
Supervised Learning via Ensemble Tensor
Completion

Nikos Kargas
Dept. of ECE, Univ. of Minnesota

Minneapolis, USA
karga005@umn.edu

Nicholas D. Sidiropoulos
Dept. of ECE, Univ. of Virginia

Charlottesville, USA
nikos@virginia.edu

Abstract—Learning nonlinear functions from input-output
data pairs is one of the most fundamental problems in machine
learning. Recent work has formulated the problem of learning a
general nonlinear multivariate function of discrete inputs, as a
tensor completion problem with smooth latent factors. We build
upon this idea and utilize two ensemble learning techniques to
enhance its prediction accuracy. We showcase the effectiveness
of the proposed ensemble models on several regression tasks and
report significant improvements compared to the single model.

Index Terms—Supervised Learning, Tensor Completion, En-
semble Learning, Canonical Polyadic Decomposition

I. INTRODUCTION

Function approximation is one of the core tasks in machine
learning. Every supervised learning problem can be viewed as
a function approximation problem where we are given input
and output data pairs and we seek to learn the true data gener-
ating function. Commonly used algorithms for approximating
nonlinear functions are based on deep neural networks, kernel
methods and decision trees [1].

Tensor decomposition is another class of methods which
have been proposed for learning nonlinear functions. For
example, Polynomial Networks (PN) and Factorization Ma-
chines (FM) [2], [3] use the Canonical Polyadic Decomposi-
tion (CPD) to model low-rank polynomial functions. Other
tensor models such as the Tensor Train (TT) [4] and the
Tucker model [5], have also been used for parameterizing
polynomial functions [6], [7]. Most of these methods are
limited to low-order polynomials which may be very restrictive
in practice. Apart from polynomials, TT has been used for
learning more general functions using a multidimensional
Fourier series expansion [8]. Recently, a single high-order
CPD model was used for modeling a multivariate function
with discrete inputs [9]. The problem was cast as a tensor
completion problem with smooth latent factors to account
for ordinal input. Under certain conditions, CPD is unique
and identification of the true underlying mapping is pos-
sible, leading to accurate predictions for new unseen data.
A drawback of the Canonical System Identification (CSID)
algorithm proposed in [9] is that it cannot be directly applied to
continuous data as it requires discretization of the input. Using
a coarse discretization makes the algorithm computationally

The work of the authors was supported in part by ECCS-1852831, IIS-
1704074.

efficient but can lead to models with high bias that underfit the
data and have poor generalization. Fine discretization on the
other hand, improves expressiveness but the algorithm exhibits
higher computational cost and can lead to overfitting.

In this work, we investigate the use of ensemble learning
techniques to enhance the prediction accuracy of the CSID
model. Ensemble learning is the process of combining multiple
learning algorithms into one predictive model to reduce the
variance and/or bias of the predictions and obtain better
performance [10]. Ensemble methods can be divided into two
main groups, parallel and sequential. Bagging also known as
bootstrap aggregation is a parallel ensemble method where
multiple base models are trained in parallel on different subsets
of the data that have been chosen randomly with replacement
from the original training data. The output of these models
is usually combined and a single prediction is computed
using averaging. One of the most popular bagging techniques
is random forests [11]. Boosting is a sequential ensemble
method where a sequence of base models are fit sequentially
to modified versions of the data. Popular boosting algorithms
include AdaBoost [12] and Gradient Boosting [13].

We develop two approaches based on these ensemble
learning techniques for learning multivariate functions using
the Canonical Polyadic Decomposition. We use the CSID
algorithm as our base model. We show that ensemble learning
can enhance the prediction accuracy of the CSID model and
also counter the performance degradation resulting from the
discretization step when applied to functions with continuous
inputs. We train our models using Stochastic Gradient Descent
(SGD) and evaluate their performance on several regression
tasks.

Notation. We use the symbols x, x, X, X for scalars,
vectors, matrices, and tensors respectively. We use the notation
x(i), X(i, j), X (i, j, k) to refer to a particular element of a
vector, matrix and a tensor. Symbol ◦ denote the outer product.

II. BACKGROUND

A. Canonical Polyadic Decomposition

The Canonical Polyadic Decomposition expresses an N -
way tensor X ∈ RI1×I2×···×IN as a sum of rank-1 tensors
X =

∑R
r=1 a

1
r ◦a2r ◦ · · · ◦aNr , where anr ∈ RIn , and ◦ denotes



Fig. 1. Canonical System Identification.

the vector outer product1. By defining factor matrices An =
[an1 · · · anR] ∈ RIn×R, the individual elements of the tensor X
can be expressed as

X (i1, . . . , iN ) =
R∑

r=1

N∏
n=1

An(in, r). (1)

The CPD model allows us to approximate a high-dimensional
tensor of size

∏N
n=1 In using only order of (

∑N
n=1 In)R

parameters. CPD is one of the most popular tensor decompo-
sition models mainly due to its identifiability properties [14].

B. Canonical System Identification

Canonical System Identification (CSID) is a CPD based
method which casts the problem of nonlinear function
approximation as a tensor completion problem [9]. Let
D = {(x1, y1), (x2, y2), . . . , (xM , yM )} be a dataset of M
input-output pairs where xm ∈ RN and ym ∈ R. CSID
requires that all predictors are discrete and take values from
a predictor-specific finite alphabet In = {1, . . . , In}, n =
1, . . . , N . The scalar output ym is a nonlinear function of the
input xm, i.e.,

ym = f (xm(1), . . . ,xm(N)) . (2)

The nonlinear function f(·) can be viewed as an N -way
tensor X where each input vector [xm(1), . . . ,xm(N)] is a
cell multi-index and the cell content is the estimated response
of the system ŷm. Additional assumptions need to be placed on
X such that the model is able to generalize to new data points.
Specifically, CSID casts the problem as a tensor completion
problem where we seek the principal components of the
nonlinear function while penalizing higher tensor ranks. The
problem of finding the rank-R approximation which best fits
the data is formulated as

min
{An}Nn=1

1

M

M∑
m=1

(
ym − f

(
xm; {An}Nn=1

))2
+

N∑
n=1

ρ‖An‖2F +
N∑

n=1

µ‖TnAn‖2F ,

(3)

1Note that in our notation superscripts are indices, not exponents.

Fig. 2. Ensemble Tensor Completion.

where f
(
xm; {An}Nn=1

)
=
∑R

r=1

∏N
n=1 An(xm(n), r). We

use Frobenius norm regularization, and Tn is a smooth-
ness promoting matrix defined as Tn ∈ R(In−1)×In with
Tn(i, i) = 1 and Tn(i, i + 1) = −1 or Tn ∈ R(In−2)×In

with Tn(i, i) = −1, Tn(i, i+ 1) = 2 and Tn(i, i+ 2) = −1.
The model is visualized in Figure 1.

Optimization problem (3) is a tensor completion problem
with smooth latent factors and it is naturally suited for discrete
ordinal (µ > 0) or categorical (µ = 0) predictors. When
the inputs of the system are continuous, the performance of
the model highly depends on the discretization method used,
as well as the number of discretization intervals. Coarse dis-
cretization is preferable for building computationally efficient
models but can have poor generalization if the discretization
intervals are not carefully selected. In the following section
we show how ensemble learning can boost the performance
of the baseline model, while mitigating discretization effects
at the same time.

III. PROPOSED APPROACH

A. Bagging

Our first approach is a Bagging method. They key idea
of bagging is that different training data sets are created by
sampling the original dataset usually with replacement and
a set of models are trained in parallel [1]. During testing,
Bagging estimates the output of the system for a new data
point by averaging the predictions of the individual models.

We propose training a group of K different CSID models
each one on datasets that have been obtained by sampling
the original dataset with replacement after applying a spe-
cific discretization method. The different models need to be
sufficiently diverse so we choose between 3 discretization
mechanisms, namely, uniform in which all intervals for each
input have identical widths, quantile in which all intervals for
each feature have the same number of points, and K-means.



Algorithm 1 Bagging CSID Ensemble
Input: X, Xtest, y, ytest, R, K
for k = 1 to K do in parallel:
Xk ← sample points from X with replacement
Xk

train,X
k
val ← Split dataset Xk

Xk
train,X

k
val ← Discretize Xk

train,X
k
val

Solve optimization problem (3) using SGD
end for
Compute wk via (5)
Combine predictions via (4)

All models are trained by solving the Optimization problem (3)
using SGD. We compute the final estimate as

fCSID−Bag(x) =
K∑

k=1

wkfk
(
x; {Ak

n}Nn=1

)
, (4)

where wk are positive weights that measure the importance
of each model for the final prediction (Fig. 2). Each CSID
model is parameterized by different factor matrices {Ak

n}Nn=1

and is trained in parallel. We propose combining the individual
models by weighting each one based on the error obtained
from the validation set. In this way, models that do not perform
well on the validation set do not affect the predictions as it
is likely that they will not perform well on the training set.
Specifically, we define wk to be

wk =
1/Errk∑K
k=1 1/Errk

. (5)

where Errk is the Root Mean Square Error (RMSE) of the
k-th model on the validation set. A high level description of
the procedure is provided in algorithm 1.

The advantage of Bagging is that it is computational ef-
ficient as each model can be trained independently. On the
other hand, when training a model it may be beneficial to
take into account information from the other models. Our
second approach is a sequential ensemble method which is
computationally less efficient but each model uses knowledge
obtained from the previous ones.

B. Boosting

Forward Stage-wise Additive Modeling (FSAM) is a boost-
ing algorithm where the individual models are built sequen-
tially [1]. Similarly with Bagging, the output of the ensemble
model is given by combining the predictions of the individual
models

fCSID−Boost(x) =
K∑

k=1

fk
(
x; {Ak

n}Nn=1

)
, (6)

The major difference is that the models are fit on the prediction
errors. Specifically, at each iteration k, we compute {Ak

n}Nn=1

Algorithm 2 Boosting CSID Ensemble
Input: X, Xtest, y, ytest, R, K
Xk

train,X
k
val ← Split dataset X

Xk
train,X

k
val ← discretizeXk

train,X
k
val

Set k = 1 and solve optimization problem (7) using SGD
Compute prediction errors
for k = 2 to K do:

Xk
train,X

k
val ← discretize Xk

train,X
k
val

Solve optimization problem (7) using SGD
Add model k to the expansion
Compute prediction errors

end for
Compute predictions via (6)

by solving the following optimization problem

min
{Ak

n}Nn=1

1

M

M∑
m=1

(
ym − ŷk−1m − fk

(
xm; {Ak

n}Nn=1

))2
+

N∑
n=1

ρ‖Ak
n‖2F +

N∑
n=1

µ‖TnA
k
n‖2F

(7)

where

ŷk−1m =
k−1∑
k′=1

fk

(
xm; {Ak′

n }Nn=1

)
. (8)

At each iteration the model that best fits the current errors is
added to the expansion. The key idea is that each subsequent
model focuses on data points that are difficult to predict.
A high level description of the procedure is provided in
algorithm 2.

IV. NUMERICAL TESTS

We evaluate the proposed methods in regression tasks using
several datasets obtained from the UCI machine learning
repository [15]. Our proposed approach is implemented in
Python using PyTorch [16]. For each experiment we split
the dataset into two sets, 85% used for training and 15%
for testing and we tune the hyper-parameters using 5-fold
cross-validation. We compare the performance of the different
algorithms in terms of the RMSE.

We compare the ensemble models against a single CSID
model. We combine 10 CSID models to build two ensembles
based on Bagging and FSAM. All the methods are trained
using SGD and Adam optimizer with a learning rate 10−2 for a
maximum of 50 epochs. We fix the alphabet size to be I = 20
and discretize all contintuous inputs. Dataset information is
shown in table II.

Table I shows the RMSE performance of the different
methods. We observe that significant gains are obtained in
3 out of 4 datasets when combining multiple base models
compared to the single one. Figure 3 and Figure 4 show the
RMSE performance of the two methods while the number of
the models increases for two of the datasets.



TABLE I
COMPARISON OF RMSE PERFORMANCE OF DIFFERENT MODELS ON MULTI-OUTPUT REGRESSION.

Dataset CSID CSID-Bag (10) CSID-Boost (10)
QSAR 1.51 1.37 1.49
CCS 6.25 5.69 5.46
CPP 4.22 3.89 3.97
PP 4.29 3.95 3.98

TABLE II
COMPARISON OF RMSE PERFORMANCE.

Dataset N M
QSAR AQUATIC TOXICITY (QSAR) 8 546

CONCRETE COMPRESSIVE STRENGTH (CCS) 9 1030
CYCLE POWER PLANT (CPP) 4 9568

PHYSICOCHEMICAL PROPERTIES (PP) 9 45730

Fig. 3. RMSE performance in CCS dataset.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed two ensemble techniques for
improving the prediction performance of a CPD based function
learning method, particularly for functions with continuous
inputs. We presented two approaches based on Bagging and
Boosting and reported results showing good performance
improvements on several real data regression tasks.

REFERENCES

[1] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, ser. Springer Series in Statistics, 2009.

[2] S. Rendle, “Factorization machines,” in Proceedings of the IEEE Inter-
national Conference on Data Mining, Dec 2010, pp. 995–1000.

[3] M. Blondel, M. Ishihata, A. Fujino, and N. Ueda, “Polynomial net-
works and factorization machines: New insights and efficient training
algorithms,” in Proceedings of the 33rd International Conference on
Machine Learning, 2016, pp. 850–858.

[4] I. V. Oseledets, “Tensor-train decomposition,” SIAM Journal on Scien-
tific Computing, vol. 33, no. 5, pp. 2295–2317, 2011.

[5] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.

[6] A. Novikov, M. Trofimov, and I. Oseledets, “Exponential machines,” in
International Conference on Learning Representations Workshop, 2016.

Fig. 4. RMSE performance in CPP dataset.

[7] I. Perros, F. Wang, P. Zhang, P. Walker, R. Vuduc, J. Pathak, and
J. Sun, “Polyadic regression and its application to chemogenomics,”
in Proceedings of the SIAM International Conference on Data Mining,
2017, pp. 72–80.

[8] S. Wahls, V. Koivunen, H. V. Poor, and M. Verhaegen, “Learning
multidimensional fourier series with tensor trains,” in Proceedings of the
IEEE Global Conference on Signal and Information Processing, 2014,
pp. 394–398.

[9] N. Kargas and N. D. Sidiropoulos, “Nonlinear system identification via
tensor completion,” in Proceedings of the 34th AAAI Conference on
Artificial Intelligence, 2020.

[10] Z.-H. Zhou, Ensemble methods: foundations and algorithms. CRC
press, 2012.

[11] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[12] Y. Freund, R. E. Schapire et al., “Experiments with a new boosting
algorithm.” Citeseer, 1996.

[13] J. H. Friedman, “Greedy function approximation: a gradient boosting
machine,” Annals of statistics, pp. 1189–1232, 2001.

[14] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalex-
akis, and C. Faloutsos, “Tensor decomposition for signal processing and
machine learning,” IEEE Transactions on Signal Processing, vol. 65,
no. 13, pp. 3551–3582, July 2017.

[15] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

[16] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An
imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 8024–
8035. [Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf


