima-
tion of K with those in other work. Let λ1 ≥ λ2 ≥ · · · ≥ λp
denote the eigenvalues of !. In our model, λk = µk + σ 2 for
1 ≤ k ≤ K. The condition in Theorem 2 translates to

λK > σ 2(1 + √
γ + τn), τn ≫ n−1/3.

It is weaker than the conditions in Bai and Ng (2002) and Cai,
Han, and Pan (2020), where the former requires λK ≍ p and
the latter needs λK → ∞. Our condition on λK matches with
the critical phase transition threshold in Baik, Ben Arous, and
Peche (2005) and is hardly improvable. In fact, Fan, Guo, and
Zheng (2020) showed that if λK ≤ σ 2(1 + √

γ ) then there
exists no consistent estimator of K. Dobriban and Owen (2019)
imposed the same condition on λK , but they need stronger
conditions on population eigenvectors. Their “delocalization”
condition states as ||#$1/2||∞ → 0, where # = [ξ 1, . . . , ξK],
$ = diag(λ1, . . . , λK), and || · ||∞ is the maximum absolute
row sum. It requires the eigenvectors to be incoherent (i.e.,
max1≤k≤K ||ξ k||∞ is sufficiently small) and that the eigenvalues
cannot be too large. Examples such as equal-correlation matri-
ces (i.e., !(i, j) = a, for all i ̸= j, where a ∈ (0, 1) is a constant)
are excluded. We do not need such a de-localization condition.2

2We remark that the comparison is for the standard spiked covariance model
only. For this model, our method has the weakest conditions for consistent
estimation of K . On the other hand, other methods apply to some other
settings, which are not considered in the comparison.
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The proof of Theorem 2 is an application of the eigenvalue
sticking theory (Bloemendal et al. 2016). It compares the distri-
bution of empirical eigenvalues {λ̂k} under the spiked covari-
ance model with the distribution of empirical eigenvalues {λ̂∗

k}
under the null model ! = σ 2Ip. The claim is that the distribu-
tion of λ̂K+s is asymptotically close to the distribution of λ̂∗

s , for
a wide range of s. We use this result to study the thresholding
step in Algorithm 1.

4.2. The Truncated Gamma-Based General Spiked
Covariance Model

The general spiked covariance model (7) assumes σ 2
j are iid

drawn from Gamma(θ , θ/σ 2). It differs from the conventional
settings in random matrix theory because ! is not a determin-
istic matrix and because the limiting spectral density of ! does
not have a compact support. Unfortunately, there is no existed
random matrix theory that deals with this setting directly (Bao
2020). We thus approximate Model (2) by

σ 2
j

iid∼ TruncGamma(θ , θ/σ 2, σ 2T1, σ 2 T2), 1 ≤ j ≤ p,
(13)

where TruncGamma(α, β , l, u) denotes the truncated Gamma
distribution with rate and shape parameters α and β and trunca-
tions at l and u. When (T1, T2) = (0, ∞), it reduces to Model (2).
Given fixed 0 < T1 < T2 < ∞, the limiting spectral density
of ! has a compact support, so that we can take advantage
of the existing random matrix theory (Knowles and Yin 2017;
Ding 2020). We first present the theory for Model (13) and then
discuss how to extend it to (T1, T2) = (0, ∞).

Fixing 0 < T1 < T2 < ∞ and two intervals J σ 2 = [a, b] ⊂
(0, ∞) and Jθ = [c, d] ∈ (0, ∞), let Q(T1, T2, Jσ 2 , Jθ ) be
the family of distributions TruncGamma(θ , θ/σ 2, σ 2T1, σ 2T2)
satisfying that σ 2 ∈ Jσ 2 and θ ∈ Jθ . The following Lemma is a
result of (Knowles and Yin 2017, theo. 3.12 and exam. 2.9), and
its proof is omitted.

Lemma 1. Suppose X1, X2, . . . , Xn satisfy Assumptions 1 and 2
with σ 2

j generated from Model (13). Suppose K ≥ 1 is fixed
and p/n → γ for a constant γ ̸= 1. Suppose the trun-
cated Gamma distribution in Equation (13) is from the family
Q(T1, T2, Jσ 2 , Jθ ), for fixed (T1, T2, Jσ 2 , Jθ ). Let Hσ 2,θ ,T1,T2(t)
be the CDF of TruncGamma(θ , θ/σ 2, σ 2T1, σ 2T2). Define a
distribution Fγn(·; σ 2, θ , T1, T2) in the same way as in Equa-
tions (8) and (9), with Hσ 2,θ (t) replaced by Hσ 2,θ ,T1,T2(t) and
γ replaced by γn = p/n. Let qi ≡ F̄−1

γn (i/p̃; σ 2, θ , T1, T2) be
the (i/p̃)-upper-quantile of this distribution, where p̃ = n ∧ p.
As n → ∞, for every K < i ≤ p̃, we have |λ̂i − qi| ≺
[i ∧ (p̃ + 1 − i)]−1/3n−2/3.

Given (T1, T2), we estimate σ 2 and θ by

(σ̂ 2, θ̂) = argmin(σ 2,θ)∈Jσ2 ×Jθ{ ∑

αp̃≤i≤(1−α)p̃

[
λ̂i − F̄−1

γn (i/p̃; σ 2, θ , T1, T2)
]2

}
. (14)

It can be solved by a slight modification of Step 1 of Algorithm
2. We note that (13) is equivalent to σ 2

j /σ 2 iid∼ TruncGamma

(θ , θ , T1, T2). Hence, the quantiles satisfy that F̄−1
γn (i/p̃; σ 2, θ , T1,

T2) = σ 2 · F̄−1
γn (i/p̃; 1, θ , T1, T2). We first modify GetQT so

that it outputs the quantiles of Fγn(·; 1, θ , T1, T2) for any given
θ . Next, we mimic Step 1 of Algorithm 2 to solve Equation (14),
where we run a least square for every θ and then optimize over
θ via a grid search. The details are relegated to the appendix.

Theorem 3 (Estimation error of σ̂ 2 and θ̂). Suppose the condi-
tions of Lemma 1 hold, where K, γ , T1, T2, Jσ 2 , and Jθ are fixed.
Let

+(θ) = +(θ ; T1, T2)

=
[∫ T2

T1
xθ+1exp(−θx)dx

][∫ T2
T1

xθ−1exp(−θx)dx
]

[∫ T2
T1

xθ exp(−θx)dx
]2 .

Suppose there exists a positive constant ω = ω(T1, T2, Jθ ) such
that supθ∈Jθ

+′(θ) ≤ −ω. Let σ̂ 2 and θ̂ be the estimators from
(14), where the tuning parameter α satisfies αp̃ > K and αp̃ =
O(n/ log(n)). As n → ∞, we have |σ̂ 2 − σ 2| ≺ n−1 and |θ̂ −
θ | ≺ n−1.

Theorem 3 assumes supθ∈Jθ
+′(θ) ≤ −ω for some constant

ω > 0. It is a regularity condition on (Jθ , T1, T2). The next
lemma shows that this condition is mild.

Lemma 2. For any fixed Jθ = [c, d] and ω < d−2,
there exist constants 0 < T∗

1 < T∗
2 < ∞ such that

supθ∈Jθ
+′(θ ; T1, T2) ≤ −ω holds for all T1 ≤ T∗

1 and T2 ≥
T∗

2 .

With the estimates σ̂ 2 and θ̂ , we then slightly modify Step 2
of Algorithm 2 by thresholding all the empirical eigenvalues at

T̂β =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1 − β)-quantle of the distribution of λ̂∗
1 under the

null model
! = diag(σ 2

1 , . . . , σ 2
p ), where σ 2

j
iid∼ TruncGamma

(θ̂ , θ̂/σ̂ 2, σ̂ 2T1, σ̂ 2T2)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
.

(15)
This threshold can be computed via Monte Carlo simulations,
similarly as in Step 2 of Algorithm 2. We estimate K by the
number of empirical eigenvalues exceeding T̂.

To establish the consistency of K̂, we introduce the function

G(x) = −1
x + γ

∫ 1
t−1 + x dHσ 2,θ ,T1,T2(t). (16)

By (Knowles and Yin 2017, examp. 2.9), G(x) has 2 criti-
cal points 0 > x∗

1 > x∗
2 (the definition of critical points

can be found in Knowles and Yin (2017)), and the distribu-
tion Fγ (·; σ 2, θ , T1, T2) defined in Lemma 1 has the support
[G(x∗

2), G(x∗
1)]. The next theorem is proved in the appendix. It

uses a result in Ding (2020) about the top empirical eigenvalues.

Theorem 4 (Consistency of K̂). Suppose the conditions of
Lemma 1 and Theorem 3 hold. Let x∗

1 be the largest critical point
of the function G(x) in Equation (16). We assume −1/(T1 +
µK) ≥ x∗

1 +τ ,3 where τ > 0 is a constant and T1 is a truncation

3In our model (see Assumption 1), the spiked eigenvalues of ! are {µk +
σk}1≤k≤K . Therefore, µK +T1 is a lower bound of these spiked eigenvalues.
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point in Equation (13). Let K̂ = #{1 ≤ i ≤ (n ∧ p) : λ̂i > T̂β},
where T̂β is as in Equation (15) with β → 0 at a properly slow
rate. As n → ∞, P

{
K̂ = K

}
= 1 − o(1).

4.3. Remarks on Extension to the Gamma-Based General
Spiked Covariance Matrix

We now discuss extension of the theoretical results to the
Gamma-based general spiked covariance model (7), which is
an extreme case of Model (13) at T1 = 0 and T2 = ∞. As
mentioned earlier, this setting is unconventional because the
eigenvalues of ! are stochastic and the support of the limiting
spectral density of ! is unbounded.

First, we discuss the estimation of (σ 2, θ). The accuracy
of (σ̂ 2, θ̂) depends on whether we have similar large devia-
tion bounds to those in Lemma 1. Our conjecture is that the
stochasticity and unboundedness of the spectrum of ! has a
negligible effect on the eigenvalues deep into the bulk. To see
why, we note that the classical result about weak convergence
of ESD (Marcenko and Pastur 1967) does not need the limit-
ing spectrum of ! to have a compact support; therefore, the
unboundedness is not an issue. The stochasticity is not an issue,
either, because almost surely, the spectral distribution of ! con-
verges weakly to Gamma(θ , θ/σ 2). We conclude that the weak
convergence of ESD still holds. This further implies that the bulk
eigenvalues still converge to the corresponding quantiles of the
theoretical limit of ESD.

The open question is whether we have the rates of conver-
gence as in Lemma 1. The stochasticity and unboundedness
of the spectrum of ! affect the rates of convergence of large
eigenvalues. We thus do not expect Lemma 1 to hold for all i.
Fortunately, the estimation of (σ 2, θ) in BEMA only involves
bulk eigenvalues in the middle range, that is, αp̃ ≤ i ≤ (1−α)p̃,
where α ∈ (0, 1/2) is a constant. We conjecture that Lemma 1
continues to hold for these eigenvalues. If our conjecture is
correct, then we can show similar results for σ̂ 2 and θ̂ as those
in Theorem 3.

Next, we discuss the consistency of K̂. The stochasticity and
unboundedness of the spectrum of ! together yields a signif-
icant change of the behavior of edge eigenvalues. This can be
seen from a relevant setting in Kwak, Lee, and Park (2019)— !
is a diagonal matrix whose diagonal entries are iid drawn from
a density ρ(t) ∝ (1 − t)bf (t) · 1{l ≤ t ≤ 1}, where b > 1
and l ∈ (0, 1) are constants and f ∈ C1([l, 1]). This setting
has no spike. They showed that the limiting distribution of the
largest eigenvalue, λ̂∗

1, is not a Tracy-Widom distribution; it is
a Weibull distribution if γ < γ0 and a Gaussian distribution
if γ > γ0, where γ0 is a positive constant. Our model is even
more complicated, where the Gamma density exhibits a similar
convex decay on the right tail but has an unbounded support.
We do not expect λ̂∗

1 to follow a Tracy-Widom distribution any
more.

However, this does not eliminate the consistency of K̂. To
prove consistency, we first need that the stochastic threshold
(12) in BEMA well approximates the (1 − α)-upper-quantile of
λ̂∗

1, where λ̂∗
1 is the largest eigenvalue of the null model with no

spike. This follows from the nature of Monte Carlo simulations,
no matter whether λ̂∗

1 converges to a Tracy-Widom distribution.

Furthermore, the implementation of Equation (12) does not
need any knowledge of the limiting distribution of λ̂∗

1.
To prove consistency, we also need to show that, under

Model (7), when µK is appropriately large, (i) the distribution of
λ̂K+1 is asymptotically close to the distribution of λ̂∗

1 in the null
model (this is the “eigenvalue sticking” argument), and (ii) each
of λ̂1, λ̂2, . . . , λ̂K is significantly larger than the (1 − α)-upper-
quantile of λ̂∗

1. We conjecture that both (i) and (ii) are correct,
provided that µK ≫ log(n). If our conjectures are correct, then
we can obtain the consistency of K̂ as in Theorem 4, under the
slightly stronger condition that µK ≫ log(n).

The rigorous proofs of our conjectures require redevelop-
ment of several fundamental results in random matrix theory
for Model (7), such as the local law on bulk eigenvalues and the
limiting behavior of edge eigenvalues (including the spiked and
non-spiked ones). It is beyond the scope of this article, and we
leave for future work.

5. Simulation Studies

We examine the performance of our methods in simulations.
To differentiate between Algorithms 1 and 2, we call the former
BEMA0 and the latter BEMA. BEMA0 is a simplified version of
BEMA, specifically designed for the standard spiked covariance
model. The tuning parameters are fixed as (α, β) = (0.2, 0.1)

for BEMA0 and (α, β , M) = (0.2, 0.1, 500) for BEMA when not
particularly specified.

In Section 4.2, we also introduced a modification of BEMA
using the truncated Gamma-based spiked mode for technical
needs in our theoretical studies. We showed that this algorithm
has desirable theoretical properties. It however requires two
additional tuning parameters (T1, T2). Our simulation studies
(not reported here) show that the performance of the modified
BEMA is similar to that of BEMA, when T1 is appropriately
small and T2 is appropriately large. For this reason, we use
BEMA, instead of the modified BEMA, in the following sim-
ulation studies.

We compare our methods with a few methods in the litera-
ture, including the deterministic parallel analysis (DDPA) from
Dobriban and Owen (2019), the empirical Kaiser’s criterion
(EKC) from Braeken and Van Assen (2017), the information
criteria ICp1 (Bai&Ng) from Bai and Ng (2002) and the eigen-
gap detection (Pass&Yao) from Passemier and Yao (2014).

Simulation 1. This experiment is for the standard spiked
covariance model, where we investigate the performance of
BEMA0 and the confidence interval for K as described in Sec-
tion 3.3. We generate data from Xi

iid∼ N(0, !), 1 ≤ i ≤ n, where
! satisfies Model (3) with

µ1 = µ2 = · · · = µK = ρ · σ 2√p/n, for some ρ > 0.

The value of ρ controls the magnitude of spiked eigenvalues.
ρ ≤ 1 is the region where consistent estimation of K is impos-
sible (Baik, Ben Arous, and Peche 2005; Fan, Guo, and Zheng
2020). We examine the performance of BEMA0 in the region of
ρ > 1.

Fix K = 5 and σ 2 = 1. We consider three settings,
where (n, p) are (10,000, 1000), (1500, 5000), and (1500, 1500),
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respectively. They cover different cases of size relationship
between p and n. The eigenvector matrix # is drawn uniformly
from the Stiefel manifold (which is the collection of all p × K
matrices that have orthonormal columns). For each of the three
settings, we vary the value of ρ and report the average of K̂ and
upper/lower boundary of a 95% confidence interval, based on
100 repetitions; the results are in the top three panels of Figure 5.
We also report the probability of correctly estimating K (correct
rate) and the coverage probability of the 95% confidence interval
(coverage rate); see the bottom three panels of Figure 5.

It agrees with our theoretical understanding that ρ = 1 is the
critical phase transition point. When ρ slightly departs from 1,
the coverage rate starts to increase from 0% and quickly reaches
the target of 95%. The increase of the correct rate is slightly
slower, but it reaches 100% before ρ = 1.5, for all three settings.
Our theory suggests that the correct rate is asymptotically 100%
as long as ρ > 1, but in the finite-sample performance we
need a larger ρ to attain a 100% correct rate. Furthermore, as
ρ increases, the estimated K̂ increases from 0 to 5, with a sharp
change at around ρ = 1. The length of the 95% confidence inter-
val initially decreases with ρ and then stays almost constant.

Simulation 2. In this simulation, we compare BEMA0 and
BEMA with other methods. We consider both the standard
spiked covariance model (3) and the general spiked covariance
model (7). BEMA0 and BEMA are designed for these two set-
tings, respectively. We note that BEMA can also be applied to
Model (3), which simply ignores the prior knowledge of equal

diagonal in the residual covariance matrix. We thereby also
include BEMA in the numerical comparison on the standard
spiked covariance model.

Given (n, p, K, λ, θ), we generate data Xi
iid∼ N(0, !), 1 ≤ i ≤

n, where ! satisfies Model (7) with σ 2 = 1 and µk = λ, for 1 ≤
k ≤ K. The eigenvector matrix # is drawn uniformly from the
Stiefel manifold. We allow θ to take the value of ∞; when θ =
∞, it indicates that ! follows the standard spiked covariance
model (3). We consider 8 different settings which cover a wide
range of parameter values. The results are shown in Table 1,
where the average K̂ and the probability of correctly estimating
K (correct rate) are reported based on 500 repetitions.

We have a few observations. First, in the standard spiked
covariance model (θ = ∞, top four rows of Table 1), BEMA0
has the best performance. Interestingly, BEMA has nearly com-
parable performance. The reason is that the algorithm will
automatically output a very large θ̂ , so that the estimator is
similar to that of knowing θ = ∞. This suggests that we do
not have to choose between BEMA0 and BEMA in practice.
We can always use BEMA, even when the data come from the
standard spiked covariance model. On the other hand, BEMA0
is conceptually simpler and computationally much faster, hence,
it is still the better choice if we are confident that the standard
spiked covariance model holds.

Second, in the general spiked covariance model (bottom four
rows of Table 1), BEMA outperforms DDPA, EKC and Pass&Yao
in all settings, and outperforms Bai&Ng in two out of four

Figure 5. Simulation 1: The performance of BEMA0 in a standard spiked model. K = 5, and (n, p) take the value of (10, 000, 1000), (1500, 5000), and (1500, 1500) (from
left to right). The top three panels show the estimator K̂ along with the 95% confidence upper/lower bound, where each quantity is the average of 100 repetitions. The
bottom three panels show the probability of correctly estimating K (correct rate) and the coverage probabilities of the 95% confidence intervals (coverage rates). In each
panel, the x-axis is the value of ρ (see the text for definition), controlling the magnitude of spiked eigenvalues. Our theory states that BEMA0 gives a consistent estimator
of K when ρ slightly exceeds 1. This is confirmed by these simulations.
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Table 1. Simulation 2: Comparison of different methods in the standard/general spiked model.

(n, p, K , λ, θ) BEMA0 BEMA DDPA EKC Bai&Ng Pass&Yao

(100, 500, 5, 9, ∞) 4.996 (99.6%) 4.982 (98.2%) 6.102 (41%) 5.552 (57.8%) 0 (0%) 4.904 (92%)
(100, 500, 5, 49, ∞) 5 (100%) 5 (100%) 6.328 (38%) 6.4 (27.4%) 5 (100%) 5.012 (98.8%)
(500, 100, 5, 1.5, ∞) 5 (100%) 4.93 (93.0%) 6.1 (45.6%) 5.016 (98.4%) 0 (0%) 2.784 (43.8%)
(500, 100, 5, 3, ∞) 5 (100%) 5 (100%) 5.92 (45.4%) 5.056 (94.4%) 0 (0%) 4.432 (84.4%)
(100, 500, 5, 15, 3) – 5.182 (85.2%) 9.222 (20.8%) 5.974 (40.2%) 0.078 (0%) 5.292 (73.2%)
(100, 500, 5, 50, 3) – 5.142 (88.4%) 9.214 (20.8%) 9.852 (8.6%) 5 (100%) 5.362 (70.4%)
(500, 100, 5, 4.5, 3) – 4.748 (81.2%) 57.954 (25.4%) 5.588 (49.0%) 3.392 (39%) 7.624 (5%)
(500, 100, 5, 6, 3) – 5.018 (98.2%) 43.734 (38.8%) 6.244 (18.4%) 5.002 (99.8%) 8.098 (4.2%)

NOTES: In these settings, all the spiked eigenvalues are equal to λ, and the eigenvectors are randomly generated from the Stiefel manifold. The top four rows (θ = ∞)
correspond to the standard spiked model, and the bottom four rows correspond to the general spiked model. The number in each cell is the average K̂ over 500 repetitions,
and the number in brackets is the probability of correctly estimating K (correct rate).

Table 2. Simulation 3: Comparison of different methods in the standard/general spiked model, when the eigenvectors are “delocalized.”

(n, p, K , s1, θ) BEMA0 BEMA DDPA EKC Bai&Ng Pass&Yao

(100, 500, 1, 1, ∞) 0.988 (96%) 0.956 (95.2%) 1.086 (88.6%) 1.07 (88.8%) 0 (0%) 0.934 (91.8%)
(100, 500, 1, 3, ∞) 1.012 (98.8%) 1.008 (99.2%) 1.138 (87%) 1.146 (86.4%) 1 (100%) 1.036 (96.8%)
(500, 100, 1, 3, ∞) 1.020 (98%) 1 (100%) 1.152 (85.6%) 1.056 (94.4%) 0 (0%) 1.018 (98.2%)
(500, 100, 1, 6, ∞) 1.014 (98.6%) 1 (100%) 1.124 (88.6%) 1.12 (88%) 1 (100%) 1.014 (98.8%)
(100, 500, 1, 2, 10) – 1.096 (90.6%) 1.2 (82.6%) 1.102 (90.4%) 0.388 (38.8%) 1.084 (92.6%)
(100, 500, 1, 6, 10) – 1.104 (89.8%) 1.226 (79%) 1.608 (54.2%) 1 (100%) 1.054 (95%)
(500, 100, 1, 6, 3) – 1.114 (89.2%) 1.062 (95.4%) 1.226 (78.2%) 1.008 (99.4%) 3.93 (6.2%)
(500, 100, 1, 12, 3) – 1.124 (88.0%) 1.042 (97.4%) 3.782 (0.8%) 1.006 (99.4%) 3.672 (9.8%)

NOTES: Here, s1 controls the magnitude of spiked eigenvalues, where s2
1(p/n) plays the role of λ in Simulation 2. The top four rows (θ = ∞) correspond to the standard

spiked model, and the bottom four rows correspond to the general spiked model. The number in each cell is the average K̂ , and the number in brackets is the probability
of correctly estimating K (correct rate).

settings. BEMA is the only method whose correct rate is above
80% in all settings.

DDPA requires a delocalization condition. Let # be the
p × K matrix of eigenvectors, and let $ be the diagonal matrix
consisting of spiked eigenvalues. The delocalization condition
is ||#$1/2||∞ → 0. It prevents eigenvectors from having
large entries. This condition is not satisfied here, explaining
the unsatisfactory performance of DDPA. Bai&Ng requires that
the spikes are sufficiently large. The larger p/n, the higher
requirement of spikes. When p/n = 5 and λ = 49 or when
p/n = 0.2 and λ = 6, Bai&Ng has a nearly 100% correct rate.
However, as λ decreases, the correct rate drops very quickly.
EKC uses a thresholding scheme that gives smaller thresholds
to lower ranked eigenvalues (e.g., the threshold for λ̂2 is smaller
than the threshold for λ̂1). This method often over-estimates K,
especially when all the spikes are large (e.g., Row 6 of Table 1).
Pass&Yao is developed for the standard spiked model. It has an
unsatisfactory performance in the general spiked model (bot-
tom four rows of Table 1).

Simulation 3. In this simulation, we change the generation
process of eigenvectors to satisfy the “delocalization condition”
(Dobriban and Owen 2019). This condition means ||#$1/2||∞
is sufficiently small, where # is the p × K matrix consisting of
eigenvectors and $ is the diagonal matrix consisting of spiked
eigenvalues.

We adapt the simulation settings in Dobriban and Owen
(2019) to our general spiked model. Given (n, p, K, θ) and
s1, . . . , sK > 0, we generate Xi

iid∼ N(0, !), 1 ≤ i ≤ n,
where ! = BB⊤ + D. The matrix D = diag(σ 2

1 , σ 2
2 , . . . , σ 2

p )

is generated in the same way as in Model (7), and B is a
p × K matrix obtained by first generating a p × K matrix

with independent N(0, 1) entries and then renormalizing each
column to have an ℓ2-norm equal to sk

√
p/n. Under this

setting, the L∞-norm of each population eigenvector is only
O(p−1/2√log(p)), so the “delocalization” condition is satisfied.
We fix K = 1 and let (n, p, s1, θ) vary. The results are shown in
Table 2.

Compared with Simulation 2, the performance of DDPA is
significantly better. BEMA0 and BEMA continue to perform
well, indicating that their performance is insensitive to the
generating process of eigenvectors. This is consistent with our
theoretic understanding. In Section 4, we have seen that the
success of BEMA0 and BEMA requires no conditions on eigen-
vectors.

Simulation 4. In this simulation, we investigate the case of
model misspecification. We still assume that ! is a low-
rank matrix plus a residual covariance matrix D. How-
ever, we no longer let D be a diagonal matrix. Below, we
consider three misspecified models, where D is a Toeplitz
matrix, a block-wise diagonal matrix, and a sparse matrix,
respectively.

• In the first model, D(i, j) = (1 + |i − j|)−t , for 1 ≤ i, j ≤ p.
Here, D is a Toeplitz matrix with polynomial decays in the
off-diagonal. The larger t, the closer to a diagonal matrix.

• In the second model, D(i, i) = 1 for 1 ≤ i ≤ p, and D(2j −
1, 2j) = D(2j, 2j − 1) = b for 1 ≤ j ≤ p/2. D is a block-wise
diagonal matrix which has many 2 × 2 diagonal blocks. The
smaller b, the closer to a diagonal matrix.

• In the third model, D(i, i) = 1 for 1 ≤ i ≤ p, and D(i, j) =
D(j, i) ∼ c · Bernoulli(0.1) for i ̸= j. The matrix D has
approximately 0.1p nonzero entries in each row. The smaller
c, the closer to a diagonal matrix.
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Table 3. Simulation 4: Comparison of different methods in three misspecified models, where the residual covariance matrix D is a Toeplitz matrix, a block diagonal matrix,
and a sparse matrix, respectively. (n, p, K) = (500, 100, 1).

λ Residual covariance BEMA0 BEMA DDPA EKC Bai&Ng Pass&Yao

6 Toeplitz(t=4) 1.104 (89.6%) 1 (100%) 1.422 (65.4%) 1.36 (67.4%) 1 (100%) 1.06 (94.8%)
3 Toeplitz(t=2) 9.352 (0%) 1.12 (88.6%) 100 (0%) 15.148 (0%) 0 (0%) 2.46 (24.6%)
6 block diagonal(b=0.1) 1.344 (66.8%) 1 (100%) 2.378 (31.6%) 1.854 (33.6%) 1 (100%) 1.038 (96.6%)
3 block diagonal(b=0.2) 3.764 (0%) 1 (100%) 100 (0%) 6.602 (0%) 0 (0%) 1.12 (89.8%)
6 sparse(c=0.05) 1.784 (30.2%) 1.016 (98.4%) 5.024 (9.4%) 2.474 (9.4%) 1 (100%) 1.084 (91.6%)
3 sparse(c=0.08) 3.348 (0%) 1.036 (96.4%) 97.752 (0%) 5.18 (0%) 0 (0%) 1.58 (47.4%)

NOTES: The spiked eigenvalue is equal to λ. For each misspecified model, we consider two settings, where D is closer to a diagonal matrix in the first setting (rows 1, 3, 5)
than in the second setting (rows 2, 4, 6). The number in each cell is the average K̂ , and the number in brackets is the probability of correctly estimating K (correct rate).

Table 4. Simulation 5: The robustness of BEMA0 and BEMA under non-Gaussian data and different values of α.

Distribution (λ, θ) BEMA0 (0.1) BEMA0 (0.2) BEMA0 (0.3) BEMA (0.1) BEMA (0.2) BEMA (0.3)

Gaussian (1.5, ∞) 5 (100%) 5 (100%) 5 (100%) 4.95 (95%) 4.93 (93%) 4.904 (90.4%)
Random sign (1.5, ∞) 4.996 (99.6%) 4.996 (99.6%) 4.998 (99.8%) 4.972 (97.2%) 4.96 (96%) 4.94 (94%)
Laplace (1.5, ∞) 4.998 (99.8%) 4.998 (99.8%) 4.998 (99.8%) 4.914 (91.4%) 4.9 (90%) 4.88 (88%)
Gaussian (4.5, 3) – – – 4.518 (69%) 4.748 (81.2%) 4.76 (81%)
Random sign (4.5, 3) – – – 4.678 (78.4%) 4.818 (85%) 4.9 (85.4%)
Laplace (4.5, 3) – – – 4.352 (56.8%) 4.634 (73.8%) 4.656 (74.8%)

NOTES: Data are generated from the factor model with Gaussian/random-sign/Laplace factors and noise. K = 5, and all the spiked eigenvalues are equal to λ. BEMA0 and
BEMA are implemented with α ∈ {0.1, 0.2, 0.3} (denoted as BEMA0 (α)/BEMA (α) in the table). The number in each cell is the average K̂ , and the number in brackets is
the probability of correctly estimating K (correct rate).

The low-rank part of ! is generated in the same way as before:
We let all µk equal to λ and let the eigenvector matrix # be
drawn uniformly from the Stiefel manifold, which allows # to
have orthonormal columns. Fix (n, p, K) = (500, 100, 1). The
results are shown in Table 3.

For each misspecified model, we consider two settings, where
D is closer to a diagonal matrix in the first setting (Rows 1, 3, and
5 of Table 3) than in the second one (Rows 2, 4, and 6 of Table 3).
Every method performs better in the first case, suggesting that
the diagonal assumption on D is indeed critical. In comparison,
BEMA is least sensitive to a nondiagonal D. In Rows 2, 4, and 6
of Table 3, the correct rate of BEMA is still above 80%, while the
correct rate of some other methods is only 0%. Pass&Yao is the
second least sensitive to a nondiagonal D.

To try to understand this phenomenon, we first note that one
can always apply an orthogonal transformation to data vectors
X1, . . . , Xn, so that the post-transformation data follow a differ-
ent spiked covariance model whose residual covariance matrix
D̃ is a diagonal matrix containing the eigenvalues of D. This
orthogonal transformation is unknown in practice. However,
if a method uses the empirical eigenvalues only, it does not
matter whether or not we know this orthogonal transforma-
tion, because any orthogonal transformation does not change
eigenvalues of the sample covariance matrix and thus it does
not change the estimator of K. It implies that, for methods that
only use eigenvalues, we can treat the misspecified model as if D
is replaced by the diagonal matrix D̃. Therefore, the surprising
robustness of BEMA can be interpreted as the capability of the
gamma model (2) in approximating the eigenvalue structure in
D. The flexibility of this gamma model comes from the parame-
ter θ . In comparison, such strong robustness is not observed for
BEMA0, where θ is fixed as ∞.

The method of DDPA uses empirical eigenvectors in the pro-
cedure, thus, it is more sensitive to the diagonal assumption of
D. EKC uses eigenvalues only, but its thresholding scheme is too

conservative. In these misspecified models, some bulk empirical
eigenvalues can get large; EKC gives too small thresholds to non-
leading eigenvalues and yields over-estimation of K.

Simulation 5. In this simulation, we test the robustness of our
proposed methods against the choice of α and the distributional
assumption on data generation. Fix (n, p, K) = (500, 100, 5).
We generate Xi = #ωi + ϵi, where # ∈ Rp×K is uniformly
drawn from the Stiefel manifold, ωi are iid drawn from a mul-
tivariate zero-mean distribution with covariance matrix λIK , ϵi
are iid drawn from a multivariate zero-mean distribution with
covariance matrix D, and D is generated in the same way as in
Model (7) with σ 2 = 1 and θ ∈ {∞, 3}. We consider three set-
tings where the entries of ωi and ϵi are Gaussian, random sign, or
Laplace variables (centered and rescaled to match the required
variance), respectively. The results are in shown Table 4.

For the standard spiked covariance model (top 3 rows of
Table 4), the results are very similar for different distributions.
For the general spiked covariance model (bottom 3 rows of
Table 4), the performance of BEMA increases/decreases when
the data have lighter/heavier tails, but the difference is within
a reasonable range. Our theory only requires a mild distribu-
tional assumption (Assumption 2), which is validated by this
simulation.

The choice of α decides the fraction of bulk eigenvalues used
to estimate (σ 2, θ). The larger α, we restrict to a narrower range
of eigenvalues deep into the bulk. The performance of BEMA
is similar for α ∈ {0.2, 0.3} and slightly worse for α = 0.1. In
the asymptotic theory, α can be chosen as any constant, but for
good finite-sample performance we need (p̃α−K) to be properly
large, where p̃ = n ∧ p. In practice, if p̃ is extremely large, the
choice of α has a negligible effect; if p̃ is only moderately large,
we recommend choosing a large α so that we are confident that
p̃α is significantly larger than K.
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Table 5. Simulation 6: The performance of BEMA0 and BEMA with different values of β .

Method (λ, θ) β = 0.01 β = 0.05 β = 0.1 β = 0.2 β = 0.3 β = 0.5

BEMA0 (1.5, ∞) 4.994 (99.4%) 5 (100%) 5 (100%) 5 (100%) 5 (100%) 5.006 (99.4%)
BEMA (1.5, ∞) 4.712 (72.6%) 4.888 (89%) 4.93 (93%) 4.966 (96.6%) 4.982 (98.2%) 4.996 (99.6%)
BEMA (6, 3) 4.734 (83.6%) 4.978 (97.2%) 5.018 (98.2%) 5.056 (94.4%) 5.082 (92%) 5.188 (83%)

NOTES: The spiked eigenvalues are all equal to λ, and the eigenvectors are randomly generated from the Stiefel manifold. BEMA0 and BEMA are implemented with β ∈
{0.01, 0.05, 0.1, 0.2, 0.3, 0.5}. The number in each cell is the average K̂ , and the number in brackets is the probability of correctly estimating K (correct rate).

Simulation 6. In this simulation, we tested the dependency of
our methods upon the choice of β . Fix (n, p, K) = (500, 100, 5).
We generate data Xi

iid∼ N(0, !), 1 ≤ i ≤ n, where ! satisfies
Model (7) with σ 2 = 1 and µk = λ, for 1 ≤ k ≤ K.
The eigenvector matrix # is drawn uniformly from the Stiefel
manifold. The results are shown in Table 5.

Note that β has an explicit meaning: It is the (asymptotic)
upper bound for the probability of over-estimating K. If the
spike eigenvalues are all sufficiently large, we can safely choose a
very small β (e.g., β = 0.01). However, if the spike eigenvalues
are only moderately large, we need to choose an appropriate β to
tradeoff the probability of over-estimation and the probability of
under-estimation. As seen in Table 5, β ∈ [0.05, 0.3] empirically
gives nice and stable results.

6. Real Applications

We apply BEMA to two real datasets. We compare our method
with EKC (Braeken and Van Assen 2017), Bai&Ng (Bai and
Ng 2002), DDPA and its variants (Dobriban and Owen 2019),
and Pass&Yao (Passemier and Yao 2014). DDPA has three ver-
sions: DPA is a deterministic implementation of parallel anal-
ysis (Horn 1965); DDPA is an improvement of DPA aiming to
resolve the issue of “eigenvalue shadowing,” that is, an extremely
large spiked eigenvalue shadows the other spiked eigenvalues
and causes an under-estimation of K; DDPA+ is a robust version
of DDPA recommended for real data analysis. We include all
three versions in comparison.

6.1. The Lung Cancer Data

The Lung Cancer dataset was collected and cleaned by Gordon
et al. (2002). The original dataset contains the expression data
of 12,533 genes and 181 subjects. The subjects divide into two
groups, the diseased group and the normal group. Jin and Wang
(2016) processed this dataset by removing genes that are not
differentially expressed across subject groups and resulted in
a new data matrix with (p, n) = (251, 181). The selection of
these 251 “influential genes” used no information of true groups,
including the number of groups. We use this processed data
matrix, because the original data matrix contains too many fea-
tures (genes) that are irrelevant to the clustering structure, where
no method gives meaningful results. It was argued in Jin and
Wang (2016) that this data matrix follows a clustering model. As
a result, the covariance matrix has (K0 − 1) spiked eigenvalues,
where K0 is the number of clusters. Here, the ground-truth is
K0 = 2, that is, the true number of spiked eigenvalues is K = 1.

We apply BEMA with (α, β , M) = (0.2, 0.1, 500), that is,
60%(= 1 − 2α) of the bulk eigenvalues in the middle range

are used to estimate model parameters, the probability of over-
estimating K is controlled by 0.1, and 500 Monte Carlo samples
are used to determine the ultimate threshold for eigenvalues.
The BEMA algorithm outputs (θ̂ , σ̂ 2) = (0.288, 0.926). In
Figure 6(a), we check the goodness of fit. If the proposed spiked
covariance model (7) is suited for the data, then we expect to see
λ̂k ≈ σ̂ 2 · F̄−1

γn (k/p̃; 1, θ̂), except for a few small k. The left panel
of Figure 6(a) plots λ̂k vs. F̄−1

γn (k/p̃; 1, θ̂), suggesting a good fit
to a line crossing the origin. The right panel contains the scree
plot, that is, λ̂k vs. k. We also plot the curve of F̄−1

γn (k/p̃; σ̂ 2, θ̂)

vs. k. This curve is a good fit to the scree plot in the middle
range. These plots suggest that Model (7) is well-suited for this
dataset.

The estimator of K by BEMA is K̂ = 1, which is exactly the
same as the ground truth. This is the output of the algorithm
by setting β = 0.1. Using the argument in Section 3.3, this
is also a confidence lower bound for K. By setting β = 0.9
in the algorithm, we get a confidence upper bound which is 4.
This gives an 80% confidence interval for K as [1, 4]. Figure 6(b)
contains the scatterplots of the left singular vectors of X, colored
by the true group label. The first singular vector clearly con-
tains information for separating two groups, but other singular
vectors also contain some information. This explains why the
confidence upper bound is larger than 1.

The comparison with other methods is summarized in
Table 6. The behavior of EKC is consistent with our observation
in simulations. In this dataset, the eigenvalues of the residual
covariance matrix vary widely (this can be seen from the esti-
mated θ by BEMA, θ̂ = 0.288, which is far from ∞), and
EKC gives too small threshold to non-leading eigenvalues. The
behavior of Bai&Ng is different from what we observe in simula-
tions. Note that we have to use the effective p after the data pro-
cessing by Jin and Wang (2016), where the dimension reduces
from 12,533 to 251. As a result, the penalty in Bai&Ng is weaker
than that in simulations, and so the method significantly over-
estimates K. Pass&Yao also over-estimates K. Among DDPA
and its variants, DPA performs the best. A possible reason is that
DPA does not use empirical eigenvectors and is more stable than
DDPA and DDPA+.

Different from all other methods, BEMA not only outputs an
estimator of K but also yields a fitted model, Gamma(θ̂ , θ̂/σ̂ 2)
= Gamma(0.288, 0.311), for eigenvalues of the residual covari-
ance matrix. This can be useful for many other statistical infer-
ence tasks.

6.2. The 1000 Genomes Data

The 1000 Genomes Phase 3 whole genome sequencing dataset
(1000 Genomes Project Consortium 2015) consists of the
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Figure 6. Results for the Lung Cancer data. (a) The goodness of fit of BEMA on the Lung Cancer data. The left panel plots λ̂k vs. F̄−1
γn (k/p̃; σ̂ 2, θ̂) (which is quantile of the

theoretical limit of ESD with estimated θ ), where the first 4 eigenvalues are removed for better visualization. It fits well a line crossing the origin. The right panel plots λ̂k
vs. k, where the red solid curve is F̄−1

γn (k/p̃; σ̂ 2, θ̂) vs. k. The curve fits the bulk eigenvalues (blue dots). These two plots together suggest that the spiked covariance model
(7) is suitable for this dataset. (b) The plots of singular vectors of X.

Table 6. Comparison of different estimators of K using two real datasets: the lung cancer gene expression data and the 1000 Genome data of genome-wide common
genetic variants.

BEMA BEMA0 EKC Bai&Ng Pass&Yao DDPA DPA DDPA+ Truth

Lung cancer data 1 27 56 180 8 180 1 11 1
1000 Genomes data 28 67 2503 4 28 85 20 4 25

NOTE: For BEMA and BEMA0, the choices of tuning parameters are described in the text. In the appendix, we report the results with various choices of tuning parameters,
which are very stable.

genotypes of 2504 subjects for over 84.4 million variants. We
restrict the analysis to common variants with minor allele fre-
quencies greater than 0.01. There are 26 self-reported ethnicity
groups, coming from five super-populations: African (AFR), Ad
Mixed American (AMR), East Asian (EAS), European (EUS),
and South Asian (SAS).

In view of high linkage disequilibrium (LD) among some
variants, which can distort the eigenvector and eigenvalue struc-
ture (Patterson, Price, and Reich 2006), we first performed LD
pruning. We used an independent pair-wise LD pruning, with
window size 1000, step size 50 and a threshold 0.02 for R-
squared. Restricting to LD pruned markers, we obtain a data
matrix with p = 24, 248 and n = 2504. The number of
spiked eigenvalues equals to the number of true ancestry groups
minus one (Patterson, Price, and Reich 2006). We treat the
self-reported ethnicity groups as the ground truth, which gives
K = 25.

We apply BEMA with (α, β , M) = (0.1, 0.1, 500). First,
we check the goodness of fit. BEMA outputs (θ̂ , σ̂ 2) =

(4.256, 0.377). Figure 7(a) shows the Q–Q plot and the scree
plot, with reference curves from the BEMA fitting. The meaning
of these plots is the same as described in Section 6.1 and is also
explained in the caption of this figure, which we do not repeat
here. The conclusion is that our proposed spiked covariance
model (7) is an excellent fit to this dataset.

The estimated model for eigenvalues of the residual covari-
ance matrix is Gamma(θ̂ , θ̂/σ̂ 2) = Gamma(4.256, 11.3). We
note that the variance of the genotype on each SNP is 2q(1 −
q), where q is the null minor Allele frequency (MAF) of this
SNP. We thus interpret the BEMA fitting as follows: After the
ancestry effect is removed, the null MAFs qj (on LD pruned
SNPs) satisfy that 2qj(1−qj)

iid∼ Gamma(4.256, 11.3). The mean
and standard deviation of this gamma distribution is 0.377 and
0.18, respectively.

Next, we look at the estimation of K. The BEMA algorithm
outputs K̂ = 28, which is very close to the ground truth K = 25.
The 98% confidence interval of K is [27, 31].
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Figure 7. Results for analysis of the 1000 Genomes data. (a) The goodness of fit of BEMA on the 1000 Genomes data. The left panel is the plot of λ̂k vs. F̄−1
γn (k/p̃; 1, θ̂)

(which is quantile of the theoretical limit of ESD with estimated θ ) for αn ≤ k ≤ (1 − α)n. It fits well a line crossing the origin. The right panel plots λ̂k vs. k, where the red
solid curve is the curve of F̄−1

γn (k/p̃; 1, θ̂) vs. k; for better visualization, this curve is only plotted for 11 ≤ k ≤ 2504. It fits well the bulk eigenvalues (blue dots). These two
plots suggest that the spiked covariance model (7) is suitable for this dataset. (b) The plots of singular vectors of X.

A comparison with other methods is summarized in Table 6.
EKC and DDPA significantly over-estimate K, and Bai&Ng
and DDPA+ significantly under-estimate K. DPA gives K̂ =
20, which is relatively close to the ground truth. BEMA and
Pass&Yao both give K̂ = 28, which is closest to the ground
truth. Pass&Yao assumes that all σ 2

j are equal. In this dataset,
BEMA estimates the standard deviation of σ 2

j to be 0.18, which
is relatively small. This explains why Pass&Yao also performs
well.

Last, we validate the results by investigating the singular
vectors of X. We first measure the association between each
singular vector and the true ethnicity labels by the Rayleigh
quotient (Horn and Johnson 2012). Let η̂k ∈ Rn be the kth left
singular vector of the centralized data matrix. We treat its entries
as n data points and compute the ratio of between-cluster-
variance and within-cluster-variance, denoted as RQk. A larger
RQk indicates that η̂k is more correlated with the true ethnicity
labels. Figure 8(a) plots RQk vs. k. The first a few singular vec-
tors have very high association with the ethnicity labels. These
singular vectors capture the super population structure. The
pairwise scatterplots of the first 4 singular vectors are contained
in Figure 7(b), which show clearly that super populations are
well separated on these singular vectors. Besides, the first few
singular vectors, the remaining singular vectors capture more
of the sub-structure within each super population. Figure 8(b)

is the parallel coordinate plot. In Figure 8(c), we regenerate
parallel coordinate plots by restricting to each super population.
Within the super population AMR, there is still separation of
ethnicity groups for k as large as 27. This explains why BEMA
outputs a K̂ that is slightly larger than the ground truth.

7. Discussion

We propose a new method for estimating the number of spiked
eigenvalues in a large covariance matrix. The novelty of our
method lies in a systematic approach to incorporating bulk
eigenvalues in the estimation of K. Under a working model
which assumes the diagonal entries of the residual covariance
matrix are iid drawn from a Gamma distribution, we fit a para-
metric curve on bulk eigenvalues. The estimated parameters of
this curve are then used to decide a threshold for top eigenvalues
and produce an estimator of K. We study the theoretical prop-
erties of our method under a standard spiked covariance model,
and show that our estimator requires weaker conditions for con-
sistent estimation of K compared with the existing methods. We
examine the performance of our method using both simulated
data and two real datasets. Our empirical results show that the
proposed method outperforms other competitors in a variety of
scenarios.
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Figure 8. Interpretation of results for the 1000 Genomes data. (a) The association between singular vectors of X and the true ethnicity labels. (b) The parallel coordinate
plot of singular vectors, color-coded by five super-populations. (c) The parallel coordinate plots of singular vectors for each super-population, color-coded by the ethnicity
groups within each super-population. The five super-populations are EAS (top left), EUR (top right), AFR (middle left), AMR (middle right), and SAS (bottom left). The
sub-population labels used in the legends of can be found in 1000 Genomes Project Consortium (2015).

Our approach is conceptually connected to the empirical null
(Efron 2004) in multiple testing. The empirical null imposes
a working model (e.g., a normal distribution) on Z-scores of
individual null hypotheses and estimates the parameters of this
distribution from a large number of Z-scores. The fitted null
model is then used to correct p-values and help identify the

non-null hypotheses. Similarly, we impose a working model (i.e.,
a Gamma distribution) on non-spiked population eigenvalues
and estimate the parameters of this distribution from a large
number of bulk empirical eigenvalues. The fitted null model
is then used to assist estimation of K. From this perspective,
our method can be regarded as a conceptual application of the
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empirical null approach to eigenvalues. Meanwhile, our setting
is much more complicated than that in multiple testing. The
bulk eigenvalues are highly correlated, and their marginal dis-
tribution has no explicit form. These impose great challenges
on algorithm design and theoretical analysis.

For the theoretical study, we first analyze the special case of
θ = ∞. This corresponds to the well-known standard spiked
covariance model (Johnstone 2001), which has attracted many
theoretical interests. Our theory contributes to this literature
with an explicit error bound on estimating σ 2 and consistency
theory on estimating K. The theoretical study for a general θ that
corresponds to the setting of heterogeneous residual variances
is of great interest but is technically challenging. Instead, we
study a proxy model where the population eigenvalues are iid
drawn from a truncated Gamma distribution. Under this model
we derive error bounds for (σ̂ 2, θ̂) and prove the consistency
of K̂ with mild conditions. The analysis uses advanced results
in random matrix theory (Bloemendal et al. 2016; Knowles and
Yin 2017; Ding 2020).

The method can be extended in multiple directions. Here,
we assume that the diagonal entries of the residual covariance
matrix are from a Gamma distribution. It can be generalized to
other parametric distributions. In Section 4.2, we have already
seen a variant of our method by using a truncated Gamma distri-
bution, which assumption helps eliminate extremely large vari-
ances for the residuals. We can also use a mixture of Gamma dis-
tributions to accommodate heterogeneous feature groups. Our
main algorithm can be easily adapted to such cases. When the
distribution family is unknown, we may combine our method
with the techniques in nonparametric density estimation. The
thresholding scheme in our method can also be modified. We
currently apply a single threshold to all eigenvalues. Alterna-
tively, we may use different thresholds for different eigenvalues.
One proposal is to use the (1 − β)-quantile of the distribution
of λ̂∗

k in the null model (12) as a threshold for λ̂k. We leave these
extensions to future work.

In the numerical experiments, our method exhibits robust-
ness to model misspecification. It is suggested by Simulation 4 of
Section 5 that our method continues to work when the residual
covariance matrix is a Toeplitz matrix, or a block-wise diagonal
matrix, or a sparse matrix. A theoretical understanding to this
phenomenon will be useful. As stated in Section 5, we have
observed empirically that there always exist (σ 2, θ) such that the
theoretical limit of ESD induced by the Gamma model (2) can
reasonably approximate the theoretical limit of ESD induced by
a Toeplitz or block-wise diagonal or sparse covariance matrix. It
remains an interesting question on how to justify it theoretically.
We leave it to future work.
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