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Abstract—Low-rank matrix/tensor factorizations play a sig-
nificant role in science and engineering. An important example
is the canonical polyadic decomposition (CPD). There is also a
growing interest in multi-set extensions of low-rank matrix/tensor
factorizations in which the associated factor matrices are partially
shared. In this paper we propose a more unified framework for
multi-set matrix/tensor factorizations. In particular, we propose a
multi-set extension of bilinear factorizations subject to monomial
equality constraints to the case of shared and unshared factors.
The presented framework encompasses (generalized) canonical
correlation analysis (CCA) and (coupled) CPD models as special
cases. CPD, CCA and hybrid models between them feature
interesting uniqueness properties. We derive uniqueness condi-
tions for CCA and multi-set low-rank factorization with partially
shared entities. Computationally, we reduce multi-set low-rank
factorizations with shared and unshared components into a
special CPD problem, which can be solved via a matrix eigenvalue
decomposition. Finally, numerical experiments demonstrate the
importance of taking the coupling between multi-set low-rank
factorizations into account in the actual computation.

Index Terms—tensor, canonical polyadic decomposition, canon-
ical correlation analysis, coupled decomposition, monomial,
uniqueness, eigenvalue decomposition.

I. INTRODUCTION

Low-rank factorizations of the form

X = MST ∈ CI×K , (1)

where M ∈ CI×R and S ∈ CK×R, are ubiquitous in science
and engineering. In many signal processing and machine learn-
ing applications the factor matrix M ∈ CI×R or S ∈ CK×R
is structured [1]. A classical example is blind separation
of wireless communication signals, in which the columns
of M or S are subject to for instance a constant modulus
(CM) constraint (e.g., [2]). Another classical signal processing
example that will be considered throughout the paper is the
case where M is Khatri–Rao structured (e.g., [3]):

X = MST = (A� B)ST ∈ CIJ×K , (2)

where M = A � B ∈ CIJ×R in which A ∈ CI×R and
B ∈ CJ×R, and ‘�’ denotes the Khatri–Rao (columnwise
Kronecker) product. When R is minimal, the decomposition
(2) is known as the canonical polyadic decomposition (CPD)
and will be reviewed in Section I-D. In practice, interfering
signals can lead to heterogenous mixtures of the form

X = [M,C]ST ∈ CI×K , (3)
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where now S ∈ CK×(R+Q) and the interference matrix
C ∈ CI×Q has a different structure than M. In the context of
blind source separation only a few studies exist for the case
where the factorization of X involves a low-rank structured
interference term. We mention that for the special case where
M is Khatri–Rao structured (i.e., the columns of M are
vectorized rank-one matrices), identifiability conditions and
algorithms have been presented in [4].

In this paper we will consider multi-set extensions of
“single-set” low-rank factorizations of the form (1)–(3), as will
be reviewed next.

A. Overview of multi-set low-rank factorizations
In recent years, data fusion and multimodal data analytics

based on multi-set low-rank factorizations with shared and
unshared components have received considerable attention
(e.g., [5], [6], [7], [8], [9]). These works have identified a wide
range of promising applications, and convincing experimental
/ numerical results for several of these applications, thus
motivating a deeper look into the more mathematical aspects
of multi-set low-rank modeling with shared and unshared
components. The one aspect that stands out as deserving a
closer look is model identifiability – i.e., conditions under
which one can guarantee that the shared and the unshared
components can be uniquely identified. Such an analysis is
missing from the literature (with the exception of limited
results, such as [6]), and it is our goal in this paper to make
progress in this direction, with an eye towards a more unified
identifiability analysis encompassing several known models
and results. The main objective of this paper is to provide
a more unified identification framework for multi-set low-
rank factorizations with shared and unshared components. In
short, we combine and unify the canonical correlation analysis
(CCA) and CPD models, leading to a hybrid CCA and CPD
model with interesting uniqueness properties. However, before
we dive into the details, let us briefly provide an overview and
motivate the multi-set low-rank factorization models discussed
in this paper.

1) Coupled low-rank factorization with a common factor
matrix: The multi-set extension of the basic single-set low-
rank model (3) is given by

X(n) = [M,C(n)]S(n)T ∈ CI×Kn , n ∈ {1, . . . , N}, (4)

where M ∈ CI×R, C(n) ∈ CI×Qn and S(n) ∈ CKn×(R+Qn),
n ∈ {1, . . . , N}. Note that M is shared. Data modeling
concepts that fit within this framework include partial least
squares regression (e.g., [10]) and Joint and Individual Vari-
ation Explained (JIVE) analysis [11]. The model (4) is also
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amenable to canonical correlation analysis (CCA) [12] and
Generalized CCA (GCCA) [13].

When only the matrix M in (4) is of interest, then an
alternative model that does not explicitly involve C(n) can
be useful. Namely, by assuming that relation (4) holds, then
there exist columnwise orthonormal dimensionality reduction
matrices V(n) ∈ CKn×R, n ∈ {1, . . . , N} and nonsingular
change-of-basis matrices F(n) ∈ CR×R, n ∈ {1, . . . , N}, such
that

X(n)V(n) = MF(n)T ∈ CI×R, n ∈ {1, . . . , N}. (5)

In other words, there exists an R-dimensional common sub-
space between X(1), . . . ,X(N) that is spanned by the columns
of M. Let range(M) denote the range of M. An identifiability
condition that guarantees the recovery of range(M) from (4) is
discussed in [14]. In this paper we are interested in cases where
M is structured, which will lead to a different factorization
problem discussed next.

2) Coupled low-rank factorization with a common struc-
tured factor matrix: In certain applications the shared factor
matrix M in (4) is structured. One example is cell-edge user
detection in wireless communication [15] in which M is
subject to a finite alphabet constraint. Another related signal
processing example is blind separation of partially overlapping
data packets [16]. To the best of our knowledge, dedicated
identifiability conditions and algorithms that jointly exploit the
coupled low-rank structure between X(1), . . . ,X(N) and the
structure of the shared factor M have not been discussed in the
literature. In this paper we will provide a more unified frame-
work that can combine the constrained bilinear factorization
models (1) and (3) with the multi-set low-rank factorization
model (4) in which the columns of the shared matrix M satisfy
M monomial equality constraints, such as

mα1,r · · ·mαL,r −mβ1,r · · ·mβL,r = 0, (6)

where mαl,r denotes the αl-th entry of the r-th column of M,
mβl,r denotes the βl-th entry of the r-th column of M and L
denotes the degree of the monomials in (6). Compared to the
results in [14] that only exploit the coupled low-rank structure,
we will show that when the structure of M is also taken into
account, improved identifiability conditions can be obtained.

a) Example 1: To make things more concrete, let us
consider the cell-edge user detection problem in [15], in which
R transmitted BPSK signals of length I are impinging on
N widely separated antenna arrays, each equipped with Kn

antennas, so that the observation data matrices X(n) admit the
factorizations (4), where M ∈ {−1, 1}I×R is the BPSK signal
matrix of interest, C(n) ∈ CI×Qn is an interference term asso-
ciated with the n-th antenna array, and S(n) ∈ CKn×(R+Qn) is
the channel response matrix associated with the n-th antenna
array. In [15] an identifiability condition based on CCA for
the two-view case (N = 2) that exploits the coupled low-rank
structure was proposed. A necessary condition for the CCA
based approach in [15] is that R + Q1 ≤ K1, R + Q2 ≤ K2

and R + Q1 + Q2 ≤ I . In this paper we will show that
by also exploiting the {−1, 1}-binary structure of M, a more
relaxed identifiability condition can be obtained, which allows
tolerating (being immune to) more interference signals, or

unraveling more cell-edge users. Furthermore, as shown in
section V-C, our approach leads to a better algorithm that
works well in practice when the prior art fails. More precisely,
the finite alphabet property of M implies that m2

ir = 1. This
can also be expressed as a monomial equality constraint:

m2
i1,r −m

2
i2,r = 0, 1 ≤ i1 < i2 ≤ I. (7)

b) Example 2: In this paper we will focus on bilinear
factorizations in which M is Khatri–Rao structured. The
coupled low-rank model (4) with M = A � B corresponds
to a multi-set extension of the CPD model (2) with shared
and unshared components:

X(n) = [A�B,C(n)]S(n)T ∈ CIJ×Kn , n ∈ {1, . . . , N}. (8)

The model (8) can be understood as an extension of the
coupled low-rank factorization model (4) to the tensorial case,
in which X(n) ∈ CIJ×Kn is a matrix representation of a tensor
X (n) ∈ CI×J×Kn with rank R. (More details about tensor
rank and matrix representations of tensors will be provided
in Section I-D). In the context of blind separation of DS-
CDMA signals [3], (8) can model a communication system
in which several receive antenna arrays are used so that A is
the transmitted symbol matrix of interest, B is the spreading
code matrix used for spectral diversity, and S(n) and C(n) are
the antenna response matrix and interference matrix associated
with the n-th receive antenna array, respectively. In addition
to the coupled low-rank structure, the Khatri–Rao structure of
M = A� B can also be exploited. In Section II-B2 it will be
made clear that the latter structure implies that the following
monomial equality constraints have to be satisfied:

m(i1−1)J+j1,rm(i2−1)J+j2,r−m(i2−1)J+j1,rm(i1−1)J+j2,r = 0,
(9)

where 1 ≤ i1 < i2 ≤ I and 1 ≤ j1 < j2 ≤ J . It is worth
noticing that the model (8) encompasses the single-set low-
rank CPD model (2) and the coupled low-rank factorization
model (4) associated with GCCA. More precisely, when B =
1TR with 1TR = [1, . . . , 1], then (8) reduces to (4). Similarly,
when C(n) = 0 for all n ∈ {1, . . . , N}, then (8) reduces to
(2). In terms of (5), relation (8) can be expressed as

X(n)V(n) = (A� B)F(n)T ∈ CIJ×R, n ∈ {1, . . . , N}. (10)

3) Coupled low-rank factorization with partially shared
entities: In some applications, rows of X(n) in (4) are missing.
For example, if individuals evaluate a set of objects using only
a subset of available attributes then the involved matrices can
have missing rows [17]. Formally, we consider the following
extension of (4):

X(n) = [M(n),C(n)]S(n)T ∈ CIn×Kn , n ∈ {1, . . . , N},
(11)

where the matrices M(1) ∈ CI1×R, . . . ,M(N) ∈ CIN×R are all
assumed to be submatrices of the matrix M ∈ CI×R while the
entries of the matrices C(1) ∈ CI1×Q1 , . . . ,C(N) ∈ CIN×QN

do not necessarily depend on each other. For ease of explana-
tion, we limit the discussion to the tensorial extension of (11)
where M is Khatri–Rao structured and there exist row selection
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matrices D(n) ∈ CInJn×IJ with property D(n)(A � B) =
A(n) � B(n) such that (cf. Eq. (8)):

X(n) = [A(n) � B(n),C(n)]S(n)T ∈ CInJn×Kn , (12)

where n ∈ {1, . . . , N}, A(n) ∈ CIn×R and B(n) ∈ CJn×R,
and A(1)�B(1) ∈ CI1J1×R, . . . ,A(N)�B(N) ∈ CINJN×R are
submatrices of the matrix A � B ∈ CIJ×R. Again, in terms
of (5), relation (12) can be expressed as

X(n)V(n) = (A(n) � B(n))F(n)T ∈ CInJn×R. (13)

B. Organization and contributions of the paper

The rest of the introduction will present the notation used
throughout the paper followed by a brief review of the CPD.
As our first contribution, we will in Section II propose a
two-step range subspace intersection approach for multi-set
low-rank factorizations of the form (4) in which the columns
of M satisfy monomial equality constraints of the form (6).
This two-step approach first exploits the common subspace
structure of X(1), . . . ,X(N) and thereafter exploits the mono-
mial structure of M in a subsequent step. In particular, we
explain that when both the common subspace structure of
X(1), . . . ,X(N) and the monomial structure of M are simul-
taneously exploited, improved identifiability conditions are
obtained. It will also be clear that this approach generalizes
existing tensor-based methods for bilinear factorizations, such
as ACMA [2] and CPD [3], to the multi-set case. As our
second contribution, we will in Section III propose a kernel
subspace intersection framework that will lead to dedicated
identifiability conditions for multi-set monomial factorizations
with partially shared entities of the form (11). Part of this
work appeared in the conference paper [18]. As our third
and final contribution, we will in Section IV explain that the
discussed range and kernel subspace intersection approaches
lead to algebraic algorithms for the computation of multi-
set low-rank factorizations. An optimization based method
will also be proposed. In Section V numerical experiments
will be reported that demonstrate that for multi-set low-rank
factorizations with shared and unshared components, improved
performance can be obtained when both the coupled and the
monomial equality constrained structure of the decompositions
are jointly exploited.

C. Notation

Vectors, matrices and tensors are denoted by lower case
boldface, upper case boldface and upper case calligraphic
letters, respectively. The r-th column of a matrix A is denoted
by ar, i.e., (A)ir = (ar)i. The conjugate, transpose, conjugate-
transpose, determinant, Frobenius norm, inverse, left-inverse,
range and kernel of a matrix A are denoted by A∗, AT ,
AH , |A|, ‖A‖F , A−1, A†, range (A), ker (A), respectively.
The dimension and orthogonal complement of a subspace S
are denoted by dim(S) and S⊥, respectively. The symbols
⊗ and � denote the Kronecker and Khatri–Rao (columnwise
Kronecker) product. The Kronecker product of K matrices
A(1), . . . ,A(K) will sometimes be denoted by

⊗K
k=1 A(k) =

A(1)⊗· · ·⊗A(K). The outer product of, say, three vectors a, b

and c is denoted by a◦b◦c, such that (a ◦ b ◦ c)ijk = aibjck.
The number of non-zero entries of a vector x is denoted by
ω(x). Let diag(a) ∈ CJ×J denote a diagonal matrix that
holds a column vector a ∈ CJ×1 or a row vector a ∈ C1×J

on its diagonal. Furthermore, let vec(A) denote the vector
obtained by stacking the columns of A ∈ CI×J into a column
vector vec(A) = [aT1 , . . . , aTJ ]T ∈ CIJ . Let e(N)

n ∈ CN
denote the unit vector with unit entry at position n and zeros
elsewhere. The identity matrix and all-ones vector are denoted
by Im ∈ Cm×m and 1m = [1, . . . , 1]T ∈ Cm, respectively.
Matlab index notation will be used for submatrices of a given
matrix. For example, A(1:k,:) represents the submatrix of
A consisting of the rows from 1 to k of A. The binomial
coefficient is denoted by Ckm = m!

k!(m−k)! . The k-th compound

matrix of A ∈ CI×R is denoted by Ck (A) ∈ CCk
I×C

k
R .

It is the matrix containing the determinants of all k × k
submatrices of A, arranged with the submatrix index sets in
lexicographic order. Finally, let SymL(CR) denote the vector
space of all symmetric L-th order tensors defined on CR.
The associated set of vectorized (“flattened”) versions of the
symmetric tensors in SymL(CR) will be denoted by π

(L,R)
S ,

i.e., a symmetric tensor X ∈ CR×···×R in SymL(CR) is
associated with a vector x ∈ CRL

in π(L,R)
S .

D. Canonical Polyadic Decomposition (CPD)

Consider the tensor X ∈ CI×J×K . We say that X is a
rank-one tensor if it is equal to the outer product of nonzero
vectors a ∈ CI , b ∈ CJ and s ∈ CK such that xijk = aibjsk.
A Polyadic Decomposition (PD) is a decomposition of X into
a sum of rank-one terms [19], [20]:

X =
R∑
r=1

Gr ◦ sr =
R∑
r=1

ar ◦ br ◦ sr ∈ CI×J×K , (14)

where Gr = arbTr = ar◦br ∈ CI×J is a rank-one matrix. The
rank of a tensor X is equal to the minimal number of rank-
one tensors that yield X in a linear combination. Assume that
the rank of X is R, then (14) is called the CPD of X . Let
us stack the vectors {ar}, {br} and {sr} into the matrices
A = [a1, . . . , aR] ∈ CI×R, B = [b1, . . . , bR] ∈ CJ×R and
S = [s1, . . . , sR] ∈ CK×R. The matrices A, B and S will be
referred to as the factor matrices of the (C)PD of X in (14).

1) Matrix representation: We will consider the following
matrix representation of (14):

X =
[
vec(GT

1 ), . . . , vec(GT
R)
]

ST = (A� B) ST ∈ CIJ×K .
(15)

The rows of X correspond to the mode-3 fibers {xij •} of X ,
defined as (xij •)k = xijk. Note that vec(GT

r ) = ar ⊗ br in
(15) corresponds to a vectorized rank-one matrix.

2) Uniqueness conditions for CPD: The rank-one tensors
in (14) can be arbitrarily permuted and the vectors within the
same rank-one tensor can be arbitrarily scaled provided the
overall rank-one term remains the same. We say that the CPD
is unique when it is only subject to these trivial indetermina-
cies. In this paper we will make use of the relatively easy to
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check deterministic uniqueness condition stated in Theorem
1.1 below.

Theorem 1.1: [21], [22], [23], [24] Consider the PD of X ∈
CI×J×K in (14). If{

S has full column rank,
C2 (A)� C2 (B) has full column rank,

(16)

then the rank of X is R and the CPD of X is unique.

II. MULTI-SET LOW-RANK FACTORIZATIONS WITH
SHARED AND UNSHARED COMPONENTS

In this section we will explain how to generalize bilinear
factorizations of the form (1) or (3) to the multi-set case

X(n) = [M,C(n)]S(n)T ∈ CI×Kn , n ∈ {1, . . . , N}, (17)

where the columns of the matrix of interest M ∈ CI×R can
exhibit monomial structure, C(n) ∈ CI×Qn are individual
interference matrices, and S(n) ∈ CKn×(R+Qn). The goal is to
recover the shared factor matrix M, given only the observed
matrices X(1), . . . ,X(N). Throughout the paper we assume
that M has full column rank, which is a necessary recovery
condition. Since we are only interested in the recovery of the
full column rank matrix M it can be verified that a necessary
condition is that the matrices {[M,C(n)]} in (17) have full
column rank. For simplicity, we will throughout the paper
also assume that the matrices {S(n)} in (17) have full column
rank, even though the latter is not necessary. Since we assume
that both [M,C(n)] and S(n) have full column rank, we can
without loss of generality (w.l.o.g.) also assume that S(n) is
nonsingular (implying that Kn = R +Qn). Compared to the
multi-set factorization (4), in which M is only assumed to be a
rank-R matrix, the monomially constrained multi-set factoriza-
tion (17) allows dependencies between the interference terms
C(m) and C(n), e.g., c(m)

r = c(n)
s for some m 6= n and r 6= s is

permitted. In addition, by exploiting the monomial structure of
M more relaxed bounds on R and Q1 . . . , QN can be obtained,
as will be illustrated in Sections II-B and III-B. Compared
to the single-set monomially constrained bilinear factorization
model (3), the multi-set extension (17) does not prevent the
columns of the individual interference terms C(n) to have
the same monomial structure as the columns of M (e.g., if
M is Khatri–Rao structured, then C(n) can also be Khatri–
Rao structured). Specifically, in Section II-A we propose a
basic two-step range subspace intersection method that first
exploits the common subspace structure of X(1), . . . ,X(N) and
thereafter exploits the monomial structure of M.

A. A range subspace intersection approach

In this section we present a two-step range subspace inter-
section approach for finding M via the multi-set monomial
factorization model (17). The two key assumptions made in
this section is that there exist nonzero vectors w(1)

r , . . . ,w(N)
r

such that

X(n1)w(n1)
r = X(n2)w(n2)

r , 1 ≤ n1 < n2 ≤ N, (18)

X(n)w(n)
r = mr ∈M, 1 ≤ n ≤ N, (19)

where M denotes a set of vectors that satisfy M monomial
equality constraints of the form (6). Assumption (18) implies
that M ⊆

⋂N
n=1 range(X(n)). Thus, the overall idea is to use

assumption (18) to first find the common column subspace⋂N
n=1 range(X(n)) and thereafter use assumption (19) to re-

cover M from it.
1) Reduction to bilinear factorization subject to monomial

equality constraints, possibly with a low-rank interference
term, by exploiting common subspace: Observe that when the
matrices in the sets {[M,C(n)]} and {S(n)} have full column
rank, then

Y :=
N⋂
n=1

range(X(n)) = range(M)⊕ C, (20)

where ‘⊕’ denotes the direct sum, and

C :=
N⋂
n=1

range(C(n)) ∩ range(M)⊥. (21)

The dimension of C will be denoted by Q.
a) Basic case Q = 0: Since range(M) ⊆ Y , the minimal

dimension of Y is R. This also means that if dim(Y ) = R,
then Q = 0, C = {0} and Y = range(M). Consequently,
if the columns of Y ∈ CI×R form a basis for Y , then the
original multi-set factorization problem (17) can be reduced
to a bilinear factorization problem studied in [25]:

Y = MFT , (22)

where F ∈ CR×R is a nonsingular change-of-basis matrix.
b) More general case Q ≥ 0: Consider now the more

challenging case where the subspace Y given by (20) is
(R+Q)-dimensional, i.e., the subspace C given by (21) is Q-
dimensional with Q ≥ 0. Let the columns of C ∈ CI×Q form
a basis for C. Similarly, let the columns of Y ∈ CI×(R+Q)

form a basis for Y . It is now clear that relation (20) can be
expressed in terms of a matrix factorization:

Y = [M,C]FT , (23)

where F ∈ C(R+Q)×(R+Q) is a nonsingular change-of-basis
matrix. Comparing (22) with (23), it is clear that the former is
just a special case of the latter in which the low-rank interfer-
ence term C is omitted. For this reason, we only consider the
matrix factorization (23) in the subsequent discussion where it
will be made clear that when the monomial equality constraints
(6) are exploited, M can be recovered from Y , even if Q ≥ 1.

2) Reduction to CPD by exploiting monomial structure:
Assume that the columns of M satisfy N monomial equality
constraints of the form (6). By exploiting this structure, the
shared factor M can be recovered from Y, despite Q ≥ 1. In
more detail, we are now looking for a dimensionality reduction
matrix W ∈ C(R+Q)×R with full column rank and with
property

YW = [M,C]FTW = M⇔ Ywr = mr ∈M, 1 ≤ r ≤ R,
(24)

where M denotes the set of vectors that satisfy the M
monomial equality constraints of the form (6). Note that this
is only possible if any nontrivial linear combination of the
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columns of Y yields a vector that is not contained in M, i.e.,
ω(w) ≥ 2 ⇒ Yw /∈ M.1 More specifically, we are looking
for a condition that ensures that any linear combination of the
columns of M and C has the property

[M,C]w ∈M⇒ ω(w) ≤ 1. (25)

By exploiting the monomial equality constraints of the form
(6), condition (25) can, under certain conditions, be satisfied.
In more detail, from (24) we conclude that mir = e(I)T

i Ywr.
Hence, the combination of (6) and (24) yields

L∏
l=1

mαl,m
−

L∏
l=1

mβl,m
=

L∏
l=1

(e(I)T
αl,m

Ywr)−
L∏
l=1

(e(I)T
βl,m

Ywr) =

p(n)T
L ·

(
wr ⊗ · · · ⊗ wr

)
= 0, r ∈ {1, . . . , R}, (26)

where p(m)
L =

⊗L
l=1(YT e(I)

αl,m)−
⊗L

l=1(YT e(I)
βl,m

) ∈ C(R+Q)L

and subscript ‘m’ in αl,m and βl,m denotes the m-th monomial
equality constraint of the form (6). Stacking yields

P(M,L) · (wr ⊗ · · · ⊗ wr) = 0, r ∈ {1, . . . , R}, (27)

where

P(M,L) = [p(1)
L , . . . , p(M)

L ]T ∈ CM×(R+Q)L . (28)

From (27) we know that there exist at least R linearly
independent vectors {wr ⊗ · · · ⊗ wr}, each with property
wr⊗· · ·⊗wr ∈ ker(P(M,L))∩π(L,R+Q)

S . Thus, if the dimension
of ker(P(M,L))∩π(L,R+Q)

S is minimal (i.e., R) and the columns
of R ∈ C(R+Q)L×R form a basis for ker(P(M,L))∩π(L,R+Q)

S ,
then there exists a nonsingular matrix F ∈ CR×R such that

R = (W� · · · �W)FT , (29)

where W = [w1, . . . ,wR] ∈ C(R+Q)×R appears L times in
(29). Clearly, (29) corresponds to a matrix representation of
an (L + 1)-th order tensor R =

∑R
r=1 wr ◦ · · · ◦ wr ◦ fr ∈

C(R+Q)×···×(R+Q)×R. Since W and F have full column rank,
the CPD of R is unique (see Theorem 1.1 with A = W�· · ·�
W, B = W and S = F). This in turn implies the uniqueness
of W and M.

Theorem 2.1 summarizes the obtained uniqueness con-
dition for multi-set low-rank factorizations of the form
(17). In words, the first two conditions rank(S(n)) =
rank([M,C(n)]) = R + Qn in (30) ensure that M ⊆⋂N
n=1 range(X(n)). The third condition tells us that Q =

dim(
⋂N
n=1 range(X(n))) − R. Finally, since wr ⊗ · · · ⊗ wr ∈

ker(P(M,L)) ∩ π(L,R+Q)
S for all r ∈ {1, . . . , R}, the fourth

condition dim(ker(P(M,L)) ∩ π(L,R+Q)
S ) = R tells us that W

and M are unique, as explained above.

1If there exists a vector w with property ω(w) ≥ 2 such that [M,C]w ∈
M, then a nontrivial linear combination of the columns of [M,C] yields an
alternative solution (24), i.e., Yw does not correspond to a (scaled version)
of a column of M, implying that M in (24) is not unique.

Theorem 2.1: Consider the multi-set low-rank factorization
of X(n) ∈ CI×Kn , n ∈ {1, . . . , N} in (17). If

S(1), . . . , S(N) have full column rank,

[M,C(1)], . . . , [M,C(N)] have full column rank,
N⋂
n=1

range(X(n)) is (R+Q)-dimensional,

ker(P(M,L)) ∩ π(L,R+Q)
S is R-dimensional,

(30a)

(30b)

(30c)

(30d)

then the shared factor matrix M is unique.
Similar to Theorem 1.1, conditions (30c) and (30d) in

Theorem 2.1 could alternatively have been formulated in terms
of the involved factor matrices M,C(1), . . . ,C(N). A reason
to formulate them in terms of the observed data matrices
X(1), . . . ,X(N) is that Theorem 2.1 now admits a constructive
interpretation that allows us to develop algorithms for com-
puting M, as will be explained in Section IV-B.

When the model variables in (17) for a given tuple
{R,Q1, . . . , QN} can be considered to have been drawn
from an absolutely continuous probability distribution, then
Theorem 2.1 can be used to obtain a generic identifiability
condition for M. More precisely, recall that an m× n matrix
has rank p ≤ min(m,n) if and only if it has a nonvanishing
p×p minor and all higher-degree minors, if any, vanish. Since
a minor is an analytic function, if it is nonzero at one point
(one constructive example) then it is nonzero generically (at
almost every point except for a set of measure zero). This
fact can be used to check the conditions in (30), as briefly
explained next.

a) Checking conditions (30a) and (30b): From the above
discussion we know that S(n) has full column rank if and only
if it contains a nonvanishing (R+Qn)×(R+Qn) minor. This
is generically true when Kn ≥ R + Qn. By a similar reason
we know that [M,C(n)] generically has full column rank if
I ≥ R+Qn.

b) Checking condition (30c): Let the columns of U(n)

form a basis for range(X(n)). Then the problem of checking
if dim(

⋂N
n=1 range(X(n))) = R+Q amounts to checking if the

kernel of the (NR+
∑N
n=1Qn)× (NR+

∑N
n=1Qn) matrix2

ΞΞΞ =


(N − 1)U(1)HU(1) · · · −U(1)HU(N)

−U(2)HU(1)
. . .

...
... −U(N−1)HU(N)

−U(N)HU(1) · · · (N − 1)U(N)HU(N)

 (31)

is (R+Q)-dimensional. This is true if and only if the largest
nonvanishing minor of ΞΞΞ is of size (NR+

∑N
n=1Qn−R−Q)-

by-(NR+
∑N
n=1Qn −R−Q).

c) Checking condition (30d): Finally, note that

x ∈ ker(P(M,L)) ∩ π(L,R+Q)
S ⇔ f (L)(x) ∈ ker(P(M,L)D(L)),

2The reason is that dim(ker(ΞΞΞ)) = dim(
⋂N
n=1 range(X(n))). Al-

ternatively, it can be computed via relation ker(
∑N
n=1 P⊥

U(n) ) =⋂N
n=1 range(X(n)), where P⊥

U(n) denotes the projector onto range(U(n))⊥

[26], i.e., dim(ker(
∑N
n=1 P⊥

U(n) )) = dim(
⋂N
n=1 range(X(n))).
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where the vector f (L)(x) ∈ CC
L
R+Q+L−1 consists of all the

CLR+Q+L−1 distinct entries of
⊗L

l=1 d = d ⊗ · · · ⊗ d and
D(L) ∈ {0, 1}(R+Q)L×CL

R+Q+L−1 is the “compression” matrix
that takes the structure of x ∈ π(L,R+Q)

S into account, so that
P(M,L)x = P(M,L)D(L)f (L)(x) when x ∈ π

(L,R+Q)
S . Hence,

the problem of checking if dim(ker(P(M,L)) ∩ π(L,R+Q)
S ) =

R amounts to checking if dim(ker(P(M,L)D(L))) = R for a
single instance. In the next section we demonstrate how, for
a given tuple {R,Q1, . . . , QN}, Theorem 2.1 can be used to
obtain a generic identifiability condition for M.

B. Illustrative examples

1) Exploiting coupled low-rank structure leads to im-
proved identifiability conditions: Using Theorem 2.1, we
will first demonstrate that improved identifiability conditions
can be obtained by taking into account that range(M) ⊆
∩Nn=1range(X(n)). Consider the multi-set factorization (17) in
which Qn = 2, N = 1 or N = 2 and M is CM constrained,
i.e., the columns of M satisfies the M = C2

I monomial equal-
ity constraints mi1rm

∗
i1r
−mi2rm

∗
i2r

= 0, 1 ≤ i1 < i2 ≤ I , of
degree L = 2. This can be understood as a double extension
of ACMA for blind separation of CM signals [2], i.e., from
N = 1 and Qn = 0 to N ≥ 1 and Qn ≥ 0. In Appendix A-1
we explain how to construct P(M,L) in (30d). (Note that due
to the complex conjugation associated with the CM constraint,
the requirement that ker(P(M,L))∩π(L,R+Q)

S is R-dimensional
in condition (30) now becomes that ker(P(M,2)) has to be R-
dimensional; see Appendix A-1 for details.) In Table I we
report upper bounds on R as a function of I when condition
(30) is used. By inspection of the table it is clear that a
relaxed condition on R can be obtained by exploiting that
range(M) ⊆ range(X(1))∩range(X(2)). In practice, this means
that more sources m1, . . . ,mR from a mixture of CM signals
of the form (17) can be unraveled when the common subspace
structure range(M) is exploited.

I 10 20 30 40 50 60
N = 1 1 2 3 4 5 6
N = 2 3 4 5 6 7 8

TABLE I
AN UPPER BOUND ON R AS A FUNCTION OF I WHEN M IS CM

CONSTRAINED, N = 1 AND Q1 = 2 OR N = 2 AND Q1 = Q2 = 2, AND
CONDITION (30) IS USED.

2) Exploiting monomial structure of M leads to improved
identifiability conditions: Let us now demonstrate that the
bound on the variables Q1, . . . , QN can be relaxed when the
monomial structure of M is taken into account, i.e., we allow
the dimension of the subspace

⋂N
n=1 range(X(n)) to be greater

than R. Consider the multi-set factorization (17) in which
R = 10, N = 2, and M = A � B ∈ CIJ×R is Khatri–
Rao structured with A ∈ CI×R and B ∈ CJ×R. This implies
that the columns of M satisfy the M = C2

IC
2
J monomial

equality constraints (Gr)i1j1(Gr)i2j2 − (Gr)i1j2(Gr)i2j1 = 0,
1 ≤ i1 < i2 ≤ I , 1 ≤ j1 < j2 ≤ J of degree L = 2,
where we recall that mr = ar ⊗ br = vec(Gr). This can be
understood as a double extension of CPD, i.e., from N = 1

and Qn = 0 to N ≥ 1 and Qn ≥ 0. In Appendix A-2 we
explain how to construct P(M,L) in (30d). In Table II we
report upper bounds on Q1 and Q2 as a function of I and
J when condition (30) is used with Q = 0 and Q ≥ 0.
More precisely, for a given Q, the triplets (Q1, Q2;Q) in
Table II indicate the maximal value for the pair (Q1, Q2) with
property Q1 = Q2 or Q1 = Q2 − 1. In cases where Q ≥ 0,
we have Q = dim(

⋂N
n=1 range(X(n))) − R. By inspection of

the table it is observed that the bound on (Q1, Q2) can be
improved when Q ≥ 0 is permitted. In practice, this means
that when both the common subspace structure range(M) and
the monomial structure associated with M are exploited, then
more interference signals c(n)

1 , . . . , c(n)
Qn

are allowed, without
affecting the ability of recovering the Kronecker structured
sources a1 ⊗ b1, . . . , aR ⊗ bR.

III. EXTENSION TO PARTIALLY SHARED ENTITIES

Note that in Section II it was assumed that the observed
matrices X(1), . . . ,X(N) have the same row dimension, I , and
more importantly that range(M) ⊆

⋂N
n=1 range(X(n)). In this

section we relax both these conditions. In more detail, we
explain that the low-rank multi-set factorization framework
can be extended to the case of partially shared and unshared
components, where the row dimensions of X(1), . . . ,X(N)

vary, i.e.,

X(n) = [M(n),C(n)]S(n)T ∈ CIn×Kn , 1 ≤ n ≤ N, (32)

in which Im 6= In for some m 6= n is permitted. In addition,
we only require that a subset of the rows of M(1), . . . ,M(N)

are shared, i.e., D(m,n)M(m) = D(n,m)M(n) ∈ CFm,n×R

for some a priori known row selection matrices D(m,n) ∈
CFm,n×Im and D(n,m) ∈ CFm,n×In in which Fm,n denotes
the number of shared rows between M(m) and M(n). In
the context of digital communication, this could happen if
different temporal sampling patterns are used for the different
views, e.g., because they are sampled at different sampling
rates or sampling different and partially overlapping blocks
of data. Note that if there is a common “band” of rows
in M(1), . . . ,M(N), then we could in principle make use of
the range subspace intersection approach discussed in Section
II-A, in which the structure associated with the common rows
among M(1), . . . ,M(N) is exploited. However, there are two
reasons why considering an alternative approach makes good
sense. First, since the range subspace intersection approach
discussed in Section II-A only exploits the structure associated
with the common rows among M(1), . . . ,M(N), it may not
be suitable in cases where one pair of matrices (M(p),M(q))
with p 6= q share a different subset of rows than another
pair of matrices (M(s),M(t)) with s 6= t. Second, in cases
where a subset of rows in a matrix M(p) is uncommon with
any of the matrices in {M(n)}Nn=1,n6=p, this information is
not exploited by the range subspace intersection approach
discussed in Section II-A. For these two reasons, a kernel
subspace intersection approach will be discussed next that
can also take the structures associated with both the partially
shared rows between M(1), . . . ,M(N) and the uncommon rows
of the matrices M(1), . . . ,M(N).
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I 6 7 8 9
J 6 7 8 9 7 8 9 8 9 9
Q = 0 (12,13;0) (16,16;0) (19,19;0) (22,22;0) (19,20;0) (23,23;0) (26,27;0) (27,27;0) (31,31;0) (35,36;0)
Q ≥ 0 (18,19;11) (23,24;15) (28,28;17) (33,33;22) (27,27;15) (35,35;24) (40,41;28) (41,42;29) (48,48;34) (55,56; 40)

TABLE II
AN UPPER BOUND ON (Q1, Q2) FOR A FIXED Q AS A FUNCTION OF I AND J WHEN M IS KHATRI–RAO STRUCTURED, N = 2, R = 10, AND CONDITION

(30) IS USED WITH Q = 0 AND Q ≥ 0. THE ENTRIES IN THE TABLE ARE TRIPLETS OF THE FORM (Q1, Q2;Q).

A. A kernel subspace intersection approach

We will now propose a kernel subspace intersection ap-
proach for multi-set factorizations of the form (32) in which
Im 6= In for some m 6= n is permitted. The overall
idea is to look for full column rank matrices W(1) ∈
C(R+Q1)×R, . . . ,W(N) ∈ C(R+QN )×R whose columns have
properties

D(n1,n2)X(n1)w(n1)
r − D(n2,n1)X(n2)w(n2)

r = 0, (33)

X(n)w(n)
r = mr ∈M, (34)

where 1 ≤ n1 < n2 ≤ N and 1 ≤ n ≤ N . Due to
the increased complexity of the kernel subspace intersection
approach, we will limit the discussion to the case where M(n)

in (32) is Khatri–Rao structured:

X(n) = [A(n) �B(n),C(n)]S(n)T ∈ CInJn×Kn , 1 ≤ n ≤ N,
(35)

where the matrices in the sets {[A(n) � B(n),C(n)]} and
{S(n)} are assumed to have full column rank. Note that
there exist row selection matrices D(m,n) ∈ CFm,n×ImJm and
D(n,m) ∈ CFm,n×InJn with property D(m,n)(A(m) �B(m)) =
D(n,m)(A(n) � B(n)). Based on this property we derive a
condition stated in Theorem B.1 in Appendix B that ensures
the recovery of A and B from the multi-set factorization (35).
In the next section we demonstrate that this kernel subspace
intersection approach can lead to improved identifiability con-
ditions compared to the range subspace intersection approach
discussed in Section II-A.

B. Illustrative examples

1) CPD with shared and unshared factors: Let us demon-
strate that the bound on the variables Q1, . . . , QN can be
relaxed when the rank-one structures that are not shared
between X(1), . . . ,X(N) are also taken into account, i.e., when
relation (34) is also taken into account. Consider the same
experiment as in Section II-B2 in which N = 2, but now
we investigate cases where J1 < J2. More precisely, we
consider the case where X(1) = [A(1) � B(1),C(1)]S(1)T and
X(2) = [A(2)�B(2),C(2)]S(2)T , in which A(1)�B(1) = (II2⊗
SB)(A(2) � B(2)) is a submatrix of A(2) � B(2) ∈ CI2J2×R,
where A(1) = A(2) and SB ∈ CJ1×J2 is a row selection
matrix that selects the top J1 rows of B(2). Note that in this
experiment, M := M(2) = A(2) � B(2) is the partially shared
factor matrix. In Table III we report upper bounds on Q1 and
Q2 as a function of (I1, J1) and (I2, J2) when N = 2, R = 10
and condition (92) in Theorem B.1 in Appendix B is used.
By comparing the entries in Table II where J1 = J2 with
the entries in Table III where J1 < J2, it is observed that

the bound on (Q1, Q2) can be improved when also exploiting
rank-one structures that are not shared between X(1) and X(2).

(I1, J1) (5,5) (5,5) (6,6) (6,6) (7,7)
(I2, J2) (5,6) (5,7) (6,7) (6,8) (7,8)

(Q1, Q2) (11,11) (12,13) (20,20) (21,22) (30,31)

TABLE III
AN UPPER BOUND ON (Q1, Q2) AS A FUNCTION OF (I1, J1) AND (I2, J2)

WHEN M := M(2) IS KHATRI–RAO STRUCTURED AND M(1) IS A
SUBMATRIX OF M(2) (SEE TEXT FOR DETAILS), N = 2, R = 10, AND

CONDITION (92) IN THEOREM B.1 IN APPENDIX B IS USED.

2) Coupled CPD with shared and unshared factors: Let
us now show that the kernel subspace intersection approach
can exploit the coupling between the matrix factorizations in
(35) in cases where the range subspace intersection approach
discussed in Section II-A cannot. Consider the following
special case of (35) where A := A(1) = A(2) with N = 2:

X(n) = [A�B(n),C(n)]S(n)T ∈ CIJn×Kn , n ∈ {1, 2}. (36)

Note that (36) corresponds to a coupled CPD [27], [28] with
shared and unshared components. Observe that range(A �
B(1)) 6= range(A�B(2)) and consequently the subspace inter-
section approach discussed in Section II-A cannot exploit the
coupling between X(1) and X(2). In contrast, using property
(34), the kernel subspace intersection approach can exploit the
coupling∣∣∣∣∣ (e(I)

i1
⊗ e(J1)

j1
)TX(1)w(1)

r (e(I)
i1
⊗ e(J2)

j2
)TX(2)w(2)

r

(e(I)
i2
⊗ e(J1)

j1
)TX(1)w(1)

r (e(I)
i2
⊗ e(J2)

j2
)TX(2)w(2)

r

∣∣∣∣∣ = 0,

(37)
where 1 ≤ i1 < i2 ≤ I , 1 ≤ j1 ≤ J1 and 1 ≤ j2 ≤ J2. The
approach discussed here is a special case of the more general
kernel subspace intersection approach outlined in Appendix B
in which only the rank-one structure between X(1) and X(2)

is exploited. Assume that the matrices [A � B(1),C(1)] and
[A � B(2),C(2)] have full column rank and that the matrices
S(1) and S(2) are nonsingular. From (36) we observe that

X(n)w(n)
r = ar ⊗ b(n)

r ∈ CIJn , r ∈ {1, . . . , R}. (38)

By exploiting the monomial relations∣∣∣∣∣ ai1rb(1)
j1r

ai1rb
(2)
j2r

ai2rb
(1)
j1r

ai2rb
(2)
j2r

∣∣∣∣∣ = ai1rai2r(b
(1)
j1r
b
(2)
j2r
− b(1)

j1r
b
(2)
j2r

) = 0,

where 1 ≤ i1 < i2 ≤ I , 1 ≤ j1 ≤ J1 and 1 ≤ j2 ≤ J2, we
obtain∣∣∣∣∣ (e(I)

i1
⊗ e(J1)

j1
)TX(1)w(1)

r (e(I)
i1
⊗ e(J2)

j2
)TX(2)w(2)

r

(e(I)
i2
⊗ e(J1)

j1
)TX(1)w(1)

r (e(I)
i2
⊗ e(J2)

j2
)TX(2)w(2)

r

∣∣∣∣∣
= q(s,1,2)(w(1)

r ⊗ w(2)
r ) = 0, (39)
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where q(s,1,2) = ((e(I)
i1
⊗e(J1)

j1
)TX(1))⊗((e(I)

i2
⊗e(J2)

j2
)TX(2))−

((e(I)
i2
⊗ e(J1)

j1
)TX(1)) ⊗ ((e(I)

i1
⊗ e(J2)

j2
)TX(2)), and the su-

perscript ‘s’ in q(s,1,2) ∈ C1×(R+Q1)(R+Q2) takes all the
subscripts i1, i2, j1 and j2 into account. Stacking yields

Q(M)(w(1)
r ⊗ w(2)

r ) = 0, (40)

where Q(M) = [q(1,1,2)T , . . . , q(M,1,2)T ]T ∈
CM×(R+Q1)(R+Q2) with M = C2

IJ1J2. From (40) it is
clear that if dim(ker(Q(M))) = R (which is minimal since
Q(M)(W(1) � W(2)) = 0), then A � B(n) = X(n)W(n),
n ∈ {1, 2}. More precisely, let the columns of the matrix
R ∈ C(R+Q1)(R+Q2)×R constitute a basis for ker(Q(M)).
Then there exists a nonsingular change-of-basis matrix
F ∈ CR×R such that we obtain the CPD:

R = (W(1) �W(2))FT . (41)

To summarize, if ker(Q(M)) is R-dimensional, then W(1) and
W(2) follows from the unique CPD of (41), which in turn
implies that A, B(1) and B(2) can be obtained from X(1)W(1)

and X(2)W(2). As an example, let R = 6, Q1 = Q2 = 10,
I = J1 = J2 = 5 and K1 = K2 = 16. Then generically
dim(ker(Q(M))) = R, implying that A, B(1) and B(2) in (36)
are generically unique, despite the presence of C(1) and C(2).

IV. ALGORITHMS

In this section we discuss algorithms for computing the
shared components of multi-set low-rank factorizations of the
form (17) or (32). For simplicity, we limit the discussion to
the special case where M = A � B. The extension to other
monomial structures is analogous. We also mainly limit the
discussion to the basic multi-set low-rank factorization of the
form (17). In Appendix C an algebraic algorithm for the more
general multi-set low-rank factorizations of the form (35) that
allows for partially shared entities will be outlined.

A. A least squares fitting approach

Consider the multi-set low-rank factorization of the form
(17) with M = A�B. Let the columns of U(n) ∈ CIJ×(R+Qn)

form an orthonormal basis for range(X(n)). The identifiabil-
ity condition (30) in Theorem 2.1 ensures that there exist
columnwise orthonormal matrices V(n) ∈ C(R+Qn)×R and
nonsingular matrices F(n) ∈ CR×R such that

U(n)V(n) = (A� B)F(n)T , n ∈ {1, . . . , N}. (42)

In practice, relation (42) is rarely exact and consequently we
consider the least squares fitting criterion

f(A,B, {V(n)}, {F(n)}) =
N∑
n=1

‖U(n)V(n)− (A�B)F(n)T ‖2F .

(43)
Since U(n) and V(n) are columnwise orthonormal, minimizing
(43) is equivalent to minimizing

g(A,B, {ΓΓΓ(n)}) =
N∑
n=1

‖U(n) − (A� B)ΓΓΓ(n)T ‖2F , (44)

where ΓΓΓ(n) = V(n)∗F(n). Note that the latter corresponds to
a standard least squares CPD fitting problem, implying that
if condition (30) is satisfied and the columns of U(n) form
an orthonormal basis for range(X(n)), then A and B can be
obtained via a standard least squares fitting method for CPD,
despite the presence of the interfering terms C(1), . . . ,C(N).

By similar reasoning, if the columns of U(n) ∈
CInJn×(R+Qn) form an orthonormal basis for range(X(n)),
where X(n) is given by (35), then in the partially shared factor
case, A and B can be computed by minimizing the least-
squares cost function

h(A,B, {ΓΓΓ(n)}) =
N∑
n=1

‖U(n) − P(n)
sel (A� B)ΓΓΓ(n)T ‖2F , (45)

where P(n)
sel ∈ CInJn×IJ is a known row selection matrix with

property A(n) � B(n) = P(n)
sel (A� B).

In the next section an algebraic method for computing
A and B will be outlined that can be used to initialize an
optimization-based method.

B. Range subspace intersection approaches

1) A basic range subspace intersection approach: In Sec-
tion II-A we alluded that Theorem 2.1 admits a constructive
interpretation that can be used to compute the shared factors
A and B, given only {X(n)}. Details will now be provided.

Step 1: Using SVD, the first step is to find matrices U(1) ∈
CIJ×(R+Q1), . . . ,U(N) ∈ CIJ×(R+QN ) whose columns form
orthonormal bases for X(1), . . . ,X(N), respectively.

Step 2: The next step is to find a columnwise or-
thonormal matrix U ∈ CIJ×(R+Q) whose columns span⋂N
n=1 range(U(n)). This can be accomplished as follows.

Let Q = dim(
⋂N
n=1 range(X(n))) − R and let F ∈

C(NR+
∑N

n=1Qn)×(R+Q) be a columnwise orthonormal matrix
with partitioning F = [F(1)T , . . . ,F(N)T ]T and whose subma-
trices F(n) ∈ C(R+Qn)×(R+Q), n ∈ {1, . . . , N} satisfy the
relation

[U(1)F(1), . . . ,U(N)F(N)] = [A� B,C](1TN ⊗GT ), (46)

where U(n)F(n) ∈ CIJ×(R+Q) and G ∈ C(R+Q)×(R+Q)

is a nonsingular matrix. Using SVD, the matrix F
with property (46) can be obtained via the subspace⋂

1≤n1<n2≤N ker([0I×αm
,U(n1), 0I×βm

,−U(n2), 0I×γm ]),
where αm = (n − 1)R +

∑n−1
m=1Qm, βm =

(n−1)R+
∑n−1
m=1Qm and γm = (n−1)R+

∑n−1
m=1Qm. For

example, the R + Q columns of F can be chosen to be the
R+Q right singular vectors associated with the R+Q smallest
singular values of the matrix ΞΞΞ given by (31). Observe that⋂N
n=1 range(U(n)) = range([U(1)F(1), . . . ,U(N)F(N)]). Thus

U can be obtained from the SVD of [U(1)F(1), . . . ,U(N)F(N)].
We note in passing that finding U and F via U(1), . . . ,U(N)

is related to generalized CCA [13] and generalized Procrustes
analysis [29]. Hence, numerical methods developed to solve
these problems can also be used to find U and F. For example,
U and F can be computed via the so-called maxvar criterion:

min
U,{F(n)}

N∑
n=1

∥∥∥U− U(n)F(n)
∥∥∥2

F
. (47)
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It is well-known that the solution to (47) can be obtained from
an eigenvalue decomposition (EVD), i.e., the columns of U
correspond to the (R + Q) eigenvectors associated with the
(R +Q) dominant eigenvalues of

∑N
n=1 U(n)U(n)H and that

F(n) = U(n)HU.
Step 3: The final step is to compute A and B, given U.

a) Basic case Q = 0: Let us first consider the basic case
where Q = 0. Since range(U) = range(A� B), there exists a
nonsingular change-of-basis matrix ΓΓΓ ∈ CR×R such that

U = (A� B)ΓΓΓT ∈ CIJ×R. (48)

Clearly, relation (48) corresponds to a CPD (cf. Eq. (15)).
Hence, A and B can be obtained from CPD of U. See [1],
[30] and references therein for CPD algorithms.

b) More general case Q ≥ 0: Consider now the case
where dim(range(U)) = R + Q with Q ≥ 0. This implies
that there exists a nonsingular change-of-basis matrix ΓΓΓ ∈
C(R+Q)×(R+Q) and a full column matrix C ∈ CIJ×Q such
that

U = [A� B,C]ΓΓΓT ∈ CIJ×(R+Q). (49)

Assume that condition (30) in Theorem 2.1 is satisfied, then
there exists a columnwise orthonormal matrix V ∈ C(R+Q)×R

and a nonsingular matrix F ∈ CR×R such that

UV = (A� B)FT ∈ CIJ×R. (50)

Since U and V are columnwise orthonormal, then, similar to
(44), A and B can be obtained by minimizing the least squares
cost function

g(A,B,ΓΓΓ) = ‖U− (A�B)ΓΓΓT ‖2F , (51)

where ΓΓΓ = V∗F ∈ C(R+Q)×R. In Section IV-B2 an algebraic
method for computing A and B via (49) will be discussed.

An outline of the basic range subspace intersection approach
for multi-set low-rank factorizations with shared and unshared
factors is given as Algorithm 1. The algorithm is based on
a constructive use of Theorem 2.1 when M = A � B.
Note that if Q = 0, then the problem of finding A and B
reduces to computing the CPD given by (48). Hence, when
Q = 0 and condition (30) in Theorem 2.1 is satisfied, then
Algorithm 1 is guaranteed to find A and B in the exact case.
The dominant cost of Algorithm 1 is the computation of U,
which can be obtained via the EVD of ΞΞΞ given by (31) with
computational cost O((NR +

∑N
n=1Qn)3) or via the EVD

of
∑N
n=1 U(n)U(n)H with computational cost O((IJ)3). As

mentioned earlier, any method, including a cheaper one, for
computing the common subspace of {X(n)} can be used.

2) An algebraic range subspace intersection approach:
An algebraic version of Algorithm 1 can be extended
to cases where dim(

⋂N
n=1 range(X(n))) = R + Q with

Q ≥ 0. In short, let U ∈ CIJ×(R+Q) be the same ma-
trix as in Algorithm 1. Using the M = C2

IC
2
J mono-

mial equality constraints m(i1−1)Jn+j1,rm(i2−1)Jn+j2,r −
m(i2−1)Jn+j1,rm(i1−1)Jn+j2,r = 0, 1 ≤ i1 < i2 ≤ I ,
1 ≤ j1 < j2 ≤ J of degree L = 2 that the columns
of M = A � B exhibit, we build the matrix P(M,2) ∈
CM×(R+Q)2 given by (28) with L = 2 and M = C2

IC
2
J .

From ker(P(M,2))∩π(2)
S , W can be obtained. In more details,

Algorithm 1 A range subspace intersection approach for
multi-set low-rank factorizations of the form (17) with M =
A� B and based on a constructive use of Theorem 2.1.
Input: X(1), . . . ,X(N), R, Q, Q1, . . . , QN .

1. Use SVD to obtain matrix U(n) ∈ CIJ×(R+Qn) whose
columns form an orthonormal basis for range(X(n)), ∀n.
2. Obtain columnwise orthonormal matrix U ∈ CIJ×(R+Q)

whose columns form an orthonormal basis for⋂N
n=1 range(U(n)) via an EVD of ΞΞΞ given by (31) or

via an EVD of
∑N
n=1 U(n)U(n)H .

3. Obtain A and B from the CPD of U given by (48) when
Q = 0 and (50) otherwise.

Output: A and B.

the next step is to find a matrix R whose columns form an
orthonormal basis for ker(P(M,2)) ∩ π(2)

S . Let the columns of
P(M,2) be indexed by the pairs {(r1, r2)}1≤r1,r2≤R+Q, and
ordered lexicographically:

P(M,2) = [p(M,2)
(1,1) p(M,2)

(1,2) , . . . , p
(M,2)
(R+Q,R+Q)]. (52)

Let the matrix P(sym) ∈ CM×C
2
R+Q+1 be constructed from the

columns {p(M,2)
(r1,r2)}r1≤r2 as follows

P(sym) = [p(M,2)
(1,1) , 2p(M,2)

(1,2) , . . . , 2p(M,2)
(1,R+Q), p

(M,2)
(2,2) , 2p(M,2)

(2,3) ,

. . . , 2p(M,2)
(2,R+Q), . . . , p

(M,2)
(R+Q,R+Q)]. (53)

Note that the columns {p(M,2)
(r1,r2)}r1<r2 are scaled by a factor

two. We now have that

w⊗ w ∈ ker(P(M,2)) ∩ π(2)
S ⇔ f(2)(w) ∈ ker(P(sym)), (54)

where f(2)(w) ∈ CC
2
R+Q+1 is a structured vector of the form

f(2)(w) = [w1w1, w1w2, . . . , wR+QwR+Q]T . (55)

In words, f(2)(w) consists of all distinct entries of w ⊗ w.
Hence, if condition (30) in Theorem 2.1 is satisfied, then
dim(ker(P(sym))) = R. Let the columns of V(sym) form a basis
for ker(P(sym) and obtained via the SVD of P(sym). Then

R = DR+Q · V(sym) = (W�W)ΘΘΘT ∈ C(R+Q)2×R, (56)

where DR+Q ∈ C(R+Q)2×C2
R+Q+1 is the duplication matrix

with property w ⊗ w = DR+Q · f(2)(w), ΘΘΘ ∈ CR×R is a
nonsingular change-of-basis matrix, and W = [w1, . . . ,wR] ∈
C(R+Q)×R is the full column rank matrix of interest. Clearly,
relation (56) corresponds to a CPD (cf. Eq. (15)). Hence,
W can be obtained from CPD of R. Now that W has been
obtained, A and B follow from rank-one factorizations of the
columns of UW = A� B.

An outline of the more advanced range subspace intersection
approach for multi-set low-rank factorizations with shared and
unshared factors is given as Algorithm 2. The only difference
between Algorithm 1 and Algorithm 2 is that the latter is still
guaranteed to find A and B in the exact case when Q > 0 and
condition (30) in Theorem 2.1 is satisfied. The complexity
of Algorithm 2 is dominated by the computation of U, as in
Algorithm 1, and the computation of the SVD of P(sym) given
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by (53). The latter can be obtained by means of an EVD with
computational cost O((C2

R+Q+1)3).

Algorithm 2 A range subspace intersection approach for
multi-set low-rank factorizations of the form (17) with M =
A� B and based on a constructive use of Theorem 2.1.
Input: X(1), . . . ,X(N), R, Q, Q1, . . . , QN .

1. Use SVD to obtain matrix U(n) whose columns form an
orthonormal basis for range(X(n)), n ∈ {1, . . . , N}.
2. Obtain columnwise orthonormal matrix U ∈ CIJ×(R+Q)

whose columns form an orthonormal basis for⋂N
n=1 range(U(n)) via an EVD of ΞΞΞ given by (31) or

via an EVD of
∑N
n=1 U(n)U(n)H .

3. Build matrix P(M,2) given by (52) from U.
4. Use SVD to obtain matrix R given by (56) whose
columns form an orthonormal basis for ker(P(M,2))∩π(2)

S .
5. Obtain W from CPD of R.
6. Obtain A and B from rank-one factorizations of the
columns of UW.

Output: A and B.

V. NUMERICAL EXPERIMENTS

A. Exploiting both monomial and common subspace struc-
tures can lead to improved performance

Consider (8) with N = 2, I = J = 10, K = 50, R = 10
and Q1 = Q2 = 30. The matrices X(1) and X(2) are perturbed
by additive noise so that observed matrices are of the form
Y(n) = X(n) + N(n), where N(n) is an unstructured pertur-
bation matrix. In each trial of the Monte Carlo experiment,
the entries of A, B, C(n), S(n) and N(n) are randomly drawn
from a Gaussian distribution with zero mean and unit variance.
The following Signal-to-Noise Ratio (SNR) measure will be
used: SNR = 10 log10(

∑N
n=1 ‖X

(n)‖2F /
∑N
n=1 ‖N

(n)‖2F ). As
a performance measure we use the distance between A and its
estimate, Â. The distance is measured according to

P (A) = min
ΠΠΠΛΛΛ
‖A− ÂΠΠΠΛΛΛ‖F / ‖A‖F , (57)

where ΠΠΠ and ΛΛΛ denote a permutation matrix and a diagonal
matrix, respectively. Note that when ΛΛΛ in (57) is fixed, then
the problem of finding P (A) amounts to solving a linear as-
signment problem, which can for instance be solved using the
Hungarian method. However, since ΛΛΛ is unknown, the function
cpderr.m in Tensorlab [30] is used for the computation of
P (A), where ΠΠΠ and ΛΛΛ are numerically found using a greedy
least squares matching algorithm [3].

We compare a standard least squares fitting CPD method
that ignores C(1) and C(2) when computing A via the CPD of
[X(1),X(2)] with the least squares fitting approach described
in Section IV-A in which X(1) and X(2) are replaced with
the columnwise orthonormal matrices U(1) and U(2). The
former method will be referred to as ‘CPD’ while the latter
method will be referred to as ‘ONB-CPD’, where ONB stands
for orthonormal basis. In both cases the function cpd.m in
Tensorlab [30] is used for the CPD computation. We will also
consider Algorithms 1 and 2 associated with Theorem 2.1.

Finally, we consider ONB-CPD initialized by Algorithm 1,
which will be referred to as ‘Algorithm 1+ONB-CPD’.

In this experiment we know that in the noiseless case we
have Q = 0, implying that in the exact case both Algorithms
1 and 2 are guaranteed to perfectly recover A. The former
algorithm assumes that Q = 0 while the latter algorithm
only assumes that Q ≥ 0. To demonstrate that a good
performance can be obtained despite overestimated Q values,
we will consider Algorithm 2 with Q = 0 and Q = 3. The
mean P (A) values over 100 Monte Carlo runs can be seen
in Figure 1. We observe that Algorithms 1 and 2 perform
about the same. We also observe that CPD does not perform
well and that ‘ONB-CPD’ is sensitive w.r.t. initialization.
Indeed, ‘Algorithm 1+ONB-CPD’ performed slightly better
than Algorithms 1 and 2.

Fig. 1. Mean P (A) values over 100 Monte Carlo runs.

B. Exploiting both shared and individual rows can lead to
improved performance

Consider (12) with N = 3, In = Jn = 5, n ∈ {1, 2, 3},
K = 50, R = 3 and Q1 = Q2 = Q2 = 3. We set A(1)(1 :
3, :) = A(2)(1 : 3, :) = A(3)(1 : 3, :) and B(1)(1 : 3, :) =
B(2)(1 : 3, :) = B(3)(1 : 3, :). In words, A(1)�B(1), A(2)�B(2)

and A(3) � B(3) only have 9 rows (out of 57) in common.
To demonstrate that improved performance can be obtained
when all 57 rows in the noisy observation matrices {Y(n)} are
exploited, we compare Algorithm 1, which only exploits the
9 shared rows, with Algorithm 3, which takes both the shared
and individual rows into account. The mean P (A) values over
100 Monte Carlo runs can be seen in Figure 2. By inspection
of the figure it is clear that Algorithm 3 performs much better
than Algorithm 1. We also observe that the refinement step by
’ONB-CPD’ did not improve the performance.

Fig. 2. Mean P (A) values over 100 Monte Carlo runs.
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C. BPSK cell-edge signal separation

Consider the BPSK signal separation problem discussed in
Section I-A2 in which N = 2, R = 5, Q1 = Q2 = 24, I = 50,
K1 = K2 = 60 and the columns of M satisfy monomial equal-
ity constraints of the form (7). We fix the signal-to-interference
noise ratio to −20 dB, i.e, 20 log10(‖mr‖F /‖c(n)

r ‖F ) = −20,
∀r, s. We compare the combined CCA-RACMA method pro-
posed in [15] with an adapted version of Algorithm 2 with
Q = dim(∩2

n=1range(X(n))) − R = 3 or Q = 4 for BPSK
signals. The goal is to show that BPSK signal separation is
possible even if the CCA identifiability conditions are not
satisfied. In the CCA-RACMA method in [15] it is assumed
that R + Q1 + Q2 ≤ I , which is not the case in this
experiment. The Matlab built-in function canoncorr.m is
used for CCA computation while the RACMA method in [31]
is used for BPSK signal separation. For the BPSK variant
of Algorithm 2 we first compute columnwise orthonormal
matrices U(n) ∈ CI×(R+Qn), n ∈ {1, 2} via SVD such that in
the noiseless case we have range(U(n)) = range(X(n)), n ∈
{1, 2}. Next, we compute the SVD of U(1,2) = [U(1),U(2)] ∈
CI×(2R+Q1+Q1).3 Let the columns of U ∈ CI×(R+Q) form
an orthonormal basis for range(U(1,2)). By exploiting the
monomial equality constraints (7), M is now computed via
U. The mean bit error rate (BER) over 100 Monte Carlo runs
can be seen in Figure 3. We observe that Algorithm 2 with
Q = 3 or Q = 4 works (even in the presence of noise) while
CCA-RACMA does not, even without noise, as expected.

Fig. 3. Mean BER values over 100 Monte Carlo runs.

VI. CONCLUSION

In this paper we studied multi-set low-rank factorizations
with shared and unshared components of which one of the
involved factor matrices can be subject to monomial equality
constraints. We have explained that such multi-set low-rank
factorizations generalize both the well-known CPD for higher-
order tensors and the generalized CCA for multi-set / multi-
view arrays. More precisely, based on subspace intersection,
we presented a link between multi-set low-rank factorizations
with shared and unshared components and monomial factor-
izations, possibly with a low-rank interference term. This led

3Note that similar to (43)–(44), U corresponds to the minimizer of
‖[U(1)V(1),U(2)V(2)] − U[F(1)T ,F(2)T ]‖2F or equivalently the minimizer
of ‖[U(1),U(2)]− UΓΓΓT ‖2F , where ΓΓΓ = [F(1)TV(1)H ,F(2)TV(2)H ]. Alter-
natively, U could have been obtained via relation (31) or (47).

to a uniqueness condition which demonstrated that improved
identifiability conditions can be obtained by simultaneously
exploiting the common subspace structure and the monomial
structure of the involved factorizations. By taking into account
the specific structure that captures the monomial constraint, we
have even reduced the monomial factorization, possibly with
a low-rank interference term, to a CPD. This in turn led to
algebraic algorithms for multi-set low-rank factorizations with
shared and unshared components. We extended the results to
the case of partially shared entities, where both shared and
unshared structural information is taken into account.

APPENDIX A
BILINEAR FACTORIZATIONS SUBJECT TO MONOMIAL

EQUALITY CONSTRAINTS, POSSIBLY WITH LOW-RANK
INTERFERENCE TERMS

In this appendix we explain that the blind source separa-
tion problems in [2] and [3] can be interpreted as bilinear
factorizations of the form (1) in which the columns of M
satisfy M monomial equality constraints of the form (6).
More importantly, we explain that the factorization approach
in [25] allows us in a straightforward way to consider bilinear
factorizations of the form (3) that also involve a low-rank
interference term. This section will also demonstrate how to
construct P(M,L) in Theorem 2.1 for two concrete cases.

1) Example 1: Constant modulus constraint: Consider the
bilinear factorizations of the form (1) in which the columns of
M are subject to a CM constraint and S has full column rank
[2]. Without loss of generality we assume that S is nonsingular
so that K = R +Q. Compared to [2] a slightly different but
more concise formulation will be used that is in line with the
bilinear factorization framework in [25]. We will also consider
the more general bilinear matrix factorization of the form (3) in
which the columns of C are not CM constrained. By exploiting
the monomial relation property mi1m

∗
i1
− mi2m

∗
i2

= 0 of a
CM constrained column m, we will derive a condition that
ensures the recovery of M, given only X. Since m ∈ range(X)
there exists a vector w ∈ C(R+Q) such that Xw = m. In more
detail, we are looking for R vectors w1, . . . ,wR ∈ C(R+Q),
each with property

Xw = [M,C]STw = m ∈MCM, (58)

where the subscript ‘r’ has been dropped for clarity and
where MCM denotes the set of CM constrained vectors m with
property m∗1m1 = · · · = m∗ImI . The CM constraint implies
that

mi1m
∗
i1 −mi2m

∗
i2 = 0, 1 ≤ i1 < i2 ≤ I. (59)

Compared to (6), (59) involves complex conjugate variables
m∗i . This is just a technical variant of the former. The
combination of (58) and (59) yields

mi1m
∗
i1 −mi2m

∗
i2 = 0⇔

(e(I)T
i1

Xw)(e(I)T
i1

X∗w∗)− (e(I)T
i2

Xw)(e(I)T
i2

X∗w∗) = 0⇔{
e(I)T
i1

X⊗ e(I)T
i1

X∗ − e(I)T
i2

X⊗ e(I)T
i2

X∗
}

(w⊗ w∗) = 0⇔

p(i1,i2)
CM (w⊗ w∗) = 0, (60)
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where p(i1,i2)
CM := e(I)T

i1
X ⊗ e(I)T

i1
X∗ − e(I)T

i2
X ⊗ e(I)T

i2
X∗ ∈

C1×(R+Q)2 . Stacking yields

P(C2
I )

CM · (w⊗ w∗) = 0 , (61)

in which

P(C2
I )

CM =
[
p(1,2)T

CM , . . . , p(I−1,I)T
CM

]T
∈ CC

2
I×(R+Q)2 . (62)

Note that Theorem 2.1 can be adapted to the case of com-
plex conjugate variables, simply by replacing the condition
dim(ker(P(M,L)) ∩ π(L,R+Q)

S ) = R with dim(ker(P(M,L))) =

R, where P(M,L) = P(C2
I )

CM with M = C2
I and L = 2. Assume

that dim(ker(P(C2
I )

CM )) = R, which is minimal. Let the columns
of Q ∈ C(R+Q)2×R form a basis for ker(P(C2

I )
CM ). Then there

exists a nonsingular change-of-basis matrix F ∈ CR×R such
that

Q = (W �W∗)FT , (63)

where W = [w1, . . . ,wR]. It is clear that (63) corresponds
to a matrix version of the tensor Q =

∑R
r=1 wr ◦ w∗r ◦ fr ∈

C(R+Q)×(R+Q)×R, whose CPD is unique (see Theorem 1.1
with A = W, B = W∗ and S = F). To summarize, if the
dimension of ker(P(C2

I )
CM ) is minimal (i.e., R), then W and

consequently also M = XW are unique.
2) Example 2: Low-rank constraint: In Sections II and III

it was made clear that it can be convenient to interpret the
CPD of a tensor with matrix representation (15) as a bilinear
factorization subject to monomial equality constraints of the
form (Gr)i1j1(Gr)i2j2 − (Gr)i1j2(Gr)i2j1 = 0. In this section
we will consider the more general case in which the columns
of M of (3) correspond to vectorized rank-P matrices of the
form mr = vec(Gr) with Gr ∈ CI×J being a rank-P matrix.
We note in passing that a factorization of the form (3) in
which the columns of M are vectorized rank-P matrices but
the low-rank interference term C is absent (i.e., C = 0) is
known as a Block Term Decomposition (BTD) [32] and it has
been thoroughly studied in [33]. Compared to [33] a slightly
different formulation will be used that is more in line with the
bilinear factorization framework in [25]. Since S is assumed
to have full column rank, we can w.l.o.g. assume that it is
nonsingular, implying that K = R + Q. Similar to (58), we
are looking for R vectors w1, . . . ,wR ∈ C(R+Q), each with
property

Xw = [M,C]STw = m ∈MBTD, (64)

where again the subscript ‘r’ has been dropped for clarity and
MBTD denotes the set of vectors of the form m = vec(G) in
which G ∈ CI×J is a matrix with at most rank P < min(I, J).
The low-rank constraint implies that

CP+1(G) = 0. (65)

Let the M = CP+1
I CP+1

J minors of G of size (P + 1)-
by-(P + 1) be indexed by a superscript ‘m’ , i.e., G(m) ∈
C(P+1)×(P+1) is a submatrix formed by P+1 rows and P+1
columns of G. Relation (65) implies that any (P + 1)-by-
(P + 1) minor of G has the property∣∣∣G(m)

∣∣∣ =
∑

σ∈SP+1

sgn(σ)
P+1∏
i=1

g
(m)
i,σ(i) = 0, (66)

where SP+1 denotes the set of all permutations of
1, 2, . . . , P +1 and sgn(σ) denotes the sign of the permutation
σ. Since P > 0 there are (P+1)!

2 even permutations and (P+1)!
2

odd permutations, meaning that (66) can be decomposed as
follows∣∣∣G(m)

∣∣∣ =

 ∑
σ∈AP+1

P+1∏
i=1

g
(m)
i,σ(i)

−
 ∑
τ∈BP+1

P+1∏
i=1

g
(m)
i,τ(i)

 = 0,

(67)
where AP+1 and BP+1 denote the sets of even and odd permu-
tations, respectively. Note that (67) involves a sum of (P+1)!

2
relations of the form (6). Again, the former is just a technical
variant of the latter. Note also that P = 1 corresponds to the
CPD case in which (67) reduces to g(m)

1,1 g
(m)
2,2 −g

(m)
1,2 g

(m)
2,1 = 0.

Observe that g(m)
i,σ(i) = (e(I)

im
⊗e(J)

σ(in))
TXw, where the subscript

‘m’ of im takes into account that G(m) is a submatrix of G.4

Similar to (60), the combination of (64) and (67) yields

∣∣∣G(m)
∣∣∣ = 0⇔

(P+1)!
2∑

q=1

P(q,m)
P+1 · (w⊗ · · · ⊗ w︸ ︷︷ ︸

P+1 times

) = 0,

where

p(q,m)
P+1 =

P+1⊗
p=1

((e(I)
ip
⊗ e(J)

σq(ip))
TX)−

P+1⊗
p=1

((e(I)
ip
⊗ e(J)

τq(ip))
TX),

in which (i1, i2, . . . , iP+1) is determined by ‘m’, σq denotes
the qth element of AP+1 and τq denotes the qth element of
BP+1. Stacking yields

P(M,P )
BTD · (w⊗ · · · ⊗ w) = 0 , (68)

in which

P(M,P )
BTD =


∑ (P+1)!

2
q=1 P(q,1)

P+1
...∑ (P+1)!

2
q=1 P(q,M)

P+1

 ∈ CM×(R+Q)P+1

. (69)

Note that Theorem 2.1 can also be used in the BTD case,
i.e., simply set P(M,L) = P(M,P )

BTD with M = CP+1
I CP+1

J and
L = P+1. Assume that dim(ker(P(M,P )

BTD )∩π(P+1,R+Q)
S ) = R,

which is minimal. Let the columns of Q ∈ C(R+Q)P+1×R

form a basis for ker(P(M,P )
BTD )∩π(P+1,R+Q)

S . Then there exists
a nonsingular change-of-basis matrix F ∈ CR×R such that

Q = (W � · · · �W)FT , (70)

where W = [w1, . . . ,wR] ∈ C(R+Q)×R. It is clear that (70)
corresponds to a matrix version of the tensor Q =

∑R
r=1 wr ◦

· · ·◦wr◦fr ∈ C(R+Q)×···×(R+Q)×R, whose CPD is unique (see
Theorem 1.1 with A = W�· · ·�W, B = W and S = F). To
summarize, if the dimension of dim(ker(P(N,P )

BTD )∩π(P+1,R+Q)
S

is minimal (i.e., R), then W and M = XW are unique.
We note in passing that it can be verified that in the CPD

case where P = 1 and Q = 0 (i.e., C = 0), the condition

4Alternatively, this could have been expressed as g
(m)
i,σ(i)

= (e(I)i ⊗
e(J)
σ(i)

)TX(m)w, where the superscript ‘m’ now extracts the appropriate
(P + 1)× (P + 1) submatrix of X.
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that ker(P(M,1)
BTD ) ∩ π(2,R)

S is minimal (i.e., R) and S has full
column rank is equivalent to the CPD uniqueness condition
(16) stated in Theorem 1.1, i.e., we can replace the condition
that C2 (A)� C2 (B) has full column rank with the equivalent
condition that dim(ker(P(C2

IC
2
J ,1)

BTD ) ∩ π(2,R)
S ) = R.

To summarize, the problem of computing M via a bilinear
factorization of the form (3) in which the columns of M ex-
hibit a monomial structure can be transformed into a low-rank
CPD problem, even in cases where a low-rank interference
term C is present.

APPENDIX B
IDENTIFIABILITY CONDITION BASED ON THE KERNEL

SUBSPACE INTERSECTION FORMULATION

We will derive an identifiability condition for the multi-
set factorization (35) based on relations (33) and (34). First,
we explain how to exploit the rank-one structure associ-
ated with M(n) = A(n) � B(n) and the common subspace
structure between range(X(m)) and range(X(n)). Next, we
explain how to merge these two structures, which will lead
to a uniqueness condition for M(1), . . . ,M(N). Finally, we
derive a condition that ensures the uniqueness of A and B,
given that M(1), . . . ,M(N) are unique (up to intrinsic scaling
ambiguities).

1) Exploiting rank-one structure within X(n): Since the
columns of the Khatri–Rao structured matrix M(n) = A(n) �
B(n) correspond to vectorized rank-one matrices, we already
know from the discussion in Section A-2 that M(n) satisfies
Mn = C2

In
C2
Jn

monomial relations of the form

m
(n)
(i1−1)Jn+j1,r

m
(n)
(i2−1)Jn+j2,r

−m(n)
(i2−1)Jn+j1,r

m
(n)
(i1−1)Jn+j2,r

=

∣∣∣∣∣ a(n)
i1,r

b
(n)
j1,r

a
(n)
i1,r

b
(n)
j2,r

a
(n)
i1,r

b
(n)
j1,r

a
(n)
i1,r

b
(n)
j2,r

∣∣∣∣∣ = 0, (71)

where 1 ≤ i1 < i2 ≤ In and 1 ≤ j1 < j2 ≤ Jn. The
combination of (33) and (71) yields∣∣∣∣∣ (e(In)

i1
⊗ e(Jn)

j1
)TX(n)w(n)

r (e(In)
i1
⊗ e(Jn)

j2
)TX(n)w(n)

r

(e(In)
i2
⊗ e(Jn)

j1
)TX(n)w(n)

r (e(In)
i2
⊗ e(Jn)

j2
)TX(n)w(n)

r

∣∣∣∣∣
= q(m,n,n)(w(n)

r ⊗ w(n)
r ) = 0, (72)

where q(m,n,n) = ((e(In)
i1

⊗ e(Jn)
j1

)TX(n)) ⊗ ((e(In)
i2

⊗
e(Jn)
j2

)TX(n))−((e(In)
i2
⊗e(Jn)

j1
)TX(n))⊗((e(In)

i1
⊗e(Jn)

j2
)TX(n)),

and the superscript ‘m’ in the row-vector q(m,n,n) ∈
C1×(R+Qn)2 takes all the subscripts i1, i2, j1 and j2 into
account. Stacking yields

Q(Mn,n,n)(w(n) ⊗ w(n)) = 0, (73)

where Q(Mn,n,n) = [q(1,n,n)T , . . . , q(Mn,n,n)T ]T ∈
CMn×(R+Qn)2 with Mn = C2

In
C2
Jn

. Note that all rows
in X(n) are involved in the construction of Q(Mn,n,n).

2) Exploiting rank-one structure between X(n1) and X(n2):
Using (34), we can also exploit the rank-one structure between
X(n1) and X(n2), as explained next. Consider two integers n1

and n2 with 1 ≤ n1 < n2 ≤ N . Let

S(n1,n2)
A ∈ CIn1,n2

×In1 , S(n1,n2)
B ∈ CJn1,n2

×Jn1 ,

S(n2,n1)
A ∈ CIn1,n2×In2 , S(n2,n1)

B ∈ CJn1,n2×Jn2 ,

denote row-selection matrices such that

(S(n1,n2)
A ⊗ S(n1,n2)

B )M(n1) = (S(n2,n1)
A ⊗ S(n2,n1)

B )M(n2)

= A(n1,n2) � B(n1,n2),

where A(n1,n2) = S(n1,n2)
A A = S(n2,n1)

A A and B(n1,n2) =

S(n1,n2)
B B = S(n2,n1)

B B. In words, S(n1,n2)
A ⊗ S(n1,n2)

B and
S(n2,n1)

A ⊗ S(n2,n1)
B select the shared rows between A(n1) �

B(n1) and A(n2)�B(n2). Note that the row selection matrices
S(n1,n2)

A ⊗ S(n1,n2)
B and S(n2,n1)

A ⊗ S(n2,n1)
B can be more re-

strictive (in the sense of selecting rows in a structured fashion)
than the row selection matrices D(n1,n2) and D(n2,n1) in (33).
Define

Y(n1,n2) = (S(n1,n2)
A ⊗ S(n1,n2)

B )X(n1), (74)

Y(n2,n1) = (S(n2,n1)
A ⊗ S(n2,n1)

B )X(n2). (75)

The combination of (34), (71), (74) and (75) yields∣∣∣∣∣ γγγ
(In1 ,Jn1 )T
i1,j1

Y(n1,n2)v(n1)
r γγγ

(In2 ,Jn2 )T
i1,j1

Y(n2,n1)v(n2)
r

γγγ
(In1

,Jn1
)T

i2,j1
Y(n1,n2)v(n1)

r γγγ
(In2

,Jn2
)T

i2,j2
Y(n2,n1)v(n2)

r

∣∣∣∣∣
= q(m,n1,n2)(w(n1)

r ⊗ w(n2)
r ) = 0,

where γγγ(In,Jn)
ip,jq

= e(In)
ip
⊗ e(Jn)

jq
∈ CInJn and

q(m,n1,n2) = (γγγ
(In1

,Jn1
)T

i1,j1
Y(n1,n2))⊗ (γγγ

(In2
,Jn2

)T
i2,j2

Y(n2,n1))

− (γγγ
(In2

,Jn2
)T

i1,j1
Y(n1,n2))⊗ (γγγ

(In1 ,Jn1 )T
i2,j1

Y(n2,n1)),

in which the superscript ‘m’ in the row-vector q(m,n1,n2) ∈
C1×(R+Qn1

)(R+Qn2
) takes all the subscripts i1, i2, j1 and j2

into account. Stacking yields

Q(Mn1,n2 ,n1,n2)(w(n1)
r ⊗ w(n2)

r ) = 0, (76)

where Q(Mn1,n2
,n1,n2) = [q(1,n1,n2)T , . . . , q(Mn1,n2

,n1,n2)T ]T ∈
CMn1,n2

×(R+Qn1
)(R+Qn2

) with Mn1,n2 = C2
In1,n2

C2
Jn1,n2

.

3) Exploiting common subspace structure range(X(m))
and range(X(n)): Note that by exploiting the rank-one
structures within and between the matrices X(m) and
X(n), we obtained several systems of equations of the
form (73) and (76). We wish to combine them into
a single system of equations that can be more con-
veniently studied using the CPD. This will be accom-
plished by exploiting the common subspace structure between
range(X(m)) and range(X(n)). In detail, since w(n1)

r 6= 0,
D(n1,n2)X(n1)w(n1)

r − D(n2,n1)X(n2)w(n2)
r = 0 if and only

if w(n1)
r ⊗ (D(n1,n2)X(n1)w(n1)

r − D(n2,n1)X(n2)w(n2)
r ) = 0,

which in turn is equivalent to

(IR+Qn1
⊗ D(n1,n2)X(n1))(w(n1)

r ⊗ w(n1)
r )−

(IR+Qn1
⊗ D(n2,n1)X(n2))(w(n1)

r ⊗ w(n2)
r ) = 0. (77)

By a similar reasoning, we obtain

(IR+Qn2
⊗ D(n1,n2)X(n1))(w(n2)

r ⊗ w(n1)
r )−

(IR+Qn2
⊗ D(n2,n1)X(n2))(w(n2)

r ⊗ w(n2)
r ) = 0. (78)
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Alternatively, we can also work with the relations

(D(n1,n2)X(n1) ⊗ D(n1,n2)X(n1))(w(n1)
r ⊗ w(n1)

r )−
(D(n1,n2)X(n1) ⊗ D(n2,n1)X(n2))(w(n2)

r ⊗ w(n2)
r ) = 0, (79)

(D(n2,n1)X(n2) ⊗ D(n1,n2)X(n1))(w(n2)
r ⊗ w(n1)

r )−
(D(n2,n1)X(n2) ⊗ D(n2,n1)X(n2))(w(n2)

r ⊗ w(n2)
r ) = 0. (80)

In addition, we can also make use of the relation

(D(n1,n2)X(n1) ⊗ D(n1,n2)X(n1))(w(n1)
r ⊗ w(n1)

r )−
(D(n2,n1)X(n2) ⊗ D(n2,n1)X(n2))(w(n2)

r ⊗ w(n2)
r ) = 0. (81)

We observe that every rank-one structured vector of the form
w(m)
r ⊗ w(n)

r , 1 ≤ m,n ≤ N appears in (73) and (76)–
(81). This property can be used to conveniently combine the
involved system of equations, as will be explained next.

4) Combination of rank-one and common subspace struc-
tures: The combination of the common subspace structures
(77)–(80) and the rank-one structures (73) and (76) yields

G(n1,n2)
([

w(n1)
r

w(n2)
r

]
⊗
[

w(n1)
r

w(n2)
r

])
= 0, 1 ≤ n1 < n2 ≤ N, (82)

where G(n1,n2) ∈ CMn1,n2
×R2

n1,n2 is given by (91) in which
Mn1,n2 = Fn1,n2(2R+Qn1 +Qn2 + 3Fn1,n2) +C2

In1
C2
Jn1

+

C2
In2
C2
Jn2

+ C2
In1
C2
Jn2

+ C2
In2
C2
Jn1

, Rn1,n2
= 2R + Qn1

+

Qn2 , {ΠΠΠn} denote appropriate column permutation matrices
associated with the pair (n1, n2) and {0} denote zero matrices
of conformable sizes.

5) Reduction to CPD: The Kronecker structured system of
equations (82) can be combined as follows:

G(tot)




w(1)
r

...
w(N)
r

⊗


w(1)
r

...
w(N)
r


 = 0, (83)

in which

G(tot) =


[
G(1,2), 0

]
ΠΠΠ1,2[

G(1,3), 0
]
ΠΠΠ1,3

...[
G(N−1,N), 0

]
ΠΠΠN−1,N

 ∈ CMtot×R2
tot , (84)

where G(n1,n2) is given by (91), Rtot = NR +
∑N
n=1Qn,

Mtot =
∑

1≤n1<n2≤N Mn1,n2
, {ΠΠΠm,n} denote appropriate

column permutation matrices and {0} denote zero matrices
of conformable sizes. Let SRtot denote the C2

Rtot
-dimensional

subspace of vectorized (Rtot × Rtot) symmetric matrices.
From (83) it is clear that if the dimension of the subspace
ker(G(tot)) ∩ SRtot is minimal (i.e., R), then the matrices
W(1), . . . ,W(N) can be obtained from it. In more detail, let
the columns of R ∈ CR2

tot×R form a basis for ker(G(tot))∩SRtot ,
then there exists a nonsingular matrix F ∈ CR×R such that

R =


 W(1)

...
W(N)

�
 W(1)

...
W(N)


FT . (85)

Clearly, (85) corresponds to a third-order tensor whose CPD
is unique. This property together with relations (33) implies

the uniqueness of M(1), . . . ,M(N), which in turn implies the
uniqueness of {A(n)} and {B(n)} up to individual column
scaling ambiguities.

A. Uniqueness of A and B based on graph connectivity

The goal is now to ensure the uniqueness of the global rank-
one matrices mr = arbTr , given the local rank-one matrices
m(n)
r = a(n)

r b(n)T
r , n ∈ {1, . . . , N}. Since each subvector a(n)

r

of ar is subject to an individual scaling, we need to make sure
that we can get rid of this ambiguity. Intuitively speaking,
this is only possible if the different subvectors are sufficiently
“overlapping”. Specifically, let G(ar) denote an intersection
graph formed from a family of sets {E(n)

r }, in which the
elements of the set E(n)

r correspond to the entries of a(n)
r ,

i.e., E(n)
r = {a(n)

1r , . . . , a
(n)
Inr
}. The edge between E

(n1)
r and

E
(n2)
r is denoted by e(n2)

(n1) and it is equal to

e(n2)
(n1) =

{
1, if ω

(
τττ (n1) ∗ τττ (n2)

)
≥ 1,

0, if ω
(
τττ (n1) ∗ τττ (n2)

)
= 0,

(86)

where ‘∗’ denotes the Hadamard (elementwise) product and

τττ (n) = ΠΠΠ(n)T

[
1In
0

]
∈ CI in which ΠΠΠ(n) ∈ {0, 1}In×I is a

row-selection matrix with property a(n)
r = ΠΠΠ(n)ar. In words,

E
(n1)
r and E(n2)

r are connected if e(n2)
(n1) = 1, i.e., the selection

matrices ΠΠΠ(n1) and ΠΠΠ(n2) select a common entry in ar. If the
simple intersection graph G(ar) is connected and

∀i ∈ {1, . . . , I}, ∃n ∈ {1, . . . , N} such that air ∈ E(n)
r ,

(87)
then ar is unique, i.e., we can get rid of the individual scaling
ambiguities associated with the subvectors {a(n)

r }.
Now that A has been obtained, A(1), . . . ,A(N) are known.

This in turn implies that B can be obtained by solving a system
of linear equations. In more detail, observe that

y(n)
r = a(n)

r ⊗ b(n)
r = a(n)

r ⊗ (S(n)
r br) = (a(n)

r ⊗ S(n)
r )br,

(88)

where n ∈ {1, . . . , N} and S(n)
r ∈ {0, 1}Jn×J is a row-

selection matrix such that S(n)
r br = b(n)

r . The r-th column of
B can be obtained from the solution to the following system
of linear equations

y(1)
r

...
y(N)
r

 =


a(1)
r ⊗ S(1)

r
...

a(N)
r ⊗ S(N)

r

 br = G(br)br, r ∈ {1, . . . , R},

(89)
where

G(br) =
[
(a(1)
r ⊗ S(1)

r )T , . . . , (a(N)
r ⊗ S(N)

r )T
]T
. (90)

B. Summary

Theorem B.1 below summarizes the obtained uniqueness
condition for the multi-set low-rank factorization of the form
(35) in which M = A� B is partially shared.
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G(n1,n2) =



[
IR+Qn1

⊗ D(n1,n2)X(n1) − IR+Qn1
⊗ D(n2,n1)X(n2), 0

]
ΠΠΠ1[

IR+Qn2
⊗ D(n1,n2)X(n1) − IR+Qn2

⊗ D(n2,n1)X(n2), 0
]
ΠΠΠ2[

D(n1,n2)X(n1) ⊗ D(n1,n2)X(n1) − D(n1,n2)X(n1) ⊗ D(n2,n1)X(n2), 0
]
ΠΠΠ3[

D(n2,n1)X(n2) ⊗ D(n1,n2)X(n1) − D(n2,n1)X(n2) ⊗ D(n2,n1)X(n2), 0
]
ΠΠΠ4[

D(n1,n2)X(n1) ⊗ D(n1,n2)X(n1) − D(n2,n1)X(n2) ⊗ D(n2,n1)X(n2), 0
]
ΠΠΠ5[

Q(Mn1,n1 ,n1,n1), 0
]
ΠΠΠ6[

Q(Mn1,n2
,n1,n2), 0

]
ΠΠΠ7[

Q(Mn2,n2
,n2,n2), 0

]
ΠΠΠ8[

Q(Mn2,n1
,n2,n1), 0

]
ΠΠΠ9


. (91)

Theorem B.1: Consider the multi-set low-rank factorization
of X(n) ∈ CInJn×Kn , n ∈ {1, . . . , N} in (35). If

ker(G(tot)) ∩ SRtot is R-dimensional,

S(1), . . . , S(N) have full column rank,

G(ar) is connected and has property (87), ∀r ∈ {1, . . . , R},
G(br) has full column rank, ∀r ∈ {1, . . . , R},

(92)
then the partially shared Khatri–Rao structured factor matrix
M = A� B is unique.

APPENDIX C
AN ALGEBRAIC ALGORITHM BASED ON THE KERNEL

SUBSPACE INTERSECTION APPROACH

In Appendix B we alluded that Theorem B.1 admits a con-
structive interpretation that can be used to compute the shared
factors A and B, given only X(1) ∈ CI1J1×K1 , . . . ,X(N) ∈
CINJN×KN . We will now outline the steps of this algorithm.
Let the columns of the matrix U(n) ∈ CInJn×(R+Qn) form
an orthonormal basis for the subspace range(X(n)). Then
there exist full column rank matrices W(n) ∈ C(R+Qn)×R,
n ∈ {1, . . . , N}, such that

U(n)W(n) = A(n) � B(n), n ∈ {1, . . . , N}. (93)

Using U(1), . . . ,U(N), we build G(tot) given by (84). The next
step is to find a matrix R whose columns form an orthonormal
basis for ker(G(tot)) ∩ π(2)

S . Let the columns of G(tot) ∈
CNtot×R2

tot be indexed by the pairs {(r1, r2)}1≤r1,r2≤Rtot , and
ordered lexicographically (recall from Section B-5 that Rtot =
NR+

∑N
n=1Qn):

G(tot) = [g(tot)
(1,1), g

(tot)
(1,2), . . . , g

(tot)
(Rtot,Rtot)

].

Similar to (53), G(sym) ∈ CNtot×C2
Rtot+1 is constructed from the

columns {g(tot)
(r1,r2)}r1≤r2 as follows

G(sym) = [g(tot)
(1,1), 2g(tot)

(1,2), . . . , 2g(tot)
(1,Rtot)

, g(tot)
(2,2), 2g(tot)

(2,3), . . . ,

2g(tot)
(2,Rtot)

, . . . , g(tot)
(Rtot,Rtot)

]. (94)

We now have that

[w(1)T
r , . . . ,w(N)T

r ]T ⊗ [w(1)T
r , . . . ,w(N)T

r ]T ∈ ker(G(tot)) ∩ π(2)
S

⇔ f(2)([w(1)T
r , . . . ,w(N)T

r ]T ) ∈ ker(G(sym)), (95)

where f(2)([w(1)T
r , . . . ,w(N)T

r ]T ) ∈ CC
2
Ltot is a structured

vector of the form (55), but built from the distinct entries of
the vector [w(1)T

r , . . . ,w(N)T
r ]T⊗[w(1)T

r , . . . ,w(N)T
r ]T . Hence,

if condition (92) in Theorem B.1 is satisfied, ker(G(sym)) is
an R-dimensional subspace. Let the columns of V(sym) form
a basis for ker(G(sym)) and obtained via the SVD of G(sym).
Then

R = DRtot · V(sym) (96)

corresponds to (85) and DRtot ∈ CRtot
2×C2

R+1 is the
duplication matrix with property [w(1)T , . . . ,w(N)T ]T ⊗
[w(1)T , . . . ,w(N)T ]T = DRtot · f

(2)([w(1)T , . . . ,w(N)T ]T ). The
matrices W(1), . . . ,W(N) can be obtained from the CPD of
R given by (85). The matrices {A(n)} and {B(n)} can be
obtained from the rank-one factorizations of the columns of

Y(n) := U(n)W(n) = A(n) � B(n), n ∈ {1, . . . , N}. (97)

From {A(n)} we can find A. Let us here solve this problem
via rank-one completion. Define the matrix

P(A)
r =

[
ΠΠΠ(1)T ·

[
a(1)
r

?

]
, . . . ,ΠΠΠ(N)T ·

[
a(N)
r

?

]]
, (98)

where ‘?’ denotes indeterminate entries and ΠΠΠ(n) ∈ {0, 1}In×I
is the row-selection matrix used in (86). If the intersection
graph G(ar) with edges defined by (86) is connected and has
the property (87), then ar can be obtained from P(A)

r via a
rank-one subspace identification procedure [34]. Finally, br
can be obtained by solving the system of linear equations (89).

We summarize the kernel subspace approach for multi-
set low-rank factorizations with shared and unshared factors
as Algorithm 3, which is based on a use of Theorem B.1.
Consequently, if condition (92) in Theorem B.1 is satisfied,
then Algorithm 3 is guaranteed to find A and B in the exact
case. The computational cost of Algorithm 3 is dominated by
the computation of R, which can be obtained by means of an
EVD of G(sym)given by (94) with computational cost O(R3

tot)
with Rtot = NR+

∑N
n=1Qn.
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