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Abstract—Multidimensional data have become ubiquitous and
are frequently encountered in situations where the information
is aggregated over multiple data atoms. The aggregation can
be over time or other features, such as geographical location.
We often have access to multiple aggregated views of the same
data, each aggregated in one or more dimensions, especially
when data are collected or measured by different agencies.
For instance, item sales can be aggregated temporally, and
over groups of stores based on their location or affiliation.
However, data mining and machine learning models benefit from
detailed data for personalized analysis and prediction. Thus, data
disaggregation algorithms are becoming increasingly important
in various domains. The goal of this paper is to reconstruct finer-
scale data from multiple coarse views, aggregated over different
(subsets of) dimensions. The proposed method, called PREMA,
leverages low-rank tensor factorization tools to fuse the multiple
views and provide recovery guarantees under certain conditions.
PREMA can tackle challenging scenarios, such as missing or
partially observed data, double aggregation, and even blind
disaggregation (without knowledge of the aggregation patterns)
using a variant of PREMA called B-PREMA. To showcase the
effectiveness of PREMA, the paper includes extensive experiments
using real data from different domains: retail sales, crime counts,
and weather observations.

Index Terms—Data disaggregation, tensor decomposition, ten-
sor mode product, multidimensional (tensor) data, multiview data

I. INTRODUCTION

DATA aggregation is the process of summing (or averag-
ing) multiple data samples from a certain dataset, which

results in data resolution reduction and compression. The most
common type of aggregation is temporal aggregation. For
example, the annual income is the aggregate of the monthly
salary. Aggregation over other attributes is also common, e.g.,
data get aggregated geographically (e.g., population of New
York) or according to a defined affiliation (e.g., employees of
Company X). The latter is known in economics as contem-
poraneous aggregation [1]. The different types of aggregation
are often combined, e.g., the number of foreigners who visited
different US states in 2019 can be aggregated in time, location
(states), and affiliation (nationality).

In some cases, it is the data collection process that limits
data resolution in the first place, e.g., Store X records item
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sales only on a monthly basis. Aggregated data also exist for
other reasons, the most important being data summarization.
In particular, aggregated data enjoy concise representations,
which is critical in the era of data deluge. Aggregation
also benefits various other purposes, including scalability [2],
communication and storage costs [3], and privacy [4]. Ag-
gregated data are common in a wide range of domains,
such as economics, health care [5], education [6], wireless
communication, signal and image processing, databases [7],
and smart grid systems [8].

Unfortunately, the favorable properties of data aggregation
come with major shortcomings. A plethora of data mining and
machine learning tasks strive for data in finer granularity (dis-
aggregated), thus data aggregation is undesirable. Along the
same lines, algorithms designed for personalized analysis and
accurate prediction significantly benefit from enhanced data
resolution. Analysis results can differ substantially when using
aggregated versus disaggregated data. Particularly, studies in
the field of economics show that data aggregation results in
information loss and misleading conclusions at the individual
level [9], [10]. Furthermore, in supply chain management,
researchers have concluded that aggregating sales over time,
products, or locations has a negative impact on demand
forecasting [11]. On the other hand, disaggregation prior to
analysis is very effective in environmental studies [12], and
leads to richer findings in learning analytics [13].

The previous discussion reveals a clear trade-off between
the need for data aggregation and the benefit of disaggregated
data. This has motivated numerous works in developing algo-
rithms for data disaggregation. In general, the task of data
disaggregation is an inverse ill-posed problem. In order to
handle the problem, classic techniques exploit side information
or domain knowledge, in their attempt to make the problem
overdetermined and consequently enhance the disaggregation
accuracy. Some common prior models, imposed on the target
higher resolution data, involve smoothness, periodicity [14],
and non-negativity plus sparsity over a given dictionary [15].
Such prior constraints are invoked when no other information
is available about the data to be disaggregated.

An interesting question arises when a dataset is aggregated
over more that one dimension. This is a popular research
problem in the area of business and economics going back
to the 70’s [16], [17]. In this case temporal and contem-
poraneous aggregated data are available [18]. For instance,
given a country consisting of regions, we are interested in
estimating the quarterly gross regional product (GRP) values,
given the annual GRP per region (temporal aggregate) and the
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Fig. 1: PREMA is effective with real data.

quarterly national series (contemporaneous aggregate) [19].
Another notable example appears in healthcare, where data are
collected by national, regional, and local government agencies,
health and scientific organizations, insurance companies and
other entities, and are often aggregated in many dimensions
(e.g., temporally, geographically, or by groups of hospitals),
often to preserve privacy [5].

Algorithms have been developed to integrate the multiple
aggregates in the disaggregation task [16], [17], [18], [19],
[20]. The general disaggregation problem is ill-posed, which is
clearly undesirable, even with multiple aggregates. Therefore,
the majority of these works resort to adopting linear regression
models with priors and additional information. However, it is
unclear whether these formulations can identify the true disag-
gregated dataset under reasonable conditions. In this context,
identifiability has not received the attention it deserves, likely
because guaranteed recovery is considered mission impossible
under realistic conditions. With multiview data aggregated in
different ways, however, the problem can be well-posed, as
we will show in this paper.

Our work is inspired by the following question: Is the
disaggregation task possible when the data are: 1) multidi-
mensional, and 2) observed by different agencies via diverse
aggregation mechanisms? This is a well motivated problem
due to the ubiquitous presence of data with multiple dimen-
sions (three or more), also known as tensors, in a large number
of applications. Note that aggregation often happens in more
than one dimensions of the same data as in the previously
explained examples. The informal definition of the problem is
given as follows:

Informal Problem 1 (Multidimensional Disaggregation):
• Given: two (or more) observations of a multidimensional

dataset, each representing a different coarse view of the
same data aggregated in one dimension (e.g., temporal
and contemporaneous aggregates).

• Recover: the data in higher resolution (disaggregated) in
all the dimensions.

We propose PREMA: a framework for fusing the multiple
aggregates of multidimensional data. The proposed approach
represents the target high resolution data as a tensor, and
models that tensor using the canonical polyadic decomposition
(CPD) to reduce the number of unknowns, while capturing
correlations and higher-order statistical dependencies across
dimensions. PREMA employs a coupled CPD approach and
estimates the low-rank factors of the target data, to perform
the disaggregation task. This way, the originally ill-posed dis-
aggregation problem is transformed to an overdetermined one,
by leveraging the uniqueness properties of the CPD. PREMA

is flexible in the sense that it can perform the disaggregation
task on partially observed data, or data with missing entries.
This is practically important as partially observed data appear
often in real-world applications.

Our PREMA approach takes into account several well-
known challenges that often emerge in real-life databases: the
available measurements can have different scales (e.g., mixed
monthly and yearly sums), gaps in the timeline (i.e., periods
with no value reported), or time overlap (i.e., periods covered
by more that one measurement). We also propose a variant
of PREMA called B-PREMA that handles the disaggregation
task in cases where the aggregation pattern is unknown.
The proposed framework not only provides a disaggregation
algorithm, but it also gives insights that can be exploited in
creating more accurate data summaries for database applica-
tions. Interestingly, our work also provides insights on when
aggregation does not preserve anonymity.

We evaluated PREMA on real data from different domains,
i.e., retail sales, crime counts, and weather observations.
Experimental results show that the proposed algorithm reduces
the disaggregation error of the best baseline by up to 67%.
Figure 1 shows the Normalized Disaggregation Error (NDE)
of PREMA and the baselines with real data of the weekly
sales counts of items in different stores of a retail company
(CRA dataset, described in Section IV-A). We are given two
observations: 1) monthly sales aggregates per store, and 2)
weekly sales aggregated over groups of stores (94 stores are
geographically divided into 18 areas). PREMA outperforms all
the competitors, even if the aggregation pattern is unknown
(B-PREMA)—all the baselines use the aggregation informa-
tion. The fact that the naive mean (Mean) gives a large error,
indicates that the data are not smooth and the task is difficult.

In summary, the contributions of our work are:
• Formulation: we formally define the multidimensional

data disaggregation task from multiple views, aggregated
across different dimensions, and provide an efficient
algorithm.

• Identifiability: the considered model can provably trans-
form the original ill-posed disaggregation problem to an
identifiable one.

• Effectiveness: PREMA recovers data with large improve-
ment over the competing methods on real data.

• Unknown aggregation: the proposed model works even
when the aggregation mechanism is unknown.

• Flexibility : PREMA can disaggregate partially observed
data.

Reproducibility: The datasets we use are publicly available;
our code is also available online1.

Preliminary results of part of this work were presented in
the Proceedings of the Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD) 2020 [21]. In this jour-
nal version, the problem formulation is generalized to handle
aggregated data with missing entries. Although accounting
for missing entries makes the problem more complicated,
our proposed models and careful algorithmic design yield
an algorithmic framework that is efficient and comparable to

1Code is available at https://github.com/FaisalAlmutairi/Prema
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TABLE I: Symbols and Definitions
Symbol Definition
x, X, X Vector, matrix, tensor

Xn Mode-n matricization (unfolding)
‖.‖F Frobenius norm of a matrix/tensor
XT Transpose of matrix X

vec(.) Vectorization operator of a matrix/tensor
[[.]] Kruskal operator, e.g., X ≈ [[A,B,C]]
◦ Outer product
⊗ Kronecker product
� Khatri-Rao product (column-wise Kronecker)
~ Hadamard (element-wise) product

[21] (which does not handle missing entries), both in terms
of accuracy and computational complexity. We also provide
identifiability proofs, detailed model and complexity analysis,
and conduct extensive experiments.

The rest of the paper is structured as follows. We explain
the needed background and the related work in Section II,
and introduce our proposed method in Section III. Then,
we explain our experimental setup in Section IV and show
the experimental results in Section V. Finally, we summarize
conclusions and take-home points in Section VI.

II. BACKGROUND & RELATED WORK
In this section, we review some tensor algebraic tools

utilized by the proposed framework, define the disaggregation
problem, and provide an overview of the related work. Table I
summarizes the main symbols and operators used throughout
the paper.

A. Tensor Algebra
Tensors are multidimensional arrays indexed by three or

more indices, (i, j, k, ...). A third-order tensor X ∈ RI×J×K
consists of three modes: rows X(:, j, k), columns X(i, :, k),
and fibers X(i, j, :). Moreover, X(i, :, :), X(:, j, :), and X(:, :
, k) denote the ith horizontal, jth lateral, and kth frontal slabs
of X, respectively.
Tensor decomposition (CPD/PARAFAC): The outer product
of two vectors (a ◦ b) results in a rank-one matrix. A rank-
one third-order tensor X ∈ RI×J×K is an outer product of
three vectors: X(i, j, k) = a(i)b(j)c(k), ∀i ∈ {1, ..., I}, j ∈
{1, ..., J}, and k ∈ {1, ...,K}, i.e., X = (a ◦ b ◦ c), where
a ∈ RI , b ∈ RJ , and c ∈ RK . The Canonical Polyadic
Decomposition (CPD) (also known as PARAFAC) of a third-
order tensor X ∈ RI×J×K decomposes it into a sum of R
rank-one tensors [22], i.e.,

X =
R∑
r=1

ar ◦ br ◦ cr (1)

where R is the tensor rank and represents the minimum
number of outer products needed, and ar ∈ RI , br ∈ RJ ,
and cr ∈ RK . For brevity, we use X = [[A,B,C]] to
denote the relationship in (1). A ∈ RI×R, B ∈ RJ×R, and
C ∈ RK×R are the factor matrices with columns ar, br and
cr respectively, i.e., A = [a1 a2 . . . aR], and likewise for B
and C.
CPD uniqueness: An important property of the CPD is that
A, B, C are essentially unique under mild conditions. CPD
identifiability is established by the following theorem:

Fig. 2: Illustration of mode product with (Iu < I), (Jv < J),
and (Kw < K).

Theorem 1: [23] Let X = [[A,B,C]] with A : I × R,
B : J ×R, and C : K ×R. Assume I ≥ J ≥ K without loss
of generality. If R ≤ 1

16JK, then the decomposition of X in
terms of A,B, and C is essentially unique, almost surely –
i.e., for almost every (A, B, C) except for a set of Lebesgue
measure zero.

Essential uniqueness means that A, B, C are unique up to
common column permutation and scaling (scaling a column
of one matrix that is compensated by counter-scaling the
corresponding column of another matrix).

The CPD is also essentially unique, even if the tensor
is incomplete (has missing entries). Several results have es-
tablished CPD identifiability of tensors with missing entries,
considering fiber sampled [24], regularly sampled [25] or
randomly sampled tensors [26]. The conditions for uniqueness
are in general stricter compared to the case where the full
tensor is available.

Tensor matricization (unfolding): There are three different
ways to unfold (obtain a matrix view of) a third-order tensor
X of size I × J ×K. First, the mode-3 unfolding is obtained
by the vectorization and parallel stacking of the frontal slabs
X(:, :, k) as follows [27]

X3 = [vec(X(:, :, 1)), ..., vec(X(:, :,K))] ∈ RIJ×K . (2)

Equivalently, we can express X3 using the CPD factor matri-
ces as X3 = (B�A)CT . In the same vein, we may consider
horizontal slabs to express the matricization over the first mode

X1 := [vec(X(1, :, :)), ..., vec(X(I, :, :))]

= (C�B)AT ∈ RJK×I
(3)

or lateral slabs to obtain mode-2 unfolding

X2 := [vec(X(:, 2, :)), ..., vec(X(:, J, :))]

= (C�A)BT ∈ RIK×J .
(4)

Mode product: It is the operation of multiplying a tensor by a
matrix in one particular mode, e.g., mode-1 product of matrix
U ∈ RIu×I and tensor X ∈ RI×J×K corresponds to multiply-
ing every column X(i, :, k) of the tensor by U [28]. Similarly,
mode-2 (mode-3) product corresponds to multiplying every
row (fiber) of X by a matrix. Applying mode-1, mode-2, and
mode-3 products to a third-order tensor X ∈ RI×J×K jointly
is represented using the following notation:

Y = X×1 U×2 V ×3 W ∈ RIu×Jv×Kw (5)

where “×n” denotes the product over the nth mode, U ∈
RIu×I , V ∈ RJv×J , and W ∈ RKw×K . Mode-1 multiplica-
tion results in reducing the tensor size in the first dimension if
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(Iu < I), similarly with the other modes; see Fig. 2. Moreover,
if rows of U are binary vectors with more than one 1, then
each horizontal slab of Y is a sum of horizontal slabs of X
that correspond to the 1’s in a particular row in U. In the
same vein, V and W could aggregate the lateral and frontal
slabs, respectively. The mode product is also reflected in the
CPD of the tensor, i.e., if X in the operation in (5) admits
X = [[A,B,C]], then Y = [[UA,VB,WC]].

B. Disaggregation Problem

The goal of the disaggregation task is to estimate a particular
dataset in a higher resolution, given observations in lower
resolution. In this subsection we present a high level linear
algebraic view of disaggregation. This reveals the challenge of
the task, which is the relationship between equations versus
unknowns; detailed analysis follows in the next section.

In the disaggregation problem, we are given a set of
measurements y ∈ RIu aggregated over the dataset x ∈ RI ,
and our goal is to find x. This can be cast as a linear inverse
problem y = Ux, where U ∈ RIu×I is a ‘fat’ aggregation
matrix that relates the measurements to the unknown variables.
In this work, we consider the case where the target high-
resolution data are multidimensional (tensor). Specifically,
let X ∈ RI×J×K be the target high-resolution third-order
tensor. In the considered problem, we are given two sets
of observations, each aggregated over one or more different
dimension(s). This is common when data are reported by
different agencies, resulting in multiple views of the same
information. The key insight is that the given aggregates can be
modeled as mode product(s) of X by an aggregation matrix in
a particular mode(s). To see this, consider tensor X ∈ R4×2×2,
a simple example of a set of observations aggregated over the
first mode can be expressed as

[
1 1 0 0
0 0 1 1

]
︸ ︷︷ ︸

U∈R2×4

×


x111 x121 x112 x122
x211 x221 x212 x222
x311 x321 x312 x322
x411 x421 x412 x422


︸ ︷︷ ︸

XT
1 ∈R4×(2×2)

=

[
y111 y121 y212 y122
y211 y221 y212 y222

]
︸ ︷︷ ︸

YT
1 ∈R2×(2×2)

(6)

where X1 and Y1 are mode-1 unfolding of X and Y,
respectively. The same idea applies when the aggregation is
over the second (third) mode using mode-2 (mode-3) product,
respectively. In practical settings, the number of available
aggregated measurements is much smaller than the number of
variables (i.e., Iu � I), resulting in an under-determined, ill-
posed problem. This is the major challenge of disaggregation,
even when more than one set of aggregates are available.
An even more challenging case appears when one of the
available observation sets is aggregated over more than one
mode/dimension simultaneously (e.g., Y ∈ RIu×Jv×K , where
Iu < I and Jv < J ). For instance, sales are reported for
categories rather than individual items and over groups of
stores. This is a double aggregation over stores and items,

and the proposed method can work under such a challenging
scenario. Moreover, the aggregated observations might be
partially observed (i.e., Y1 in (6) has missing entries). This
makes the problem more complicated, however our approach
efficiently handles data with missing entries.

C. Related Work

Data disaggregation and fusion: The problem of data in-
tegration and fusion [29], [30] from multiple sources has
attracted the attention of several communities, due to the
increasing access to all kinds of data, especially in database
applications. A very challenging task in data integration, is
that of recovering a sequence of events (e.g., time series)
from multiple aggregated reports [31], [32], [15], [33]. A
common approach is to formulate the problem as linear least
squares as in (6). In practice, however, the number of available
aggregated samples is often significantly smaller than the
length of the target series, resulting in an under-determined
system of equations. To resolve this, previous algorithms
have resorted to Tikhonov-type regularization of the ill-posed
problem to impose some domain knowledge constraints, e.g.,
smoothness and periodicity [14].

Fusing multiple observations aggregated in different dimen-
sions for disaggregation purposes is a well studied task in the
field of finance and economics [16], [17], [18], [19], [20]. The
considered approaches try to exploit linear relations between
the target series in high resolution and the available aggregated
measurements. However, this results in an under-determined
linear system, even with multiple aggregates. Therefore, the
majority of these works assume linear regression models with
priors and additional information. Moreover, it is unclear
whether the assumed models are identifiable, i.e., the model
is not guaranteed to disaggregate the data.
(Coupled) tensor factorization: Time series analysis, for vari-
ous applications, is moving towards modern high-dimensional
methods. For example, matrix and tensor factorization have
been used in demand forecasting [34], mining and informa-
tion extraction from complex time-stamped series [35], and
prediction of unknown locations in spatio-temporal data [36].

Data share common dimension(s) in a wide spectrum of
applications. In such cases, coupled factorization techniques
are commonly used to fuse the information for various ob-
jectives. For example, coupled factorization is often employed
to integrate contextual information into the main data [37].
In recommender systems, for instance, we have a (user ×
item × time) tensor and a (user × features) matrix. In this
case, the tensor and the features matrix are coupled in the
user mode [38]. Coupled tensor factorization has also been
proposed for image processing [39], remote sensing [40], and
medical imaging problems [41], [25]. Closest to our work
is the approach in [42], which employs a coupled CPD to
fuse a hyperspectral image with a multispectral image, to
produce a high spatial and spectral resolution image. To our
knowledge, this work and its conference version [21] are the
first that propose a tensor factorization approach to tackle data
disaggregation applications.
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Fig. 3: Overview of PREMA.

III. PROPOSED FRAMEWORK: PREMA

Multidimensional data are indexed by multiple indices, e.g.,
(i, j, k). Therefore, they can naturally be represented as a
tensor X ∈ RI×J×K . The different modes represent the
physical dimensions of the data (e.g., time stamps, locations,
items, users). For the sake of simplicity of exposition, we focus
on three-dimensional data in our formulations and algorithms.
However, the proposed framework can handle more general
cases with data of higher dimensions.

In the remainder of this section, we give a detailed de-
scription and analysis of PREMA. Particularly, we state the
problem and explain the proposed model in high level in
Section III-A, formulate PREMA in Section III-B, and present
the main algorithm in Section III-C. We discuss the complexity
of PREMA in Section III-D, and identifiability in section III-E.
Finally, we introduce B-PREMA in Section III-F, to tackle
the disaggregation problem in the case where the aggregation
matrices are unknown.

A. Problem & Model Overview

Multidimensional aggregation is common when data are col-
lected or released by different agencies, resulting in multiple
views of the same dataset. We will explain the concept with
the example of retail sales, which we use in the experiments.
Estimating the retail sales in higher resolution enables accurate
forecasting of future demand, and planing of economically
efficient commerce. There are two sources of data used for
this forecasting task: 1) Point of Sale (POS) data at the
store-level, commonly aggregated in time (temporal aggregate
Yt); and 2) historical orders made to the suppliers by the
retailers’ Distribution Centers (DC orders), aggregated over
their multiple stores (contemporaneous aggregate Yc). In
particular, DC order data are immediately available to the
suppliers, whereas the POS data are owned by the retailers.
Both DC order and POS data are used to forecast demand, and
especially POS data are vital in predicting future orders [43].
For that reason, many retailers share POS with their suppliers
to assist in forecasting orders and avoid shortage or excess in
inventory [44]. In a more restricted scenario, the second source
collects information about each category of items rather than
each item individually. Oftentimes, data are partially observed,
i.e., Yt and Yc have missing entries. In this example, not all

items are offered in all stores during all the considered time
stamps. The question that arises is whether we can fuse these
sources to reconstruct high-resolution data in stores, items, and
time dimensions.

Formally, we are interested in the following:
Problem 1 (Multidimensional Disaggregation):
• Given: two aggregated views of three-dimensional data

X ∈ RI×J×K : Yt ∈ RI×J×Kw , and Yc ∈ RIu×J×K (or
Yc ∈ RIu×Jv×K ), with Iu < I , Jv < J , and Kw < K,
and possibly missing entries.

• Recover: the original disaggregated multidimensional
data X ∈ RI×J×K .

Note that each aggregated view is the result of the mode
product of the target data with an aggregation matrix. In
particular Yt = X ×3 W, where W ∈ RKw×K is an
aggregation matrix with Kw < K, and Yc = X×1 U, where
U ∈ RIu×I is an aggregation matrix with Iu < I . In the
case where one view is jointly aggregated in 2 dimensions,
e.g., sales are aggregated over groups of stores and groups
of items, Yc = X ×1 U ×2 V, where V ∈ RJv×J is an
aggregation matrix with Jv < J .

PREMA aims to fuse the different available aggregates in
order to estimate the multidimensional data in the desired
higher resolution. At a higher level, the main idea behind
the proposed method is that the target multidimensional data,
X ∈ RI×J×K , admits a CPD model. Therefore, it can
be well approximated using its CPD factors A,B,C (i.e.,
X = [[A,B,C]]). Exploiting the low-rank modeling helps in
reducing the number of unknown variables, especially if the
data are highly correlated. Then, the CPD factors of the two
aggregated observations are

Yt = [[A,B,WC]], (7)
Yc = [[UA,VB,C]]. (8)

PREMA learns the factor matrices A, B, and C by applying a
coupled CPD model on the available aggregates with respect
to the available observations. Note that up to this point, we
have not explained how missing entries in Yt and Yc are
treated, which will be discussed in the next section. Figure 3
illustrates the high level picture of our model.
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B. PREMA: Formulation

If we have the original (disaggregated) data in the tensor
X with missing entries, a common way to estimate its CPD
factors is by adopting a least squares criterion to minimize
the difference between the original tensor X and its CPD
[[A,B,C]] with respect to the available (observed) entries. This
can be done by adding a weight tensor that masks the available
entries, i.e.,

minimize
A,B,C

‖Ω ~ (X− [[A,B,C]])‖2F (9)

where Ω is defined as

Ω(i, j, k) =

{
1, if X(i, j, k) is available
0, otherwise.

(10)

Fortunately, many real life data exhibit low-rankness due to the
correlation between the elements within each dimension (e.g.,
stores, items, time stamps), i.e., R in (1) is small relative to
the size of the tensor.

In the considered disaggregation task, we only have aggre-
gated views of the multidimensional data (i.e., compressed
version of the target tensor X). These aggregated views can
have missing elements for various application-specific reasons
such as privacy, lack of data collection, or absence of events.
We use the fact that the aggregated tensors share the same
factors (up to aggregation) as shown in equations (7) and (8)
to jointly decompose Yt and Yc by means of coupled tensor
factorization. To this end, we obtain the following formulation:

min
A,B,C

F(A,B,C) := ‖Ωt ~ (Yt − ([[A,B,WC]])‖2F

+ ‖Ωc ~ (Yc − ([[UA,VB,C]])‖2F
(11)

where Ωt ∈ {0, 1}I×J×Kw and Ωc ∈ {0, 1}Iu×Jv×K are
weight tensors with ones at the indices of the available entries
in Yt and Yc, respectively, and zeros elsewhere. As a result,
the CPD factors A, B, and C are learned with respect to the
available data. One could add a regularization parameter λ
to control the weight between the two terms, however, we
observed that it does not significantly affect the disaggre-
gation performance. Enforcing non-negativity constraints on
the factors seems natural if we are dealing with count data,
however, we empirically observed that it does not improve the
disaggregation accuracy. Note that if we have additional aggre-
gated observations, we can incorporate them using the same
concept. Although (11) assumes that the tensors are three-
dimensional, we can handle higher-dimensional data following
the same idea of coupling factors and mode product over any
aggregated mode by the respective aggregation matrix. For
example, assume that the data are four-dimensional and we
observe an additional tensor Ya = X ×4 L, where L is an
aggregation matrix. Then, we add a fourth factor matrix D
to the factorization terms in (11) (i.e., the first term becomes
Yt = [[A,B,WC,D]]). In this case, we also add a term that
minimizes the squared error in Ya = [[A,B,C,LD]].

C. PREMA: Algorithm

The optimization in (11) is non-convex, and NP-hard in
general. To tackle it, we derive a Block Coordinate Descent

(BCD) algorithm that updates the three variables in an alternat-
ing fashion. Starting from initial factors A(0), B(0), and C(0),
at every iteration k ∈ N, we cyclically update each factor while
fixing the other two. Each update is a step in the direction of
the negative gradient of F with respect to the corresponding
factor. To simplify the expressions, let us define Ã = UA,
B̃ = VB, and C̃ = WC. The partial derivative of the above
objective function F w.r.t. A is as follows—the derivations
are deferred to Appendix A.

∂F
∂A

= ∇AF = 2
(
Ωt

1 ~ ((C̃�B)AT −Yt
1)︸ ︷︷ ︸

Et

)T (
C̃�B

)
+ 2UT

(
Ωc

1 ~ ((C� B̃)ÃT −Yc
1)︸ ︷︷ ︸

Ec

)T (
C� B̃

)
(12)

where Yt
1, Yc

1, Ωt
1, and Ωc

1 are mode-1 unfolding of the
corresponding tensors. Similarly, we derive the derivatives of
F w.r.t. B and C using mode-2 and mode-3 unfoldings of the
tensors, respectively, and get the following equations:

∇BF = 2
(
Ωt

2 ~ ((C̃�A)BT −Yt
2)
)T (

C̃�A
)

+ 2VT
(
Ωc

2 ~ ((C� Ã)B̃T −Yc
2)
)T (

C� Ã
)
,

(13)

∇CF = 2WT
(
Ωt

3 ~ ((B�A)C̃T −Yt
3)
)(

B�A
)

+ 2
(
Ωt

3 ~ ((B̃� Ã)CT −Yc
3)
)T (

C� Ã
)
.

(14)

In the case of higher-dimensional data, mode-4 unfolding is
used to derive the gradient w.r.t. the fourth factor, and so on
for more dimensions. With the above gradient expressions at
hand, we have established the update direction for each block
(factor), which is the negative gradient of F with respect to
each factor:

A = A− α∇AF , (15)
B = B− β∇BF , (16)
C = C− γ∇CF . (17)

We now seek to select the step-size terms α, β, and γ. We
use the exact line search approach for this task. At every
iteration k ∈ N, α is chosen to minimize F along the line
{A− α∇AF|α ≥ 0}

argmin
α≥0

F
(
A− α∇AF

)
. (18)

Luckily, in our case, the above optimization can be solved opti-
mally without extra heavy computations. The optimal solution
to (18) is as follows (refer to Appendix B for derivations).

α = max
(
0,

eTt gt + eTc gc
gTt gt + gTc gc

)
, (19)

where et = vec(Et), ec = vec(Ec), with Et and Ec are as
defined in (12), and

gt = vec(Ωt
1 ~ ((C̃�B)∇AFT )), (20)

gc = vec(Ωc
1 ~ ((C� B̃)(U∇AF)T )). (21)

Note that Et and Ec are already computed in (12). We have
also computed (C̃�B) and (C�B̃) in (12), which are needed

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JSTSP.2021.3056918

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



PREMA: PRINCIPLED TENSOR DATA RECOVERY FROM MULTIPLE AGGREGATED VIEWS 7

to obtain gt amd gc, respectively. Thus, the exact line search
step only requires:
• Multiplying the transpose of the gradient ∇AF ∈ RI×R

by a KwJ ×R matrix in (20) (and U∇AF ∈ RIu×R by
a KJv ×R matrix in (21)).

• Computing the inner products in (19).
In a similar fashion, β and γ are obtained by solving the

following optimization functions, respectively:

β = argmin
β≥0

F
(
B− β∇BF

)
, (22)

γ = argmin
γ≥0

F
(
C− γ∇CF

)
. (23)

The solutions to the above are similar to the case of α, but
with mode-2 and mode-3 tensor unfoldings. We provide an
illustrative example of deriving the solution to (18), (22)-(23)
in Appendix B. The overall steps of PREMA are summarized
in Algorithm 1.

Algorithm 1 : PREMA (11)

input: Yt, Yc, U, V, W, R
Initialize: A, B, C (refer to Appendix C)
Repeat
• Update A using (15), (12), and (19)
• Update B using (16), (13), and (22)
• Update C using (17), (14), and (23)

Until criterion is met (max. #iterations)
output: A, B, C

We observed empirically that a careful initialization for the
factor matrices in Algorithm 1 results in a better disaggrega-
tion accuracy, and substantially reduces the operational time
(i.e., reduces the required number of iterations). Thus, we
design a careful initialization method based on CPD. First, we
set the missing entries to zero, then perform CPD on one tensor
to get initial estimates of two factors. Then, we solve a system
of linear equations using the other tensor to obtain an initial
estimate of the third factor. For instance, from CPD(Yt) we get
A, B, and C̃. Then, we obtain C by solving the linear system
Yc

3 =
(
(VB)� (UA)

)
CT . This way, we establish an initial

guess for A, B, and C. We provide detailed initialization steps
in Appendix C.

D. PREMA: Complexity Analysis

The complexity of PREMA is determined by the matrix
multiplication operations required to obtain the gradients and
the step size terms. The products in the gradient expressions
have the dominant computational cost. Therefore, we break
down the computational complexity below using the gradient
w.r.t. A in (12); the complexity of computing the gradients
w.r.t B and C are similar. Recall (12):

∇AF = 2
(
Ωt

1 ~ ((C̃�B)AT −Yt
1)︸ ︷︷ ︸

Et∈RJKw×I

)T (
C̃�B

)
+ 2UT

(
Ωc

1 ~ ((C� B̃)ÃT −Yc
1)︸ ︷︷ ︸

Ec∈RJvK×Iu

)T (
C� B̃

)
.

1) Computing the two Khatri-Rao products costs
O(KwJR+KJvR), where R is the rank.

2) The cost of multiplying (C̃�B) with AT , and (C�B̃)
with ÃT is O(IJKwR+ IuJvKR).

3) The element-wise products (~) cost O(nnz(Ωt) +
nnz(Ωc)).

4) Multiplying ET
t and ET

c with the Khatri-Rao products
costs O(R(nnz(Ωt) + nnz(Ωc))).

5) In the worst case where U and Ωc
1 have no zeros, the

cost of multiplying UT with ET
c (C� B̃) is O(IIuR).

The dominant cost terms are in the 2nd point above. Thus,
the overall complexity is O(IJKwR+ IuJvKR). Since R is
usually very small relative to the size of the tensors in real
data, the complexity is linear with the size of Yt and Yc.

E. PREMA: Identifiability Analysis
After introducing the model and the algorithm, we establish

the identifiability of the PREMA model. As mentioned earlier,
the multidimensional disaggregation task is an inverse ill-
posed problem. Considering a low rank CPD model on the
data, results in a tensor disaggregation problem with a unique
solution. In other words, the optimal solution of (11) is
guaranteed to be unique, under mild conditions, and identify
the original fine-resolution tensor almost surely. For the sake of
simplicity we first assume that Yt does not have any missing
values.

Proposition 1: Let X ∈ RI×J×K be the target tensor to
disaggregate with CPD X = [[A,B,C]] of rank R. Also
let Yt ∈ RI×J×Kw = X ×3 W and Yc ∈ RIu×Jv×K =
Ωc~(X×1U×2V) be the two aggregated sets of observations.
Assume that A, B and C are drawn from some absolutely
continuous joint distribution with respect to the Lebesque
measure in R(I×J×K)R, and that (A?,B?,C?) is an optimal
solution to problem (11). Also assume that the number of
observed entries at each frontal slab of Yc is greater than
or equal to R. Then, X̂ = [[A,B,C]] disaggregates Yt, Yc

to X almost surely if R ≤ 1
16 min{IJ, IKw, JKw, 16IuJv}.

The proof is intuitive and parallels recent results obtained
in the hyperspectral imaging literature [42]. Proof sketch: We
use Theorem 1 to claim identifiability of Yt. Then factors
A, B can be identified up to common permutation and scaling.
The solution for C is obtained via solving an overdetermined
linear system of equations using Yc. This way permutation
and scaling is preserved and the target tensor is recovered as
X = [[A,B,C]]. In the case where Yt has missing entries,
identifiability depends on the pattern of missings. Specifically,
the results in [24], [25], [26] can be employed, when the avail-
able measurements are fiber, regularly or randomly sampled
respectively. The conditions are more restrictive compared to
the case of fully observed tensor, but guarantee identifiability
of A, B up to common permutation and scaling. The solution
for C is the same as in the previous case. The detailed proof
is presented in Appendix D.

F. B-PREMA: PREMA with Unknown Aggregation
In most practical applications, the aggregation details are

known. However, there exist cases with limited knowledge on
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how the data are aggregated, i.e., we do not know (or have
partial knowledge of) U, V, and W. We consider the case
where each available view is aggregated in one dimension,
and propose the following formulation to get the factors of
the disaggregated tensor (A, B, and C):

min
A,B,C,Ã,C̃

L(A,B,C, Ã, C̃) := ‖Ωt ~ (Yt − [[A,B, C̃]])‖2F

+ ‖Ωc ~ (Yc − [[Ã,B,C]])‖2F + µR(C, C̃)
(24)

where Ã = UA, and C̃ = WC are treated as separate
variables since we do not know U and W, and R is a
regularization function. This problem is more challenging than
(11) as the number of variables has been increased, with the
same number of equations. Another challenge is that there is
a scaling ambiguity between the factors of the two tensors if
we omit the regularization term in (24). Scaling and counter-
scaling the factors of the tensor Yt (or Yc) does not change
its estimated value, or the value of the cost function in (24).
For example, scaling A by a λ, and C̃ by 1/λ does not change
the value of Ŷt

1 = (C̃ �B)AT , and as a result, it gives the
same cost value. However, this scaling changes the estimated
value of the disaggregated tensor X̂1 = (C � B)AT . This
is because tensor X shares factors with both Yt and Yc. To
overcome this, we observe that the temporal aggregation W
in most aggregated data is non-overlapping and includes all
the time ticks2. This means that the respective column sums
of C and C̃ should be equal. We exploit this observation by
choosing the following regularization term for (24)

R(C, C̃) = ‖1TC− 1T C̃‖22,

which reconciles for the scaling ambiguity.
In order to tackle the problem above, we derive a BCD

algorithm, in the same fashion as Algorithm 1. The steps are
summarized in Algorithm 2. We alternate between updating
the five variables. In each update, we take a step in the
direction of the negative gradient w.r.t. the corresponding vari-
able. The derivations of the gradients are shown in Appendix
A. The step size parameters α, ρ, β, γ, and σ are chosen
using the exact line search explained in Sec. III-C above, and
Appendix B.

To initialize the factors in Algorithm 2, we set the miss-
ing entries to zero, then we use Tensorlab and compute
(CPD(Yc)) to get Ã, B, and C. To get an initial estimate of
C̃, we exploit the fact that the temporal aggregates are the
summation over consecutive time stamps in most real data.
Therefore, we sum every consecutive w = K

KW
rows in C.

This way we approximate the temporal aggregation process
in a very intuitive way, the true aggregation matrix being
unknown3.

IV. EXPERIMENTAL DESIGN

In this section, we provide a detailed description of the setup
we use in our experiments. First, we describe the data used in

2Known overlap, e.g., 50%, can be treated similarly – as in this case
every atom is counted twice.

3In the experiments, we make sure that the true temporal aggregation and
the estimated one do not align.

Algorithm 2 : B-PREMA

input: Yt, Yc, R, µ
Initialize: Ã, B, C, ← CPD(Yc)
C̃(kw, :)←

∑w×kw
k=w(kw−1)+1 C(k, :)

A← solve Yt
3 = A(C̃�B)T

Repeat
• α← argminα≥0 L(A− α∇AL); A = A− α∇AL
• ρ← argminρ≥0 L(Ã− ρ∇ÃL); Ã = Ã− ρ∇ÃL
• β ← argminβ≥0 L(B− β∇BL); B = B− β∇BL
• γ ← argminγ≥0 L(C− γ∇CL); C = C− γ∇CL
• σ ← argminσ≥0 L(C̃− σ∇C̃L); C̃ = C̃− σ∇C̃L

Until termination criterion is met (max. #iterations)
output: A, B, C

the experiments. Then, we explain the aggregation applied on
these data to generate aggregated views. Last, we present the
evaluation metrics and baselines used for comparison.

A. Datasets

We evaluate PREMA using the following public datasets,
which are readily available online:

DFF4: Retail sales data, called Dominick’s Finer Foods (DFF),
collected by the James M. Kilts Center, University of Chicago
Booth School of Business. DFF used to be a grocery store
chain based in the Chicago area until all of its stores were
closed. Sales, in this dataset, are divided into category-specific
files. In particular, each file contains the weekly sales (i.e.,
number of sold units) of items belonging to a specific cat-
egory (e.g., cheese, cookies, soft drinks, etc) in about 100
stores. DFF data contain the geographical locations of the
different stores, which we use to aggregate stores into groups.
We create ground truth three-dimensional tensors, using 10
different category-specific datasets. This way, a (stores ×
items × weeks) tensor is formed for each category. These
10 department-specific datasets are listed as the first group
in Table II—we use the three bold letters acronym for these
categories in the results. We pick the 50 most popular items
from each category. Note that this results in an ‘incomplete’
tensor, owing to the fact that not all items were offered in
all stores, or they were offered only for part of the time in
some stores. These tensors have varying statistics (see Table
II), which allows thorough testing and analysis. We also form
an additional (stores × items × weeks) tensor that contains
items from all the 10 different categories combined, 50 items
from each (namely Mixed DFF in Table II).

Walmart5: Historical weekly sales data for 99 different de-
partments in 45 Walmart stores located in different regions.
A (stores × departments × weeks) tensor is created from
these data. The resulting tensor is complete and has no missing
entries. The size of each store (in square feet) is included in
the data (we use this information to form groups of stores).

4https://www.chicagobooth.edu/research/kilts/datasets/dominicks
5https://www.kaggle.com/c/walmart-recruiting-store-sales-

forecasting/data
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TABLE II: Summary of datasets and their statistics.
Dataset (X) Size Max Avg SD % (missing entries) % (zero entries)
BATh Soap 93× 50× 266 52 0.79 1.34 44.73 33.37

Bottled JuiCes 93× 50× 393 12288 13.76 50.08 8.79 9.19
CHEeses 93× 50× 393 18176 26.65 88.29 8.59 5.51
COOkies 94× 50× 390 14080 16.00 56.86 9.81 7.57
CRAckers 94× 50× 382 14080 8.21 29.61 14.21 7.57

Canned SOup 93× 50× 379 34494 40.46 133.42 8.64 4.54
Fabric SoFteners 93× 50× 397 7168 5.68 18.84 18.64 27.48

GROoming 93× 50× 272 232 1.94 2.94 7.66 32.66
Paper ToWels 93× 50× 389 19712 45.36 117.82 36.72 23.49
Soft DRinks 93× 50× 391 18944 48.81 155.09 8.58 11.18
Mixed DFF 93× 500× 230 17610 19.01 71.30 15.30 17.83

Walmart 45× 81× 143 6.93e+05 1.29e+04 2.14e+04 0 19.38
Crime 304× 388× 221 325 0.26 1.47 0 91.56

Weather 49× 17× 365 1038 10.23 95.65 0 93.30

Crime6: Reported incidents of crimes that occurred in the city
of Chicago from 2001 to present. Each incident is marked with
its beat (police geographical area), and a code indicating the
crime type. There are 304 geographical areas and 388 crime
types in total. Using this dataset, we form a (locations (by
beat) × crime types × months) tensor.

Weather7: Daily weather observations from 49 stations in
Australia. These observations contain 17 different variables,
e.g., min temperature, max temperature, cloud, humidity, wind,
etc. We form a (station (location) × variables × days) tensor
using one year of daily observations.

Table II summarizes the different datasets described above,
with their size, maximum and average values, Standard De-
viation (SD), and percentage of missing entries and zeros.
These datasets are the ground truth in our experiments, and
represented by X ∈ RI×J×K .

B. Aggregation Configuration

The aggregated observations (compressed tensors), that are
used as inputs to the disaggregation methods, are generated
from X following two practical scenarios described below:

Scenario A: The multidimensional data, we aim to disag-
gregate, are represented by X ∈ RI×J×K . Instead of the
full tensor X, we are given two aggregated views: 1) tem-
porally aggregated tensor Yt = X ×3 W, i.e., aggregated
in the third dimension; and 2) contemporaneously aggregated
tensor Yc = X ×1 U, aggregated in the first mode (e.g.,
stores/locations dimension). We use the 10 category-specific
datasets from DFF and Walmart data to test this scenario. The
stores are aggregated according to their geographical locations
in the DFF datasets, and based on their sizes in Walmart data.
We also test this scenario on Weather data, where the temporal
aggregate represents the weather observations averaged over
a course of time, and the contemporaneous aggregate is the
average of the observations over a geographical region.

Scenario B: In this scenario, two aggregated views of X
are given: 1) similar to the previous scenario, temporally
aggregated tensor Yt = X×3 W; and 2) contemporaneously
aggregated tensor Yc = X ×1 U ×2 V, aggregated in the
first and second dimensions (e.g., sales counts that are jointly
aggregated over groups of stores and groups of items). We use
Mixed DFF and Crime data to test this scenario. The stores are

6https://www.kaggle.com/chicago/chicago-crime/activity
7http://www.bom.gov.au/climate/data/

aggregated into groups according to their locations in Mixed
DFF data, whereas items are aggregated according to their
categories. In Crime data, locations and types are grouped
based on the closeness in geographical location and similarity
in crime type, respectively. Note that when V = I, this yields
to Scenario A. Evidently, this scenario is more challenging
since the second observation is aggregated in two modes, i.e.,
double aggregation, resulting in fewer measurements.

The difficulty of the problem also depends on the aggre-
gation level, i.e., the number of data points (e.g., weeks,
items, or stores) in one sum. Fewer aggregated measurements
result in more challenging problems from an “equations versus
unknowns” standpoint. We test the disaggregation performance
using different aggregation levels for each dimension.

C. Evaluation Baselines & Metrics

We evaluate the disaggregation performance of the proposed
method using the Normalized Disaggregation Error (NDE
= ‖X − X̂‖2F /‖X‖2F ), where X̂ is the estimated data. The
baseline methods are described next. Note that we compare
to state-of-art approaches in the time series disaggregation
literature as well as methods developed to fuse multiple views
of multidimensional data, but for different tasks. To the best of
our knowledge our work is the first to perform disaggregation
on multidimensional data from multiple views.
Mean: This baseline assumes that the constituent data atoms
(entries in X) have equal contribution in their aggregated
samples. The final estimate of Mean is the average of the
estimation from the temporal and the contemporaneous aggre-
gates. For example, the contemporaneous aggregate reports
100 units sold in 10 stores in the first week of January, and
the temporal one tells us that 80 units were sold in January
(4 weeks) in Store 1. Then, Mean estimation of week 1 and
store 1 is (100/10 + 80/4)/2 = 15

LS: This baseline is inspired by [19], [20], where a least
squares criterion is adopted on the linear relationship between
the target time series in high resolution and the available
aggregates. The resulting linear system is underdetermined,
thus, these works assume a linear regression model between
the target series and some set of indicators. In their context,
indicators are time series available in high resolution that are
expected to display similar fluctuations to the target series.
For example, the stock price of an oil company is a linear
combination of the stock prices of other relevant companies.
This assumption requires additional data that are not available
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in our datasets. Therefore, we resort to the minimum-norm
solution

min
X

‖vec(Ωt
3
T
)~

(
vec(Yt

3
T
)− W̃vec(X3

T )
)
‖22

+ ‖vec(Ωc
3)~

(
vec(Yc

3)− Ũvec(X3)
)
‖22

(25)

where W̃ = I⊗W and Ũ = I⊗V ⊗U.
H-Fuse:[14] This baseline constrains the solution to the LS
baseline above to be smooth, i.e., it penalizes large differences
between adjacent time ticks.
HomeRun:[15] To circumvent the indeterminacy of the linear
system in the time series disaggregation problem, this baseline
solves for the disaggregated series in the frequency domain.
More specifically, HomeRun searches for the coefficients of
the Discrete Cosine Transform (DCT) that represent the target
high-resolution series. The key point is that the number of non-
negligible DCT coefficients of the time series is much smaller
than its length. In other words, the DCT is used as a sparsifying
dictionary to reduce the number of variables. HomeRun also
imposes smoothness and non-negativity constraints.
CMTF: Couple Matricized Tensor Factorization has been
widely used, to fuse multiple views of multidimensional data,
in the hyperspectral imaging application [45], [46]—the work
in [45] adds non-negativity constraints. These images are
three-dimensional tensors, and the motivation behind these
works is to exploit the low-rankness of the matricized image.
We compare to this model because real world multidimen-
sional data are often well-approximated using low-rank, as we
will show empirically. Using our notation, CMTF solves

min
A,B

‖Ωt
3 ~ (Yt

3 −A(WB)T )‖2F

+ ‖Ωc
3 ~ (Yc

3 − (V ⊗U)ABT )‖2F .
(26)

We solve (26) using a BCD algorithm with exact line search.
Similar to PREMA, a good initialization for the low-rank
factors improves the performance of CMTF. To ensure fair
comparison, we initialize using SVD with missing entries set
to be zeros.

Note that all the baselines described above use the aggre-
gation information; B-PREMA is the only method that disag-
gregates without using the aggregation matrices. In addition to
the above baseline methods, we also test the estimation of the
target disaggregated data with the following oracle baseline.
CPD: We fit a CPD model directly to the ground truth tensor
X with respect to the observed entries. We use the Matlab-
based package Tensorlab to compute the CPD. Then,
we reconstruct X̂ from the learned factors (A,B,C). This
baseline can also serve as a lower bound for the error produced
by the proposed method PREMA.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of PREMA
and B-PREMA in terms of disaggregation accuracy using real
data. The two aforementioned aggregation scenarios (refer to
Section IV-B) are considered with different aggregation levels.
In the experiments, we choose the rank R for PREMA (and the
CPD baseline) based on Proposition 1, unless stated otherwise.

On the other hand, for CMTF, we perform a grid search and
show the results with the best R. We run 10 iterations of the
CPD step in the initialization of PREMA in Algorithm 1 (or
B-PREMA in Algorithm 2) using Tensorlab, then run 10
iterations of the iterative procedure in the algorithms. We set
µ = 100 for B-PREMA in Algorithm 2. All experiments were
performed using Matlab on a Linux server with an Intel Core
i7–4790 CPU 3.60 GHz processor and 32 GB memory.

A. Results on Scenario A

Two aggregated views Yt, Yc are observed. Table III shows
the disaggregation error in terms of NDE, achieved by the
proposed method and the baselines on the 10 category-specific
datasets from DFF. The proposed methods, PREMA and B-
PREMA, along with the CPD oracle are shown under 3 differ-
ent ranks (R = 10, R = 25, R = 40). In Yt, the weekly sales
counts are observed on a monthly basis, while in Yc, the 93 (or
94 for some categories) stores are clustered geographically into
18 areas. This means that the measurements in the temporal
aggregate Yt are about 25% of the original size, and the
number of the contemporaneously aggregated measurements
in Yc is only 19.35% of the disaggregated data size.

For all datasets in Table III, except BAT, PREMA markedly
outperforms the baselines—to highlight the improvement, we
make the smallest error in bold and underline the second
smallest. The naive mean (Mean) is good enough with BAT
dataset because it is smooth (SD = 1.34) and has the largest
percentage of missing entries, compared to the other datasets.
The time series methods, H-Fuse and HomeRun, do not
perform well with these datasets because they are designed
for smooth and quasi-periodic data, respectively. To provide
an example, we noticed that HomeRun improves the error of
LS and H-Fuse baselines with CRA data, and found that CRA
exhibit more periodicity compared to the rest of the categories.
Comparing PREMA with CPD, we see that PREMA achieves
error very close to CPD of the ground truth data with the same
rank, e.g., with GRO, PTW, and SDR datasets. By looking
at the performance of B-PREMA in the table, we can see
that the proposed algorithm works remarkably well when the
aggregation matrices are unknown. For example, with GRO
data and R = 40, the NDE of B-PREMA is 0.2472, while NDE
= 0.2284 with CPD. B-PREMA disaggregates with smaller,
or very similar, error compared to the baselines that uses the
aggregation pattern information—see results with CRA, FSF,
GRO, and SDR datasets. With all datasets, there is always a
wide range of R under which the proposed algorithm works
similarly well.

Next, we examine the performance when we change the
level of aggregation from moderate (“mod agg”) to very high
(“high agg”). The disaggregation error is shown with two
datasets from DFF data, FSF and PTW, in Figure 4, and with
Walmart and Weather datasets in Figure 5.

The aggregation levels in Figure 4 are: 1) monthly basis
measurements (every 4 weeks) in Yt, and the 93 stores are
divided geographically into 18 areas (“mod agg”); and 2)
quarterly samples (every 12 weeks) in Yt, and the stores
are divided into only 9 areas (“high agg”). The rank R for
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TABLE III: NDE of the proposed methods and the baselines using the 10 category-specific datasets.
Dataset BAT BJC CHE COO CRA CSO FSF GRO PTW SDR

% (missings) 44.73% 8.79% 8.59% 9.81% 14.21% 8.64% 18.64% 7.66% 36.72% 8.58%
SD 1.34 50.08 88.29 56.86 29.61 133.42 18.84 2.94 117.82 155.09

Mean 0.3284 0.4441 0.3118 0.3596 0.5217 0.3309 0.5609 0.2464 0.2994 0.2860
LS 0.3328 0.6077 0.4650 0.6224 0.5889 0.4664 0.5982 0.2831 0.4593 0.5420

H-FUSE 0.3411 0.6437 0.4870 0.6414 0.5726 0.4885 0.6451 0.2863 0.4719 0.5644
HomeRun 0.3461 0.6453 0.4818 0.6284 0.5376 0.4856 0.6496 0.2877 0.4662 0.5594

CMTF 0.4254 0.1818 0.1954 0.1783 0.7455 0.1564 0.1930 0.2908 0.2577 0.1633
PREMA, R=10 0.5203 0.1978 0.1756 0.1757 0.2587 0.2057 0.2019 0.3198 0.2844 0.2039
PREMA, R=25 0.5079 0.1684 0.1516 0.1371 0.2624 0.1373 0.1790 0.2581 0.2132 0.1438
PREMA, R=40 0.4972 0.1572 0.1491 0.1318 0.2589 0.1332 0.1747 0.2458 0.1969 0.1348

CPD (oracle), R=10 0.4782 0.0937 0.0723 0.1205 0.0776 0.0776 0.0810 0.2919 0.2356 0.1329
CPD (oracle), R=25 0.4345 0.0586 0.0419 0.0676 0.0518 0.0476 0.0494 0.2448 0.1358 0.0822
CPD (oracle), R=40 0.4109 0.0443 0.0321 0.0532 0.0438 0.0345 0.0399 0.2284 0.1007 0.0605

B-PREMA, R=10 0.5242 0.3012 0.3525 0.2207 0.3080 0.1752 0.2090 0.3156 0.3594 0.2008
B-PREMA, R=25 0.5002 0.3583 0.3553 0.2496 0.2976 0.1756 0.1892 0.2557 0.3758 0.1539
B-PREMA, R=40 0.4914 0.3909 0.3823 0.2942 0.3042 0.1825 0.1846 0.2472 0.3963 0.1620

(a) FSF dataset (b) PTW dataset

Fig. 4: PREMA works well with extreme aggregation.

(a) Walmart dataset (b) Weather dataset8

Fig. 5: PREMA works well with different data.

PREMA, B-PREMA, and CPD is set to 40 in this figure. By
comparing the moderate and high aggregation levels in Figure
4, we conclude that PREMA is more robust with aggressive
aggregation where only few samples are available. With “high
agg”, the number of aggregation samples is only 8.56% of
the original size in the temporal aggregate, and 9.68% in the
contemporaneous aggregate. In this case, the NDE of the best
baseline is 3.04 (1.68)x the error of PREMA with FSF (PTW)
dataset, respectively. PTW dataset is more challenging as it
has relatively high percentage of missing entries (36.72%).
Moreover, with no knowledge of the aggregation pattern, B-
PREMA outperforms all baselines that have access to the
aggregation information with FSF data. Although, B-PREMA
has NDE larger than Mean and CMTF with “mod agg” on
PTW data, it becomes superior to all baselines when the
aggregation level is high.

With Walmart data in Figure 5 (a), “mod agg” means
that weeks are aggregated into months in Yt, and the 45

stores are divided into 15 groups, whereas time is aggregated
quarterly (12 weeks) and stores are clustered into 9 groups in
“high agg”. CMTF works slightly better when the aggregation
is moderate, owing to the fact that the second mode in
Walmart data is departments as apposed to items in DFF
data. Departments are less correlated than items from the same
category. As a result, the advantage of tensor models over the
matricized tensor in capturing the higher-order dependencies
becomes less clear. However, PREMA is more immune to
aggressive aggregation. In the “high level” case, The NDE
of CMTF is 1.71 times the error of PREMA. Even without
access to the aggregation information, B-PREMA significantly
reduces the error of the baselines.

In Figure 5 (b), “mod agg” corresponds to the daily weather
measurements averaged into weekly samples, and the 49
stations are averaged over 13 stations. On the other hand,
the daily measurements are averaged over monthly samples,
and the 49 stations are clustered into 7 stations in the “high
agg” case. PREMA, CMTF, and H-Fuse perform similarly
with Weather data8 (it has 93.30% zeros) with moderate
aggregation. The size of the second dimension of Weather
data is small (J = 17), thus, the advantage of a tensor model
over a matricized tensor model is less clear. H-Fuse works
well with this data as it penalizes the large jumps between
the adjacent time ticks (i.e., days), and weather data are well
suited for such constraint. Nevertheless, PREMA improves the
error of CMTF and H-Fuse when the aggregation level is high.
Although B-PREMA does not work as well as with other data,
it still has smaller error than the simple baselines (Mean and
LS), especially with aggressive aggregation.

Next, we show the disaggregation performance on a wider
range of aggregation levels using FSF dataset. The results are
shown in Figure 6. The number of areas in Yc is fixed to 18
in Figure 6 (a) and 9 in Figure 6 (b), whereas the number of
weeks in each sum in Yt ranges from 4 to 40 (x-axis). The
total number of weeks in the dataset is 397; thus, we only
have 10 temporally aggregated samples if we have 40 weeks
in each sum. In this set of results, we focus on comparing the
proposed models with CMTF since it is the best performing
among the baselines. The rank is set to R = 40 for PREMA
and B-PREMA, while for CMTF we use a grid search to

8HomeRun is excluded from the results with Weather data as it has non-
negativity constraints.
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select the best rank. One can see that the proposed models
are less affected as the aggregation level increases, even when
the aggregation matrices are unknown with B-PREMA.
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(b) 9 areas in Yc

Fig. 6: PREMA is more immune to aggressive aggregation.

B. Results on Scenario B

The contemporaneous aggregate Yc in this scenario is
aggregated in two dimensions: stores and items with Mixed
DFF data, or crime locations and types with Crime data9.
We test this with three different aggregation levels with each
data. Difficulty (i.e., level of aggregation), increases as we
move from case (a) to (c)—Figure 7 shows the performance
for these three cases. B-PREMA is not included in this set
of experiments as it does not perform well. The reason is
because double aggregation significantly reduces the number
of equations, and the number of unknown parameters in B-
PREMA is almost doubled since Ã and C̃ are treated as sepa-
rate variables from A and C. Combining double aggregation
and blind disaggregation makes it hard for the identifiability
conditions to be satisfied.

With Mixed DFF data, these levels are: a) Yt aggregates
weeks into monthly samples, while Yc groups the 93 stores
into 18 areas with no aggregation over the items, b) samples
in Yt have monthly resolution, and Yc groups the stores into
18 areas and items into groups of 10, and c) Yt contains
temporal aggregates for each quarter of the year, and Yc

groups stores into 18 areas and items into groups of 25.
One can see that the naive mean totally fails and its error
exceeds 1 in case (c) with Mixed DFF data in Figure 7 (a).
Notwithstanding, PREMA works well with double aggregation
and few available samples.

With Crime data, the aggregation levels are: a) Yt aggre-
gates the months into quarterly resolution, while Yc clusters
both the crime locations and types into groups of 5, b) Yt

has a quarterly time resolution, and Yc aggregates both the
locations and types into groups of 10, and c) Yt aggregates
the months into bi-yearly resolution, and Yc groups the crime
locations and types into groups of 20. Figure 7 (b) shows
the performance with these levels using Crime data. These
data are challenging as they have 91.56% zero values and
small SD. PREMA reduces the error of Mean significantly.
Although CMTF performs slightly better with the first two
levels, PREMA becomes superior with extreme aggregation.

9LS, H-Fuse, and HomeRun are excluded from this comparison as they
run out of memory.

(a) Mixed DFF dataset (b) Crime dataset

Fig. 7: PREMA works well with double aggregation (Sce-
nario B).

C. Run time Comparison

In Table IV, we compare the run time of all the different
methods for disaggregating the FSF dataset with the same
setup as in Table III and R = 40. We can see that PREMA and
B-PREMA are very scalable and faster than all the baselines
(except for Mean, which only requires simple averaging). Our
methods handle the missing entries very efficiently compared
to the plain vanilla CPD using TensorLab.

TABLE IV: Run time comparisons.

Method Run time (seconds)
Mean 0.10

LS 222.53
H-Fuse 6116.34

HomeRun 117.10
CMTF 1.26
CPD 13.85

PREMA 0.90
B-PREMA 0.89

VI. CONCLUSIONS

In this work, we proposed a novel framework, called
PREMA, for fusing multiple aggregated views of multidimen-
sional data. The proposed method leverages the properties
of tensors in estimating the low-rank factors of the target
data in higher resolution. The assumed model is provably
transforming a highly ill-posed problem to an identifiable
one. PREMA works with partially observed data, and can
disaggregate effectively, even without any knowledge of the
aggregation mechanism (B-PREMA). Experimental results on
real data show that the proposed algorithm is very effective,
even in challenging scenarios, such as data with double
aggregation and high level of aggregation. The contributions
of our work are summarized as follows:
• Formulation: we formally defined the problem of mul-

tidimensional data disaggregation from views aggregated
in different dimensions.

• Identifiability: The considered tensor model provably
converts a highly ill-posed problem to an identifiable one.

• Effectiveness: PREMA reduced the disaggregation error
of the competing alternatives by up to 67%.

• Unknown aggregation: B-PREMA works even when the
aggregation mechanism is unknown.

• Flexibility : PREMA can perform disaggregation on par-
tially observed data.
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APPENDIX A
DERIVATION OF GRADIENT EXPRESSIONS

The terms in (11) and (24) can be divided into two types:
1) CPD of a tensor, with some aggregation matrices multiplied
with the factors; and 2) the regularization term R in (24).
Because the gradient of a sum is the sum of the gradients,
it is enough to show the derivation of the gradients using
the function below. This function consists of two terms, each
represents one of the terms types listed above. Consider:

min
A,B,C

‖Ω ~ (X− ([[UA,VB,WC]])‖2F︸ ︷︷ ︸
T

+ ‖1TC− 1T C̃‖22︸ ︷︷ ︸
R

(27)
where Ω is as defined in (10), and X ∈ RI×J×K is our data
tensor. Note that all the CPD terms in (11) and (24) are similar
to the term T , with one (or more) of the aggregation matrices
{U,V,W} is equal to I. Thus, the term T generalizes all
the CPD terms in our models. Using mode-3 unfolding, T is
equivalent to

T = ‖Ω3 ~
(
X3 − ((VB)� (UA))(WC)T

)
‖2F . (28)

Vectorizing the above, we get

T = ‖Sx− S((VB)� (UA)� (WC))1‖2F (29)

where x = vec(X3), and S ∈ {0, 1}N×IJK is a fat matrix
with one 1 in each row to select the available entries in x,
where N = nnz(Ω). Thus, the role of S with x, is similar to
the role of Ω with the tensor form X. Equation (29) is also
equivalent to

T = ‖Sx− S
(
I⊗ ((VB)� (UA))

)
(W ⊗ I)c‖2F (30)

where c = vec(CT ). We show the derivative of T and R
w.r.t. C (derivatives w.r.t. A and B are derived similarly by
using mode-1 and mode-2 unfolding and rotating the factors
accordingly). First, we derive the gradient of T w.r.t. C:

∇CT = 2(WT⊗ I)(I⊗ (VB�UA)T )STS (I⊗ (VB� ·
UA))(W ⊗ I)c− 2(WT⊗ I)(I⊗ (VB�UA)T )STSx

(31)

= 2(I⊗ (VB�UA)T )(WT ⊗ I)STS(I⊗ (VB� ·
UA))(W ⊗ I)c− 2(I⊗ (VB�UA)T )(WT⊗ I)STSx

(32)

= 2(I⊗ (VB�UA)T )(WT ⊗ I)STS
(
(I⊗ (VB� ·

UA))(W ⊗ I)c− x
)
. (33)

We can use mode-3 unfolding to rewrite (33) above as

∇AT = 2WT
(
Ω3 ~ (X̂3 −X3)

)T (
(VB)� (UA)

)
(34)

where X̂3 =
(
(VB) � (UA)

)
(WC)T . The gradient above

can be computed efficiently by the following steps:
1) Compute L = Ω3 ~ (X̂3 −X3).
2) Compute M = LT

(
(VB)� (UA)

)
.

3) Compute 2WTM

Next, the derivative of R w.r.t. C is

∇CR = 2(11TC− 11T C̃). (35)

APPENDIX B
DERIVATION OF STEP SIZE EXPRESSIONS

The step size terms in both Algorithm 1 and 2 are chosen
using the exact line search optimization method. Recall (27)

min
A,B,C

‖Ω ~ (X− ([[UA,VB,WC]])‖2F︸ ︷︷ ︸
T

+ ‖1TC− 1T C̃‖22︸ ︷︷ ︸
R

.

As mentioned earlier in Appendix A, the function above
generalizes all the terms in PREMA and B-PREMA models.
Thus, we use (27) to show how to find the step size γ
associated with updating C as an illustrative example. In this
case, the exact line search chooses γ to be the minimizer of

argmin
γ≥0

F
(
C− γ∇CF

)
(36)

where F = L+R, which are as defined in (27). Plugging the
variable C− γ∇CF into (27) and rearranging the terms, we
get

argmin
γ≥0

‖Ω3 ~
(
Y3 −

(
(VB)� (UA)

)
WTCT

)︸ ︷︷ ︸
E

+ γΩ3 ~
(
(VB�UA)WT∇CFT

)︸ ︷︷ ︸
D

‖2F

+ ‖1TC− 1T C̃︸ ︷︷ ︸
eT

−γ 1T∇CF︸ ︷︷ ︸
dT

‖22.

(37)

One can see that at the optimal solution to (37), we have:

−vec(E)T = γvec(D)T (38)

eT = γdT (39)

Multiplying (38) by vec(D) and (39) by d, and summing up
the resulting two equations, we get

−vec(E)T vec(D) + eTd = γ(vec(D)T vec(D) + dTd)
(40)

Respecting the non-negativity constraint, we can see that the
optimal solution is

γ = max
(
0,
−vec(E)T vec(D) + eTd

vec(D)T vec(D) + dTd

)
(41)

APPENDIX C
INITIALIZATION ALGORITHM

The initialization steps of Algorithm 1 are as follows

Set missing entries in Yt, and Yc to zeros.
if V = I and K > I then

Ã,B,C← CPD(Yc);
A← solve Yt

1 = ((WC)�B)AT

else
A,B, C̃← CPD(Yt);
C← solve Yc

3 = ((VB)� (UA))CT

end if
Note that the missing entries are set to 0 only in the initial-
ization steps. We use the Matlab-based package Tensorlab
to compute the CPD in the initialization (e.g., CPD(Yc)).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JSTSP.2021.3056918

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



PREMA: PRINCIPLED TENSOR DATA RECOVERY FROM MULTIPLE AGGREGATED VIEWS 14

APPENDIX D
PROOF OF PROPOSITION 1

Let X ∈ RI×J×K be the target tensor to disaggregate with
CPD X = [[A,B,C]] of rank R and Yt ∈ RI×J×Kw =
X×3W. Then, under the conditions of Theorem 1, Yt admits
a unique CPD Yt = [[At,Bt,Ct]]. Since it is unique, it holds
that:

At = AΠΛ1,Bt = BΠΛ2,Ct = WCΠΛ3, (42)

where Π is a permutation matrix and Λ1, Λ2, ,Λ3 are diago-
nal matrices such that Λ1Λ2Λ3 = I. In the case where Yt has
missing entries the conditions under which [[At,Bt,Ct]] are
identifiable are stricter and depend on the pattern of misses.
We can use the conditions in [24], [25], [26] for fiber, regular
and random sampling respectively. So far, factors A, B have
been identified up to column permutation and scaling. What
remains to be proven is that:

Ωc ~ Yc = Ωc ~ (X×1 U×2 V) = Ωc ~ ([[UA,VB,C]])
(43)

yields a solution for Cc such that Cc = CΠΛ3. Equation
(43) can be equivalently written as:

Scyc = Sc(C�VB�UA)1 = Sc(I⊗(VB�UA))c, (44)

where yc, c are vectorized versions of Yc, CT , and Sc ∈
{0, 1}Nc×IuJvK is a fat selection matrix that selects the
available entries in yc, where Nc = nnz(Ωc).

Now let Ã = UA and B̃ = VB. Following [42, Lemma
1] Ã, B̃ are drawn from absolutely continuous non-singular
distributions. Also let P = B̃ � Ã. Since IuJv ≥ R the
determinant of any R × R submatrix of P is a non-trivial
analytic function of Ã, B̃. Therefore any R×R minor of P
is non-zero almost surely [47, Lemma 3] and any R rows of
P are independent.

Taking a closer look at matrix G = I ⊗ (VB � UA) =
I ⊗ (B̃ � Ã) we observe that it is an IuJvK × KR block
diagonal matrix of the form:

G =


P 0 . . . 0
0 P . . . 0
...

...
. . .

...
0 0 . . . P

 =


G1

G2

...
GK

 (45)

Each block Gk corresponds to the k−th frontal slab of
Yc and the rows between different Gk’s are independent
by construction. Since we have assumed that the minimum
number of observed entries for each frontal slab is greater
than or equal to R, then ScG has full column rank equal to
KR and the solution for c in (46) is unique with probability
1. Plugging At, Bt in equation (46) we get:

Scyc = Sc(C�VBt �UAt)1

= Sc(C�VBΠΛ2 �UAΠΛ1)1 (46)

Then the unique solution for C satisfies Cc = CΠΛ3 and
X̂ = [[At,Bt,Cc]] disaggregates Yt, Yc to X almost surely.
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