
(Demo) Physical Visualization Design
Lana Ramjit

lana@cs.ucla.edu

UCLA

Zhaoning Kong

jonnykong@cs.ucla.edu

UCLA

Ravi Netravali

ravi@cs.ucla.edu

UCLA

Eugene Wu

ewu@cs.columbia.edu

Columbia University

ABSTRACT
We demonstrate PVD, a system that visualization designers

can use to co-design the interface and system architecture

of scalable and expressive visualization.

ACM Reference Format:
Lana Ramjit, Zhaoning Kong, Ravi Netravali, and Eugene Wu. 2020.

(Demo) Physical Visualization Design. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data
(SIGMOD’20), June 14–19, 2020, Portland, OR, USA. ACM, New York,

NY, USA, 4 pages. https://doi.org/10.1145/3318464.3384711

1 INTRODUCTION
Building interactive data visualizations is hard. It requires ex-

pertise spanning human-computer interaction, networking,

and database optimization. Visualization designers need to

ensure that the interface’s visual layout is expressive enough

to accomplish the desired user tasks. At the same time, de-

signers also need to make architectural and systems opti-

mization decisions in order to ensure that the interface is

responsive in the face of large and growing data sizes.

The processes of designing an effective interface and devel-

oping a responsive architecture are intertwined: the interface

and interaction design determine the data flows expressible

by the user, while the architecture design determines the

scale at which these data flows can execute quickly enough.

For instance, an interface consisting of a single small drop-

down menu can ensure interactive speeds by pre-computing

and caching the query results associated with each of the op-

tions. However, this strategy fails when adding an interaction

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed

to the Association for Computing Machinery.

ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00

https://doi.org/10.1145/3318464.3384711

Expressiveness

Pe
rfo
rm
an
ce

Vega-lite
Vega

PVD
Polaris

DBMS
Kyrix

Be
tte
r

Figure 1: Current visualization frameworks trade-off expres-
siveness and performance.

such as free-text search, which would require an inordinate

amount of pre-computation storage, and thus necessitates a

different architectural design strategy.

The complexity of such design decisions poses a major

practical challenge because creating new visualization inter-

faces is not a one-shot process. Instead, designers iteratively

create prototypes, using the feedback from their intended

users to refine the design, add new views and interactions,

and ensure that the interactions are sufficiently responsive. If

the data size is negligible, then the designer can focus solely

on interface design, which is well-supported by existing visu-

alization [9] and design [2, 6] tools. However, if the datasets

are large, then simply creating a prototype requires setting

up a server that connects to a data management system, and

making physical database design and caching optimizations

so the prototype is responsive. Even if the designer is capable

of this engineering work, the tremendous engineering cost

can “lock-in” the designer to early architecture decisions.

There is a need for tools that support the rapid co-
design of the visualization interface and the system
architecture. Unfortunately, existing tools primarily focus

on one of the two aspects (Figure 1). At the extremes, visual-

ization libraries like Vega-lite [9] help accelerate client-side

visualization design, whereas database tuners [1, 3] optimize

the physical data layouts but are agnostic to the applica-

tion interface design. Scalable visualization frameworks like

Kyrix [10], Falcon [8], and Polaris [7] make specific architec-

tural decisions that limit the designer to a subset of designs

or interactions that the architecture can efficiently express,

e.g., pan/zoom or brushed linking.

https://doi.org/10.1145/3318464.3384711
https://doi.org/10.1145/3318464.3384711

To overcome these limitations, PVD is a co-design tool

that helps visualization designers rapidly iterate through

the combinatorial space of interface designs and physical

layouts. The key challenge is in identifying the appropriate

abstraction for specifying PVD’s inputs. It must be low-level

enough to express a wide range of visualization interfaces,

yet high-level enough to enable effective optimization. To

address this tension, PVD models the interface as a set of

data flows (SQL queries) that are structurally transformed

and executed in response to user interactions.

Thus, PVD takes as input a specification of the interface

design, architectural optimization techniques, constraints

on the available resources, and expectations of interactivity

and responsiveness. For instance, the designer may spec-

ify that the dataset can vary from 2MB to 2GB, server and

client memory are 2GB and 150MB respectively, and that she

expects interactions to be serviced within 50ms. PVD then

outputs the expected response times of the interactions in

the interface and, if the constraints cannot be met, recom-

mends ways to modify the interface or architectural designs.

The estimated response times are directly simulated in the

design interface, so the designer can directly experience the

effects of different architecture choices across the system.

In this demonstration, users will use PVD to interactively

build a scalable visualization interface by adding visual com-

ponents and interactions, and seeing how small interface

changes affect the utility of different architectural designs.

At each step, users will receive immediate feedback on the vi-

sualization’s performance and design. Once a user is satisfied,

PVD will instantiate and deploy the designed interface.

2 USE CASE
iCheckuClaim [11] is a web-based visualization application

developed by database researchers at Duke University. Users

explore and contextualize U.S. politician voting records as

compared to peer groups (e.g., Republican/Democratic ma-

jority, the President, etc). We describe the interface design

and architecture of a subset of three visualizations (called

“views”) in the main interface (Figure 2).

2.1 Interface Design
(V1) Ranked PoliticiansHistogram: The sorted bar chart
lists politicians within a demographic group (e.g., senators,

female house reps, etc) along the x-axis. The y-axis shows

the percentage of votes cast by a politician that aligned with

the position of a user-selected peer group. Users pick each

of the two groups from a pre-defined list. The orange bar is

the currently selected politician (e.g., Senator Feinstein).

(V2) Vote Count Histogram: The total number of votes

per week over five years. Users select a date range (shaded

Feinstein voted with the Democratic majority 97% during
Jan. 1, 2014 – Dec. 31, 2015, over all 705 votes in the Senate.

V1

V2

V3

Politician voting
histories

Select bar

Votes per day
Select date range

Politician’s rank
No interactions

Figure 2: Three example iCheckuClaim charts (views).

region), which will update the percentages in V1 based on

votes in the selected range, and update V3 (described next).

(V3) Politician Text Summary: Describes a specific politi-
cian’s rank and percentage of agreement within the currently

selected time window. This is updated when a new bar (rep-

resenting a new politician) is selected from V1 and when the

selection in V2 changes.

2.2 System Architecture
iCheckuClaim uses a client-server architecture. The back-

end data store is a ReDis instance which stores the raw vot-

ing data. Additionally, prefix-sum indexes for common peer

groups (such as the President) are pre-computed and cached

in-memory. Other peer groups compute a prefix-sum index

on the fly. Requested indexes are sent to the client.

The Javascript client caches all data received from the

server, and reloads the page when a new peer group is se-

lected. As users interact with the interface, event handlers

decide whether to update the interface using the client cache

or send a server request. The cached prefix-sum index can

recalculate a politician’s voting behavior in constant time as

the user selects new date ranges or different politicians.

2.3 Challenges
Even in this simple interface, subtle interface design deci-

sions have considerable affect on the architecture. For in-

stance, pre-defining the peer groups limits the user’s choices

but enables pre-computation. Rendering V1, V2, and V3 on

the same page implies that the user will expect V1 to quickly

update as the user creates and resizes a selection in V2. Fur-

ther, the designer must choose whether the selection should

continuously update V1 and V3 as it is manipulated, or only

when the user finishes the selection interaction.

Each of these choices adds or removes architectural re-

quirements in terms of the data structures, caching, and data

placement choices that must be made to meet the user ex-

pectations. However, choosing to materialize an index to ac-

celerate the date range interaction can reduce the resources

available for pre-computing and optimizing interactions in

V1. Designers may ultimately need to choose which interac-

tions to prioritize in response to limited resources.

The combination of interfaces and optimizations is too

large to manually search. We next outline how PVD mod-

els this as a constraint-based optimization problem to help

designers make informed trade-offs.

3 PVD OVERVIEW
PVD follows the principles of data independence: it com-

bines a declarative specification of the core data-flows and

interactions used in the interface with an optimizer that

solves an architectural design problem within resource and

interactivity constraints. We describe each in turn.

3.1 Visualization Specification
PVD models each view as a SQL query and each interaction

as a directed edge from a source view (that the user interacts

with) to a target view (that updates in response). We based

this model on prior work in interface generation [12].

A view consists of a SQL query and a visualization ren-

dering specification. For example, V2 in Figure 2 computes a

given chamber’s votes per day as an aggregation query:

SELECT date as d, COUNT(vote_id) as vote_cnt

FROM votes v

WHERE v.vote_chamber === chamber

GROUP BY v.date

The following visual encoding spec maps query attributes to

bar chart properties: mark=bar, d→xaxis, vote_cnt→yaxis.
An interaction is composed of user interaction data, and a

modification of the target view’s query. Each user interaction

(e.g. selecting a dropdown option, dragging a selection box)

exposes a record that contains the event and data information

(e.g. the selected option, the selection box’s bounds as dates).

Query modifications may simply change a query parameter

or change the entire query structure; the main requirement

is that the transformed query remains schema compatible.

For example, the following specifies a 1D brush in V2, and

that it should update V1’s query by setting its date range

filter based on the brush’s range. More complex structure

transformations are expressed as abstract syntax tree trans-

formations that are extracted from query examples [5, 12].

interaction: update v1:

view: v2 SET v1.date1 TO 1dbrush.minx

type: 1dbrush SET v1.date2 TO 1dbrush.maxx

This graph representation encapsulates the data-flows

needed to drive the visualization, yet gives the designer flexi-

bility in terms of the visual design of the views, layout, and in-
teractions. For instance, they may use Vega-lite, or any other

visualization library, to render query outputs—we assume

that rendering is not the dominant overhead. At the same

time, this graph compactly represents all possible queries

Figure 3: A template of the client-server architecture that
PVD outputs. Blue components are inputs controlled by the
developer, while red components are filled in by PVD.

expressible by the interface. We now describe our current

method for using this graph for architectural optimization.

3.2 Optimization and Latency Estimate
PVD takes as input the visualization specification, resource

constraints, and network characteristics. Assuming the client-

server template architecture shown in Figure 3, PVD takes a

sample interaction trace from the interface and generates a

query workload. It then recommends what data structures to

create and where to place them. Based on the recommended

architecture and available cost models PVD also estimates

the latency for each visual component, binning them into

immediate (10-100ms), fast (100-500ms), and slow (500+ ms).

PVD provides an extensible library of visualization op-

timizations and data structures. While PVD currently sup-

ports tree, hash, and prefix-sum indexes, data cubes, and

pre-computation, developers can add custom optimizations

by providing two functions. check
k
() ensures that a query is

valid for a given optimization. It does so by checking that an

interaction’s query transformation specification is applicable

to the optimization. For instance, the 1dbrush interaction

modifies a range predicate in V1’s query and thus acceptable

for tree indexes, and V1’s count aggregation makes it accept-

able for prefix-sum indexes. It also needs to extract a query

template signature so that queries with different structure

will map to different e.g., prefix sum indexes.

check
k
(i) → (T/F, signature)

The second function, estimate
k
takes as input a query q and

database statistics (e.g., cardinalities, attribute distributions),

and uses optimization-specific cost models to estimate the

size of the data structure and latency if the optimization is

applied to the q:

estimate
k
(q, stats) → (size, latency)

Some optimizations require designer input when it returns

results that are not strictly equivalent to the query result. For

example, sampling introduces uncertainty in the results. In

this case, the optimization must quantify how much results

may diverge from the true results so the developer has the

option to specify the degree of acceptable divergence.

Finally, PVD must select a set of optimizations and a data

placement policy that best reflects the developer constraints.

Figure 4: Screenshot mockups of the demo walkthrough.

Our current approach is inspired by physical database design

solutions [4]. We enumerate each combination of sampled

queries, relevant optimizations, and data placements, model-

ing each combination as an integer. PVD solves the resulting

integer linear programming problem, whose solution is a

recommended architecture and latency profile. Although

PVD currently relies on naive workload sampling to prevent

combinatorial explosion problem, we plan to explore and

implement query compression techniques that will enable

PVD to directly optimize the visualization specification.

4 DEMONSTRATION
Users will build an interface akin to iCheckuClaim using the

same voting dataset, and experience the interface-architectural

design trade-offs first hand. Below, we describe an example

walk-through of the demo experience (Figure 4).

(a) The interface lays views in a grid (light gray baxes). The

user adds a new view by selecting a rectangle of the desired

size. This shows the New View tab on the left, where the user

specifies the query and visualization spec. In this example,

the user adds the votes by date view.

(b) The user creates an interaction by dragging an edge from

the source to destination view. The New Interaction tab lets

the user specify the interaction in the source view (e.g., 1d

brush) and how it transforms the query in the target view

(filter the date predicate). Users can optionally specify their

expectations for the responsiveness of this interaction.

(c) The architecture tab displays the current architecture,

and has sliders to specify resource constraints (client, server,

network) and to re-scale the database. PVD solves the op-

timization problem to find that the existing architecture,

which does not materialize any data structures, will have

poor responsiveness. It recommends adding a prefix-sum

data structure to accelerate the brushing interaction, which

the user can then choose to Apply.
(d) Accepting the prefix-sum optimization immediately up-

dates the architecture diagram and latency profile. This opti-

mization caches a file on the client on page load, increasing

the download time slightly from 2387 ms to 3131 ms. How-

ever, all ensuing interactions are sub-millisecond in-memory

lookups thanks to the prefix-sum index on the client. This is

reflected in the updated latency profile estimates.

Finally, PVDwill instantiate the interface into a full-fledged

web application, apply the optimizations, and manage the

client-server communication and caching. The query results

are also exposed as tables in the client Javascript code, so

the designer can benefit from the system optimizations and

freely update the visualization design.

ACKNOWLEDGMENTS
This work was supported by NSF grants 1527765, 156404,

1845638, and Google, Amazon, and Adobe Research awards.

REFERENCES
[1] Agrawal, S., Bruno, N., Chaudhuri, S., and Narasayya, V. R. Au-

toadmin: Self-tuning database systemstechnology. IEEE Data Eng. Bull.
29, 3 (2006), 7–15.

[2] Botello, C. Adobe InDesign CS6 Revealed. Cengage Learning, 2012.
[3] Bruno, N., and Chaudhuri, S. Constrained physical design tuning.

Proceedings of the VLDB Endowment 1, 1 (2008), 4–15.
[4] Chaudhuri, S., and Narasayya, V. R. An efficient, cost-driven index

selection tool for microsoft sql server. In VLDB (1997), vol. 97, Citeseer,

pp. 146–155.

[5] Chen, Y., and Wu, E. Monte carlo tree search for generating inter-

active data analysis interfaces. AAAI Workshop on Intelligent Process
Automation (2020).

[6] Design, F. Figma: the collaborative interface design tool.(2017). Re-
trieved September 17 (2017), 2017.

[7] Hanrahan, P. Vizql: a language for query, analysis and visualization.

In Proceedings of the 2006 ACM SIGMOD international conference on
Management of data (2006), pp. 721–721.

[8] Moritz, D., Howe, B., and Heer, J. Falcon: Balancing interactive

latency and resolution sensitivity for scalable linked visualizations. In

Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems (2019), ACM, p. 694.

[9] Satyanarayan, A., Moritz, D., Wongsuphasawat, K., and Heer,

J. Vega-lite: A grammar of interactive graphics. IEEE transactions on
visualization and computer graphics 23, 1 (2016), 341–350.

[10] Tao, W., Liu, X., Wang, Y., Battle, L., Demiralp, Ç., Chang, R., and

Stonebraker, M. Kyrix: Interactive pan/zoom visualizations at scale.

In Computer Graphics Forum (2019), vol. 38, Wiley Online Library,

pp. 529–540.

[11] Walenz, B., Gao, J., Sonmez, E., Tian, Y., Wen, Y., Xu, C., Adair, B.,

and Yang, J. Fact checking congressional voting claims.

[12] Zhang, Q., Zhang, H., and Wu, E. Mining precision interfaces from

query logs. arXiv preprint arXiv:1904.02344 (2019).

	Abstract
	1 Introduction
	2 Use Case
	2.1 Interface Design
	2.2 System Architecture
	2.3 Challenges

	3 PVD Overview
	3.1 Visualization Specification
	3.2 Optimization and Latency Estimate

	4 Demonstration
	Acknowledgments
	References

