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ABSTRACT

The problem of data visualization is to transform data into
a visual context such that people can easily understand the
significance of data. Nowadays, data visualization becomes
especially important, because it is the de facto standard for
modern business intelligence and successful data science.
This tutorial will cover three specific topics: visualization
languages define how the users can interact with various vi-
sualization systems; efficient data visualization processes
the data and produces visualizations based on well-specified
user queries; smart data visualization recommends data
visualizations based on underspecified user queries. In this
tutorial, we will go logically through these prior art, pay-
ing particular attentions on problems that may attract the
interest from the database community.

1 INTRODUCTION

Data visualization, which transforms abstract data into vi-
sual representations (for example, length, position, shape,
color, and so on), is a powerful means to present compelling
stories of data to humans who are more visually oriented.
Nowadays, all organizations have more data than ever at
their disposal. Consequently, more and more organizations
use data and advanced analytics to inform strategic and op-
erational decisions. Data visualization is a natural means to
both provide an overview of massive datasets, and to help
users interpret the results of data analytics. The success of
leading vendors in data visualization, such as Tableau [9],
Qlik [7] and Power BI [5], has revolutionized the way that
even non-technical people can understand and take action
through data.
The considerable interest and efforts from industry and

academia have gone a long way, however, the journey of
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Figure 1: The Stack of Data Visualization

democratizing relational data visualization ś such that any-
one can easily generate various visualizations to understand,
analyses, and present massive volumes of data ś is still in
its early stages. There continues to be significant and impor-
tant challenges. The purpose of this tutorial is to provide
an overview of where we are from the data management
perspective.

Problem Overview and Tutorial Scope. Let us provide a
small amount of formalism. Given a relational database D,

a user specification S, a data visualization can be thought

of as a function F(·, ·) such that F(D, S) computes a set V of

visualizations.

Based on the above definition, Figure 1 presents a simple
architectural stack for relational data visualization.

Data storage describes the data storage layer containing
the relational data D. In practice, it may be stored in a
DBMS, cloud storage, or flat files. It may be very large: it
may contain thousands of tables (or databases), tables may
be wide (e.g., several hundred attributes), and the volumes
may be large (e.g., petabytes). Most commercial visualization
systems can access and visualize across multiple sources,
such as Tableau [9], Qlik [7], Amazon QuickSight [1]. In
contrast, most research prototypes mainly read data from
DBMSs, such as SeeDB [77], DeepEye [61], Polaris [75], zen-
visage [73], and Voyager [81].

We mention storage for completeness, however leave the
technical details out of this tutorial, because it is the focus of
entire subfields of the data management community. We will
instead focus on the three visualization-specific components
below:
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Visualization languages are the mechanism that users ex-
press their visualization goals. A language specification S

must be precise enough that the visualization system can pro-
cess it efficiently, yet easy to use for developers or end-users.
Language specification vary from procedural to declarative,
and can be expressed textually or interactively (e.g., drag-
and-drop operations).

Efficient data visualization describes the procedure to
quickly generate visualizations V when the specification S is
well-specified, i.e., there is no ambiguity of what F(D, S) will
produce. A primary goal is responsiveness and scalability (i.e.,
F(D, S)) can be evaluated in real time); to achieve this goal,
systemsmay relax the result semantics to return approximate
and progressive visualizations if F(D, S)) cannot be evaluated
in real time.

Smart data visualization is when the user underspecifies
S. The system must first łsmartlyž complete the specification
in a way that anticipates the user’s intentions, before it can
render a visualization. This is analogous to keyword search,
in that the search terms are underspecified. Thus different
search engines (e.g., Google, Bing) will output different re-
sults. Smart data visualization could be fully automatic, refer-
ence visualization based, user behavior based, personalized,
and so forth.

Challenges and Open Problems. The last part of this tuto-
rial is dedicated to the challenges and open problems, which
include big data challenges due to massive datasets that still
stymie the goal of real time interactions, the effects of (dirty)
data whose resulting visualizations may mislead the users
with false trends due to data errors, deep data visualization
that leverages deep learning technologies towards smarter
data visualization, a similarly large data visualization bench-
mark for smart data visualization recommendations. and
other related problems.

2 TARGET AUDIENCE AND LENGTH

The primary audience is researchers, practitioners and stu-
dents that are interested in data visualization, or using data
visualization to solve problems. The tutorial will be self-
contained, and we will include a broad introduction and
motivating examples for non-specialists to follow.
Moreover, this tutorial should also be of interest to the

data mining and machine learning communities, due both to
the importance of finding compelling stories through data
visualization for various data analytical tasks, and to its con-
nections with smart data visualizations.
The intended length of this tutorial is 1.5 hours.

3 TUTORIAL OUTLINE

We shall organize the tutorial as follows.
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Figure 2: Data Visualization Languages

3.1 Introduction and Overview

We will start with a brief overview of this tutorial, to give
the audience a clear outline and talk goals. We will then
present motivating examples from emerging applications to
illustrate the importance of data visualization in multiple
domains and tasks.

3.2 Data Visualization Languages

In this tutorial, we use the term łdata visualization languagesž
to broadly mean any method that the users can specify what

visualizations do they want to data visualization systems.
On one side, users can be either experts or non-experts,

and may come from different backgrounds, such as mathe-
matician or engineer. On the other side, data visualization
systems are implemented based on different design purposes,
personal expertise, or any other reason. Consequently, there
are many data visualization languages. Figure 2 gives an
overview about our classification of visualization languages.

Well-specified Languages. This class of languages provide
unambiguous semantics to a given query S. We define three
classes of well-specified languages.

(1) Procedural language requires the specification of a series
of well-structured steps and procedures to compose a visual-
ization. They are typically Graphics Libraries, which specify
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the most basic graphical primitives (e.g., vector in vector
graphic, pixel in bitmap) in graphics, such as OpenGL, Di-
rectX, Qt, Java2D, HTML Canvas, Raphaël [8], Processing [6],
Piccolo [17] and others.

(2) Declarative language requires the specification S of only
what the users want; how to execute them is engine depen-
dent (i.e., the implementation of function F(D, S)). We further
categorize them into two classes.

• Low-level languages [10, 19, 49, 69, 79] abstract graphi-
cal elements as visualization primitives. The visualiza-
tion primitives include marks (e.g., bar in histogram,
line in line chart), axes, legends, scales (the mapping of
data to visual attributes, usually as a function), trans-
formations (e.g., grouping and binning), signals (used
in interaction), and so on. We will mainly talk about
D3 [49, 79], Vega [10] and Reactive Vega [69].
• High-level languages [2, 3, 32, 33, 42, 68, 79, 80, 82, 86]
further abstract the details of low-level visualization
construction. They provide concise specification inter-
faces that are easier for new users to learn and use.
Users omit low-level details, which a compiler fills in
with sensible defaults. In this context, we will focus
on key ideas from ggplot2 [79] and Vega-Lite [68], and
discuss their connections with relational languages
such as SQL.

(3) Visual languages follow the łdirect manipulation princi-
plež [71], that lets end-users interact with a visual interface
to specify visual operations and specifications through a
mouse or touch screen. For instance, Polaris [75] lets users
directly drag attributes from a list onto the X or Y axes to
specify aggregation-based analyses. Interactions may also
specify transformations, chart types, predicates, and more.
Visual languages are widely, and increasingly, used in

commercial visualization systems such as Microsoft Excel,
Apple Numbers, Amazon Redash, Qlik, Tableau [9] (evolved
from Polaris [75]), Spotfire [12], Google Spreadsheets, Google
Fusion Tables [29] and more.

Underspecified Languages.Generally speaking, underspe-
cific languages contain łgapsž in the specification S, and it
is the task of the visualization system to interpret the un-
derspecified input (i.e., the implementation of the function
F(D, S)), in a variety of ways. Users may leave łhintsž in the
gaps so the system can better interpret.

The first type of hint is łreference-basedž, where the users
provide a reference visualization as a seed. zenvisage [72, 73]
supports queries which return similar or dissimilar visualiza-
tions (e.g., similar trends in line charts) with a user provided
reference visualization. Similarly, Draco [51], Voyager2 [81]
and others take as input incomplete declarative visualization
specifications as reference.

The second type of hint is łkeyword-basedž, similar to
keyword search. Systems such as VizDeck [55] and Deep-
Eye [46]1 take as input keywords and return recommended
visualizations. For example, the user of the latter system may
input łshow me line charts about electricity", and the system
will recommend line charts which also contain the column
łelectricity".

3.3 Efficient Data Visualization

When the visualization specification is well-defined, a key
system goal is to generate the visualization quickly. We will
present four important classes of techniques.

(1) Exact data visualization. The class describes systems
that compute visualizations exactly. We further refine these
based on their system design:

• Apply existing systems and technique. Many visual-
ization systems (e.g., DeepEye [45, 61], Polaris [75],
SeeDB [77, 78], Vizdom [21], M4 [37]) perform com-
putation via issuing sql queries to a general DBMS.
Others [27, 48, 56, 64] use hardware (such as multi-
core and GPU), parallel processing [44, 56, 77, 78], or
existing types of data structures to accelerate visual-
ization.
• Modify DBMS designs. Industry and academia have
modified DBMS functionality or system designs to op-
timize them towards data visualization. These include
industry systems such as Hyper [4, 53, 54] which is an
efficient main-memory and hybrid OLTP and OLAP
DBMS that is now customized for Tableau’s data en-
gine. In academia, systems such as the Data Visualiza-
tion Management System [58ś60, 82, 87] explore how
relational query languages can be used to express in-
teractive visualizations [87], and how relational DBMS
designs can be adapted and extended ś for instance
with fast lineage support [58ś60] ś to speed up inter-
active visualization.
• Predictive data visualization. Users interact with visu-
alizations throughout their exploration and analysis
process. These interactions are typically informed from
current and previous viewsÐby changing the param-
eters of current visualization, adding a predicate, or
zooming to see details or overviews. Thus many vi-
sualization systems [16, 18, 20, 25, 35, 38, 44, 76] seek
to predict and speculatively execute/prefetch future
visualizations that the user may request.

(2) Approximate data visualization. In some cases, it
may be too difficult to compute exact visualizations quickly
enough. In these cases, approximation is a pragmatic and ef-
fective mechanism to trade-off responsiveness and accuracy,

1http://deepeye.tech
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and many systems [11, 13, 23, 24, 34, 41, 50, 57, 63] speed up
data processing by leveraging approximate query processing
(AQP) techniques. To inform how error bounds may be set,
there has been recent work to quantify perceptual inaccu-
racies [65, 83], or perceptual function, in ways that may be
employed by such approximation approaches.

(3) Progressive data visualization. A related, but distinct
concept, is to quickly provide an overview (or approximation)
of the visualization, and then gradually refine the details over
time [18, 23, 26, 35, 43, 50, 63, 74]. Users have the flexibility
to choose to either wait for more interesting details, or be
sufficiently satisfied to make a decision (e.g., perform another
interaction). It is important to understand how progressive
results affect the user’s exploration process [88].

(4) Data reduction.When rendering visualizations, many
systems map each data point to a visual element, which may
result in a cluttered visualization that overloads the user.
Data reduction methods help address this issue by summa-
rizing the dataset to help users better identify patterns. We
will review common data reduction techniques ś including
filtering and sampling [23, 41, 50, 67], aggregation (cluster-
ing) [31], and model fitting [28] ś and when each is effective
for particular tasks.

3.4 Smart Data Visualization

Precisely specifying S is hard, even for experts, especially in
the common situation that the users may not even know
what they precisely want. Not surprisingly, several sys-
tems [46, 62, 72, 73] allow users to provide an underspecified
S, and smartly computes visualizations V, which is also re-
ferred to as data visualization recommendation. The practical
need for such systems is that data visualization is typically
used for data exploration ś users try to find the compelling
but unknown stories instead of just depicting the stories.

Apparently, the hardest part of smart data visualization is
to quantify the łgoodnessž of visualizations V w.r.t. D and S,
i.e., to łguessž what the users want. Intuitively, the łone size
does not fit allž principle applies here. Consequently, which
visualizations to recommend have been approached from
different angles, such as similarity-based methods [72, 73]
that recommend visualizations which have the similar trends,
patterns or statistical information with the reference visu-
alization; deviation-based approaches [40, 72, 77, 78] that
capture interesting visualizations as outliers; behavior-based
solutions that infer users’ intent by his/her present be-
havior [30], or a sequence of actions during interactions;
personalized visualizations that recommend visualizations
by leveraging historical data [55]; and perception-based
methods that model the perceptual effectiveness by prede-
fined rules [47, 61, 70, 81] or using machine learning mod-
els [22, 45, 51].

Furthermore, even if S is well-specified, recommending
more interesting visualizations, similar to or different from
V, to the users could still have plenty of rewarding reasons.

3.5 Conclusions and Open Problems

Although data visualization has been extensively studied,
there are still many opportunities and challenges towards the
goal of democratizing data visualization. The tutorial focuses
on the above challenges, however we will also discuss several
open problems:

Interactivity under massive data volumes. Many exist-
ing approaches towards interactivity may be reduced to pro-
cessing a single visualization faster, on more data. However,
there is still tremendous opportunity to explicitly model and
address interactivity directly ś visualization specifications
triggered by interactions are highly correlated. Modeling
interactions as sessions of similar queries [85] can enable
explicit state sharing across queries.

Dirty data. Real-life data is typically dirty and visualizing
dirty data may mislead users. For example, a data that is inte-
grated from multiple sources may contain many duplicates.
Carefully cleaning every dataset before visualizing them is
simply too expensive in practice. Hence, visualization-driven
data cleaning that focuses on the user’s specific analysis is
in high demand, and early approaches such as Scorpion [84],
Profiler [40], and others [39, 52] push towards this goal.

Deep learning for smarter data visualization. Deep learning
based techniques have revolutionized many domain, such as
image recognition, natural language understand, automatic
car, and many others. An emerging topic is the use of deep
learning to better recommend data visualizations [61, 66], in
an analagous way as used in modern search engines.

Data Visualization Benchmarks. Like ImageNet or the
classic TPC benchmarks, it is important to develop bench-
marks for performance and recommendation. The bench-
marks should be faithful to the visual analysis tasks, provide
reusable traces and data, and in the case of recommenda-
tion, have high coverage and quality of its labels. There is an
emerging focus on developing benchmarks for performance
measures [14, 15, 36]. There is potential for a similarly large
data visualization benchmark for smart data visualization
recommendations.
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