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Abstract—Progressive visualization is fast becoming a technique in the visualization community to help users interact with large amounts
of data. With progressive visualization, users can examine intermediate results of complex or long running computations, without waiting
for the computation to complete. While this has shown to be beneficial to users, recent research has identified potential risks. For
example, users may misjudge the uncertainty in the intermediate results and draw incorrect conclusions or see patterns that are not
present in the final results. In this paper, we conduct a comprehensive set of studies to quantify the advantages and limitations of
progressive visualization. Based on a recent report by Micallef et al., we examine four types of cognitive biases that can occur with
progressive visualization: uncertainty bias, illusion bias, control bias, and anchoring bias. The results of the studies suggest a cautious
but promising use of progressive visualization — while there can be significant savings in task completion time, accuracy can be negatively
affected in certain conditions. These findings confirm earlier reports of the benefits and drawbacks of progressive visualization and that
continued research into mitigating the effects of cognitive biases is necessary.

Index Terms—Progressive visualization, Cognitive bias

1 INTRODUCTION

Progressive visualization is fast becoming a technique in the
visualization community to help users interact with large amounts
of data. Without the use of progressive techniques, queries or
analyses over a large amount of data could take seconds, minutes,
or even hours to complete. The wait time caused by the computation
is not just a nuisance to the user [1]], but has also been found to
affect the user’s analysis processes [2].

Research has shown that these long wait times are often
unnecessary. For example, Fisher et al. report that while using
non-progressive visual querying systems, users only realize their
query mistakes after waiting for minutes or hours for the completed
results [3]. These wait times can be avoided in progressive
visualization systems as the user has the ability to catch any mistake
within seconds of executing the query and correct accordingly.

Beyond time-saving, researchers have also identified a variety of
other benefits of progressive visualization. A recent comprehensive
report by Angelini et al. [4] categorizes and characterizes these
progressive visualization systems. The result of this report suggests
that, in addition to time saving, current progressive visualiza-
tions can also be used to help users gain understanding into
the computation process [5]], perform real time steering of the
computation [6]], [7], [8], [9] or query processing [[10], [L1], [[12],
and gain trust in the analysis results [§]].

It is clear that progressive visualization offers a range of
potential benefits. However, recent research has noted cases in
which the use of progressive visualization can also lead to confusion
and errors. For example, Moritz et al. [|11]] found that while early
termination of an ongoing progressive query can save time, it can
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also mislead the user into believing false patterns observed early in
the analysis that would not occur had the full dataset been analyzed.
Similarly, Turkay at al. 6] found that users would make decisions
based on patterns seen in early progressive visuals and thereby
draw false conclusions about the data.

1.1 Cognitive Biases in Progressive Visualization

In a recent paper by Micallef et al. [|13|] the authors summarize
that the benefits of progressive visualization — that is, incremental
update of the visualization based on partial information — may also
be the root of its usability problems. They outline four types of
pitfalls that can occur during the use of progressive visualization
systems and relate them to known cognitive biases. These pitfalls
range from biases that stem from the perception of uncertainty
(Uncertainty Bias) and incomplete information (Illusion Bias) in
the data, to biases that arise from giving the user steering control
to the progression (Control Bias) that could lead to the user’s
over-reliance of their prior beliefs (Anchoring Bias):

Uncertainty Bias: “Misjudging the uncertainty of intermediate
results” (associated known cognitive biases: ambiguity bias, and
neglect of probability bias): As observed by Fisher et al. [10], the
first challenge of using progressive visualization lies in the user’s
ability to interpret the dynamic uncertainty information presented in
the visualization. For example, in a comparison task to determine
which of two gradient bars is taller, would the participants be
able to determine and reason about their decisions? When using a
progressive visualization, this challenge is made even more difficult
because the participants have to make these decisions with dynamic
visualizations, which results in an extra dimension of uncertainty
that the users need to reconcile. The unanswered research question
around this pitfall is therefore: how much does the amount of
(dynamic) fluctuations in uncertainty affect the user’s ability to use
a progressive visualization?

Illusion Bias: “Read something into incomplete results that is not
there” (associated known cognitive biases: clustering illusion bias,



illusory correlation bias, illusory truth effect, and attention bias):
Reported by Moritz et al. [11], users of progressive visualization
can sometimes fall prey to “false patterns” during the progression
of the visualization. In progressive query processing, false patterns
can occur due to uneven sampling, particularly when data is stored
in an organized data structure. For example, B+ tree is a common
structure used in databases where data instances on the same node
have similar values. In cases where sampling is unevenly distributed
across nodes, the intermediary computational outcomes would be
skewed, resulting in false patterns that do not represent the rest of
the data. As Moritz et al. observed, when false patterns appear early
in the progressive visualization, users could mistakenly believe they
found the true pattern in the data and terminate the progression
prematurely. The unanswered research question around this pitfall
is therefore: how much do these false patterns affect the use of
progressive visualization, and when does the occurrence of a false
patterns have the highest negative impact?

Control Bias: “Waiting for information irrelevant for the intended
goal” (associated known cognitive biases: information bias and
illusion of control bias): Related to illusion bias, a broader type of
cognitive bias that affects a user in using progressive visualization
stems from letting the user control or steer the progression. While
steerable progressive visualization allows the user to focus on areas
of interests and thereby speed up the progressive computation [[7]],
such flexibility can also lead to the user making false conclusions.
For example, when using a steerable progressive visualization, a
user can steer the progression towards certain bars in a bar chart,
resulting in oversampling of those bars (and conversely, relative
undersampling of the others). The uneven sampling could result in a
user seeing a biased visualization that leads to an incorrect decision.
The unanswered research question around this pitfall is therefore:
at what frequency and extent do users of steerable progressive
visualization make incorrect conclusions due to inappropriate
steering?

Anchoring Bias: “Over reliance on some information, often to
the neglect of other relevant information” [|14]] (associated known
cognitive biases: confirmation bias, belief bias, and exaggerated
expectation bias): Anchoring bias is a more specific form of control
bias. Instead of the user steering the progression for a range of
possible reasons, in anchoring bias a user is misled by the first
piece of information they see (for a more complete explanation of
biases in visualizations, see the work by Dimara et al. [15]]). This
can lead to confirmatory hypothesis testing based on the anchoring
information [[16]. When using an interactive visualization for data
exploration, anchoring bias can cause users to preferentially weigh
some information more than others unconsciously, resulting in poor
analysis outcomes [14]], [[17]]. The unanswered research question
around this pitfall is therefore: do users of progressive visualization
steer towards progressions unconsciously, either to what they want
to see or been influenced to see? If so, how frequently do they
occur and at what cost?

In summary, it appears that there are benefits and pitfalls to
using progressive visualizations. On the positive side, progressive
visualizations can save users a significant amount of time while
also providing transparency and understanding to the underlying
computation. However, the litany of potential biases increases
the likelihood that users could unknowingly perceive the wrong
information and ultimately make the wrong decisions. Given the
pros and cons, how can we tell if progressive visualization is useful

or harmful?

In this paper, we present a series of experiments aimed
at evaluating the benefits and potential harms of progressive
visualizations. Based on the four biases described above, we
designed five studies (one preliminary study and four main studies)
to assess the impact of these biases on the use of progressive
visualization.

The results of our study suggest that the four biases we
studied occur when using a progressive visualization and they
have measurable effects on the participants’ performance. However,
the types of effects and their magnitudes can differ. Surprisingly,
we found participants did not often suffer under uncertainty bias.
The amount of uncertainty in the visualization had the least amount
of impact on participant performance, suggesting that they were
able to develop strategies to interpret uncertain information in
order to make accurate decisions. Additionally, we found illusion
bias affected the participants the most if the false patterns were
introduced around the time of decision making. When making
decisions prior to completion of the progressions, steering the
progression had the potential to generate biased visualizations.
Control bias can cause the participants to incorrectly steer the
progression and take longer to make a decision, but unexpectedly
the steering did not affect their accuracy and instead improved
their confidence in their answers. And lastly, anchoring bias had
similar effects as those exhibiting control bias in that participants
exhibiting this bias took longer to make a decision, but also without
affecting their accuracy.

Despite these pitfalls, across all experiments, we found that par-
ticipants were able to complete tasks quickly and with limited error.
These findings support claims that overall, progressive visualization
can be an effective method for helping users understand their data
and make decisions quickly, provided appropriate measures are
taken to avoid biases.

2 RELATED WORK
2.1 Progressive Visualization

Progressive visualization is closely related to a number of
research areas: approximate query processing in database re-
search (e.g. [18], [19]l, [20], [21])), progressive refinement in com-
puter graphics (e.g. [22], [23]], [24]), usability concerns in HCI
(e.g. [10], [25]), and real time and streaming visualizations
(e.g. [26], [27]). All of this research shares the goal of providing
users with immediate feedback of computation.

However, what sets progressive visualization apart is the
additional goal of helping users make decisions quickly while
simultaneously providing understanding of the ongoing com-
putation process [4]], [28]. For example, Fisher et al. developed
sampleAction [[10f], a progressive visualization based on the on-
line aggregation technique in database query processing [18]. In
sampleAction, a user can terminate a computationally expensive
query quickly as a way of debugging. Stolper et al. extended
the concept and applied it to data analysis in a system called
Progressive Insight System [7]]. In addition to allowing for early
termination of unwanted analysis, their system supports dynamic
steering of a pattern-mining algorithm in real time. Turkay et
al. [[6] and Badam et al. [8]] adopted similar progressive strategies
for high-dimensional data and Twitter data analysis, respectively.

Evaluations of these progressive visualization systems have
been positive. Users of progressive visualization systems tend to
prefer the immediate feedback [8] and have reported savings in



analysis time via early termination of their query or analyses [[10].
Further, when latency is high, the use of progressive visualization
can lead users to discover more insights about the data faster when
conducting an exploratory data analysis task [29]] than inthe use of
a traditional visual analytics system.

However, while it is generally believed that the use of pro-
gressive visualization is beneficial, there have been recent reports
that warrant caution. For example, Moritz et al. [[11]] observed the
challenge of asking analysts to make decisions based on dynamic
and incomplete information. Similarly, Badam et al. 8] found that
users can give partial answers and were often not confident about
their decisions when using progressive visualizations. The source
of low user confidence and increased decision difficulty can be
attributed to the inherent challenge of making sense of uncertainty
in visualization, the data, and the computation. Below, we introduce
these challenges and existing work for addressing them.

2.2 Uncertainty Visualization and Data Sampling

As recommended by Muhlbacher et al. [30], showing intermediate
results from an ongoing computation proess is central to the
design of progressive visualization. For progressive visualizations
that utilize data subsetting [30] as the mechanism for showing
intermediate results, the most common strategy is to perform data
sampling and visualize the corresponding error bounds.

Existing progressive visualization systems have utilized differ-
ent sampling methods. The most common approach is uniform
sampling without replacement due to its simplicity in computing the
error bound [10], [18]]. However, uniform sampling is potentially
very slow to converge, especially in cases where the sampling
query is highly selective [18], [21]]. As a result, other methods
such as (weighted) sampling with replacement [[12], [21]], biased
sampling [[11], [31]], stratified sampling [32], and sampling with
ordering guarantees [33]], [34] have all been adopted by progressive
visualization systems. Cormode et al. provide a more complete
survey of sampling techniques [35]].

Given the differences in these sampling techniques, progressive
visualizations will have different “behaviors” when representing
error bounds, depending on the choice of the sampling technique.
For example, techniques based on sampling without replacement
will be guaranteed to converge because the error bound will eventu-
ally reach zero when all (pertinent) data points have been sampled.
Conversely, while sampling with replacement techniques offer
performance benefits [21]], the error bounds will asymptotically
approach but never reach zero.

In general, error bounds from sampling techniques will tend to
decrease as more samples are drawn. However, in almost all cases,
there is no guarantee that the decrease will be monotonic. Outliers,
rare events, and “bad luck” in sampling can lead to fluctuations in
error as well as in the values of the computed intermediary results.
For example, error bounds based on Hoeffding’s inequality are
computed using the range of the randomly-sampled variable which
also changes in the case of sampling an outlier [|18].

Due to sampling’s central role in progressive visualization, it
is imperative that users are aware of the uncertainty that stems
from the sampling process before they make decisions. However,
uncertainty (information) visualization is still an active field of
research with little consensus on the “best practices.” Notable
exceptions include work by Correll and Gleicher on improving
the visualization of error bars using gradient plots [36], work by
Ferreira et al. that proposes the use of annotations to assist users
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Fig. 1: The gradient chart and bar chart used in our preliminary experiment. (El])
The size of the bar represents the 95% confidence interval of the estimated value,
shown at the midpoint of the bar. The color indicates the relative error of the
estimate. The darker the blue, the more accurate the estimate is. (b) uses typical
error bars to show 95% confidence interval, and the color indicates relative error
of the estimate as with the gradient chart.

in reading visualizations with uncertainty [37]], work by Fernandes
et al. [38]] that shows the benefits of cumulative distribution
function (CDF) plots and low-density quantile dotplots helping
users make real time transit decisions, and a comparative study by
Gschwandtner et al. [39]] on visualizations for temporal uncertainty.
Additionally, Hullman summarizes the various difficulties in
visualizing uncertainty despite its importance [40].

Differences in sampling methods, challenges in visualizing
uncertainty, and the difficulties for users trying to make decisions
given uncertain information can all be confounding factors for
evaluating the benefits of progressive visualizations. In the section
below, we describe a preliminary study for establishing the
appropriate dynamic uncertainty visualization for our experiments.

3 PRELIMINARY STUDY: DYNAMIC UNCERTAINTY
VISUALIZATION TECHNIQUE

Given the potential confounds described in the previous section,
we first conduct a preliminary study to establish the visualization
technique for displaying dynamic uncertainty information that
we will use in our studies. As demonstrated by Correll and
Gleicher [36]], the traditional error bar for encoding uncertainty can
mislead a user from interpreting statistical information correctly. A
more effective alternative is the use of gradient plots (see Figure[Ta).
However, in the experiment by Correll and Gleicher, the comparison
of the two techniques was done using static visualizations. In this
preliminary study, we seek to determine if the finding holds when
the visualizations are dynamic. The outcome of this preliminary
study will determine the visualization technique that will be used
in the remainder of the experiment
Following the work by Correll and Gleicher, in this experiment

we compare the use of gradient plots versus error bars for
visualizing dynamic uncertainty visualization in a progressive
manner. Using a similar experimental design described by Correll
and Gleicher, we recruited 26 participants on Amazon’s Mechanical
Turk. Of them, 19 were between the ages of 25 and 39, 8 were
female, 21 held a Bachelors or High School Diploma, and 10 rated
themselves as intermediate visualization users. Participants were
asked to complete 2 blocks of 3 tasks:
 Block 1:

T1) “How many parts were sold for Part D?”

T2) “How many parts were sold for Part A and B combined?”

T3) “Which part was sold the least?”
» Block 2:

1. The online study can be found at
http://valt.cs.tufts.edu/studies/progvis/gradientBars/


http://valt.cs.tufts.edu/studies/progvis/gradientBars/
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Fig. 2: @) Mean and 95% confidence interval of completion time, (E)l) error rate and (c)) Likert scores for the preliminary study. We found no significant effects of

interface type on time, error rate or any of the Likert questions

T4) “How many flights were flown with engine D?”
TS5) “How many flights between engines A and B combined?”
T6) “Which engine had the least number of flights?”

Each block used either gradient charts (Figure[Ta) or bar charts
(Figure [Tb). Participants were randomly assigned a presentation
order and asked to rate Satisfaction, Ease of Use, Productivity and
Frustration after each block on a 5 point Likert score.

We performed a within-subjects ANOVA to evaluate the error
rates from using the gradient plot and the barchart with error bars.
We found no significant effects of interface type on participants’
error rate: F(1,25) =0.15, p = 0.70 (Figure [2b).

Further, we ran a within-subjects ANOVA of completion
time, and found no significant effect from the two uncertainty
visualization techniques: F(1,25) = 0.74, p = 0.39 (Figure 2a). We
also found no significant differences in Likert responses between
the two using Pairwise Wilcoxon Rank Sum Tests (Figure [2c).

The results did not reveal a difference in performance using
either error bars or gradient plots to visualize dynamic uncertainty.
For the rest of our studies, we follow the convention established by
Correll and Gleicher and use gradient plots.

4 EVALUATING BIAS EFFECTS

We conduct four sets of experiments to evaluate the potential impact
of the biases introduced by Micallef et al. [|13]] (uncertainty bias,
illusion bias, control bias and anchoring bias). For our experiments,
we group biases into two categories based on how the bias is
evaluated: data-oriented and action-oriented.

Data-oriented experiments are experiments in which the
conditions are based on altering the input data. For example, in
evaluating the effects of uncertainty bias we modulate the amount
of uncertainty in the data and measure how the different amounts
of dynamic uncertainty affect the participants’ decision-making
when using a progressive visualization. Similarly, to evaluate the
effects of illusion bias, we introduce “false patterns” in the data
during the progression and record the participants’ judgments.

In contrast, in the action-oriented experiments, we make use of
an interactive, steerable progression visualization and infer whether
the participants are under the influence of a bias by analyzing
their interactions. For example, to measure anchoring bias, we
observe and measure how much and how often a participant exhibits
“anchoring” based on whether (or how often) the participant steers
the progressive visualization towards a pattern in the visualization
or a specific subset of the data. We use a similar method for
evaluating control bias. We observe how often a participant
deviates from the optimal configuration in a steerable progressive
visualization and whether doing so results in a participant making
the wrong decision.

In the following sections, we describe the experimental design
for these two categories of experiments and state our hypotheses
for each experiment.

4.1 Data-Oriented: Uncertainty Bias and lllusion Bias

Uncertainty Bias: Following the observation by Fisher et al. [[10]
(and our preliminary study) that the first challenge of using
progressive visualization lies in the user’s ability to interpret the
dynamic uncertainty information presented in the visualization, our
first experiment examines the impact of uncertainty bias. In this
experiment, we hypothesize that increases in dynamic uncertainty
when using a progressive visualization will negatively affect a
participant’s ability to make decisions. We categorize dynamic
uncertainty in two ways: (1) variance in value (e.g. changes in the
heights of the bars in a barchart), and (2) variance in error-bounds
(e.g. changes in the sizes of the error bars in the barchart). Formally,
we hypothesize that:

(H1) High variances in values and error-bounds in a progressive
visualization will make it more difficult for a participant to
read the visualization and make decisions. This will negatively
affect their accuracy, speed, and confidence in their answers.

To evaluate our hypothesis, we conduct a 4 (levels of variances
in values) x 4 (levels of variances in error-bounds) factorial design
study. We describe the experiment and the results in Section [§]

Illusion Bias: The amount of uncertainty is not the only factor
that can affect a participant’s ability to make decisions in a
progressive visualization. As noted by Moritz et al. [11]], during
the progression if a random visual pattern happens to appear
meaningful, a participant can be mislead into believing that the
“false pattern” represents the real distribution in the data, thereby
drawing the wrong conclusion.

In our second study, we design an experiment to examine
the effects of illusion bias caused by these false patterns. In
this experiment, a false pattern is introduced at five different
predetermined times during the progressive visualization, our
hypothesis, based on the finding by Moritz et al., is that:

(H2) If a false pattern appears early in the progression, a participant
can be affected by illusion bias and will be more likely to make
a decision based on this false pattern. As a result, participants
will have reduced accuracy in their decisions with no effect
on speed or confidence in their answers.

To detect the presence of uncertainty bias or illusion bias,
we adopt the Outcome-Oriented Operationalization approach as
proposed by Bedek et al. [41]]. Using this approach, we alter the
data progression and compare the decisions made by participants
with the ground-truth solutions to the provided tasks. A bias is said
to have occurred if there is significant statistical difference between
the ground truth and the decisions by the participant.



4.2 Action-Oriented: Control Bias and Anchoring Bias

To detect whether someone is under the influence of control bias
or anchoring bias, we adopt a technique proposed by Wall et
al. [17] which measures the occurrence of cognitive bias as a
deviation in the statistical distribution of a user’s interactions with a
visualization. For example, in detecting control bias, a participant is
said to be under the influence of bias if they show an above-normal
tendency towards steering the progression away from the correct
or optimal sampling configuration. Similarly, in anchoring bias,
the bias is found if a participant focuses on the steering towards a
particular subset of the data (while ignoring others).

Control Bias: One danger of providing a user with control over
a progressive visualization is that a user might not be aware of
how the changes might affect the outcome of the sampling and
the resulting visualization. When used properly, an interactive,
steerable progressive visualization allows the user to focus the
computation towards a specific area of interest, thereby saving
time from performing unnecessary computations [[7]. However,
when used inappropriately, an interactive, steerable progressive
visualization could result in the user obliviously under-sampling
parts of the data and misjudging the final visualization.

Using the technique by Wall et al. [17], we detect whether
a participant is under the influence of control bias using an
observational experimental design. A participant is asked to use an
interactive progressive visualization to complete a number of tasks.
Each of these tasks has a known “ground truth” both in terms of the
correct answer as well as the optimal configuration of the sampling.
We observe and record participants’ interactions and analyze how
much they deviate from the optimal configuration and how often
this results in incorrect answers. Our hypothesis is that:

(H3) When using an interactive steerable progressive visualization,
some participants will succumb to control bias in that they
cannot reason about the effect and outcome of an uneven
sampling process. As a result, we will find some participants
who incorrectly tune the parameters of the progression
resulting in slower completion times and lower accuracy.

Anchoring Bias: Anchoring bias is a more specific form of control
bias. Instead of testing whether a participant understands the
control of uneven sampling, in evaluating anchoring bias we
specifically test if a participant is misled by some initial piece
of information that “anchors” the participant’s behavior or decision-
making process. This piece of information can be a false pattern in
the visualization (similar to illusion bias), but can also be a prime
with irrelevant information, visual cues, specific instructions or a
user’s previous experience with the data [[14]], [42], [43].

We follow the experimental designs of Wall et al. [14] and
Wesslen et al. [42] to prime the participants with potential cues
about the data. Both previous studies observe anchoring bias via
interaction logs, examining if participants interacted with a subset
of the data or particular views of the visualization more than others.

Additionally, the study by Wesslen et al. [44] shows that
visuals shown in the training phase of an experiment can act as
cognitive anchors to participants causing them to be over-reliant on
information provided in training, and ultimately be over-confident,
spend less time analyzing data, and make incorrect decisions. Based
on the findings of Wesslen et al., we hypothesize that:

(H4) If primed prior to using a progressive visualization some

5

participants will exhibit anchoring bias where they are
more likely to make a decision influenced on the priming
information. As a result, they will have reduced accuracy,
spend less time when completing the tasks, and have an
increased level of confidence in their answers.

5 EXPERIMENT SETUP OVERVIEW

All experiments were conducted using Amazon Mechanical Turk.
Each participant was limited to one of our experiments to prevent
learning effects. During each experiment, participants were first
shown a consent page, followed by explanations about how
progressive visualization works including a breakdown of the
different components of the visualization. They were then given a
training task prior to beginning the main tasks in the study. After
completion of the main tasks, participants were asked to complete
a demographic survey.

As part of the instructions, participants were told to answer
as accurately as possible. They were offered a base rate of
$.75 for completing the tasks. Since a common concern with
Mechanical Turk studies is that participants can rush through tasks
with minimal effort to maximize the number of HITs they can
complete [45]], [46], we offered a bonus of $.25 for each correct
answer. This can mitigate participants desire to complete the tasks
as quickly as possible.

5.1

The experiments were conducted using gradient plots, as shown in
Figure 3] To carefully measure the participants’ task completion
time and maintain consistency of stimuli across participants, we
break each of the main tasks into three separate stages. First,
participants were shown the question they were tasked to answer
and a blank visualization. Second, participants then clicked the
“start button” when they were ready to start the task, at which point
both the timer and the progression would start. The progressive
visualization in the main task updated once a second and would
converge to 1% error and stop updating at the 120-second mark.
Participants did not know the visualization would stop updating
after 120 seconds, and none of the participants in any of our studies
waited the full duration before completing the task. The updated
values were read from a pre-computed text file, thus ensuring all
participants saw the same progressions. The progressions reflect
real world behavior of sampling. The start of the progression can
contain large jumps between updates, but as more “samples” are
taken the variability between updates is reduced. Third, when the
participants felt ready to answer, they clicked the “stop button” to
stop the progression and the timer. The participants then typed their
answer in a text box and selected how confident they were using a
4-point Likert-scale.

Visualization and Stimuli

5.2 Datasets

Two datasets were manually generated for the studies. The first is
a fictitious sales record of a manufacturing company of spare parts.
The second dataset is loosely based on the flight dataset [47] and
shows different types of airplane engines and their usage frequency.

5.3 Tasks

To evaluate how well participants can perform judgment with
the “bars” in the gradient plots, we designed three types of tasks
of increasing difficulty. These tasks correspond to three tasks in



the analytic task taxonomy by Amar et al. [48]]: Retrieve Value
(read a value), Derive Value (compute the sum or differences of
two values), and Find Extremum (compare all values to find the
maximum or minimum). Together, success in these tasks reflect a
participant’s ability to read a progressive visualization, reason about
the information in the progressive visualization, and ultimately
make a decision. Specifically, questions used in our studies include:

1) Read Value: To complete these tasks, the participants only
need to examine one bar in the gradient plot. Example
questions include “how many units were sold for Part D?”
and “how many flights were flown with engine D?”

2) Derive Value: To complete these tasks, the participants need to
examine two bars in the gradient plot and perform an operation
on the two values. For example, “how many parts were sold
for Parts A and B combined?” and “how many flights between
engine A and engine B combined?”

3) Find Extremum: To complete these tasks, participants need to
examine all the bars in the gradient plot. For example, “which
part was sold the least?” and ”did manufacturer A sell the
most items?” This task is perhaps the most difficult of the
three in that a participant needs to read all the values in a
gradient plot, compare them, and then make a decision.

5.4 Collected Data

Similar to the study by Wesslen et al. [44]], we collected three pieces
of data from each task that a participant completed: (1) completion
time, (2) accuracy, and (3) the participant’s confidence in their
answers. In addition, through the demographic survey, participants
provided information about their age, gender, education and
proficiency in statistics and progressive visualization. Participants
were also encouraged to provide feedback about their experience.
Below we explain in detail our collected data.

Completion time is determined as elapsed time between the
participant clicking the “start” and “stop” buttons, to remove any
additional latency from typing or selecting their confidence level.

Accuracy is determined depending on the question types. Across
the three tasks, there are three types of answers we collect: (1)
quantitative value (e.g. “How many parts were sold for Part D?”),
(2) categorical value (e.g. “Which part was sold the least?”), and
(3) binary value (e.g. “Manufacturer A sold the most items in
2017. Did they sell the most in 2018?”). In each of the experiment
sections below we describe how these values are used in statistical
analyses in more detail.

Confidence is based on a 4-point Likert scale. The participants
choose between Not at all Confident, Slightly Confident, Somewhat
Confident or Extremely Confident to reflect their confidence in each
of their answers.

6 EXPERIMENT 1: UNCERTAINTY BIAS

The goal of this first experiment is to evaluate a participant’s ability
to judge the uncertainty of intermediate results in a progressive
visualization. Dynamic uncertainty in a progressive gradient plot
is controlled by modulating the variances in the values (heights of
bars) and error-bounds (sizes of the error bar), defined below.

6.1

Different levels of variances are defined by changing both values
and error-bounds by +5%, +10%, +15% and £20%, respectively.

Data Generation
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Fig. 3: The gradient chart used in our experiments. The size of the bar represents
the 95% confidence interval of the estimated value, shown at the midpoint of the
bar. The color indicates the relative error of the estimate. The darker the blue,
the more accurate the estimate is. (a) shows the chart early in the progression,
where the error is between 70-80% for each bar. (b) shows the chart later in the
progression when the values have started to converge with error rates between
10-15% for each bar.

For variances in values, each bar in a gradient plot is given a
“truth” value which is represented as the actual value of a query.
At each step in the progression, the “estimated” value would
change to another value within the range of the variance. For
example, if the “truth” value is 40,000, and the variance range is
+5%, the “estimated” value shown at each step in the progression
could be somewhere between 38,000 and 42,000. The sequence of
progression was generated prior to the study, so all participants in
the same condition saw the same progression.

Generating multiple levels of error-bounds follows a similar
paradigm. In a perfect progression, the error-bounds would decrease
at each iteration, until convergence after 120 seconds. To simulate
this, we create a base error-bound progression that starts at .80
and decreases by 1/100th at each step until reaching .01. An offset
to the base error-bound is added at each step by the condition’s
percentage. For example, with error-bound condition of +10%
and a base error-bound of .70 at that point in the progression, the
error-bounds shown would be .70 plus an offset randomly chosen
between -.1 and +.1. We limit the error-bounds to never be above
.80 or below .01 at any time during the progression. Similar to the
data generated for variances in values, the error-bound progression
was randomly generated prior to the studies, so all participants in
the same condition saw the same progression.

6.2 Methodology and Hypothesis

We conducted a between-subject 4 (levels of variances in the values)
x 4 (levels of variances in the error-bounds) study on Mechanical
TurkE] in which each participant was randomly assigned to one of
the conditions. Following a training session, each participant was
asked to complete 6 tasks:
o Using the Sales dataset (see Section [5.2):
T1) Read Value: “How many parts were sold for Part D?”
T2) Derive Value: “How many parts were sold for Part A and B
combined?”
T3) Find Extremum: “Which part was sold the least?”
« Using the Flight dataset:
T4) Read Value: “How many flights were flown with engine D?”
TS) Derive Value: “How many flights between engines A and B
combined?”
T6) Find Extremum: “Which engine had the least number of
flights?”
Our hypothesis (H1) is that high variances in values and error-
bounds in a progressive visualization will make it more difficult for
participants to read the visualization and make decisions. This will
negatively affect accuracy, speed, and confidence in their answers.

2. The online study can be found at
http://valt.cs.tufts.edu/studies/progvis/p4/
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6.3 Participants

We recruited 480 participants on Mechanical Turk. We removed
participants who did not complete all 6 tasks and participants
that did not follow instructions (e.g. they answered numerical-
based answers with bar labels and vice versa), resulting in 352
participants. Of these, 45% were female, 80% had a Bachelor’s or
High School Diploma, 35% rated themselves as intermediate visu-
alization experts and 44% rated themselves as novice progressive
visualization experts.

6.4 Results

Based on our hypothesis, we examine the effects on completion
time, accuracy, and confidence given the different levels of
variances in values and error-bounds. Further, we analyze how
these are affected by the task types

6.4.1 Completion Time x Variances

Figure breaks down the time by task types. On average,
participants completed all tasks at around the same time regardless
of the conditions (~10 seconds).

We performed multiple linear regressions to analyze whether
the amount of value and error-bound variances affected completion
time based on the task type. Overall, with the exception of variances
in values in the Find Extremum task, a participant’s completion time
does not seem to be affected by the levels of dynamic uncertainty
in the progressive visualization. For the Find Extremum task, the
higher the value variance, the more time it took to complete the
task. Table[T] shows the results of the analysis.

(time) Read Value Derive Value Find Extremum
F(2,349)=0.75 | F(2,701)=0.12 | F(2,701)=5.35
overall | R% =0.0043 R? =0.00034 R?=10.015
p =047 p=0.89 p <0.01%%
B =28321 B =120.81 B =107.03
v-rate |, 024 p=071 p < 0.01%
B=-27.04 B=16.76 B=59.33
e-rate | —0.70 p=0.76 p=0.12

Table 1: Multi-linear regression result on completion time versus variances in
values (v_rate) and in error-bounds (e_rate). For the Find Extremum task, as
the value variance increased, so did completion time.

6.4.2 Accuracy x Variances

Figure [Ab] shows the participants’ accuracy of the different
conditions and across task types. To further analyze the effect
of variances in values and error-bounds on participants’ accuracy
in completing the tasks, we performed multiple linear regressions
for Read Value and Derive Value tasks. For the Find Extremum
tasks, we performed logistic regressions because the participants’
answers were binary (either correct or incorrect). As shown in
Table 2] we found no significant effects of variances in values nor
in error-bounds on the participants’ task accuracy.

6.4.3 Confidence x Variances

To analyze the effect of variances in values and error-bounds on
participants’ confidence in their answers, we performed linear
regressions for all three tasks. We collected confidence data using
a Likert scale, and treated the values as a continuous variable. As
shown in Table [3| we found no significant effect of variances in
values nor in error-bounds on the participants’ confidence.

(error) | Read Value Derive Value Find Extremum
F(2,349) =0.78 | F(2,701) = 1.15 | x%(8)=8.25
overall | R? =0.0045 R? =0.0033
p=0.46 p=032 p=041
=—0.0014 =0.0019 =—0.0018
v_rate §:O.58 ﬁz 0.17 ﬁz 0.93
o rate | B =—0.0028 B = —0.00094 B=0.016
- p=0.27 p=0.49 p=0.45

Table 2: Regression results on accuracy (measured as amount of error) versus
variances in values (v_rate) and error-bounds (e_rate). Varying value and error-
bounds did not have an effect on accuracy for any of the tasks.

(confidence) | Read Value Derive Value Find Extremum

F(2,349) =031 | F(2,701) =058 | F(2,701) =1.35
overall R* = —0.0039 R* = —0.0012 R* = —0.001

p=0.73 p=0.56 p=0.26

B =0.0049 B =-0.0017 B = —0.0006
v_rate

p=0.50 p=0.76 p=0091

B =0.0027 B =—0.0056 B = —0.0087
e_rate p=071 p=031 »=0.10

Table 3: Multi-linear regression results on participants’ confidence versus
variances in values (v_rate) and error-bounds (e_rate). Note that there is no
significance in any of the conditions.

6.4.4 Time x Accuracy x Confidence

In addition to the analyses on fluctuations in values and error-
bounds, we performed additional examinations on the relationships
between completion time, accuracy (error), and confidence.
Accuracy vs. Time: We found statistically significant relationships
between completion time and accuracy across all three task types
in that the more time a participant spends on the task, the more
accurate their answer was. Table |4] shows the result of linear and
logistic regressions across the three tasks types.

(error) | Read Value Derive Value Find Extremum
F(1,350)=22.67 | F(1,702) = 66.38 | x%(8)=74.51
overall | R?=0.061 R? =0.086
p < 0.001%* p < 0.001%* p < 0.001%*
time B =—894¢° B=-72le° B =—6.80e"
p < 0.001%* p < 0.001%* p <0.01%*

Table 4: Regression results on accuracy (error) and completion time. Across all
task types the participants were statistically more accurate (made fewer errors)
when they spent more time on tasks.

Confidence vs. Time: We performed additional linear regressions
to determine if confidence correlated with completion time. As
shown in Table [5] there is a significant effect for the Derived
Values task and a possible effect for the Read Value task in that
participants who took less time to complete their tasks were also
more confident in their answers.

(confidence) | Read Value Derive Value Find Extremum
F(1,350) =293 | F(1,702) =18.57 | F(1,702) =1.87

overall R? =0.0083 R*=0.26 R>=0.78
p<0.1% p < 0.001% p=0.17

time B=-9.43¢"° B=—-157¢> B=—7.227°
p<0.1% p < 0.001%* p=0.17

Table 5: Logistic regression results on confidence and completion time. Note
the significant effect for the Derived Values task and a possible effect for the
Read Value task, indicating that participants who spend less time completing
their tasks are more confident in their answers.

6.5 Findings

We examine our original hypothesis (H1) which states that
“increased variance in values and error-bounds in the progressive
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visualization will make it more difficult for participants to read the
visualization and make decisions. This will negatively affect their
accuracy, speed, and confidence in their answers.” Our analysis
results do not find evidence to support our hypothesis. As a result,
we reject (H1). To be more specific:

Completion Time: The analyses find that variances in values affect
the participants’ completion time, but only for Find Extremum tasks.
Variances in error-bounds have no effect.

Accuracy: The analyses find that neither variances in values nor
error-bounds affect the participants’ accuracy.

Confidence: The analyses find that neither variances in values nor
error-bounds affect the participants’ confidence.

6.6 Discussion

These results are surprising because prior work in uncertainty
visualization (e.g. [36]) has shown that static uncertainty visualiza-
tions are difficult to read for participants. For dynamic uncertainty
visualizations, such as progressive visualizations, conventional
wisdom would suggest that the additional uncertainty (stemming
from the dynamic nature of the visualization) would make the task
more difficult.

We speculate that the reason participants were adept in using
progressive visualization with high amount of dynamic uncertainty
is because the participants adopted an estimation strategy when
observing the dynamic visualizations, similar to the behavior
when using Hypothetical Outcome Plots (HOPs) as reported by
Hullman et al. [49]. HOPs animate probability distributions and
have been shown to increase accuracy in uncertainty estimates
by people with no special training or statistical expertise. HOPs
also allow for easier estimating trends in sampled data, using the
animation to draw inferences on the underlying likelihood of the
data distribution [50].

Since the progression updates can be perceived as an animation,
participant strategies using progressive visualization can be similar
to that when using HOPs. In particular, as the heights of the error
bars fluctuated, the participants would observe the range of values
and estimate the “average” (over time) of these dynamic gradient

plots. Similarly, as the error-bounds fluctuated, the participants
adopted the same strategy in that they largely ignored the length of
the gradient (i.e. the amount of error) and simply used the center
of the gradient plot as a proxy.

As a result, the participants’ accuracy in their answers are only
affected by their ability to determine the trend of the data and not
in the fluctuations of the value or the error themselves. This finding
is supported by the analysis result of the Find Extremum tasks
(e.g “which bar is the tallest”) where there is a significant effect
between variances in values and completion time. We posit that
the reason for this phenomenon is because the participants would
require more time to keep track of the movements and mentally
compute the averages of all the bars in the gradient plot. With high
fluctuations in the heights of the bars, this can be difficult to do
and therefore would require more time to complete.

Lastly, we find that participants who took longer to answer
questions had higher accuracy in all three types of tasks but had
lower confidence. The higher accuracy finding is not surprising
because with the use of progressive visualization, the longer a
participant waits, the more accurately they can guess the “average”
points. On the other hand, the decreased confidence can be
counterintuitive. We posit that this finding reflects the correlation
that participants who are not confident in using progressive
visualizations tend to take longer time to complete the tasks (instead
of a causal relation that suggests participants become less confident
in their answers with more time). However, further experiments
will be needed to confirm our speculation.

7 EXPERIMENT 2: ILLUSION BIAS

While the results of the previous experiment show that high
variances in values and error-bounds do not have an immediate
effect on a participant’s ability to use a progressive visualization,
these high variances can cause a secondary effect that has not been
evaluated. As reported in prior studies [6], [11], fluctuations in a
progressive visualization can occasionally result in an (uninten-
tionally) meaningful pattern. These “false patterns” are often the
result of uneven sampling or “rare events” in the data, in which the
inclusion of a single outlier value in the sampling can significantly
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Fig. 5: In Experiment 2, participants were shown the baseline progression
without false patterns first (a), then shown the “false pattern” illusion (b at
different time periods during the progression.

alter the estimation [[11]]. Regardless of the cause, false patterns can
lead users to mistakenly assume that they have found the answer to
their query and terminate the progression prematurely.

The aim of this experiment is to evaluate the effects of the this
bias by deliberately introducing “false patterns” in a progressive
visualization and measuring the participants’ task completion time,
accuracy, and confidence in their answers.
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The “false pattern” used in this experiment is shown in Figure [5b]
To evaluate how the false pattern might have the strongest effect
on the participants, we conducted a between-subject experiment
with 5 (false-pattern) conditions. The five false-pattern conditions
are: (1) no false pattern (baseline), (2) false pattern shown from
0-5 seconds, (3) from 5-10 seconds, (4) from 10-15 seconds, and
(5) from 15-20 secondsﬂ Using the Sales dataset and following the
same experimental design from Experiment 1, each participant was
asked to complete three tasks:

Methodology and Hypothesis

T1) Read Value: “How many parts were sold for Part D?”
T2) Derive Value: “Did Part B sell more than Part A?”
T3) Find Extremum: “Which part was sold the least?”

Our hypothesis (H2) follows observations made by prior
studies [6], [11] in that we hypothesize that if a false pattern
appears early in the progression, a participant can be affected
by illusion bias and will be more likely to make a decision based
on this false pattern. As a result, participants will have reduced
accuracy but with no effect on speed or confidence in their answers.

7.2 Participants

We recruited 216 participants on Mechanical Turk. For the bias
conditions we had: (baseline) 40, (0-5 second) 38, (5-10 second)
47, (10-15 second) 44, (15-20 second) 47 participants. Of all
participants, 39% were female, 77% had Bachelor’s or High School
Diploma, 32% rated themselves as intermediate visualization
experts and 47% as novice progressive visualization experts.

7.3 Results

Based on our hypothesis, we examine the effects of the introduction
of false patterns on completion time, accuracy, and confidence.
Further, we analyze how these are affected by the task types (Read
Value, Derive Value, and Find Extremum).

3. The study material can be found here:
0-5 seconds: http://valt.cs.tufts.edu/studies/progvis/p2a
5-10 seconds: http://valt.cs.tufts.edu/studies/progvis/p2_5_10
10-15 seconds: http://valt.cs.tufts.edu/studies/progvis/p2_10_15
15-20 seconds: http://valt.cs.tufts.edu/studies/progvis/p2_15_20

7.3.1 Completion Time

We looked to determine if the time that the false pattern was
introduced affected participants’ completion time. We found the
completion time data was not normally distributed, so we used the
Kruskall-Wallis rank sum tests across all task types:

o Retrieve Value: x*(4) =1.12,p = 0.89

o Derive Value: x*(4) =6.57,p =0.16

o Find Extremum: x*(4) = 15.31, p < 0.005%%*

The results indicate a significant effect for the Find Extremum
task. A post-hoc analysis using the Dunn test with Benjamini-
Hochberg adjustment finds significance between two conditions:

« Baseline vs. 5-10 second delay (p < 0.005%%)
e 5-10 second delay vs. 15-20 second delay (p < 0.05%* )

Together, the results suggest that participants were faster in
the baseline (no false pattern) condition when completing the Find
Extremum task. The completion times for all other conditions are
higher in other conditions in which a false-pattern is introduced

(see Figure [6a).

7.3.2 Accuracy

We examined the timing of false patterns and whether it had an
impact on accuracy. Similar to completion time, we found that the
data was not normally distributed, so we performed the Kruskall-
Wallis rank sum test for the Retrieve Value task (because the
answer participants provided were integers and thus were treated
as a continuous variable), and chi-squared tests for the Derive
Value and Find Extremum tasks because the participants’ responses
were measured in binary (correct or incorrect). Our results are as
follows:

o Read Value: y*(4) =22.49, p < 0.001%*
o Derive Value: x*(4) =21.51,p < 0.001%*
o Find Extremum: y*(4) =23.93, p < 0.001%*

In sum, we found strong evidence that the bias conditions
had an effect on error in all three tasks. Specifically, as shown in
Figure [6b] the introduction of a false-pattern in the progression
could reduce the participants’ accuracy. However, this effect tapered
off in conditions where the false pattern was introduced later in the
progression.

7.3.3 Confidence

To examine if the timing of false patterns affected participants’
confidence, we again ran the Kruskall-Wallis rank sum test:

e Read Value: y*(4) =2.46,p = 0.65

o Derive Value: x*(4) = 13.62,p < 0.01%%

o Find Extremum: y*(4) = 28.20, p < 0.001%*

We found strong evidence that bias had an effect on confidence
for the Derive Value and Find Extremum tasks, but did not have
an effect on the Read Value tasks. Similar to the previous result,
this effect was more pronounced if the false pattern was introduced
earlier (i.e. in the 5-10 and 10-15 second delay conditions, see
Figure[6c). The effect tapered off if the false pattern was introduced
later in the progression.

7.4 Findings

We examine our hypothesis (H2) that “if a false pattern appears
early in the progression, a participant can be affected by illusion
bias and will be more likely to make a decision based on this
false pattern. As a result, participants will have reduced accuracy
but with no effect on speed or confidence in their answers.” Our
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their answers.

analysis results find evidence that supports this hypothesis. As a
result, we confirm (H2) on the basis that:

Completion Time: The analyses find that the introduction of a false
pattern during the progression affects the participants’ completion
time, but only for Find Extremum tasks.

Accuracy: The analyses find that the introduction of a false pattern
decreases the participants’ accuracy. The effect is more pronounced
if the false pattern is introduced earlier in the progression.
Confidence: The analyses find the introduction of a false pattern
decreases the participants’ confidence in the Derive Value and Find
Extremum tasks. Similar to the analysis on accuracy, this effect is
more pronounced if the false pattern is introduced earlier in the
progression.

7.5 Discussion

Overall, our results confirm the previous reports by Moritz et
al. [11]] and Turkay et al. [6] in which the authors observed that
users of a progressive visualization could be negatively influenced
by seeing false patterns during the progression.

However, digging deeper into our experimental results suggest
that the finding is a little more nuanced. First, we observe that task
difficulty plays an important role when considering the impact of
false patterns in a progressive visualization. For the most difficult
task, Find Extremum, we find that the participants’ completion time,
accuracy, and confidence are all negatively impacted. Conversely,
for the easiest task, Read Value, only the their accuracy is affected.

Secondly, the timing of when the false pattern appears can
be a crucial factor. We observe that an early introduction of a
false pattern can significantly reduce the participant’s performance,
most notably their accuracy (see Figure [6b). However, this effect
tapers off if the false pattern appears later in the progression. While
one simple reason for this finding is that participants may have
completed the task before the false pattern appeared (which is least
likely to happen in the 0-5 second condition). However, we note
that on average participants completed their task between the 10-20
second mark (see Figure [6a). So this simple explanation does not
explain the differences between the 5-10 and 10-15 conditions
in which the negative impacts on completion time, accuracy, and
confidence are more pronounced in the 5-10 condition.

8 EXPERIMENT 3: CONTROL BIAS

In the previous two experiments, we evaluate the biases that affect
the use of progressive visualization when used as a “passive”
mechanism for delivering information incrementally. In practice,
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Fig. 7: Buttons below each bar allowed participants to steer the progression.
Setting a bar to “high” caused the progression of that bar to increase at a faster
rate, presenting a higher confidence estimate faster to the user. Setting a bar to
“Off” caused the progression to stop for that bar.

most modern progressive visualization systems allow some amount
of user control. Referred to as “steerable” progressive visualization,
these interactive progressive visualizations allow the user to control
the amount of progression and steer the computation or sampling.
As a result, the user can reduce computation time by focusing on
the parts of data that are relevant to their analysis [6], [[7], [8]l, [l
gain better awareness and control of the system [5]], and in turn
build trust in the system [8]].

However, given the results of the previous experiment which
show that users of progressive visualization can be susceptible to
the illusion bias, it is plausible to hypothesize that the additional
control over the computation could further mislead the user. In
this experiment, we examine this potential bias and its effects. In
particular, we examine whether users of an interactive progressive
visualization can effectively utilize steering or succumb to control
bias where the users perform either non-optimal or incorrect
steering that lead to wrong decisions.

8.1 Methodology and Hypothesis

We conducted an observational study on Mechanical Turk where we
tracked participants’ interactions using a progressive visualization.
In our experiment, the participants were asked to use a steerable
progressive visualization (as shown in Figure [/)) to complete a
number of tasks. Each of these tasks had a known ground truth both
in terms of the correct answer as well as the optimal configuration
of the samplinﬂ We recorded the participants’ interactions and

4. http://valt.cs.tufts.edu/studies/progvis/p4/
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analyzed how much they deviated from the optimal configuration
and how often the participants came to incorrect decisions due to
steering. Participants had the same experiment setup as described
in Section 5, with the addition of information on steering and
explanation of controls. Their training task included using the
steering controls to answer a sample question.

This experimental approach is similar to that of the work by
Wall et al. [14]], [17] in that we measure statistical deviation from
the control group to identify biased behaviors. However, contrary to
the work by Wall et al. where participants are expected to explore
data evenly if they are not under the influence of cognitive biases,
in our experiment we expect the opposite behavior in that the
participants should explore a specific subset of the data if they are
not under the influence of control bias. This difference is due to
the nature of the tasks used in these two sets of experiments. In
the experiments by Wall et al., participants performed exploratory
data analysis where data coverage is a key indicator of success in
the task, whereas our study is more akin to a confirmatory data
analysis where a participant is looking for a specific piece of data
to complete the task.

While the goals of these experiments differ, the statistical
approach to detecting bias is the same. Specifically, in our
experimental setup, the tasks that the participants were asked
to complete were the same as those used in Experiment 1 but with
a steering progressive visualization. Initially, all the sampling rates
for all bars were set to “Normal.” For the Read Value tasks, the
optimal configuration was to set the sampling rate for the bars
specified in the task to “High” and the remaining sampling rates
to “Off.” For example, to answer Q1 (“How many parts were sold
for Part D?”), the participant should turn off sampling for all bars
except for Part D. For Part D, the setting for sampling should be
“High’ﬂ For the Derive Value tasks, optimal was to set two of the
bars to “High” and the rest to “Off.” Finally, for the Find Extremum
tasks, the optimal strategy was not to interact with the steering
interface at all, but instead leave all the sampling rates to “Normal.”

Our hypothesis (H3) is that when using an interactive steerable
progressive visualization, some participants will succumb to control
bias in that they cannot reason about the effect and outcome of an
uneven sampling process. As a result, we will find a number of
participants who incorrectly tune the parameters of the progression
resulting in slower completion times and lower accuracy.

8.2 Participants

We recruited 59 participants on Mechanical Turk. We dropped the
results of participants who did not answer all 6 questions or clearly
did not follow instructions. This includes participants who did not
interact with at least one question or completed the task in less
than 2 seconds, which was too short of a time to see an update to
the progression. This left us with 33 participants. Of these, 45%
were female, 66% had a Bachelor’s or High School Diploma, 39%
rated themselves as intermediate visualization experts and 48% as
novice progressive visualization experts.

8.3 Results

First, we analyzed the percentages of the participants who interacted
with the steering interface. Although all the participants had learned

5. Setting sampling for Part D to be “Normal” would have the same result
because all computing resources will be devoted to sampling for Part D.
However, we do not consider that as optimal because participants would not be
aware of this system-level optimization.
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to interact with the steering interface during the training phase of
the experiment (see Section [5} Experiment Setup), we observed
that not all the participants interacted with the steerable interface
on all tasks.

For the remainder of the participants (who interacted with
the steering interface), we computed a penalty score for each of
their task performance based on how different the participant’s
configurations were from the optimal configuration, and how long
they were in the non-optimal configuration. We normalized each
penalty score based on the total time the participant took to
complete the task. This allowed us to compare penalty scores
between tasks and between participants that took varying amounts
of time. Specifically, our penalty score is defined as:

S= ([Z|Li—vvi|> /Total Q)

In this equation, ¢ is the time in seconds spent in a configuration,
n is the number of steerable bars in the visualization, L; is the ideal
configuration for bar i and W; is the configuration set by the
participant for bar i. This score is normalized by T;,,;, which is
the total amount of time (in seconds) elapsed for completing a task.
L; and W; will be 0 (Off), 1 (Normal) or 2 (High).

The final score S will be between 0 and 2n where O means the
participant had the ideal configuration for the duration of the task
while 2n mean the configuration was the furthest possible from the
ideal for the duration of the task. Since the visualization used in
our experiment had 5 bars (n = 5), the worst possible score is 10.

8.3.1 Number of Participants who Used Steering

We first calculated how many of the participants interacted with
the steerable progressive visualization interface. The percentages
of trials where participants used steering were:

o Read Value: 80%

o Derive Value: 83%

o Find Extremum: 45%

Since Read Value and Derive Value tasks require turning
off sampling for multiple bars, it naturally follows that most
participants that understood the interface would interact with the
steering controls. What is surprising is that nearly half of the
participants did not interact during the Find Extremum tasks.
Recall that the ideal strategy for the Find Extremum tasks is
to not interact with the visualization. The fact that about half
the participants utilized the optimal strategy suggests that our
participants on Mechanical Turk were able to understand the
concept of progressive visualization and utilize it effectively. This
is especially true when contrasted with the Read Value and Derive
Value tasks in which 80% and 83% of the participants (correctly)
interacted with the visualization, respectively. The significantly
lower percentage in the Find Extremum tasks (45%) is an indicator
that the participants understood the task and were able to use the
progressive visualization correctly.

8.3.2 Penalty Score

We analyzed how well the participants were able to use the steerable
progressive visualization optimally. Figure([§]shows the distributions
of scores for each task type, and whether or not the participant
steered the progression at all for the task. For all tasks, the mean
penalty was 2.02. Per task means were:

e Read Value: 3.32 (baseline: 4.0)
e Derive Value: 2.25 (baseline: 3.0)
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Fig. 8: Distribution of penalty score by task type for Experiment 3. The stack breaks the histograms down by participants that interacted with the steering interface
during the task (Interaction) and those that didn’t interact with the steering interface at all (No Interaction).

o Find Extremum: 0.48 (baseline: 0.0)

Where ‘baseline” is the penalty if none of the controls were touched,
and therefore the starting configuration did not change.

Since the penalty score is based on the configuration of the
steering weights, the further the configuration is from optimal at
the beginning of the task, the more likely the penalty score will
be higher. The Read Value task starts the furthest from optimal,
requiring the participants to turn off sampling from 4 bars. The
Derive Value task only requires the participants to turn off 3 bars.
A penalty score can accumulate if the participant does not set the
optimal configuration at the start of the progression. The Find
Extremum tasks start in the ideal configuration, so no penalty is
present until the participant interacts with the controls.

8.3.3 Completion Time

To evaluate if non-optimal steering affected completion time,
we performed multiple linear regressions on penalty score and
participants’ time in completing the tasks. Figure [0 shows the data
and the regressions. When analyzing all task types together, an
increase in penalty score correlated with an increase in completion
time, however this effect was not found on any of the individual
task types:

o All Tasks: F(1,196) = 3.83,R> = 0.02, p = 0.05%%

e Read Value:F(1,64) = 0.20,R> = 0.003, p = 0.66

o Derive Value: F(1,64) =0.98,R*> =0.015,p = 0.32

o Find Extremum: F(1,64) =2.98, R*> = 0.044,p = 0.08

However, we analyzed the effect of those that steered the
progression vs. those that did not interact with the interface on
a per task basis. We noted that those that did not interact with
the interface completed the tasks faster than those that did, for all
tasks:

o All Tasks: F(1,196) = 40.2,R> = 0.17, p < 0.001%*

e Read Value:F(1,64) = 8.34,R*> = 0.115, p = 0.005%*

o Derive Value: F(1,64) =7.88,R> = 0.109, p = 0.007%%

o Find Extremum: F(1,64) = 9.035,R*> = .124, p = 0.004%%

8.3.4 Accuracy

We look to evaluate if non-optimal steering affected accuracy.
To analyze the effect of the penalty score on the participants’
accuracy in completing the tasks, we performed multiple linear
regressions across all task types as well as for Read Value and
Derive Value tasks. For the Find Extremum tasks, we performed
logistic regressions because the participants’ answers were either
correct or incorrect. Figure [T0] shows the data and the regressions.

« All Tasks: F(1,196) = 2.97,R? = 0.015, p = 0.08
o Read Value: F(1,64) < 0.001,R> < .001,p =0.97

o Derive Value: F(1,64) < 0.001,R> < 0.001,p = 0.99

o Find Extremum: x*(8) < 0.001,p = 1

To analyze the effect of interaction vs. no interaction on
the participants’ accuracy in completing the tasks, we similarly
performed multiple linear regressions across all task types and for
Read Value and Derive Value tasks. For the Find Extremum tasks,
we again performed logistic regressions.

o All Tasks: F(1,196) = 0.02,R> < 0.001,p = 0.87

o Read Value: F(1,64) = 6.952,R*> = 0.098, p = 0.01%%

o Derive Value: F(1,64) =1.211,R* =0.019,p = 0.28

o Find Extremum: x*(8) =< 0.001,p =1

The significance of interaction on a Read Value task is that
those who interacted had higher accuracy than those who did not.
Although Read Value tasks have statistical significance, this is
likely due to a handful of extreme outliers, as shown in Figure @
The general trend however is consistent across all tasks.

8.3.5 Confidence

We found a significant effect of increased penalty score resulting
in higher confidence across all task types, but found no significant
effect on a per task type basis. Figure |11{ shows the multiple linear
regression on the participants’ confidence in their answers on a per
task basis relative to their penalty score.

o All Tasks: F(1,196) =40.97,R*> = 0.17,p < 0.001%*

o Read Value: F(1,64) = 3.07,R*> = 0.045,p = 0.08

o Derive Value: F(1,64) = 0.61,R> =0.009, p = 0.43

o Find Extremum: F(1,64) = 0.75,R*> =0.011,p = 0.39

Similarly, we found the same significant effects on confidence

relative to whether participants interacted or not with the steering
interface:

o All Tasks: F(1,196) = 14.47,R* = 0.69, p < 0.001%%

o Read Value: F(1,64) =2.67,R* = 0.04,p =0.11

o Derive Value: F(1,64) = 0.29,R> = 0.0004, p = 0.87

o Find Extremum: F(1,64) =0.71,R*> = 0.011,p = 0.40

Those who interacted with the steering controls had a slightly

higher confidence on average (3.2 for those that interacted vs
3.1 for those that did not). However, we did see a trend that
as participants progressed through the tasks, they became more
confident in their responses, indicating they may have become
more comfortable using the progressive interface as time went on,
as shown in Figure T2}

o F(1,196) =27.54,R*> = 0.123,p < 0.01 **

8.4 Findings

We examine our hypothesis (H3) that “some participants will
succumb to control bias when using a progressive visualization.
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As a result, these participants will incorrectly tune the parameters
of the progression resulting in slower completion time and lower
accuracy.” Our analysis results do not find evidence that support
this hypothesis. As a result, we partially reject (H3) due to:

Completion Time: Analyses show that participants who suc-
cumbed to control bias (i.e. interacted with the progressive
visualization unnecessarily) took more time to complete the tasks.
Accuracy: Analysis did not show that the unneeded interactions
affected the participants’ accuracy in completing tasks.
Confidence: Analyses show participants who steered the progres-
sive visualization had higher confidence than those who did not.
However, we note that whether this is due to the longer completion
times and therefore an increased sense of familiarity or due to an
improved sense of control provided by a steerable visualization
would require further analysis.

8.5 Discussion

The outcome of this experiment is surprising. As hypothesized,
when given a steerable progressive visualization, many participants
were not able to reason about how to steer the visualization in
an optimal manner and succumbed to control bias. As a result,

these participants interacted with the visualization unnecessarily
and took longer to complete the tasks.

However, what is unexpected is that the non-optimal steering
did not affect the participants’ ability to analyze the results and
come to the right decisions. Further, although the non-optimal
steering increased task completion times, it provided the benefit
that participants had higher confidence in their decisions. Since
there is no difference in accuracy, the increased confidence can be
considered a positive feature of steerable progressive visualization.

We also found evidence that novices in visualization can make
sense of steering the progression, making steerable progressive
visualization easy to understand and use (recall that 48% of our
participants rated themselves as novice progressive visualization
experts). It has been speculated that because of the combined
complexities of steering and progression, interactive progressive
visualization is not well suited for novice users [4]. However,
our experiment results which found about half of the participants
correctly did not interact in the Find Extremum task suggest
otherwise. Although a definitive evaluation is still needed to confirm
our observation, this finding gives credence to the possibility that
steerable progressive visualizations can be used in a wider range
of contexts than those requiring expert users such as scientific
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computing [6]], [9], debugging database queries [10], [11], etc.

9 EXPERIMENT 4: ANCHORING BIAS

The outcome of the previous study on control bias found that
participants under the influence of the bias were slower but no less
accurate in task completion using a progressive visualization. In
this experiment, we further investigate whether priming can have
unintentional negative effects on participants. Commonly known
as anchoring bias, people primed with unrelated information or
given specific instructions have been known to have significant
effect on their exploration of data when using a visualization
and their decision making. Previous work in the visualization
community has examined anchoring bias by priming subjects with
visual anchors [42], [S1], [52]] or with different descriptions of
the task [[14]. These found that using a visualization containing a
subset of the data can lead to an over reliance on that subset, often
neglecting other related information when making a decision.

However, little is known about how anchoring bias might
affect the use of progressive visualizations; or conversely, whether
the use of progressive visualizations may mitigate its effects
(similar to our findings from the control bias experiment). We
detect anchoring bias similar to previous work in visualization, by
priming participants with information, and using interaction logs
to determine if participants focus on a subset of the data when
completing tasks.

9.1

The goal of this experiment is to answer the question, does
anchoring bias have an effect on participants’ use of a progressive
visualization? Following a similar experimental setup as Exper-
iment 3, participants recruited from Amazon’s Mechanical Turk
were asked to use a steerable progressive visualization to complete
a set of tasks (see Figure . However, unlike Experiment 3, each
of the tasks now includes priming participants with informatimﬁ

We modeled our study on that used by Wesslen et al. [44],
providing a cue and measuring speed, accuracy and confidence to
gauge participant performance. For example, instead of “which
part was sold the fewest?” the new task says “Part A sold the
fewest in 2017. Did it in 2018?” Participants who steer the
progressive visualization towards increasing the sampling for Part
A are considered to exhibit behaviors that indicate they may be
under influence of anchoring bias.

Formally, we define that a participant is under the influence
of anchoring bias if: (1) the participant increased the sampling

Methodology and Hypothesis

6. The online study can be found at
http://valt.cs.tufts.edu/studies/progvis/pla/
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towards the Part mentioned in the prior but none of the other Parts,
or (2) if they decreased the sampling of all Parts except the one
mentioned in the prior.

Given the nature of the prime, all tasks in this experiment are
Find Extremum tasks:

T1) “Part A was sold the fewest in 2017. Did it in 2018?”

T2) “Manufacturer A sold the fewest number of items in 2017. Did
they sell the fewest in 20187

“Engine Type A had the fewest flights in 2017. Did it in 2018?”
“Part D was sold the most in 2017. Did it sell the most in 20187
“Manufacturer A sold the most items in 2017. Did they in 20187
“Engine Type D had the most flights in 2017. Did it in 2018?”

T3)
T4)
TS)
T6)

When primed about the data, our hypothesis (H4) is that when
using a progressive visualization some participants will exhibit
anchoring bias where they are more likely to make a decision that
conforms to the priming information. As a result, they will have
reduced accuracy and spend less time completing the tasks, while
having an increased level of confidence in their answers.

9.2 Participants

We recruited 146 participants on Mechanical Turk. After removing
participants who did not complete or answer all 6 questions, we
were left with 133 participants. Of these, 35% were female, 73%
had a Bachelor’s or High School Diploma, 33% rated themselves
as intermediate visualization experts and 40% rated themselves as
novice progressive visualization experts.

9.3 Results

We examined the results of the experiment by first categorizing the
participants’ trials into three groups:

1) No-Interact: In these trials, the participants did not interact
with the progressive visualization. Note that because the
tasks are Find Extremum tasks, the optimal strategy is to
not interact with the progressive visualization. Out of the 798
trials, participants did not interact in 525 of them (66%).

2) Interact with (Anchoring) Bias: In these trials, the partici-
pants interacted with the progressive visualization. Further,
their interactions exhibit anchoring bias based on our def-
inition (see Section [0.1)). Out of 798 trials, in 49 of them
participants exhibited anchoring bias (6%).

3) Interact without Bias: In these trials, participants interacted
with the progressive visualization but did not exhibit anchor-
ing bias. Of the 798 trials, 224 fall into this category (28%).

In the sections below, we analyze the participants’ speed,
accuracy, and confidence using these three groups.

9.3.1 Completion Time

Mean completion time for a task was (M = 14.64s,SD = 12.41).
Mean completion time when anchoring bias occurs (Interact
with Bias) was (M = 22.6s5,SD = 12.57), non bias interaction
(Interact without Bias) was (M = 23.06s,SD = 13.12) and (M =
10.28s,SD = 9.53) when no interaction was taken (No-Interact),
as shown in Figure[I33]

We found that completion time was strongly affected by the
conditions via Kruskal-Wallis Rank Sum Test (y2(2) =201.97,p <
0.001). To isolate which conditions had an effect, we ran the Dunn
test for multiple comparison with uneven sample sizes using the
Benjamini-Hochberg adjustment. We found that completion time
was strongly affected by whether or not a participant interacted
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Fig. 13: Experiment 4 mean and 95% confidence interval of @) completion time, (E]) accuracy and confidence per condition. Those that showed a bias or
interacted with the controls were slower in completing tasks than those not interacting, however accuracy was not affected by condition. Participants exhibiting
anchoring bias potentially had lower confidence than those in the Interact without Bias condition.

with the steering controls, with those interacting taking longer than
those that did not. We did not find an effect between biased and
non-biased interaction types.

e No-Interact vs. Interact without Bias: p < .001%%
e No-Interact vs. Interact with Bias: p < .001%%
o Interact without Bias vs. Interact with Bias: p = 0.97

Therefore we cannot conclude that the bias itself had an effect
on completion time, but we can confirm our results in the control
bias study that those who interacted were slower than those who
did not.

9.3.2 Accuracy

Overall, tasks were answered correctly 91.3% of the time. When
anchoring bias occurred, tasks were answered correctly 89.8% of
the time (Interact with Bias), and when a non-biased interaction
approach was taken, tasks were answered correctly 93.7% of
the time (Interact without Bias). The non interaction approach
answered correctly 90.4% of the time (No-Interact).

Because all tasks required answers that were either strictly right
or wrong, we performed chi-squared tests to test if the interaction
conditions had an effect on error. We found that error was not
affected by bias or interaction (y2(2) = 2.35,p = 0.31).

We further examined the case where the information included
in the priming happened to be the correct answer, which was the
case for Tasks 3 and 4 (so the correct answer was “yes”). For Tasks
1,2, 5, and 6, the priming information did not match the correct
answer, so the correct response was “no’:

o Prior Matched Task Answer: x*(2) = 1.19, p = 0.55
o Prior Did Not Match Task Answer: x*(2) = 01.24,p = 0.54

This result suggest that error was not affected by whether the
priming information matched the correct answer. When the two
matched, participants were correct 87.5% of the time; when it did
not matched, they were correct 93.2% of the time.

9.3.3 Confidence

Mean confidence for a task was (M = 3.30,SD = 0.77). Mean
confidence when anchoring bias occurred (Interact with Bias)
was (M = 3.12,5D = 0.85), when non-biased interaction (Interact
without Bias) was taken was (M = 3.4,5D = 0.70) and (M =

3.25,8D = 0.78) when no interactions took place (No-Interact).

Distribution of Likert scores are shown in Figure[I3c

Because the confidence data was not normally distributed, we
performed Kruskal-Wallis rank sum tests to determine if the bias
condition had an effect on user confidence. We found that bias could

have a significant effect on confidence (x2(2) = 7.47, p = 0.02%%),

To isolate which conditions had an effect, we ran the Dunn
test for multiple comparison with uneven sample sizes using the
Benjamini-Hochberg adjustment. We found significance that those

who Interact without Bias had higher confidence than those who
did not interact.

o No Interact vs. Interact without Bias p = 0.05%%
o No Interact vs. Interact with Bias: p = 0.37
o Interact with Bias vs. Interact without Bias: p = 0.06

9.4 Findings

We examine our original hypothesis (H4) stating that “when using
a progressive visualization some participants will exhibit anchoring
bias where they are more likely to make a decision that conforms
to the priming information. As a result, they will have reduced
accuracy and spend less time completing the tasks while having an
increased level of confidence in their answers.” The analyses results
reject H4 in that although in some small percentage of the trials
the participants exhibit anchoring bias (6%), these participants did
not make any more mistakes than those who did not. They also did
not spend more time solving the tasks (not more so than those in
the Interact without Bias condition), nor did they demonstrate a
change in confidence. More specifically:

Completion Time: We found that those exhibiting anchoring bias
(Interact with Bias) took longer to complete tasks than those who
did not interact with the steering controls (No-Interact). However,
there is no statistical difference between those who exhibited
anchoring bias from those who interacted with the visualization
but did not exhibit anchoring bias (Interact without Bias).
Accuracy: Accuracy was not affected whether or not the participant
exhibited anchoring bias.

Confidence: Confidence was not affected whether or not the
participant exhibited anchoring bias.

9.5 Discussion

Overall, the results of this experiment demonstrate that participants
could be primed to exhibit anchoring bias. Although the success of
the priming is low (6%), we were able to evaluate their behaviors
against the two conditions in Experiment 3, namely: (a) the baseline
condition where the participants (correctly) did not interact with
the progressive visualization (No-Interact), and (b) the participants
who incorrectly interacted with the visualization but did not exhibit
anchoring bias (Interact without Bias).

Unexpectedly, we did not find a significant difference between
participants exhibiting anchoring bias from those in the Interact
without Bias condition in terms of accuracy and speed. This is
contrary to our original hypothesis that those under the influence of
anchoring bias would hone in on the wrong answer more quickly.
We were also incorrect in hypothesizing that participants exhibiting
anchoring bias would have higher confidence in their answers.



10 PROGRESSIVE VISUALIZATION, HELPFUL OR
HARMFUL?

The results of these experiments confirm some of the existing sus-
picions about the benefits and pitfalls of progression visualization
while revealing some new findings. On the positive side, across
these experiments, participants completed the tasks fairly quickly
(M = 13.85seconds,SD = 15.38). Since the progressions in our
experiments require 120 seconds to fully converge, this represents
a 88.35% in time saving. While the percentage in time saving can
be an artifact of our experimental setup, we can still assume that
for computational tasks that take minutes or hours to complete,
participants using a progressive visualization can make decisions
in a shorter amount of time.

However, the savings in time can come with the cost of reduced
accuracy. Specifically, for Retrieve Value tasks, the average error
across all experiments is (M = 11.42%,SD = 25.24), for Derive
Value tasks it is (M = 13.58%,SD = 22.29), and for Find Extremum
tasks answers were incorrect 9.83% of the time.

Digging deeper into the cause of the reduced accuracy, we
find that the cognitive biases suggested by Micallef et al. can
indeed play a role. Of the two data-oriented biases we evaluated
(uncertainty bias and illusion bias), we find that uncertainty bias in
general does not affect the participants’ performance — when given
dynamic and uncertain information, the participants were able to
develop heuristics that were unexpectedly effective and accurate.

We find that illusion bias can have significant and detrimental
effect on a user, especially if the false-patterns appear early in the
progressive visualization. This effect tapers off if the false-pattern
appears later in the progression. In cases where this bias was
present, results showed longer time spent (on the Find Extremum
tasks), and reduced confidence in decisions (in Derive Value and
Find Extremum tasks).

When evaluating action-oriented biases (control bias and
anchoring bias), we find participants exhibited control bias about
70% of the time, steering the progression in non-optimal or
incorrect ways. We further find that anchoring bias was much
less common in our study, with participants only exhibiting the
bias 6% of the time.

For the participants who exhibited these biases, we find that they
took longer to complete tasks, but did not suffer a loss of accuracy
and sometimes increased confidence in their answers. This can
suggest that allowing participants to steer the progression can let
them become more familiar with the interface and data, providing
an overall benefit. This is similar to the findings reported by Wall
et al. [53] which found that biases when viewed as filters and
preconceptions can be both beneficial and detrimental depending
on the circumstances.

11 LIMITATIONS

Given our experiments, there are some limitations to the conclu-
sions we can draw. Our experiments were done with simulated
progressions, although modeled to reflect real world sampling. By
limiting the duration to 120 seconds, any time savings discussed
are relative to our experiment conditions. Further study with real
world progressive systems and expert users are needed to gauge the
potential time savings when calculations can last for hours or days.
Additionally, biases that are present during the progression can be
negated if the cost of waiting for the progression to complete is
small. Therefore even when exhibiting biased steering, a user can
wait for the final (correct) answer and bias will not affect accuracy.
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We did not explicitly test for participant’s understanding of error
bounds and statistical sampling. Although progressive visualization
users are often analysts with a statistical background, for this
study the details of error bounds and confidence intervals can be
largely ignored. Participants needed to primarily understand the
mean and be able to follow the trends of the progression, and the
actual visualization of uncertainty may not have played a large role
in decision making. As shown in other Mechanical Turk studies
assessing understanding of uncertainty via animations [49], [50],
participants were able to interpret and make reasonably accurate
estimates without special training.

With regards to steering, we did not explicitly test if participants
fully understood the action of steering the sampling. What we can
note however, is that nearly half of those in the Control Bias study
and nearly 2/3 of those in the Anchoring Bias study did perform
optimal steering (or abstained from interacting when appropriate).
This leads us to believe that steering can be used and understood
by non-experts.

12 CONCLUSION

In summary, we conducted four experiments to evaluate the benefits
and drawbacks of progressive visualization based on the four
cognitive biases suggested by Micallef et al. [13]]: uncertainty bias,
illusion bias, control bias and anchoring bias. Our results suggest
a cautious but promising use of progressive visualization for data
analysis:

« Ease of Use: Although progressive visualization is often thought
to be an “advanced” visualization technique [4], we found that
participants recruited from Amazon’s Mechanical Turk had little
trouble using the technique (over all of our experiments 43%
of participants rated themselves as progression visualization
novices). This is evident from the low error rates in task
completion (in all four experiments) and similar to other Turk-
based studies on uncertainty [49], [50f]. Further, many of the
participants were able to use steering correctly and chose not
to interact with the progressive visualization in Find Extremum
tasks in Experiments 3 and 4, which indicate a sophisticated
understanding of the caveats when using progressive visualiza-
tion. Together, these results suggest the potential for a wider
application of the progressive visualization technique beyond
expert users.

« Savings in Time: Across all four experiments, we found that
the participants were able to complete their tasks very quickly
(between 10 to 15 seconds) relative to the time it took for the
progression to complete (120 seconds). Although we cannot
directly extend this time reduction to other scenarios, our results
indicate the potential progressive visualization has in time
savings. Even in cases where the participants were under the
influence of control bias or anchoring bias and took twice as
much time as those not under a bias, our results indicate the use
of a progressive visualization could result in savings in time.

o Tradeoff in Accuracy: Savings in time come with the tradeoff
of possible reduction in accuracy. Across the three types of tasks
(Read Value, Derive Value, and Find Extremum), we observed
a reduction of approximately 10-15% in accuracy. Of the four
biases, we found that the bias that contributed the most to the
reduction in accuracy was the illusion bias in which a false-
pattern was introduced during the progression. In some cases, the
error rates in the illusion bias experiment could be as high as 40
to 50%. This finding is consistent with prior reports of the danger



of using a progressive visualization [6], [[11] where participants
made the wrong decisions after observing unintentional patterns
during the progression.

« Interaction Improves Confidence: In Experiments 1 and 2
where participants did not interact with the visualization, the
participants’ confidence in their answers correlated with the
accuracy of their responses. However, in Experiments 3 and 4, we
found that interacting with the progressive visualization increased
the participants’ confidence, even if the interactions resulted in
non-optimal steering that lead to longer task-completion times.

We believe these results encourage the use of progressive
visualization while accounting for potential biases, as well as lay
the foundation for future study of additional biases in progressive
visualization systems.
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