
Monte Carlo Tree Search for Generating Interactive Data Analysis Interfaces

Yiru Chen, Eugene Wu
Columbia University

yiru.chen@columbia.edu, ewu@cs.columbia.edu

Abstract
Interactive tools like user interfaces help democratize data ac-
cess for end-users by hiding underlying programming details
and exposing the necessary widget interface to users. Since
customized interfaces are costly to build, automated inter-
face generation is desirable. SQL is the dominant way to ana-
lyze data and there already exists logs to analyze data. Previ-
ous work proposed a syntactic approach to analyze structural
changes in SQL query logs and automatically generates a set
of widgets to express the changes. However, they do not con-
sider layout usability and the sequential order of queries in the
log. We propose to adopt Monte Carlo Tree Search(MCTS) to
search for the optimal interface that accounts for hierarchical
layout as well as the usability in terms of how easy to express
the query log.

Introduction
SQL is the dominant language for accessing and analyzing
large datasets today. Its expressive power is useful to iden-
tify the appropriate queries during ad-hoc analysis (e.g., in
a Jupyter notebook). However, it is cumbersome to repeat-
edly use for the same set of analysis tasks, and inaccessible
to many end-users. In contrast, customized interactive inter-
faces help users quickly accomplish their data analysis tasks
by hiding underlying programming complexity and expos-
ing a simple set of visual widgets designed for the tasks.
Unfortunately, turning those analysis queries into a reusable
interactive interface requires considerable design and pro-
gramming expertise.

Prior work (?) proposed an automatic interface generation
method. Given a set of analysis queries, it identifies changes
between the abstract syntax trees (AST) of the queries (??),
and chooses a set of customized interactive widgets (e.g.,
slider, tabs, buttons) from a predefined library that can ex-
press those changes. For instance, if the queries differ by a
numeric value (e.g., a=1, a=2), then it maps the changes
(e.g., 1 → 2) to a widget template (e.g., a slider) that can
express the different values. It uses a bottom-up approach
that enumerates subtree differences between every pair of
ASTs, and maps differences at the same path in the AST to
a widget.

Although this work has shown promise, it still suffers
from a number of limitations. First, it groups subtrees at

the same location in the ASTs and matches them to a wid-
get without consideration of the other widgets nor whether
the subtrees should be grouped together. Second, it re-
turns a set of widgets that does not account for the in-
terface layout nor constraints such as the screen size. No-
tably, it does not leverage the body of HCI research that
has studied and quantified interface layout and usability (?;
?). Third, it ignores the effort needed to use the interface to
express the sequence of input queries.

To this end, we describe our preliminary work on a top-
down search-based approach towards interface generation
that explicitly addresses the above limitations. We propose a
difftree representation of the input query ASTs whose
structure also encodes the interface layout—this represents
a state in the search space—and define transition rules that
incrementally transform the difftree. The search space
is extremely large, thus we use Monte Carlo Tree Search
(MCTS) to efficiently identify the lowest cost interface. The
rest of this paper describes the problem and our current
approach, preliminary results, and ongoing research direc-
tions.

Problem Overview
Our goal is to take as input a sequence of SQL queries that
are part of an analysis task (e.g., from a query log, or pro-
vided by a developer during or after an analysis session), and
output an interactive data analysis interface that can express
the input queries (and likely similar queries not explicitly in
the log). Our assumption is that the structural differences be-
tween the queries are representative of the types of changes
the user wishes to express interactively.

Our approach is to 1) extract syntactic differences be-
tween queries, 2) choose interactive widgets that can express
those differences as transformations, and 3) design and lay-
out an interative interface. In this work, we leverage existing
automatic visualization techniques that recommend visual-
izations based on a dataset (?; ?), and thus we focus on the
joint problem of determining a good layout, and selecting
and configuring the appropriate widgets for the layout.
Queries: Similar to (?), we model each query as its abstract
syntax tree (AST). ?? without the ANY node illustrates the
simplified ASTs of three queries. Each node (e.g., Select,



Select

Project From Where

Table
sales

ColExpr
cty

BiExpr
op:=

StrExpr
USA

ColExpr
sales

ANY

Select

Project From Where

Table
sales

ColExpr
cty

BiExpr
op:=

StrExpr
EUR

ColExpr
costs

Select

From

Table
sales

Project

ColExpr
costs

q1 q2 q3
SELECT Sales FROM sales 

WHERE cty = USA
SELECT Costs FROM sales 

WHERE cty = EUR
SELECT Costs FROM sales

Figure 1: Example ASTs for 3 SQL queries.

(b)

Sales

US

(c)

US

Sales Costs

(a)

q1

q2

q3

Figure 2: Examples of three interfaces that express the queries in
??. Blue boxes depict bounding boxes in the layout hierarchy.

BiExpr) corresponds to a rule in the query grammar. q1
and q2 differ at two nodes: ColExpr changed from sales
to costs, while StrExpr changed from USA to EUR. q3
differs from q2 by dropping the WHERE clause completely.
Interfaces: An interface is a set of visualizations, a set of in-
teractive widgets, and a hierarchical layout of the visualiza-
tions and widgets. For ease of discussion, we will describe
the case where there is a single visualization. A visualization
renders the output of the current query q, and each widget
changes q based on the user’s interactions (e.g., changing a
slider, typing in a text box). When the current query changes,
it is re-executed and the results update the visualization.
Layouts: ?? shows three possible interfaces that can express
the queries in ??. The blue boxes represent the bounding
boxes in the layout hierarchy; for simplicity, we only depict
layouts with widgets to the left of the visualization. For ex-
ample, ??(a) vertically organizes three buttons, where click-
ing on a button loads the corresponding query. (b) uses two
dropdowns to change the column and string expressions, re-
spectively, and uses a toggle widget to specify whether the
WHERE clause should be in the query. The toggle and drop-
down for the string expression are organized together be-
cause they relate to the same parts of the AST. (c) uses the
same layout as (b), but uses the available width to list both
column expressions (Sales, Costs) as buttons organized
horizontally.

We represent these layouts using a hierarchical data struc-
ture called a Widget Tree, where each node corresponds to a
layout or interaction widget (??). Layout widgets such as
vertical and horizontal specify how to organize their chil-
dren1, while interaction widgets2 such as Button and Drop-
down are configured with subtrees (e.g., q1) or values (e.g.,
‘Sales’, ‘Costs’).

1Our layout widgets include: horizontal layout, vertical layout,
tabs, and an adder that adds a copy of its child widget to the inter-
face (e.g., to add multiple predicates).

2Our interaction widgets include: label, textbox, dropdown,
slider, range slider, check boxes, radio buttons, and buttons.

Vertical

Button
q1

Button
q2

Button
q3

(a)

Vertical

Dropdown Horizontal
sales
costs Toggle

USA
EUR

Dropdown

(b)

Vertical

Horizontal

Toggle
USA
EUR

Dropdown

Horizontal

Button
costs
Button

sales

(c)

Figure 3: Widget Trees for the interfaces in ??.

Widgets: We model a widget as a function w(q, u) → q′,
where a user interaction picks u from a domain of possi-
ble values, which is then used to change the current query
q to a new query q′. To do so, the widget replaces the sub-
tree at a fixed path in q’s AST with a new subtree derived
from u. For example, let q = q1 be the current query in
??(a); clicking on the q2 button replaces the root of q with
q2’s AST. In contrast, when the user selects “Costs” from the
top drop-down in ??(b), the ColExpr node in the AST will
be replaced with a ColExpr node whose value is “Costs”.
Similarly, clicking the toggle widget will swap between the
current subtree rooted at the WHERE node and an empty sub-
tree that corresponds to the absence of a WHERE clause in the
query (q3). Each widget has a fixed size only depending on
the domain. For example, the button widget in ??(c) is used
to choose from the domain – ’Sales’ and ’Costs’. If the do-
main is larger, then there are more buttons; if it contains a
longer word, the buttons will be wider. To support widgets
that vary in size, we discretize the sizes and define a separate
widget for each size. For example, for the button widget, we
predefine small, medium and large button templates sepa-
rately.

In short, each widget offers the user a choice from a do-
main of subtrees, and then places the chosen subtree at a
widget-specific fixed location in the current AST. The three
layouts primarily differ in the paths and granularities of the
subtrees that the widgets replace: layout (a) replaces the
root of the current AST, whereas layouts (b) and (c) replace
leaves and interior nodes of the AST.

The Interface Generation Problem
Our problem is to identify changes within the input query
sequence, and map them to an appropriate widget tree that
can be rendered as an interactive interface. The challenge is
that the layout and the selected widgets are intertwined with
the process of identifying subtree differences between the
input query ASTs.

To facilitate this process, we encode the layout and in-
put queries in a difftree. Each node in the difftree
corresponds to a (possibly empty) sequence of AST nodes.
There are four node types that encode differences and simi-
larities between the input queries. ANY can choose one of its
child nodes, OPT has a single child that is optional, MULTI
has a single child that can be chosen zero or more times, and
ALL requires all of its children to exist. We call ANY, OPT,
MULTI choice nodes. Note that an AST is a special case of
a difftree, where each AST node is an ALL node.

A given query is expressed as the set of choices made
for the choice nodes in the difftree. For example, ??
is a difftree with the root ANY—choosing any of its
children is equivalent to one of the input queries. ?? illus-



ALL(Select)

ANY(Project) From/Table OPT(Where/BiExpr)
op:=

ColExpr ColExpr

alias:x sales

sales costs
ColExpr
cty

StrExpr
USA

Select

Project From Where

Table
sales

ColExpr
cty

BiExpr
op:=

StrExpr
USA

ColExpr
sales

ANY

Select

Project From Where

Table
sales

ColExpr
cty

BiExpr
op:=

StrExpr
EUR

ColExpr
costs

Select

From

Table
sales

Project

ColExpr
costs

ANY

StrExpr
EUR

q1 q2 q3
SELECT Sales FROM sales 

WHERE cty = USA
SELECT Costs FROM sales 

WHERE cty = EUR
SELECT Costs FROM sales

for Figure 2(a) (b) difftree for Figure2(b,c)

subtree

Figure 4: difftree for layouts ??(b,c).

trates the difftree for layouts ??(b,c). ALL(Select)
states that all queries share the SELECT node as well as the
From/Table nodes. However, the Project clause can be
chosen from Sales and Costs, and the where clause is
optional. Note that ?? can express more queries than the ini-
tial difftree in ??.
Creating Widget Trees: Given a difftree, it is straight-
forward to derive a widget tree that can be rendered. Each
choice node is mapped to one or more interactive widgets,
and ALL nodes are mapped to layout widgets if it contains
descendant choice nodes.
Cost Function: We quantify the cost of an interface based
on the usefulness and appropriateness of the widget tree
W (?). Each query q ∈ Q is expressible by selecting the ap-
propriate values for each widget in W . Thus, U(qi, qi+1,W )
models the minimum set of widgets that need to be changed
in order to transform qi into qi+1. M(·) measures whether
a selected widget is well-suited for the set of subtrees it ex-
presses. For instance, a slider is well suited to select from a
range of numeric values, but not arbitrary subtrees, whereas
radio buttons are well suited for a small number of subtrees,
but ill-suited for a large number.

C(W,Q) =
∑︂
qi∈Q

U(qi, qi+1,W ) +
∑︂
w∈W

M(w)

For reference, (?) only considered appropriateness when se-
lecting widgets, and we borrow their M(·) cost functions.
U(·) accounts for the size of the minimum spanning tree that
connects the widgets that need to be changed, along with the
cost to interact with each of those widgets. The cost func-
tion is a linear combination of terms that can be incremen-
tally maintained as we explore the space of difftrees and
widget trees. We consider a widget tree invalid (has infinite
cost) if its size exceeds the output screen’s size.

Our Approach
We now describe interface generation as a search problem,
and our use of Monte Carlo Tree Search (MCTS) (?) to effi-
ciently search the space for a good interface.

Search Space
Each state in the search space is a difftree, and the initial
state is the list of input queries connected with an ANY node
as the root. We define a set of transition rules that transform
one difftree into another (??). The intuition is that the
initial difftree represents a subset of the combinatorial
enumeration of all expressible trees, and each rule factors
out redundant substructures and variation between the trees.
In the diagram, x,y,z represent subtrees that are distin-
guished by their root nodes—the roots of x and x’ are the
same, and different than the root of y.

ANY

ALLALL

x x x x

ALL

x x

MULTI

x

Multi

Merge

ANY

zz

x x yy

ANY(z)

ALLALL

x x yy

Lift

x

y

z

x/y

z

Noop

x

ANY

y

x

y

ANY

Ø z

Optional

Opt

z

Any2All

ANY

ALLALL

x x’y’y z

ALL

ANYANY

x y y’x’

ANY

Ø z

Figure 5: Set of transformation rules.

For instance, Any2All finds that ANY node’s children all
have children than can be aligned (x→x’, y→y’, z→ ∅),
and groups the aligned nodes together3. With the excep-
tion of Multi, which replaces subtrees that repeat x with
a MULTI node with a single x child, all rules are bidirec-
tional.

Rules can be applied to choice nodes in the difftree
that satisfy the rule’s input pattern. The number of applica-
ble rules for the current difftree determines the current
search state’s fanout. This primarily depends on the num-
ber of choice nodes and number of applicable rules for each
choice node.

For example, Listing 1 show 10 input queries. The fanout
is as high as 50, and a search path can be as long as 100
steps. It is impractical to enumerate the full search space to
find the lowest cost difftree, and thus we propose the
MCTS method described next.

Monte Carlo Tree Search
Monte Carlo Tree Search is used to balance exploration (try-
ing unexplored states) with exploitation (exploring promis-
ing states) when searching in a large search space (?). In
each iteration, it performs a randomized walk of the states,
and estimates the reward of the final state. It then maintains
a UCT score for each visited state s:

UCT s =
ws

i

ns
i

+ c

√︄
lnNs

i

ns
i

Where ws
i is the total reward for the state after the ith it-

eration. The reward at the end of the random walk is added
to every state along the path. ns

i is the number of times the
state was visited, Ns

i is the number of times s’s parent state
was visited, and c is a tunable exploration parameter.

In each iteration, we pick the state with the highest UCT,
and perform a random walk of up to 200 steps from all of
its immediate neighbor states. For the first iteration, we start
with the initial state (e.g., Figure 1). To compute reward,
we map the state (a difftree) to the lowest cost widget
tree. During the search, we randomly assign widgets to the
difftree k times and select the lowest cost. The reward is the
negated cost. Once the search terminates after a fixed wall
clock time, we enumerate all possible widget trees for the
final difftree to find the lowest cost interface.

3∅ represents no node.



(a) All queries, wide screen (b) All queries, 

narrow screen

(c) Queries 6-8 (e) Original SDSS interface(d) Interface w/ 

low reward

Figure 6: (a-d) Generated interfaces from queries in ??. (e) the pre-existing Sloan Digital Sky Survey search form. Screenshots only show
widgets and do not include the visualizations.

Preliminary Results
We now present preliminary results when running our ap-
proach on the query log in ??, which is derived from the
Sloan Digital Sky Survey (?) query log. We run MCTS for
around 1 minute to generate each interface. ?? shows that
the layout and widget selections are sensitive to the input
queries and screen constraints. (a) uses all queries in ?? as
input, and generates a layout for a wider screen. It finds
that the queries vary in the attributes that are selected (ob-
jid, count), as well as the number of results to return (top),
and takes advantage of the wider screen to enumerate them
as two sets of radio buttons. In contrast, (b) chooses drop-
down widgets due to the narrower screen.

??(c) shows the interface is much simpler when queries
6–8 are use as input. These queries have the same WHERE
clauses; since the three queries all have a TOP clause, the
user is only asked to pick the number of rows to return (10,
100, 1000). (d) shows a low-reward interface, and illustrates
that that poor interface choices are easily possible. Finally,
(e) shows the original SDSS form.

1 select top 10 objid from stars

where u between 0 and 30 and g between 0 and 30 and

r between 0 and 30 and i between 0 and 30

2 select top 100 objid from galaxies

where u between 1 and 29 and g between 10 and 30 and

r between 9 and 30 and i between 3 and 28

3 select top 1000 objid from quasars where ...

4 select count(*) from stars where ...

5 select objid from galaxies where ...

6 select top 10 objid from quasars where ...

7 select top 100 objid from stars where ...

8 select top 1000 objid from galaxies where ...

9 select count(*) from quasars where ...

10 select objid from stars where ...

Listing 1: Example queries used in experiments. All queries have
the same WHERE clause structure; for space considerations, we
only show the full queries for the first two.

Ongoing Work
Although we have shown that the top-down approach can
generate layout-sensitive interactive interfaces, there are a
number of improvements needed for it to be practically use-
ful in terms of functionality and performance.

A current limitation is that some combinations of widget
choices may not make semantic sense; one approach is to
integrate with a query engine to benefit from its query analy-
sis phase, another is to leverage co-occurrence of subtrees in
the query log to identify likely and unlikely combinations of
widget choices. This can also inform the search phase. Fur-
ther, we are extending the widgets to support parameterized
sizes—for instance, a button or dropdown can be resized de-
pending on the available screen space.

This work has not been optimized for performance—
many of the algorithms perform exhaustive enumeration,
and can benefit from optimizations such as parallelization,
incremental computation of the difftree and cost func-
tions, and search pruning. A key optimization opportunity is
to accelerate the transformation rules, which become slow
to evaluate as the difftree becomes large. Our goal is
interactive run-times.
Acknowledgements: This work was supported by NSF
IIS 1527765, 1564049, 1845638, and Amazon and Google
awards.


