(Demo) Physical Visualization Design

Lana Ramyjit
lana@cs.ucla.edu
UCLA

Ravi Netravali
ravi@cs.ucla.edu
UCLA

ABSTRACT

We demonstrate PVD, a system that visualization designers
can use to co-design the interface and system architecture
of scalable and expressive visualization.

ACM Reference Format:

Lana Ramjit, Zhaoning Kong, Ravi Netravali, and Eugene Wu. 2020.
(Demo) Physical Visualization Design. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data
(SIGMOD’20), June 14-19, 2020, Portland, OR, USA. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/3318464.3384711

1 INTRODUCTION

Building interactive data visualizations is hard. It requires ex-
pertise spanning human-computer interaction, networking,
and database optimization. Visualization designers need to
ensure that the interface’s visual layout is expressive enough
to accomplish the desired user tasks. At the same time, de-
signers also need to make architectural and systems opti-
mization decisions in order to ensure that the interface is
responsive in the face of large and growing data sizes.

The processes of designing an effective interface and devel-
oping a responsive architecture are intertwined: the interface
and interaction design determine the data flows expressible
by the user, while the architecture design determines the
scale at which these data flows can execute quickly enough.
For instance, an interface consisting of a single small drop-
down menu can ensure interactive speeds by pre-computing
and caching the query results associated with each of the op-
tions. However, this strategy fails when adding an interaction

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’20, June 14—19, 2020, Portland, OR, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.

ACM ISBN 978-1-4503-6735-6/20/06...$15.00
https://doi.org/10.1145/3318464.3384711

Zhaoning Kong
jonnykong@cs.ucla.edu
UCLA

Eugene Wu
ewu@cs.columbia.edu
Columbia University

® Kyrix PVD
o0
8| Polaris ®
C
£
X
= Q
£ o
o Vega
Vega-lite ® ®

Expressiveness
Figure 1: Current visualization frameworks trade-off expres-
siveness and performance.

such as free-text search, which would require an inordinate
amount of pre-computation storage, and thus necessitates a
different architectural design strategy.

The complexity of such design decisions poses a major
practical challenge because creating new visualization inter-
faces is not a one-shot process. Instead, designers iteratively
create prototypes, using the feedback from their intended
users to refine the design, add new views and interactions,
and ensure that the interactions are sufficiently responsive. If
the data size is negligible, then the designer can focus solely
on interface design, which is well-supported by existing visu-
alization [9] and design [2, 6] tools. However, if the datasets
are large, then simply creating a prototype requires setting
up a server that connects to a data management system, and
making physical database design and caching optimizations
so the prototype is responsive. Even if the designer is capable
of this engineering work, the tremendous engineering cost
can “lock-in” the designer to early architecture decisions.

There is a need for tools that support the rapid co-
design of the visualization interface and the system
architecture. Unfortunately, existing tools primarily focus
on one of the two aspects (Figure 1). At the extremes, visual-
ization libraries like Vega-lite [9] help accelerate client-side
visualization design, whereas database tuners [1, 3] optimize
the physical data layouts but are agnostic to the applica-
tion interface design. Scalable visualization frameworks like
Kyrix [10], Falcon [8], and Polaris [7] make specific architec-
tural decisions that limit the designer to a subset of designs
or interactions that the architecture can efficiently express,
e.g., pan/zoom or brushed linking.

https://doi.org/10.1145/3318464.3384711
https://doi.org/10.1145/3318464.3384711

To overcome these limitations, PVD is a co-design tool
that helps visualization designers rapidly iterate through
the combinatorial space of interface designs and physical
layouts. The key challenge is in identifying the appropriate
abstraction for specifying PVD’s inputs. It must be low-level
enough to express a wide range of visualization interfaces,
yet high-level enough to enable effective optimization. To
address this tension, PVD models the interface as a set of
data flows (SQL queries) that are structurally transformed
and executed in response to user interactions.

Thus, PVD takes as input a specification of the interface
design, architectural optimization techniques, constraints
on the available resources, and expectations of interactivity
and responsiveness. For instance, the designer may spec-
ify that the dataset can vary from 2MB to 2GB, server and
client memory are 2GB and 150MB respectively, and that she
expects interactions to be serviced within 50ms. PVD then
outputs the expected response times of the interactions in
the interface and, if the constraints cannot be met, recom-
mends ways to modify the interface or architectural designs.
The estimated response times are directly simulated in the
design interface, so the designer can directly experience the
effects of different architecture choices across the system.

In this demonstration, users will use PVD to interactively
build a scalable visualization interface by adding visual com-
ponents and interactions, and seeing how small interface
changes affect the utility of different architectural designs.
At each step, users will receive immediate feedback on the vi-
sualization’s performance and design. Once a user is satisfied,
PVD will instantiate and deploy the designed interface.

2 USE CASE

iCheckuClaim [11] is a web-based visualization application
developed by database researchers at Duke University. Users
explore and contextualize U.S. politician voting records as
compared to peer groups (e.g., Republican/Democratic ma-
jority, the President, etc). We describe the interface design
and architecture of a subset of three visualizations (called
“views”) in the main interface (Figure 2).

2.1 Interface Design

(V1) Ranked Politicians Histogram: The sorted bar chart
lists politicians within a demographic group (e.g., senators,
female house reps, etc) along the x-axis. The y-axis shows
the percentage of votes cast by a politician that aligned with
the position of a user-selected peer group. Users pick each
of the two groups from a pre-defined list. The orange bar is
the currently selected politician (e.g., Senator Feinstein).

(V2) Vote Count Histogram: The total number of votes
per week over five years. Users select a date range (shaded

@ Rank view Trend view
shor

o Republican, and
vays mouse-over or double-click a bar fo detals.

Each logislator s
o F ly a selected subset of the bars are

Politician voting
histories
Select bar

Votes per day @
Select date range MMMMMM

Politician’s rank @Feinstein voted with the Democratic majority 97% during
No interactions Jan. 1,2014 — Dec. 31, 2015, over all 705 votes in the Senate.

Figure 2: Three example iCheckuClaim charts (views).

region), which will update the percentages in V1 based on
votes in the selected range, and update V3 (described next).

(V3) Politician Text Summary: Describes a specific politi-
cian’s rank and percentage of agreement within the currently
selected time window. This is updated when a new bar (rep-
resenting a new politician) is selected from V1 and when the
selection in V2 changes.

2.2 System Architecture

iCheckuClaim uses a client-server architecture. The back-
end data store is a ReDis instance which stores the raw vot-
ing data. Additionally, prefix-sum indexes for common peer
groups (such as the President) are pre-computed and cached
in-memory. Other peer groups compute a prefix-sum index
on the fly. Requested indexes are sent to the client.

The Javascript client caches all data received from the
server, and reloads the page when a new peer group is se-
lected. As users interact with the interface, event handlers
decide whether to update the interface using the client cache
or send a server request. The cached prefix-sum index can
recalculate a politician’s voting behavior in constant time as
the user selects new date ranges or different politicians.

2.3 Challenges

Even in this simple interface, subtle interface design deci-
sions have considerable affect on the architecture. For in-
stance, pre-defining the peer groups limits the user’s choices
but enables pre-computation. Rendering V1, V2, and V3 on
the same page implies that the user will expect V1 to quickly
update as the user creates and resizes a selection in V2. Fur-
ther, the designer must choose whether the selection should
continuously update V1 and V3 as it is manipulated, or only
when the user finishes the selection interaction.

Each of these choices adds or removes architectural re-
quirements in terms of the data structures, caching, and data
placement choices that must be made to meet the user ex-
pectations. However, choosing to materialize an index to ac-
celerate the date range interaction can reduce the resources
available for pre-computing and optimizing interactions in

V1. Designers may ultimately need to choose which interac-
tions to prioritize in response to limited resources.

The combination of interfaces and optimizations is too
large to manually search. We next outline how PVD mod-
els this as a constraint-based optimization problem to help
designers make informed trade-offs.

3 PVD OVERVIEW

PVD follows the principles of data independence: it com-
bines a declarative specification of the core data-flows and
interactions used in the interface with an optimizer that
solves an architectural design problem within resource and
interactivity constraints. We describe each in turn.

3.1 Visualization Specification

PVD models each view as a SQL query and each interaction
as a directed edge from a source view (that the user interacts
with) to a target view (that updates in response). We based
this model on prior work in interface generation [12].

A view consists of a SQL query and a visualization ren-
dering specification. For example, V2 in Figure 2 computes a
given chamber’s votes per day as an aggregation query:

SELECT date as d, COUNT(vote_id) as vote_cnt
FROM votes v

WHERE v.vote_chamber === chamber
GROUP BY v.date

The following visual encoding spec maps query attributes to
bar chart properties: mark=bar, d—xaxis, vote_cnt—yaxis.
An interaction is composed of user interaction data, and a
modification of the target view’s query. Each user interaction
(e.g. selecting a dropdown option, dragging a selection box)
exposes a record that contains the event and data information
(e.g. the selected option, the selection box’s bounds as dates).
Query modifications may simply change a query parameter
or change the entire query structure; the main requirement
is that the transformed query remains schema compatible.
For example, the following specifies a 1D brush in V2, and
that it should update V1’s query by setting its date range
filter based on the brush’s range. More complex structure
transformations are expressed as abstract syntax tree trans-
formations that are extracted from query examples [5, 12].
interaction:

view: v2
type: 1dbrush

update v1:
SET v1.datel TO 1dbrush.minx
SET v1.date2 TO 1dbrush.maxx

This graph representation encapsulates the data-flows
needed to drive the visualization, yet gives the designer flexi-
bility in terms of the visual design of the views, layout, and in-
teractions. For instance, they may use Vega-lite, or any other
visualization library, to render query outputs—we assume
that rendering is not the dominant overhead. At the same
time, this graph compactly represents all possible queries

o nputs &
Constraints

® PVD output

Figure 3: A template of the client-server architecture that
PVD outputs. Blue components are inputs controlled by the
developer, while red components are filled in by PVD.

expressible by the interface. We now describe our current
method for using this graph for architectural optimization.

3.2 Optimization and Latency Estimate

PVD takes as input the visualization specification, resource
constraints, and network characteristics. Assuming the client-
server template architecture shown in Figure 3, PVD takes a
sample interaction trace from the interface and generates a
query workload. It then recommends what data structures to
create and where to place them. Based on the recommended
architecture and available cost models PVD also estimates
the latency for each visual component, binning them into
immediate (10-100ms), fast (100-500ms), and slow (500+ ms).

PVD provides an extensible library of visualization op-
timizations and data structures. While PVD currently sup-
ports tree, hash, and prefix-sum indexes, data cubes, and
pre-computation, developers can add custom optimizations
by providing two functions. checky() ensures that a query is
valid for a given optimization. It does so by checking that an
interaction’s query transformation specification is applicable
to the optimization. For instance, the 1dbrush interaction
modifies a range predicate in V1’s query and thus acceptable
for tree indexes, and V1’s count aggregation makes it accept-
able for prefix-sum indexes. It also needs to extract a query
template signature so that queries with different structure
will map to different e.g., prefix sum indexes.

checky (i) — (T/F, signature)

The second function, estimatey takes as input a query q and
database statistics (e.g., cardinalities, attribute distributions),
and uses optimization-specific cost models to estimate the
size of the data structure and latency if the optimization is
applied to the q:

estimatey (q, stats) — (size, latency)

Some optimizations require designer input when it returns
results that are not strictly equivalent to the query result. For
example, sampling introduces uncertainty in the results. In
this case, the optimization must quantify how much results
may diverge from the true results so the developer has the
option to specify the degree of acceptable divergence.

Finally, PVD must select a set of optimizations and a data
placement policy that best reflects the developer constraints.

Arch | Views |[interactons

Arch | Views |interactions

New View New Interaction

SELECT date, vote
FROM Query Modication:

date2 [maxx brush) [

GROUP BY date

I I [Architecture
_— | | Resources
Type: | [Client Mem ———0——

[

|

Latency Expectaton: |
| i I

@ immediate |

(a) Add view

(b) Add interaction

Arch & Recommendations
somavem —o
Sorver Soge o~
06 S
| Arch & Recommendations [C"e[m:l s
_________ ekl Expected Interactivity
vote over date @ Precompute: __3131ms
::::::id Interactivity Brush:
5 Brush
(c) Apply opt. (d) Updated latency profile

Figure 4: Screenshot mockups of the demo walkthrough.

Our current approach is inspired by physical database design
solutions [4]. We enumerate each combination of sampled
queries, relevant optimizations, and data placements, model-
ing each combination as an integer. PVD solves the resulting
integer linear programming problem, whose solution is a
recommended architecture and latency profile. Although
PVD currently relies on naive workload sampling to prevent
combinatorial explosion problem, we plan to explore and
implement query compression techniques that will enable
PVD to directly optimize the visualization specification.

4 DEMONSTRATION

Users will build an interface akin to iCheckuClaim using the
same voting dataset, and experience the interface-architectural
design trade-offs first hand. Below, we describe an example
walk-through of the demo experience (Figure 4).

(a) The interface lays views in a grid (light gray baxes). The
user adds a new view by selecting a rectangle of the desired
size. This shows the New View tab on the left, where the user
specifies the query and visualization spec. In this example,
the user adds the votes by date view.

(b) The user creates an interaction by dragging an edge from
the source to destination view. The New Interaction tab lets
the user specify the interaction in the source view (e.g., 1d
brush) and how it transforms the query in the target view
(filter the date predicate). Users can optionally specify their
expectations for the responsiveness of this interaction.

(c) The architecture tab displays the current architecture,
and has sliders to specify resource constraints (client, server,
network) and to re-scale the database. PVD solves the op-
timization problem to find that the existing architecture,
which does not materialize any data structures, will have
poor responsiveness. It recommends adding a prefix-sum
data structure to accelerate the brushing interaction, which
the user can then choose to Apply.

(d) Accepting the prefix-sum optimization immediately up-
dates the architecture diagram and latency profile. This opti-
mization caches a file on the client on page load, increasing
the download time slightly from 2387 ms to 3131 ms. How-

ever, all ensuing interactions are sub-millisecond in-memory
lookups thanks to the prefix-sum index on the client. This is

reflected in the updated latency profile estimates.

Finally, PVD will instantiate the interface into a full-fledged
web application, apply the optimizations, and manage the
client-server communication and caching. The query results
are also exposed as tables in the client Javascript code, so
the designer can benefit from the system optimizations and
freely update the visualization design.

ACKNOWLEDGMENTS

This work was supported by NSF grants 1527765, 156404,
1845638, and Google, Amazon, and Adobe Research awards.

REFERENCES

[1] AGrawaAL, S., BRUNO, N., CHAUDHURI, S., AND NARASAYYA, V. R. Au-
toadmin: Self-tuning database systemstechnology. IEEE Data Eng. Bull.
29,3 (2006), 7-15.

[2] BotELro, C. Adobe InDesign CS6 Revealed. Cengage Learning, 2012.

[3] Bruno, N., AND CHAUDHURYI, S. Constrained physical design tuning.
Proceedings of the VLDB Endowment 1, 1 (2008), 4-15.

[4] CHAUDHURI, S., AND NARASAYYA, V. R. An efficient, cost-driven index
selection tool for microsoft sql server. In VLDB (1997), vol. 97, Citeseer,
pp. 146-155.

[5] CHEN, Y., AND Wu, E. Monte carlo tree search for generating inter-

active data analysis interfaces. AAAI Workshop on Intelligent Process

Automation (2020).

DEsiGN, F. Figma: the collaborative interface design tool.(2017). Re-

trieved September 17 (2017), 2017.

HANRAHAN, P. Vizql: a language for query, analysis and visualization.

In Proceedings of the 2006 ACM SIGMOD international conference on

Management of data (2006), pp. 721-721.

Moritz, D., HOWE, B., AND HEER, J. Falcon: Balancing interactive

latency and resolution sensitivity for scalable linked visualizations. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems (2019), ACM, p. 694.
[9] SATYANARAYAN, A., MORITZ, D., WONGSUPHASAWAT, K., AND HEER,
J. Vega-lite: A grammar of interactive graphics. IEEE transactions on
visualization and computer graphics 23, 1 (2016), 341-350.
[10] Tao, W,, L1u, X., WANG, Y., BATTLE, L., DEMIRALP, C., CHANG, R., AND
STONEBRAKER, M. Kyrix: Interactive pan/zoom visualizations at scale.
In Computer Graphics Forum (2019), vol. 38, Wiley Online Library,
pp. 529-540.

[11] WALENZ, B, GAo, J., SONMEZ, E., TiAN, Y., WEN, Y., XU, C., ADAIR, B.,
AND YANG, J. Fact checking congressional voting claims.

[12] Zuang, Q., ZHANG, H., AND Wu, E. Mining precision interfaces from
query logs. arXiv preprint arXiv:1904.02344 (2019).

[6

—

[7

—

8

—

	Abstract
	1 Introduction
	2 Use Case
	2.1 Interface Design
	2.2 System Architecture
	2.3 Challenges

	3 PVD Overview
	3.1 Visualization Specification
	3.2 Optimization and Latency Estimate

	4 Demonstration
	Acknowledgments
	References

