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Abstract. Multidimensional data appear in various interesting applica-
tions, e.g., sales data indexed by stores, items, and time. Oftentimes, data
are observed aggregated over multiple data atoms, thus exhibit low res-
olution. Temporal aggregation is most common, but many datasets are
also aggregated over other attributes. Multidimensional data, in partic-
ular, are sometimes available in multiple coarse views, aggregated across
different dimensions — especially when sourced by different agencies. For
instance, item sales can be aggregated temporally, and over groups of
stores based on their location or affiliation. However, data in finer gran-
ularity significantly benefit forecasting and data analytics, prompting
increasing interest in data disaggregation methods. In this paper, we
propose TENDI, a principled model that efficiently disaggregates multi-
dimensional (tensor) data from multiple views, aggregated over different
dimensions. TENDI employs coupled tensor factorization to fuse the mul-
tiple views and provide recovery guarantees under realistic conditions.
We also propose a variant of TENDI, called TENDIB, which performs the
disaggregation task without any knowledge of the aggregation mecha-
nism. Experiments on real data from different domains demonstrate the
high effectiveness of the proposed methods.
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1 Introduction

Low-resolution data, aggregated over multiple data indices, are found in the
databases of diverse applications, e.g., economics [8], health care [15], education
[5], and smart grid systems [6], to name a few. The most common type of aggre-
gation is temporal aggregation, for example, the GDP quarterly national accounts
are aggregated over months. Aggregation over other dimensions is also common,
such as geographically (e.g., population of New York by county) or according to
a defined affiliation (e.g., number of students by majors). The latter is known in
economics literature as contemporaneous aggregation. The different types of ag-
gregation are often combined. For instance, the number of foreigners who visited
different US states in 2019 can be aggregated in time, location (states), and af-
filiation (nationality). Aggregated data offer data summarization, which serves
multiple purposes, including scalability, communication cost, and privacy. On
the other hand, a plethora of data mining and machine learning tasks strive for
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data in high-resolution (disaggregated). Analysis results can differ substantially
when using aggregated versus disaggregated data in many application domains,
such as economics [8], education [5], and supply chains [20]. This has motivated
numerous works in developing algorithms for data disaggregation.

The task of data disaggregation, in general, boils down to finding a solution
to a system of linear equations Ux = y, where y is the vector of aggregated
observations, x is the target disaggregated series, and U is the aggregation ma-
trix that maps the target series to the aggregated measurements. In practical
settings, the linear system is under-determined as the number of observations
is often significantly smaller than the length of the target series, resulting in
an ill-posed problem. In order to tackle the problem, disaggregation techniques
exploit side information or domain knowledge [14, 2], in their attempt to over-
determine the problem and enhance the disaggregation accuracy. Some common
prior models, imposed on the target high-resolution data, involve smoothness,
periodicity [14], non-negativity, and sparsity over a given dictionary [2]. The
main issue with these approaches is that they impose application-specific con-
straints and therefore they cannot generalize to different disaggregation tasks in
a straightforward manner. Moreover, it is unclear whether the assumed models
are identifiable (i.e., an optimal solution of the model is not guaranteed to be
the true disaggregated data), especially when the solution does not ezactly fol-
low the imposed constraints. Note that, identifiability is important, in the sense
of assuring correct recovery under certain reasonable conditions. In our present
context, identifiability has not received the attention it deserves, likely because
guaranteed recovery is considered mission impossible under realistic conditions

An interesting special case of disaggregation arises when data are aggregated
over more that one dimension. This is a popular research problem in the area
of business and economics going back to the 70’s [4]. In this case, temporal and
contemporaneous aggregated views of the data are available. For instance, we are
interested in estimating the quarterly Gross Regional Product (GRP) values for
regions of a country, given: 1) the annual GRP per region (temporal aggregates),
and 2) the GDP quarterly national accounts (contemporaneous aggregates) [16].
Another notable example appears in healthcare, where data are collected by
national, regional, and local government agencies, health and scientific organi-
zations, insurance companies and other entities, and are often aggregated in
many dimensions (e.g., temporally, geographically, or group of hospitals), often
to preserve privacy [15]—see Section 2.2 for another example. Algorithms have
been developed to integrate the multiple aggregates in the disaggregation pro-
cess [4,16]. The majority of them leverage linear regression models with priors
and require additional information to perform the disaggregation task.

In this paper we study the multiview dissagregation task using a tensor de-
composition approach, which provably converts the ill-posed problem to an iden-
tifiable one. Our work is inspired by the following question: Is the disaggregation
task possible when the data are: 1) multidimensional, and 2) observed by dif-
ferent agencies via diverse aggregation mechanisms? This is a well motivated
problem due to the ubiquitous presence of data with multiple dimensions (three
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or more), also known as tensors, in a large number of applications. It is also
very common that aggregation happens in more than one dimensions as in the
previously explained examples. The informal definition of the problem is:

Informal Problem 1 (Multidimensional Disaggregation)
— Given: two (or more) observations of a multidimensional dataset, each rep-

resenting a view of the data aggregated in one (or more) dimension (e.q.,
temporal and contemporaneous aggregates).

— Recover: the data in high-resolution (disaggregated) in all the dimensions.
We propose TENDI: a principled model for fusing the multiple aggregates

of multidimensional data. The proposed approach represents the target high-
resolution data as a tensor, and models them using the canonical polyadic decom-
position (CPD) to reduce the number of unknowns, while capturing correlations
and higher-order statistical dependencies across dimensions. TENDI employs a
coupled CPD approach and estimates the low-rank factors of the target data, to
perform the disaggregation task. This way the originally ill-posed disaggregation
problem is transformed to an over-determined one, by leveraging the uniqueness
properties of the CPD. TENDI can disaggregate under the challenging scenario
where the views are doubly aggregated, i.e., a view is aggregated in two dimen-
sions. We also propose an algorithm (called TENDIB) that handles the disag-
gregation task in cases where the aggregation pattern is unknown. As a result,
the proposed framework not only provides a disaggregation algorithm, but also
gives insights that can be potentially exploited in creating accurately retrievable
data summaries for database applications. Along the same lines, our work pro-
vides insights on when aggregation does not preserve anonymity. With the aid
of another view of aggregated data, estimating the individual-level accurately is
possible as we show in this work, even without knowing the aggregation pattern.
This leads to privacy violation if data are aggregated to preserve anonymity.
Experiments on real data from different applications show that TENDI is very
effective and significantly improves the accuracy of the baselines. In summary,
the contributions of our work are as follows:

— Formulation: we formally define the multidimensional data disaggregation
task from multiple views, aggregated across different dimensions, and provide
an efficient algorithm.

— Identifiability: the considered model can provably transform the original
ill-posed disaggregation problem to an identifiable one.

— Effectiveness: TENDI recovers real data accurately and reduces the disag-
gregation error of the best baseline by up to 48%.

— Blind disaggregation: the proposed model works very effectively, even
when the aggregation mechanism is unknown (TENDIB).

2 Preliminaries & Problem Statement

Notation: x, X, X denote a vector, a matrix, and a tensor, respectively, X ()
is mode-n matricization of X, ||.||F is the Frobenius norm, and [.] denotes the
Kruskal operator, e.g., X ~ [A, B, C]. X7 is the Transpose of X, and vec(-) is
the vectorization operator for matrix X or tensor X. Finally, o, ®, and ® denote
the outer, Khatri-Rao, and Hadamard (element-wise) products, respectively.
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2.1 Tensor Preliminaries

Tensors are multidimensional arrays indexed by three or more indices, (4, j, k, ...).
A third-order tensor X € RI*/*K consists of three modes: columns X (:, 7, k),
rows X (i,:, k), and fibers X (i,j,:). Moreover, X (i,:,:), X(:,7,:), and X(:,:
,k) denote the i'" horizontal, j*" lateral, and k** frontal slabs/slices of X,
respectively—refer to [13,17] for more background on tensors.
Tensor decomposition (CPD): A rank-one third-order tensor X €
results from the outer product of three vectors, i.e., X = (aoboc), where a € Rf,
b € R’ and ¢ € R¥. The Canonical Polyadic Decomposition (CPD) decomposes
a tensor X € R/*7*K into a sum of R rank-one tensors, i.e., X ~ Zle a, o
b, o ¢, where the minimal R € N for which the approximation is exact is the
rank of X, a, € R!, b, € R’ and ¢, € RX. The CPD can be stated in terms
of the factor matrices as X ~ [A,B,C], where A = [a;...ag] € RI*E B =
[by...bg] € R7*E and C = [c; ...cgr] € REXE. A striking property of CDP is
that it is essentially unique (the rank-one components a, o b, o ¢, are unique;
or, equivalently, A, B, C can be identified up to common column permutation
and scaling) under mild conditions [3]. The CPD can also be expressed using the
matricized (unfolded) tensors as X(1) = A(C ® B)”, X?) = B(C ® A)7, and
X®) = C(B o A)T, where X1 ¢ RIX/E X2 ¢ RIXIK and XO) ¢ REXIJ
are mode-1, mode-2, and mode-3 unfolding of X', respectively.

Mode product: is the multiplication of a 4 ,

matrix by a tensor in one particular mode, .

e.g., mode-1 product of matrix U € RI«*I T
and tensor X € RI*/*K corresponds to ,i( - ’“!’KW
multiplying every column X(:,j, k) of the
tensor by U. Similarly, mode-2 (mode-3)
product corresponds to multiplying every row (fiber) of X by a matrix. Mode
products can also be expressed in terms of unfolded tensors. Multiplying a ma-
trix U in the n'* mode can be denoted as: Y = X x, U <= Y = UX™),
where “x,,” is the product over the nt* mode—see Fig. 1 for an illustration. An
important observation is that mode products can be absorbed in the CPD of the
tensor, i.e., in Fig. 1, if X = [A, B, C], then Y = [UA, VB, WC]

RIXJXK

J
Fig. 1: Tllustration of mode products

2.2 Disaggregation Problem

Given a set of low-resolution observations y € R« (e.g., monthly) about a
time series x € R, the goal of the time series disaggregation problem is to
estimate the series x in a higher resolution (e.g., weekly). This can be cast
as a linear inverse problem y = Ux, where U € R«*! is a ‘fat’ aggregation
matriz that maps the observations in y with the variables in x. In this work,
we consider the case where the target high-resolution data are multidimensional
(tensor). The different dimensions represent the physical dimensions of the data,
e.g., time stamps, locations, etc. For the sake of simplicity of exposition, we
focus on three-dimensional data in our formulation and algorithm. However,
the proposed method can handle more general cases with data of higher order.
Specifically, let X € R*/*K be the target high-resolution third-order tensor. In
the considered problem, we are given two sets of observations, each aggregated
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over one or more different dimension(s), which is common when data are reported
by different agencies, resulting in multiple views of the same information. The
key insight is that the given aggregates can be modeled as mode product(s) of
X by an aggregation matrix in a particular mode(s). To see this, consider tensor
X € R¥*2X2_ 5 simple example of a set of observations aggregated over the first
mode can be expressed as

111 121 T112 122

1100 « [F211 T221 T212 Taz2 | _ Y111 Y121 Y112 Y122 (1)
0011 311 T321 T312 L322 Y211 Y221 Y212 Y222
N——
T411 T421 T412 T422
UcR2x4 Y (1) gr2Xx(2x2)

X (1) gr4Xx(2X2)
The same idea applies when the aggregation is over the second (third) mode
using mode-2 (mode-3) product. The major challenge in data disaggregation is
that the number of available aggregated observations is much smaller than the
number of variables, resulting in an under-determined ill-posed problem. This is
the case even when more than one set of aggregates are available.

Before defining the problem formally, we explain the concept with an exam-
ple of retail sales. There are two sources of data used to forecast future demand
in retail sales: 1) store-level data, commonly aggregated in time (temporal ag-
gregate Y, ); and 2) historical orders by the retailers’ Distribution Centers (DC
orders), aggregated over their multiple stores (contemporaneous aggregate Y.).
Note that both store-level and DC orders data are used for demand forecasting,
and especially store-level data are vital in predicting future orders [20]. Hence,
many retailers share data with their suppliers to assist in the forecasting task
and avoid shortage or excess in inventory [9]. In a more restricted scenario, the
second source collects sales of each category of items rather than each item
individually. The question that arises is whether we can fuse these sources to
reconstruct high-resolution data in stores, items, and time dimensions. Formally,
we are interested in:

Problem 1 (Tensor Disaggregation).
— Given two aggregated views of a tensor X € RIX/XK. y, ¢ RIX/xKw and

V. € RIXIXE (or Y, € RI«XJoXEY) "where I, < I, J, < J, and K,, < K.

— Recover the original disaggregated tensor data X € RI*7*K,

We tackle this problem using a coupled low-rank factorization model as we
explain next. Coupled factorization techniques are commonly used to fuse in-
formation when data share common dimension(s) for different tasks, e.g., link
prediction [7], demand forecasting [21], context-aware recommendation [1], med-
ical imaging [10], and remote sensing [11]. Closest to our work is the approach
n [11], which employs a coupled CPD to fuse a hyperspectral image with a
multispectral image, to produce a high spatial and spectral resolution image. To
our knowledge, this work is the first to propose a coupled tensor factorization to
tackle data disaggregation applications.

3 Proposed Method: Tendi

TENDI builds upon two basic principles. The first is that the target tensor,
X € RIXIXE | 3dmits a CPD model (X ~ [A,B,C]). The second notes that
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the available aggregates, Y, and Y., are resulting from the mode product of
an aggregation matrix (matrices) by X in a particular mode(s). In particular,
Vi=Xx3W,and Y. = X x; U (or Y. = X x; U x5 V), where W € REwxK,
U € R« and V € R/**/ are aggregation matrices with K, < K, I, < I, and
Jy < J. As a result, the aggregated views admit CPD models: Y; ~ [A, B, WC]
and Y. ~ [UA, VB, C].

TENDI learns the factor matrices A, B, and C
by applying a coupled CPD model on the avail-
able aggregates—Fig. 2 illustrates the high level
picture of TENDI. Specifically, we propose the fol-
lowing formulation:

fuin, L(A,B,C) =Y - [A,B,WC]|%

Note that additional aggregated views can be han-

dled in a similar fashion. ! ,
Y

3.1 Algorithm y 4 "

Problem (2) is non-convex, and NP-hard in gen- N

eral. To tackle it we employ a block coordinate de-
scent (BCD) approach and update the three fac-
tors in an alternating fashion as summarized in Algorithm 1. The gradient of
the loss function £ w.r.t. A is

VaLl =2A((WC)®B)"((WC)®B)+2U"UA(C® (VB))"(Co (VB))

-2y (wc o B) -207YM (C o (VB))

Using the properties of the Khatri-Rao product, the space and time computa-
tional complexity of the products (C® (VB))T(C® (VB)) can be reduced using
the following element-wise Hadamard product (CTC) ® (BTVTVB) (similarly
for (WC)®B)T((WC) ®B)) [19]. The updates of the factors B and C can be
derived similarly using mode-2 and mode-3 unfolding of the tensors, respectively.
The step size parameters «, 3, and 7 in Algorithm 1 are chosen by the ezact
line search method—see steps 1,3, and 5 in Algorithm 1.

The initialization step in Algorithm 1 is crucial to the disaggregation accu-
racy. Thus, we propose to initialize as follows: if Y, is aggregated in two modes,
then we initialize by:

A BO C«—cep(dy), A=UAY, B=VB? cO%vP=cOBoA)" 4)
if Y, is aggregated only in one mode, i.e., V = I, then B is common in the two
aggregated tensors and we can use the CPD of either to get two “disaggregated”
factors. In this case, if I > K, then we initialize with (4), otherwise, we use:

A.B? Cc? «cep(y.), C=wWC?, AQ Y =AOCoB")" (5
This way we have obtained an initial guess for all the factors. We use the Matlab-
based package Tensorlab to compute the CPD in the initialization step.

The computational complexity of each step in Algorithm 1 boils down to
matrix multiplications that are dominated by (’)((IquK +1J Kw)R). Since R is
very small relative to the size of the tensors with many real data, the complexity
is linear in the number of observations in Y, and Y..

Fig. 2: Overview of TENDL
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3.2 TendiB: Tendi with Blind Disaggregation
In most practical applications, the aggregation details are known. However, there
exists cases with limited or no information on how data are aggregated (i.e., U,
V, and W are unknown). This happens in privacy sensitive domains such as
healthcare [15], where hospital records are aggregated to protect the privacy of
patients. For such cases, we propose TENDIB (TENDI with Blind disaggregation)
to get the factors of the disaggregated tensor (A, B, and C):

min _ F:= Hyt - [[A7B7 éﬂ|‘%‘ + Hyc - [[Ava C]]Hi“ + MHITG - 1TCH§ (6)

AB,C,AC N

Where A = UA, and C = WC are treated as separate variables since we
do not know U and W. This results in a more challenging problem than (2)
as the number of variables is increased, with the same number of equations.
Another challenge is that there is a scaling ambiguity between the factors of
the two tensors, if we omit the third term in (6). To overcome this, we observe
that temporal aggregation W in most aggregated data is non-overlapping and
includes all the time ticks3. This means that the respective column sums of C
and C should be equal. We exploit this observation by adding the last term in
(6), thereby reconciling the scaling ambiguity.

In order to solve (6), we adopt an Alternating Optimization (AO) proce-
dure described in Algorithm 2. The updates of A, 11, and B are solving over-
determined linear systems, and those for C, C boil down to solving a Sylvester
equation. The Sylvester equation is a special form of a linear system of equations,
which can be handled efficiently [12]. To initialize the variables in Algorithm 2,
we compute the (CPD(Y.)) to get A, B® and C©). To get an initial estimate
of (~3, we exploit the fact that the temporal aggregates are the summation over
consecutive time stamps in most real data. As such, we sum every consecutive
w = round( %) rows in C(®) (In the experiments, we make sure that the true
and estimated temporal aggregation do not align).

Algorithm 1 : TENDI (2) Algorithm 2 : TENDIB (6)

input: Y;, Y., U, V, W, R input: Y, Ye, R, p >0

output: A, B, C output: A, B, C

Initialize: A© B® C© by (4) or (5) Initialize: A, B, C©«cpp(¥,)

Repeat CO(ku, 5)“22’;};?@71”1 CO(k,:)
1. o« argmin, £(A —aVa) Repeat o
2. A=A —aVal — A+~ argming F(A,B,C,A,C)
3. B+ argming L(A — BVa) — C <+ argming F(A,B, C,%,C:))
4. B=B -8Vl — A+ argmin, F(A,B,C,A,C)
5. v « argmin, L(A —~Va) — C+ argming F(A,B,C,A,C)
6. C=C—~VcL — B« argming  F(A,B,C,A,C)

Until convergence (max. #iteration) Until convergence (max. #iteration)

3.3 Identifiability Analysis

As mentioned earlier, the disaggregation task is an inverse ill-posed problem.
Modeling the data with CPD allows to provably transform the ill-posed disag-
gregation problem to an identifiable one. In other words, the optimal solution

3 Known, e.g., 50% overlap can be treated similarly — as in this case every atom is
counted twice.
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of (2) and (6) are guaranteed to be unique, under mild conditions and iden-
tify the original high-resolution tensor almost surely. Formally identifiability is
established in Proposition 1.

Proposition 1. Let X € RIX/XE pe the target high-resolution tensor data
that admits a CPD X = [A,B,C] with rank R. Also let Y; € RIX/>*Kv —
X x3 W and Y, € RXTXE — X x; U xy V be the two aggregated ob-
servations. Assume that A, B and C are drawn from some absolutely con-
tinuous distribution, and that (A*,B*,C*) is an optimal solutions to prob-
lem (2) or (6). Then, X = [A,B,C] disaggregates Y;, Ve to X almost surely
if R < £ min{lJ,IK,, JK,,161,J,}.

The proof is relegated to a journal version of this work due to space limitation,
and it leverages the uniqueness properties of the CPD. From our experiments,
we observed the tested data approximately exhibit a low-rank structure and
therefore our identifiability conditions are satisfied.

4 Experiments

4.1 Datasets

We evaluate TENDI using the following publicly online available datasets:
DFF: retail sales data from Dominick’s Finer Foods (DFF), which used to be
a grocery store chain in Chicago until it closed. DFF data were collected by
the James M. Kilts Center, University of Chicago Booth School of Business.
We create 2 ground-truth category-specific (stores X items x weeks) tensors
X € RI*IXK containing the number of sold items of 50 different types of Cheese
(CHE) and fabric softeners (FSF). We choose these two categories because they
have different statistics, i.e., different sparsity and standard deviation (SD),
to thoroughly examine the disaggregation performance. In addition, we form
a (stores X items x weeks) tensor containing items from 10 different categories
combined, 50 items from each (namely DFF in Table 1). DFF data contain the
geographical locations of stores, which we use to aggregate stores into groups.
Crime: number of crime incidents in the City of Chicago from 2001 to present,
marked with beats (police geographical areas), and codes indicating the crime
types. We form a (locations (by beat) x crime types X months) tensor.
Walmart: weekly sales for a number of departments in 45 Walmart stores. A
(stores x departments x weeks) tensor is created from this data. The information
on square feet size of stores is available and we use it to aggregate the stores.
Weather: daily weather observations from 49 stations in Australia. These data
include 17 different variables, e.g., min/max temperature, humidity, etc. We form
a (station x variables x days) tensor of daily observations for one year.

The data, we aim to disaggregate, are created using the datasets summarized
with their statistics in in Table 1 and represented by X € RI*/*K_ We exam-
ine the performance on two different scenarios: 1) Scenario A: we are given
temporally aggregated tensor Yy = X x3 W (i.e., aggregated in the third di-
mension), and contemporaneously aggregated tensor Y. = X x; U aggregated
in the first mode (stores/locations dimension); and 2) Scenario B: where we
observe Y; similar to scenario A, however, the contemporaneous aggregate is
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aggregated in the first and second dimensions in this scenario (double aggrega-
tion), i.e., Y. = X x1 U xo V. The difficulty of the problem also depends on
the aggregation level, i.e., the number of data points (e.g., weeks) in one sum.
Fewer aggregated samples result in more challenging problems, and we test the
performance using different aggregation levels.

4.2 Evaluation Baselines & Metrics Table 1: Summary of datasets.

We evaluate the performance of TENDI  pomccim im0 Max _ Avg  SD % (zeros)

using the Normalized Disaggregation CHE | 93x50x303 18176 2436 8475 1410
FSF | 93x50x397 7168 462  17.13 4613

Error (NDE = ||X — .i'”%/HXH%—‘), DFF |93x500x 230 17610 1610 6598 3313

Crime [304 x 388 x 221 325 0.26 1.47 8.44

where X is the estimated data. We  Wimmare| 45569 x 143 693105 1050101 1090101 66.16

compare the performance to state-of- ~ Weather| #9xT7x365 1035 1025 9565  93.30
art approaches in time series disaggregation literature as well as methods de-
veloped to fuse multiple views of multidimensional data, but for different tasks
(CMTF baseline). To the best of our knowledge our work is the first to perform
disaggregation on multidimensional data from multiple views.

Mean: assumes that the constituents data atoms (entries in X) have equal
contribution in their aggregated samples. The final estimate of Mean is the
average of the estimation from the temporal and contemporaneous aggregates.

LS: baseline is inspired by [16]. However, this work uses additional information
that is not available in our context. Therefore, we find the minimum-norm so-
lution to the least squares criterion on the linear relationship between vec(X),
and vec(Y;) and vec(Y,).

H-Fuse:[14] constrains the solution of LS baseline above to be smooth, i.e., it
penalizes the large differences between adjacent time ticks.

HomeRun:[2] solves for vec(X) in the frequency domain. Specifically, it searches
for the vector s such that s = Dvec(X), where D is a matrix containing the Dis-
crete Cosine Transform basis.

CMTF:[18] is coupled low-rank matrix factorization of the matricized tensors.
CP: fits a CPD model to the ground-truth tensor X using Tensorlab. Then, X is
reconstructed from the learned factors (lower bound on the NDE we can achieve).

4.3 Effectiveness

In the experiments, we set p = 100, and choose R for TENDI (and CP baseline)
based on Proposition 1. For CMTF we perform a grid search and show results
with the best R. We run 10 iterations of the CPD in the initialization step of
Algorithm 1 and 2 using Tensorlab, then 10 iterations of TENDI (or TENDIB).
Results on Scenario A: We test this scenario with two aggregation levels
on four datasets (CHE, FSF, Walmart, and Weather) as shown in Fig. 3. The
aggregation levels with CHE and FSF data are: 1) weeks are aggregated into
months in Y, whereas 93 stores are divided into 16 areas in Y, with the moderate
aggregation (“mod agg”) level; and 2) quarterly samples (every 12 weeks) in Y,
and stores are divided into only 9 areas with the high aggregation (“high agg”)
level. We conclude from the results of CHE and FSF that TENDI is more robust
compared to all baselines when aggregation is aggressive (only few samples are
available). For instance, with “high agg”, the number of available samples in Y,
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(a) CHE data (b) FSF data (c) Walmart data (d) Weather data
Fig. 3: Tendi works well with extreme aggregation on different data.

and Y, is only 8.56% and 9.68% of the original size, respectively. In this case,
the NDE of the second best baseline is 1.89x (1.81x) the error of TENDI with
CHE (FSF) data. The best baseline is CP, which is a lower bound of the NDE we
can achieve. Moreover, TENDIB, which does not have access to the aggregation
matrices, works remarkably well. It reduces the NDE of the second best baseline,
that uses the aggregation information, by 37.77% (30.98%) with “high agg” level
on CHE (FSF) data.

With Walmart data in Fig. 3 (¢), “mod agg” means: weeks are aggregated into
months in Yy, and 45 stores are clustered into 15 groups in Y.. Whereas, “high
agg” is: weeks — quarterly samples in Y;, and 45 stores — 9 groups in Y.. CMTF
works slightly better when the aggregation is moderate, which can be explained
from the fact that departments (second mode in Walmart data) do not exhibit
high correlation levels and thus the advantage of a tensor model over a matricized
tensor one is not obvious. However, TENDI works markedly better with aggressive
aggregation, even without using the aggregation information (TENDIB).

With Weather data (it has 93.30% zeros) in Fig. 3 (d), “mod agg” corresponds
to the daily weather observations averaged into weekly samples in Y, and the
49 stations are clustered into 13 stations resolution in Y.. On the other hand,
days — months in Y, and 49 stations — 7 groups in Y. in the “high agg” level.
Although CMTF and H-Fuse work better with this datasets compared to the
other data, TENDI improves their error, especially with “high agg”. HomeRun
is excluded in Fig. 3 (d) as it imposes non-negativity. CMTF works better with
this dataset owing to the fact that the second mode is small (J = 17), thus
the advantage of a tensor over a matricized tensor model is less clear. H-Fuse
works well as it imposes smoothness, and weather data are suitable for such
constraint. Although TENDIB does not work as well as with other data, it still has
smaller error than the simple baselines (Mean and LS), especially with aggressive
aggregation. The CP error is invisible in Fig. 3 (d) as it is close to zero.
Results on Scenario B: In this scenario, Y. is doubly aggregated in two dimen-
sions: stores and items, or crime locations and types. We test the performance
on DFF and Crime data and compare with Mean, CMTF, and CP baselines.
We omit the other baselines as they run out of memory. Difficulty (i.e., level of
aggregation), increases as we move from case (a) to (c) in Fig. 4. With DFF data,
these levels are: a) weeks — months in Y, and 93 stores — 16 areas in Y. with
no aggregation over the items; b) weeks — months in Y, and 93 stores — 16
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areas and 500 items — 50 categories in Y,.; and ¢) weeks — quarters (12 weeks),
and 93 stores — 16 areas and 500 items — 20 categories in Y.. One can see that
TENDI significantly improves the disaggregation accuracy of the baselines with
DFF data in Fig. 4 (a), with double aggregation and few available samples.

With Crime data in Fig. 4 (b), the
aggregation levels are: a) months —
quarters in Yy, and 304 locations —
61 areas and 388 types — 78 cate-
gories in Y.; b) months — quarters in
YV:, and 304 locations — 31 areas and
388 types — 39 categories in Y.; and o o o e e .
¢) months — bi-yearly samples in Y, e s
and 304 locations — 16 areas and 388
types — 20 categories in Y.. Crime
dataset is challenging as it has 91.56%
zero values and small SD. The naive mean (Mean) has a relatively large NDE
with moderate aggregation in case (a), which indicates that the task is difficult.
Although CMTF performs slightly better with the the first two levels, TENDI
becomes superior with extreme aggregation.

(a) DFF data (b) Crime data
Fig. 4: Tendi works with double aggre-
gation.

5 Conclusions

In this work, we proposed a novel framework for fusing multiple aggregated
views of multidimensional data. The proposed method leverages the properties
of tensors in estimating the low-rank factors of the target data in higher reso-
lution. The assumed model is provably transforming a highly ill-posed problem
to an identifiable one. Experimental results show that the proposed algorithm is
very effective, even with aggressive aggregation. The contributions of our work
are summarized as follows: 1) Formulation: we formally defined the problem
of multidimensional data disaggregation from views aggregated in different di-
mensions; 2) Identifiability: The considered tensor model provably converts
a highly ill-posed problem to an identifiable one; 3) Effectiveness: TENDI re-
duces the disaggregation error of the competing alternatives by up to 48% on
real data; and 4) Unknown aggregation: TENDIB works even when the ag-
gregation mechanism is unknown.
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