C11Tester: A Race Detector for C/C++ Atomics

Weiyu Luo
University of California, Irvine
Irvine, California, USA
weiyul7@uci.edu

ABSTRACT

Writing correct concurrent code that uses atomics under the C/C++
memory model is extremely difficult. We present C11Tester, a race
detector for the C/C++ memory model that can explore executions
in a larger fragment of the C/C++ memory model than previous
race detector tools. Relative to previous work, C11Tester’s larger
fragment includes behaviors that are exhibited by ARM proces-
sors. Cl11Tester uses a new constraint-based algorithm to imple-
ment modification order that is optimized to allow C11Tester to
make decisions in terms of application-visible behaviors. We eval-
uate C11Tester on several benchmark applications, and compare
C11Tester’s performance to both tsanllirec, the state of the art tool
that controls scheduling for C/C++; and tsan11, the state of the art
tool that does not control scheduling.

CCS CONCEPTS

« Software and its engineering — Concurrent programming

languages.
KEYWORDS

data races, concurrency, C++11, memory models

ACM Reference Format:

Weiyu Luo and Brian Demsky. 2021. C11Tester: A Race Detector for C/C++
Atomics. In Proceedings of the 26th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS
"21), April 19-23, 2021, Virtual, USA. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3445814.3446711

1 INTRODUCTION

The C/C++11 standards added a weak memory model with sup-
port for low-level atomics operations [9, 31] that allows experts to
craft efficient concurrent data structures that scale better or pro-
vide stronger liveness guarantees than lock-based data structures.
However, writing correct concurrent code using these atomics op-
erations is extremely difficult.

Simply executing concurrent code is not an effective approach
to testing. Exposing concurrency bugs often requires executing a
specific path that might only occur when the program is heavily
loaded during deployment, executed on a specific processor, or
compiled with a specific compiler. Some prior work helps record
and replay buggy executions [43]. Debuggers like Symbiosis [41]

This work is licensed under a Creative Commons Attribution International 4.0 License.

ASPLOS °21, April 19-23, 2021, Virtual, USA

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8317-2/21/04.
https://doi.org/10.1145/3445814.3446711

630

Brian Demsky
University of California, Irvine
Irvine, California, USA
bdemsky@uci.edu

and Cortex [42] focus on sequential consistency and test programs
by modifying thread scheduling of given initial executions. How-
ever, both the thread scheduling and relaxed behavior of C/C++
atomics are sources of nondeterminism in a C/C++ programs that
use atomics. Thus, it is necessary to develop tools to help test for
concurrency bugs. We present the C11Tester tool for testing C/C++
programs that use atomics.

Figure 1 presents an overview of the C11Tester system. C11Tester
is implemented as a dynamically linked library together with an
LLVM compiler pass, which instruments atomic operations, non-
atomic accesses to shared memory locations, and fence operations
with function calls into the C11Tester dynamic library. The C++ and
pthread library functions are overridden by the C11Tester library—
C11Tester implements its own threading library using fibers to
precisely control the scheduling of each thread. The C11Tester
library implements a race detector and C11Tester reports any races
or assertion violations that it discovers.

Rerun until execution

count is hit
* atomics
" C11T
— i » ester
Unmodified h i
C/C++ LLVM Instrumented | * fs,ds dﬁg}z;r:;,l_c Error
source code Compiler executable [> schedulihg reports
race C/C++
le.APL .| memory model

Figure 1: C11Tester system overview

The C/C++ memory model defines the modification order relation
to totally order all atomic stores to a memory location. This relation
captures the notion of cache coherence. The modification order
is not directly observable by the program execution — it is only
observed indirectly through its effects on program visible behaviors
such as the values returned by loads. Under the C/C++ memory
model, modification order cannot be extended to be a total order
over all stores that is consistent with the happens-before relation.

This paper presents a new technique for scaling a constraint-
based treatment of the modification order relation to long execu-
tions. This technique allows C11Tester to support a larger fragment of
the C/C++ memory model than previous race detectors. In particular,
this technique can handle the full range of modification orders that
are permitted by the C/C++ memory model.

Constraint-based modification order delays decisions about the
modification order until the decisions have observable effects on
the program’s behavior. For example, when an algorithm decides
which store a load will read from, C11Tester adds the correspond-
ing constraints to the modification order. This approach allows
testing algorithms to focus on program visible behaviors such as

ASPLOS 21, April 19-23, 2021, Virtual, USA

the value a load reads and does not require them to eagerly decide
the modification order.

Fibers provide a more efficient means to control thread sched-
ules than kernel threads. However, C/C++ programs commonly
make use of thread local storage (TLS) and fibers do not directly
support TLS. This paper presents a new technique, thread context
borrowing, that allows fiber-based scheduling to support thread lo-
cal storage without incurring dependencies on TLS implementation
details that can vary across different library versions.

1.1 Comparison to Prior Work on Testing
C/C++11

Prior work on data race detectors for C/C++11 such as tsan11 [37]
and tsanllrec [38] require hb U rfU mo U sc be acyclic and thus
miss potentially bug-revealing executions that both are allowed
by the C/C++ memory model and can be produced by mainstream
hardware including ARM processors. We have found examples of
bugs that C11Tester can detect but tsan11 and tsanl1rec miss due
to the set of hb U rfedges orders writes in the modification order.

C11Tester’s constraint-based approach to modification order sup-
ports a larger fragment of the C/C++ memory model than tsan11
and tsanl1rec. C11Tester adds minor constraints to the C/C++ mem-
ory model to forbid out-of-thin-air (OOTA) executions for relaxed
atomics. Furthermore, these constraints appear to incur minimal
overheads on existing ARM processors [46] while x86 and PowerPC
processors already implement these constraints.

1.2 Contributions
This paper makes the following contributions:

e Scalable Concurrency Testing Tool: It presents a tool for
the C/C++ memory model that can test full programs.

e Supports a Larger Fragment of the C/C++ Memory
Model: It presents a tool that supports a larger fragment of
the C/C++ memory model than previous tools.

¢ Constraint-Based Modification Order: The modification
order relation is not directly visible to the application, instead
it constrains the behaviors of visible relations such as the
reads-from relation. We develop a scalable constraint-based
approach to modeling the modification order relation that
allows algorithms to ignore the modification order relation
and focus on program visible behaviors.

o Support for Limiting Memory Usage: The size of the
C/C++ execution graph and execution trace grows as the
program executes and thus limits the length of executions
that a testing tool can support. Naively freeing portions of
the graph can cause a tool to produce executions that are
forbidden by the memory model. We present techniques that
can limit the memory usage of C11Tester while ensuring
that C11Tester only produces executions that are allowed by
the C/C++ memory model.

o Fiber-based Support for Thread Local Storage: Fibers
are the most efficient way to control the scheduling of the
application under test, but supporting thread local storage
with fibers is problematic. We develop a novel approach for
borrowing the context of a kernel thread to support thread
local storage.

631

Weiyu Luo and Brian Demsky

¢ Evaluation: We evaluate C11Tester on several applications
and compare against both tsan11 and tsanllrec. We show
that C11Tester can find bugs that tsan11 and tsanl1rec miss.
We present a performance comparison with both tsan11 and
tsanllrec.

2 C/C++ MEMORY MODEL FRAGMENT

We next describe the fragment of the C/C++ memory model that
C11Tester supports. Our memory model has the following changes
based on the formalization of Batty et al. [8]:

1) Use the C/C++20 release sequence definition: Since
the original C/C++11 memory model, the definition of release
sequences has been weakened [15]. This change is part of the
C/C++20 standard [1]. C11Tester uses the newly weakened def-
inition. The new definition of release sequences does not allow
memory_order_relaxed stores by the thread that originally per-
formed the memory_order_release store that heads the release
sequence to appear in the release sequence.

2) Add hb U sc U rf'is acyclic: Supporting load buffering or
out-of-thin-air executions is extremely difficult and the existing
approaches introduce high overheads in dynamic tools [17, 44,
45]. Thus, we prohibit out-of-thin-air executions with a similar
assumption made by much work on the C/C++ memory model —
we add the constraint that the union of happens-before, sequential
consistency, and reads-from relations, i.e., hbUscUrf, is acyclic [54].!
This feature of the C/C++ memory model is known to be generally
problematic and similar solutions have been proposed to fix the
C/C++ memory model [11, 13, 14, 46].

3) Strengthen consume atomics to acquire: No compilers
support the consume access mode. Instead, all compilers strengthen
consume atomics to acquire.

We formalize the above changes in Section A.1 of our technical
report [40]. Our fragment of the C/C++ memory model is larger
than that of tsan11 and tsan11rec [37, 38]. The tsan11 and tsanl1rec
tools add a very strong restriction to the C/C++ memory model
that requires that hb U sc U rfU mo be acyclic.

3 CI11TESTER OVERVIEW

We present our algorithm in this section. In our presentation, we
adapt some terminology and symbols from stateless model checking
[26]. We denote the initial state with so. We associate every state
transition ¢ taken by thread p with the dynamic operation that
affected the transition. We use enabled(s) to denote the set of all
threads that are enabled in state s (threads can be disabled when
waiting on a mutex, condition variable, or when completed). We
say that nexi(s, p) is the next transition in thread p at state s.
Figure 2 presents pseudocode for C11Tester’s exploration algo-
rithm. C11Tester calls ExpLORE multiple times—each time generates
one program execution. The thread schedule does not uniquely de-
fine the behavior of C/C++ atomics, due to the weak behaviors
of C/C++ atomics. Therefore, we split the exploration into two
components: (1) selecting the next thread to execute and (2) select-
ing the behavior of that thread’s next operation. C11Tester has a
pluggable framework for testing algorithms—C11Tester generates
a set of legal choices for the next thread and behavior, and then

1The C/C++11 memory model already requires that kb U sc is acyclic.

C11Tester: A Race Detector for C/C++ Atomics

procedure EXPLORE
SI=9
while enabled(s) is not empty do
Select p from enabled(s)
t := next(s, p)
behaviors(t) := {Initial behaviors}
Select a behavior b from behaviors(t)
: s := Execute(s, t, b)
9: end while
10: end procedure

1:
2
3
4
5:
6
7
8

Figure 2: Pseudocode for C11Tester’s Algorithm

the plugin selects the next thread and behavior. The default plugin
implements a random strategy.

Scheduling. Thread scheduling decisions are made at each atomic
operation, threading operation, or synchronization operation (such
as locking a mutex). Every time a thread finishes a visible operation,
the next thread to execute is randomly selected from the set of
enabled threads. However, when a thread performs several consec-
utive stores with memory order release or relaxed, the scheduler
executes these stores consecutively without interruption from other
threads. Executing these stores consecutively does not limit the set
of possible executions and provides C11Tester with more stores to
select from when deciding which store a load should read from.

Transition Behaviors. The source of multiple behaviors for a
given schedule arises from the reads-from relation—in C/C++, loads
can read from stores besides just the “last” store to an atomic object.

We use the concept of a may-read-from set, which is an overap-
proximation of the stores that a given atomic load may read from
that just considers constraints from the happens-before relation.
The may-read-from set for a load Y is constructed as:

may-read-from(Y) = {X € stores(Y) | =(Y ﬂ’) X)A

(AZ € stores(Y) . X L Y)},

where stores(Y) denotes the set of all stores to the same object from
which Y reads. C11Tester selects a store from the may-read-from
set. C11Tester then checks that establishing this rfrelation does not
violate constraints imposed by the modification order, as described
in Section 4. If the given selection is not allowed, C11Tester repeats
the selection process. C11Tester delays the modification order check
until after a selection is made to optimize for performance.

4 MEMORY MODEL SUPPORT

In this section, we present how C11Tester efficiently supports key
aspects of the C/C++ memory model.

CDSChecker [44] initially introduced the technique of using a
constraint-based treatment of modification order to remove redun-
dancy from the search space it explores. There are essentially two
types of constraints on the modification order: (1) that a store s4
is modification ordered before a store sg and (2) that a store s4
immediately precedes an RMW rp in the modification order.

CDSChecker models these constraints using a modification or-
der graph. Two types of edges correspond to these two types of
constraints. Edges only exist between two nodes if they both rep-
resent memory accesses to the same location. There is a cycle in

632

ASPLOS 21, April 19-23, 2021, Virtual, USA

the modification order graph if and only if the graph corresponds
to an unsatisfiable set of constraints. Otherwise, a topological sort
of the graph (with the additional constraint that an RMW node
immediately follows the store that it reads from) yields a modifica-
tion order that is consistent with the observed program behavior.
CDSChecker used depth first search to check for cycles in the graph.
CDSChecker would add edges to the modification order graph to
determine whether a given reads-from edge was plausible — if the
edge made the set of constraints unsatisfiable, CDSChecker would
rollback the changes that the edge made to the graph.

This approach works well for model checking where the graphs
are small—the fundamental scalability limits of model checking
ensure that the executions always contain a very small number of
stores. This approach is infeasible when executions (and thus the mod-
ification order graphs) can contain millions of atomic stores, because
the graph traversals become extremely expensive.

4.1 Modification Order Graph

We next describe the modification order graph in more detail. We
represent modification order (mo) as a set of constraints, built as a
constraint graph, namely the modification order graph (mo-graph).
A node in the mo-graph represents a single store or RMW in the
execution. There are two types of edges in the graph. An mo edge

from node A to node B represents the constraint A 2 B. A rmw
edge from node A to node B represents the constraint that A must
immediately precede B or formally that: A B BandVC.C # AAC #
B=>@ABc=sBBoacE BB A).

C11Tester must only ensure that there exists some mo that sat-
isfies the set of constraints, or equivalently an acyclic mo-graph.
C11Tester dynamically adds edges to mo-graph when new rfand
hb relations are formed. We briefly summarize the properties of mo
as implications [44] in Figure 3. C11Tester maintains a per-thread
list of atomic memory accesses to each memory location. When-
ever a new atomic load or store is executed, C11Tester uses this
list to evaluate the implications in Figure 3 as well as additional
implications for fences.

4.2 Clock Vectors

Due to the high cost of graph traversals for large graphs, graph
traversals are not a feasible implementation approach for C11Tester.
We next describe how we adapt clock vectors [36] to efficiently com-
pute reachability in the mo-graph and scale the constraint-based
modification order approach to large executions. We associate a
clock vector with each node in the mo-graph. It is important to
note that our use of clock vectors in the mo-graph is not to track the
happens-before relation. Instead we use clock vectors to efficiently com-
pute reachability between nodes in the mo-graph. Thus, our mo-graph
clock vectors model a partial order that contains the current set of
ordering constraints on the modification order.

Each event E ? in C11Tester has a unique sequence number s.
Sequence numbers are a global counter of events across all threads,
which is incremented by one at each event. We denote the thread
that executed E as tg. Each node in the mo-graph represents an

2Events in each thread consist of atomic operations, thread creation and join, mutex
lock and unlock, and other synchronization operations.

ASPLOS 21, April 19-23, 2021, Virtual, USA

ReEAD-READ COHERENCE

£
X: v.store(1) —r> A: v.load() X: v.store(1)
1

kb :no
\/

Y: v.store(2) _rf» B: v.load() Y: v.store(2)
WRITE-READ COHERENCE
A: v.store(1) A: v.store(1)
. L4
&nb — L “mo
X: v.store(2) _rl» B: v.load() X: v.store(2)
READ-WRITE COHERENCE
X: v.store(1) _rl‘» A: v.load() X: v.store(1)
..
b ~mo
pooo= N
B: v.store(2) B: v.store(2)

WRITE-WRITE COHERENCE

A: v.store(1) A: v.store(1)
1
1
b - ;110
B: v.store(2) B: v.store(2)

SEQ-csT / MO CONSISTENCY

A: v.store(1) A: v.store(1)
]
[
lsc = mo
B: v.store(2) B: v.store(2)

SEQ-cST WRITE-READ COHERENCE

A: v.store(1, seq_cst) A: v.store(1, seq_cst)

.
-
. Lsc — P L mo
X: v.store(2) —» B: v.load(seq_cst) X: v.store(2)
RMW / MO CONSISTENCY
A: v.store(1) A: v.store(1)
L}
L}
f’ - mo
B: v.rmw() B: v.rmw()
RMW AroMmiciTY
A: v.store(1)
s
B: v.rmw()
B: v.rmw() 0 Sl N
*Jno
]
C: v.store(2) C: v.store(2)

Figure 3: Modification order implications. On the left side
of each implication, A, B, C, X, and Y must be distinct.

633

Weiyu Luo and Brian Demsky

atomic store. The initial mo-graph clock vector Lcy, associated
with the node representing an atomic store A, the union operator
U, and the comparison operator < for mo-graph clock vectors are
defined as follows:

Loy, = At.ift ==t4 then sy else 0,
CVi U CVy & At.max(CVA(t), CVa(2),
CV; < CVy 2 VE.CVy(t) < CVi(t).

Note that two mo-graph clock vectors can only be compared if their
associated nodes represent atomic stores to the same memory location.
The mo-graph clock vectors are updated when new mo relations

are formed. For example, if A B Bisa newly formed mo relation,
then the node B’s mo-graph clock vector is merged with that of
node A, ie, CVp := CV4 U CVp. If CVp is updated by this merge,
the change in CVp must be propagated to all nodes reachable from
B using the union operator.

Figure 4 presents pseudocode for updating the modification order
graph. The MERGE procedure merges the mo-graph clock vector of
the src node into the dst node and returns true if the dst mo-graph
clock vector changed. The ADDEDGE procedure adds a new modi-
fication order edge to the graph. It first compares mo-graph clock
vectors to check if the edge is redundant and if so drops the edge
update. Recall that RMW operations are ordered immediately after
the stores that they read from. To implement this, ADDEDGE checks
to see if the from node has a rmw edge, and if so, follows the rmw
edge. ADDEDGE finally adds the relevant edge, and then propagates
any changes in the mo-graph clock vectors. The ADDRMWEDGE
procedure has two parameters, where the rmw node reads from the
fromnode. It first adds an rmw edge and then migrates any outgoing
edges from the source of the edge to the rmw node. Finally, it calls
the ADDEDGE procedure to add a normal modification order edge
and to propagate mo-graph clock vector changes.

Figure 5 presents pseudocode for the helper method ADDEDGES
that adds a set of edges to the mo-graph. The parameter set is a set
of atomic stores or RMWs, and S is an atomic store or RMW. The
GetNode method converts an atomic action to the corresponding
node in the mo-graph. If such node does not exist yet, then the
method will create a new node in the mo-graph.

Theorem 1 guarantees the soundness of our use of mo-graph
clock vectors. We present the theorem and its proof in Section 9.
This theorem states that we can solely rely on mo-graph clock
vectors to compute reachability between nodes in mo-graph.

4.3 Eliminating Rollback in Mo-graph

Prior work on constraint-based modification order utilized roll-
back when it was determined that a given reads-from relation was
not feasible [44, 45]. C11Tester may also hit such infeasible exe-
cutions because the may-read-from set defined in Section 3 is an
overapproximation of the set of stores that a load can read from. To
determine precisely whether a load can read from a store, a naive
approach is to add edges to the mo-graph and then utilize rollback
if adding these edges introduces cycles in the mo-graph. However,
the addition of clock vectors and clock vector propagation makes
rollback much more expensive. It is thus critical that C11Tester
avoids the need for rollback. We now discuss how C11Tester avoids
rollback.

C11Tester: A Race Detector for C/C++ Atomics

: procedure MERGE(Node dst, Node src)
if src.cv < dst.cv then
return false
end if
dst.cv := dst.cv U src.cv
return true
end procedure

A O o A

1: procedure ApDEDGE(Node from, Node to)

2 mustAddEdge := (from.rmw == to V from.tid == to.tid)
3 if from.cv < to.cv A= mustAddEdge then

4 return

5 end if

6 while from.rmw # null do

7 next := from.rmw

8 if next == to then

9

: break
10: end if
11: from := next
12: end while
13: from.edges := from.edges U to
14: if MERGE(to, from) then
15: Q:={to}
16: while Q is not empty do
17: node := remove item from Q
18: for each dst in node.edges do
19: if MERGE(dst, node) then
20: Q:=QUdst
21: end if
22: end for
23: end while
24: end if
25: end procedure
1: procedure ADDRMWEDGE(Node from, Node rmw)
2 from.rmw := rmw
3 for each dst in from.edges do
4 if dst # rmw then
5: rmw.edges := rmw.edges U dst
6 end if
7 end for
8 from.edges := 0
9: ADDEDGE(from, rmw)
10: end procedure
Figure 4: Pseudocode for Updating mo-graph
1: procedure ADDEDGES(set, S)
2: ng := GetNode(S)
3: for each e in set do
4: ne := GetNode(e)
5: ADDEDGE(n¢, ns)
6: end for
7: end procedure

Figure 5: Helper method for adding a set of edges to the
mo-graph

The mo-graph is updated whenever a new atomic store, atomic
load, or atomic RMW is encountered. Processing a new atomic store,
atomic load, or atomic RMW can potentially add multiple edges
to the mo-graph. We next analyze each case to understand how to
avoid rollback:

634

ASPLOS 21, April 19-23, 2021, Virtual, USA

e Atomic Store: Since an atomic load can only read from
past stores, a newly created store node in mo-graph has no
outgoing edges. By the properties of mo, only incoming edges
from other nodes to this new node will be created. Hence, a
new store node cannot introduce any cycles.

e Atomic Load: Consider a new atomic load Y that reads

from a store Xy. Forming a new rfrelation may only cause
edges to be created from other nodes to the node repre-
senting the store Xy. We denote this set of "other nodes" as
ReadPriorSet(Xy) and compute it using the READPRIORSET
procedure in Figure 11. Lines 6, 7, and 8 in the READPRI-
ORSET procedure consider statements 5, 4, and 6 in Section
29.3 of the C++11 standard. Line 9 in the procedure consid-
ers write-read and read-read coherences. Therefore, the set
returned by the READPRIORSET procedure captures the set
of stores from where new mo relations are to be formed if
the rfrelation is established.
Before forming the rfrelation, C11Tester checks whether
any node in ReadPriorSet(Xy) is reachable from X. If so, then
having load Y read from store X will introduce a cycle in the
mo-graph, so we discard X and try another store. While it
is possible for a cycle to contain two or more edges in the set
of newly created edges, this also implies that there is a cycle
with one edge (since all edges have the same destination).

e Atomic RMWs: An atomic RMW is similar to both a load
and store, but with the constraint that it must be immedi-
ately modification ordered after the store it reads from. We
implement this by moving modification order edges from
the store it reads from to the RMW. Thus, the same checks
used by the load suffice to check for cycles for atomic RMWs.

Thus, C11Tester first computes a set of edges that reading from
a given store would add to the mo-graph. Then for each edge, it
checks the mo-graph clock vectors to see if the destination of the
edge can reach the source of the edge. If none of the edges would
create a cycle, it adds all of the edges to the mo-graph using the
ApDEDGE and ADDRMWEDGE procedures.

5 OPERATIONAL MODEL

We present our operational model with respect to the tsan11 [37]
core language described by the grammar in Figure 6. A program
is a sequence of statements. LocNA and LocA denote disjoint sets
of non-atomic and atomic memory locations. A statement can be
one of these forms: an if statement, assigning the result of an
expression to a non-atomic location, forking a new thread, joining
a thread via its thread handle, and atomic statements. The symbol €
denotes an empty statement. Atomic statements denoted by StmtA
include atomic loads, store, RMWs, and fences. An RMW takes a functor,
F, to implement RMW operations, such as atomic_fetch_add. We
omit loops for simplicity and leave the details of an expression
unspecified. We omit lock and unlock operations because they can
be implemented with atomic statements.

5.1 Happens-Before Clock Vectors

We next discuss the various happens-before clock vectors that
C11Tester uses to implement happens-before relations. Figure 7
presents our algorithm for updating clock vectors used to track

ASPLOS 21, April 19-23, 2021, Virtual, USA

Prog ::= Stmt ; €
Stmt (1= Stmt ; Stmt
| if (LocNA) {Stmt} else {Stmt}
| LocNA := Expr
| LocNA = Fork(Prog)
| Join(LocNA)
| StmtA
| €
StmtA ::= LocNA = Load(LocA, MO)
| Store(LocNA, LocA, MO)
| RMW(LocA, MO, F)
| Fence(MO)
MO ::= relaxed | release | acquire | rel_acq
| seq_cst
Expr ::= <literal> | LocNA | Expr op Expr

Figure 6: Syntax for our core language

States:
Tid = Z Seq =7 C:Tid— CV
F : Tid — CV RF : Seq — CV F%4 : Tid — CV
[RELEASE STORE]

RF’ = RF[s := C,]
(C RF Frel]Facq) 2storem,(s,t) (C RF]Frel Facq)

[RELAXED STORE]
RF = RF[s := F}¥/]
(C, RF, F'e, Facq) —ystore (s,) (C, RE, B¢,]Facq)

[RELEASE RMW]
RF = RF[s := C; URF,/]

((C, RF, B, Facq) —yrmipe(s, O 1fls”,2) ((C, RF, P,]Facq)
[RELAXED RMW]
RF’ = RF[s := FIf URF/]
(C, RF, ', IF““I) =i O fls”s 1) (c, RF, F",]F'”q)
[ACQUIRE LOAD]
C' =C[t:=C, URFy]
(C, RE, .,]Facq) —loadacg(s,), rfts", ¢') (c’, RF, 7,]Facq)
[RELAXED LOAD]
Fed = C[t := F* URFy|
((C, RF, F'*,]Facq) —yload, (s, 1), rfis", ') (C, RF, B¢,]Facq’)

[RELEASE FENCE]
el gl o)
(c R, B, Bot) Sfereent) (v, RE, BT, B
[ACQUIRE FENCE]
C =C[t = C; UF]
(C’ RF, F'®,]F“Cq) —yJenceqcq(t) (C’, RF, F"e, Faa?)

Figure 7: Semantics for tracking happens-before clock vec-
tors for atomic loads, stores, RMWs, and fences. An RMW
also triggers a load rule initially.

happens-before relations for atomic loads, stores, RMWs, and fences.
The union operator U between clock vectors is defined the same
way as in Section 4.2.

For each thread t, the algorithm maintains the thread’s own
clock vector C;, and release- and acquire-fence clock vectors F;el

635

Weiyu Luo and Brian Demsky

and F?cq. The algorithm also records a reads-from clock vector RF
for each atomic store and RMW. Recall that the sequence number
is a global counter of events across all threads, and thus uniquely
identifies an event. We use C, F, F4°4 and RF to denote these clock
vectors across all threads, and atomic stores and RMWs. The rules
for atomic loads and RMWs also require the stores or RMWs that
are read from to be specified, which are denoted as rf.

Release Sequences. The 2011 standard used a complicated defi-
nition of release sequences that allowed the possibility of relaxed
writes blocking release sequences [37]. The 2020 standard simpli-
fies and weakens the definition of release sequences. In a recently
approved draft [1], a store-release heads a release sequence and an
RMW is part of the release sequence if and only if it reads from a
store or RMW that is part of the release sequence. A load-acquire
synchronizes with a store-release S if the load reads from a store or
RMW in the release sequence headed by S.

We first discuss C11Tester’s treatment of release sequences in the
absence of fences. C11Tester uses two clock vectors for store/RMW
operations: both the current thread clock vector C; and a second
reads-from clock vector RFg that tracks the happens-before relation
for all release sequences that the RMW/store S is part of. For a
normal store release, these two clock vectors are the same. When a
relaxed or release RMW A reads from another store B, C11Tester
computes the RMW’s reads-from clock vector RFy4 as the union
of: (1) the store B’s reads-from clock vector RFg and (2) the RMW
A’s current thread clock vector C;, if Ais a release. When a load-
acquire A reads from a store-release or RMW, C11Tester computes
the load-acquire’s new thread clock vector as the union of: (1) the
load-acquire’s current thread clock vector C;, and (2) the store
release/RMW’s reads-from clock vector.

Fences. The C/C++ memory model also contains fences. Fences
can have one of four different memory orders: acquire, release,
acq_rel, and seq_cst. Release fences effectively make later relaxed
stores into store-releases, but the happens-before relation is estab-
lished at the fence-release. C11Tester maintains a release fence clock
vector]F;el for each thread and uses this clock vector when comput-
ing the clock vector for release sequences. Acquire fences effectively
make previous relaxed loads into load-acquires, but the happens-
before relation starts at the fence. When a relaxed load reads from
a release sequence, C11Tester updates the per-thread acquire-fence
clock vector IF?Cq. When C11Tester processes an acquire fence, it
uses F?Cq to update the thread’s clock vector C;. Seq_cst fences
constrain the interactions between sequentially consistent atomics
and non-sequentially consistent atomics. The behavior of seq_cst
fences can be represented as rules for generating modification order
constraints [8]. C11Tester maintains a list of all seq_cst fences for
each thread so that C11Tester can quickly locate the relevant fence
instructions. It then generates the relevant modification order edges
to implement the fence semantics.

5.2 Formal Operational Model

Figure 8 formalizes the operational state of a program. The state of
system State consists of the list of ThrState, the mapping ALocs from
memory locations to atomic information, the mapping NALocs from

C11Tester: A Race Detector for C/C++ Atomics

memory locations to values stored at non-atomic locations, the map-
ping Fencelnfo, and the mo-graph described in Section 4. ALocInfo
records the list of atomic loads, stores, and RMWs performed at a
given atomic location. Fencelnfo records the list of fences performed
by each thread. Prog is a program described by the grammar in
Figure 6. The initial state of the system has empty mappings ALocs
and NALocs, and Fencelnfo, only one thread representing the main
function, and an empty mo-graph.

Tid =7 Epoch=27Z Val=Z Seq=7Z
CV £ Tid — Epoch
ThrState 2 (¢ : Tid) X (C : CV) X (F¢44?} . V) x (RF : Seq — CV)
X (P : Prog)
StoreElem = (t : Tid) X (s : Seq) X (a : LocA) X (mo : MemoryOrder)
X (v : Val)
LoadElem = (¢t : Tid) X (s : Seq) X (a : LocA) X (mo : MemoryOrder)
X (rf: StoreElem)
RMWElem = (¢ : Tid) X (s : Seq) X (a : LocA) X (mo : MemoryOrder)
X (rf : StoreElem or RMWElem) X (v : Val)
FenceElem = (t : Tid) X (s : Seq) X (mo : MemoryOrder)
ALoclnfo = (StoreElem or LoadElem or RMWElem) list
Fencelnfo = Tid — FenceElem list
ALocs = LocA — ALocInfo
NALocs = LocNA — Val
State = ThrState list X ALocs X NALocs
X Fencelnfo X (M : mo-graph)

Figure 8: Operational State

5.3 Operational Semantics

Figures 9 to 11 present state transitions and related algorithms
for our operational model. A system under evaluation is a triple
of the form (2, ss, T), where X represents the state of the system
State, ss is the program being executed, and T represents ThrState
of the thread currently running the program. The current thread
only updates its own state T when the program ss executes, which
causes the copy of T in ¥ to become outdated. However, the updated
T will replace the old copy in ¥ when the thread switching function
6 is called at the end of each atomic statement. The mo-graph is
a data structure in State and represented as X.M. The mo-graph
has methods MERGE, ADDEDGE, ADDRMWEDGE, and ADDEDGES
described in Figure 4 and Figure 5.

Figure 9 shows semantics for atomic statements. Every time
an atomic statement is encountered, a corresponding LoadElem,
StoreElem, RMWEIem, or FenceElem is created with the sequence
number auto-assigned. The process of assigning sequence numbers
are omitted in Figure 9. Function calls [LOAD], [STORE], [RMW],
and [FENCE] invokes the corresponding inference rules for up-
dating clock vectors described in Figure 7 based on the type of
atomic statements and the memory orders. Atomic statements with
seg_cst or acq_rel memory orderings invoke both acquire and
release clock vector rules if they apply. [LOAD], [STORE], [RMW],
and [FENCE] take the current state of the system, the current atomic
element, and the state of the current thread as arguments, pass nec-
essary input into the inference rules for updating clock vectors, and
finally return the updated state of the current thread.

636

ASPLOS 21, April 19-23, 2021, Virtual, USA

For atomic loads and RMWs, the store that is read from is ran-
domly selected from the may-read-from set computed using the
algorithm BuiLDMAYREADFROM presented in Figure 10, and the
store must satisfy the constraint that the second return value of
READPRIORSET is true, i.e., having the load reading from the se-
lected store does not create a cycle in the mo-graph. The atomic
RMW rule first triggers an atomic load rule, and the store/RMW S
that is read from is recorded in the rffield of the RMWEIlem. Then,
the mo-graph is updated using the procedure ADDRMWEDGE, and
the atomic RMW rules is finally finished by invoking an atomic
store rule. Both atomic load and atomic store rules call the helper
method ADDEDGEs in Figure 5 to add edges to the mo-graph.

Figure 11 presents the procedures READPRIORSET and WRITEPRI-
ORSET which compute the set of atomic actions (mo-graph nodes)
from where new mo edges will be formed.

We use the following helper functions in Figure 10 and Figure 11:

o last_sc_fence(t) returns the last seq_cst fence in thread t;

o last_sc_store(a, S) returns the last seq_cst store performed
at location a and is different from S;

o sc_fences(t) returns the list of seq_cst fences performed by
thread t;

e sc_stores(t, a) returns the list of seq_cst stores and RMWs
performed by thread ¢ at location q;

o stores(t, a) returns the list of stores and RMWs performed by
thread t at location a;

e loads_stores(t, a) returns the list of loads, stores, and RMWs
performed by thread ¢ at location a;

o lasi(list) returns the element with the largest sequence num-
ber in the list, excluding null elements;

o get_write(A) returns A if A is an atomic store or RMW and
returns A.rfif A is an atomic load.

All the above functions return null if the result does not exist.

5.4 Equivalent to Axiomatic Model

We make our axiomatic model precise and prove the equivalence of
our operational and axiomatic models in Section A of our technical
report [40].

6 IMPLEMENTATION

We next present several aspects of the C11Tester implementation.

6.1 Pruning the Execution Graph

While keeping the complete C/C++ execution graph and execution
trace is feasible for short executions and can help with debugging,
for longer executions their size eventually becomes too large to
store in memory. Naively pruning the execution trace to retain
the most recent actions is not safe—an older store S4 to an atomic
location X in the trace can be modification ordered after a later
store Sp to X in the trace. If a thread has already read from S4, it
cannot read from Sg because it is modification ordered before S4.
Naively pruning S4 from execution graph without also removing
Sp might erroneously produce an invalid execution in which a
thread reads from S4 and then Sg.

C11Tester supports two approaches to limiting memory usage:
(1) a conservative mode that limits the size of the execution graph

ASPLOS 21, April 19-23, 2021, Virtual, USA

[ATOMIC LOAD]
Z, T) —load (2, T,)
L.mo = mo S € BurbMayReapFrom(L)
L.rf=S
(pset, ret) = READPRIORSET(L, S) ret == True T” = [LOAD](3, L, T')
3" = 3[M := .M .ApDEDGES(pset, S)]
3" = ¥'[NALocs := ¥’ .NALocs[l := S.v]]
3" = 3"[ALocs := %" .ALocs(a).pushback(L)]
(2, I = Load(a, mo);ss, T) = (2", 8;s5, T")
[ATOMIC STORE]
(2, T) —store (Z,’ T) S.t=T.t
S.mo=mo S.v =23 .NALocs(I) pset = WRITEPRIORSET(S)
T’ = [STORE](/, S, T)
>" = 3/'[M := ¥'.M.ApDEDGES(pset, S)]
3" = 3"[ALocs := %" .ALocs(a).pushback(S)]
(=, Store(l, a, mo);ss, T) = (£, 8;ss5, T')
[ATOMIC RMW]
. T) = rmw (Z/, T’) Rt=T.t R.a=a
(', I = Load(a, mo), T') — (3", ss, T")
Raf=S T” = [RMW|E", R, T")
3" =3"[M = 3".M.ApDRMWEDGE(Ge tNode(R. rf), GetNode(R))]
3" = 3""[ALocs := 3" . ALocs(a).pushback(R)]
(Z, RMW(a, mo, F);ss, T) =
(", 1=F(l); R.v = %" .NALocs(l); Store(l, a, mo); §;ss, T"")

[ATOMIC FENCE]

F.t=T.t F.mo = mo
T’ = [FENCE](Z, F, T) > = 3[Fencelnfo := %.Fencelnfo(t).pushback(F)]

(=, Fence(mo);ss, T) = (Z', 8555, T')

L.t=T.t La=a

S.a=a

R.mo = mo

Figure 9: Semantics for atomic statements

1: procedure BuiLDMAYREADFROM(L)
2 ret := 0

3 if L.mo == seq_cst then

4: S := last_sc_store(L.a, L)

5: end if

6 for all threads ¢ do

7 stores := stores(t, L.a)

8

hb hb b hb
base := {X € stores | ~(X — L)V (X — L A (BY € stores. X S35

L)}
9: if L.mo == seq_cst A S # null then
hb
10: base := base \ {X € stores | X BEsvx 3 S}
11: end if
12: ret := ret U base

13: end for
14: if L is rmw then

15: ret := {X € ret | no rmw has read from X }
16: end if
17: return ret

18: end procedure

Figure 10: Pseudocode for computing may-read-from sets

with the constraint that C11Tester must retain the ability to gen-
erate all possible executions and (2) an aggressive mode that can
potentially reduce the set of executions that C11Tester can produce.

Conservative Mode. The key idea behind the conservative mode
is to compute a set of older stores that can no longer be read by any
thread and thus can be safely removed from the execution graph.
The basic idea is to compute the latest action A; for each thread t
such that for the last action Ly in every other thread ¢’, we have

hb
Ay — Ly . If action S is a store that either happens before A; or
is A, then any new loads from the same memory location must
either read from S or some store that is modification ordered after S.

Weiyu Luo and Brian Demsky

1: procedure WRITEPRIORSET(S)

2 priorset := 0; Fs := last_sc_fence(S.t); is_sc_store := (S.mo == seq_cst)
3 if is_sc_store then

4 add last_sc_store(S.a, S) to priorset

5: end if

6 for all threads ¢ do

7 F,; := last_sc_fence(t)

8
9

Fp, := last({F € sc_fences(t)|Fs # null A F S Fs})
S1 := last({X € stores(t, S.a) | is_sc_store A F; # null A X LA F})

10: Sy := last({X € sc_stores(t, S.a) | Fs # null A X = Fs})
11: Ss := last({X € stores(t, S.a) | Fp # null A X b—b> Fp})
12: Sy = last({X € load_stores(t, S.a) | X Lis SH

13: add get_write (last({S1, Sz, S3, Sa })) to priorset

14: end for

15: return priorset

16: end procedure
1: procedure READPRIORSET(L, S)
2 priorset := 0; Fr, := last_sc_fence(L.t); is_sc_load := (L.mo == seq_cst)
3 for all threads ¢ do
4: F; := last_sc_fence(t)
5: Fp := last({F € sc_fences(t) | F, # null A F = FL})
b
6 Sy = last({X € stores(t, L.a) | is_sc_load A F; # null A X 5F I3
7 Sy 1= last({X € sc_stores(t, L.a) | Fr, # null A X = Fr})
8

b
S3 = last({X € stores(t, L.a) | Fp # null A X 5 Fp})

9: Sy := last({X € load_stores(t, L.a) | X L4 L})
10: A := get_write(last({S1, Sz, S3, S4}))
11: if A # S then
12: add A to priorset
13: end if
14: end for
15: for each e in priorset do
16: if e is reachable from S in mo-graph then
17: return (0, false)
18: end if
19: end for
20: return (priorset, true)

21: end procedure

Figure 11: Pseudocode for computing priorsets for atomic
stores and loads

Thus any store Sg1q that is modification ordered before the store S
can no longer be read from by any thread and can be safely pruned.

C11Tester efficiently computes a clock vector CViy, to identify
such actions A; for each thread by using the intersection operator,
N, to combine the clock vectors of all running threads. We define
the intersection operator N as follows:

CV1 N CVs = At.min(CVy(t), CVa(t)).

C11Tester then searches for stores that happen before these
operations. It then uses the mo-graph to identify old stores to prune.
Finally, it prunes these stores and any loads that read from them.

Aggressive Mode. If a thread fails to synchronize with other
threads, this can prevent C11Tester from freeing much of the execu-
tion graph or execution trace as such a thread can potentially read
from older stores in the execution trace and thus prevent freeing
those stores. In the aggressive mode, the user provides a window
of the trace that C11Tester attempts to keep in the graph. Simply
deleting all memory operations before that window is not sound
as newer (with respect to the trace) memory operations may be
modification ordered before older memory operations. Thus remov-
ing older memory operations could cause C11Tester to erroneously
allow loads to read from stores they should not.

C11Tester: A Race Detector for C/C++ Atomics

For a store S outside of this window, C11Tester attempts to
remove all stores modification ordered before S. Such stores can
in some cases be inside of the window that C11Tester attempts to
preserve, but they must also be removed. C11Tester then removes
any loads that read from the removed stores.

Fences. Release fences that happen before actions whose se-
quence numbers correspond to components of CVpi, are not neces-
sary to keep since every running thread has already synchronized
with a later point in the respective thread’s execution. Thus such
release fences can be safely removed.

After an acquire fence is executed, its effect is summarized in
the clock vector of subsequent actions in the same thread. Thus
acquire fences can be safely removed.

Sequentially consistent fences that happen before CVi, are no
longer necessary since the happens-before relation will enforce the
same orderings. Thus, such sequentially consistent fences can be
safely removed.

6.2 Race Detection

C11Tester uses a FastTrack [24]-like approach to race detection with
the per-thread happens-before clock vectors from the operational
semantics. It uses the standard C/C++ definition of races. Section
7.2 of our technical report [40] discusses this in more detail.

6.3 Scheduling

There are two general techniques for controlling the schedule for
executing threads. The first technique is to map application threads
to kernel threads and then use synchronization constructs to control
which thread takes a step. The second technique is to simulate
application threads with user threads or fibers that are all mapped to
one kernel thread. While there is a proposal for user-space control of
thread scheduling that provides very low latency context switches,
unfortunately it still has not been implemented in the mainline
Linux kernel [53] after six years.

We implemented a microbenchmark on x86 to measure the con-
text switch costs for several implementations of these two tech-
niques. Our microbenchmark starts two threads or fibers and mea-
sures the time to switch between these threads. The experiment
results are available in our technical report [40].

For the kernel threads, we implemented four approaches to con-
text switches. The first approach uses standard pthread condition
variables and was generally the slowest approach. The second ap-
proach uses Linux futexes and is a little faster. The next two ap-
proaches use spinning to wait. Simply spinning is very fast if every
thread has its own core. As soon as two threads have to share a core,
this approach becomes 10,000 slower than the other approaches
because it has to wait for a scheduling epoch to occur to switch
contexts. We also implemented a version that adds a yield call. This
hurts performance if both threads run on their own core, but sig-
nificantly helps performance if threads share a core. But in general,
spinning is problematic as idle threads keep cores busy.

For the fiber-based approaches, we used both swapcontext and
setjmp to implement fibers. Swapcontext is significantly slower
than setjmp because it makes a system call to update the signal
mask. An issue with these approaches is that neither call updates

638

ASPLOS 21, April 19-23, 2021, Virtual, USA

the register that points to thread local storage. Updating this register
requires a system call, and this slows down both fiber approaches.

For practical implementation strategies, the fiber-based approach
is faster than kernel threads. Thus, C11Tester uses fibers imple-
mented via swapcontext to simulate application threads.

6.4 Thread Context Borrowing

A major challenge with implementing fibers is supporting thread lo-
cal storage. The specification for thread local storage on x86-64 [20]
is complicated and leaves many important details implementation-
defined and these details vary across different versions of the stan-
dard library. Generating a correct thread local storage region for
each thread is a significant effort as it requires continually updating
C11Tester code to support the current set of library implementation
strategies. This is complicated by the fact that creating the thread
local storage may involve calling initializers and freeing the thread
local storage may involve calling destructors.

Instead, C11Tester implements a technique for borrowing the
thread context including the thread local storage from a kernel
thread. The idea is that for each fiber C11Tester creates a real kernel
thread and the fiber borrows the kernel thread’s entire context
including its thread local storage.

C11Tester implements thread context borrowing by first creating
and locking a mutex to protect the thread context and then creating
a new kernel thread to serve as a lending thread that lends its con-
text to C11Tester. The lending thread then creates a fiber context
and switches to the fiber context. The fiber context then transfers
the lending thread’s context along with its thread local storage to
the C11Tester. Finally, the fiber context grabs the context mutex
to wait for the C11Tester to return its context. Once the applica-
tion thread is finished, C11Tester returns the thread context to the
lending thread by releasing the context mutex. The lending thread
then switches back to its original context, frees its fiber context,
and then exits. Migrating thread local storage on x86 requires a
system call to change the fs register. C11Tester implements thread
context borrowing for x86, but the basic idea should work for any
architecture.

6.5 Repeated Execution

C11Tester supports repeatedly executing the same benchmark to
find hard-to-trigger bugs. It can be desirable for testing algorithms
to maintain state between executions to attempt to explore different
program behaviors across different executions. C11Tester maintains
its internal state across executions of the application under test and
resets the application’s state between executions.

C11Tester uses fork-based snapshots to restore the application
to its initial state. C11Tester uses the mmap library call to map a
shared memory region to store its internal state. The data in this
shared memory region persists across different executions. This
state allows C11Tester to report data races only once as opposed to
reporting the same race on each execution. It also allows for the
creation of smart plugins that explore different behaviors across
different executions.

ASPLOS 21, April 19-23, 2021, Virtual, USA

7 EVALUATION

We compare C11Tester with both tsanllrec, a race detector that
supports controlled execution [38] and tsan11 [37], a race detector
that relies on the operating system scheduler to control the sched-
uling of threads. We ran our experiments on an Ubuntu Linux 18.04
LTS machine with a 6 core Intel Core i7-8700K CPU and 64GB RAM.
We first evaluated the above tools on buggy implementations of
seqlock and reader-writer lock to check whether all three tools can
detect the injected bugs. Then we evaluated the three tools on both
a set of five applications that make extensive use of C/C++ atomics
and the data structure benchmarks used to evaluate CDSChecker
previously [44].

The way these three tools support multi-threading differs signif-
icantly. C11Tester sequentializes thread executions and only allows
one thread to execute at a single time, tsan11 allows multiple threads
to execute in parallel, while tsanl1rec falls in between—it sequen-
tializes visible operations (such as atomics, thread operations, and
synchronization operations) and runs invisible operations in paral-
lel. The closest tool to compare C11Tester with is tsan11rec because
both C11Tester and tsanllrec support controlled scheduling, while
results for tsan11 are also presented for completeness. Although
both tsan11 and tsan11rec execute all or some operations in parallel,
we present a best effort comparison in the following.

7.1 Benchmarks with Injected Bugs

We have injected bugs into two commonly used data structures and
verified that both tsan11 and tsan11rec miss these bugs due to the
restrictions of their memory models and that the buggy executions
contained cycles in hb U rfU mo U sc.

Seqlock. We took the seqlock implementation from Figure 5 of
Hans Boehm’s MSPC 12 paper [12], made the writer correctly use
release atomics for the data field stores, and injected a bug by
weakening atomics that initially increment the counter to relaxed
memory ordering.

Reader-Writer Lock. We also implemented a broken reader-writer
lock where the write-lock operation incorrectly uses relaxed atom-
ics. The test case uses the read-lock to protect reads from atomic
variables and the write-lock to protect writes to atomic variables.

C11Tester was able to detect the injected bugs in the broken
seqlock and reader-writer lock with bug detection rates of 28.8% and
55.3%, respectively, in 1,000 runs. However, tsan11 and tsanllrec
failed to detect the bugs in 10,000 runs.

7.2 Real-World Applications

Ideally, we would evaluate the tools against real world applications
that make extensive use of C/C++ atomics. However, to our knowl-
edge, no such standard benchmark suite exists so far. So we gathered
our benchmarks through searching for benchmarks evaluated in
previous work as well as concurrent programs on GitHub.

The five large applications that we have gathered include:
GDAX [7], an in-memory copy of the order book of the GDAX
cryptocurrency exchange; Iris [57], a low-latency C++ logging li-
brary; Mabain [19], a key-value store library; Silo [51, 52], a multi-
core in-memory storage engine; and the Firefox JavaScript engine

639

Weiyu Luo and Brian Demsky

release 50.0.1.% To make our results as reproducible as possible, we
tested the JavaScript engine using the offline version of JSBench
v2013.1. [48] *

As the three tools supported multi-threading in different ways,
to make a fair comparison, we ran each experiment on application
benchmarks in both the all-core configuration, where all hardware
cores could be utilized, and the single-core configuration, where the
tools were restricted to running on a single CPU using the Linux
command taskset. As it is always trivial to parallelize testing by
running several copies of a tool in parallel, the rationale behind the
single-core experiment is to compare the total CPU time used to
execute a benchmark or the equivalent throughput under different
tools. However, to understand the performance benefits of paral-
lelism for the other tools, we also ran experiments in the all-core
configuration. The performance of C11Tester does not vary much
in two configurations, because C11Tester only schedules one thread
to run at a time.

Table 1 summarizes the average and relative standard deviation
(in parentheses) of execution time or throughput for each of the five
benchmarks in the single-core and all-core configurations. Table 1
reports wall-clock time for Iris and Mabain. The throughput of
Silo is the aggregate throughput (agg_throughput) reported by
Silo, and the unit is ops/sec, i.e., the number of database operations
performed per second. The throughput of GDAX is the number of
iterations which the entire data set is iterated over in 120s. The
time and relative standard deviation reported for JSBench are the
statistics reported by the python script in JSBench over 10 runs.
For the other four benchmarks, the average and relative standard
deviation of the time and throughput are calculated over 10 runs.

C11Tester is slower than tsan11 in all benchmarks except Silo in
the single-core configuration. C11Tester is faster than tsanllrec in
all benchmarks except JSBench in the all-core configuration.

Figure 12 summarizes speedups compared to tsan11 on the single-
core configuration for each tool under both configurations, which
are derived from data in Table 1. Tsan11 on the single-core configu-
ration is set as the baseline and is omitted from Figure 12.

Based on the results in Figure 12, we further calculated the geo-
metric mean of the speedup over the five benchmarks for each
tool under both configurations. According to the geometric means,
C11Tester is 14.9% and 11.1X faster than tsan11rec in the single-core
configuration and all-core configuration, respectively. C11Tester is
1.6x and 3.1X slower than tsan11 in the single-core configuration
and all-core configuration, respectively.

Silo. Silo [51, 52] is an in-memory database that is designed for
performance and scalability for modern multicore machines. The
test driver we used is dbtest. cc. We ran the driver for 30 seconds
each run with option "-t 5", i.e., 5 threads in parallel.

In the first part of the experiment, Silo was compiled with in-
variant checking turned on. C11Tester found executions in which
invariants were violated. We found that it was because Silo used
volatiles with gcc intrinsic atomics to implement a spinlock and
assumed stronger behaviors from volatiles than C11Tester’s de-
fault handling of volatiles as relaxed atomics. The bug disappeared
when we handled volatile loads and stores as load-acquire and

Shttps://ftp.mozilla.org/pub/firefox/releases/50.0.1/source/
“https://plg.uwaterloo.ca/~dynjs/jsbench/

C11Tester: A Race Detector for C/C++ Atomics

ASPLOS 21, April 19-23, 2021, Virtual, USA

Table 1: Performance results for application benchmarks in the single-core and all-core configurations. The results are aver-
aged over 10 runs. Relative standard deviation is reported in parentheses. Larger throughputs are better for throughput-based
measurements, smaller times are better for time-based measurements.

Single-core Configuration All-core Configuration
Test C11Tester tsanllrec tsan11l C11Tester tsanllrec tsanl1l Measurement
Silo 15267 (0.45%) | 436 (2.52%) | 5496 (4.54%) | 15297 (1.17%) | 438.3 (0.59%) | 46688 (1.68%) | Throughput (ops/sec)
GDAX 2953 (1.80%) 69.3(0.97%) | 15700 (0.12%) 2946 (1.64%) 49.4 (1.04%) | 53362 (11.4%) | Throughput (# of iterations)
Mabain 577 (0.25%) | 593.4 (0.98%) | 3.513 (1.15%) 5.69 (0.04%) | 441.6 (0.69%) 7.00 (0.22%) | Time (in s)
Iris 8.95(1.46%) | 31.31(0.89%) | 4.873 (1.64%) 8.86 (0.22%) | 17.20 (1.05%) | 2.725(4.07%) | Time (in's)
JSBench | 1835(0.26%) | 2522(1.41%) | 867.8 (0.21%) | 1836 (0.35%) | 970.7 (0.68%) | 781.9(0.61%) | Time (in ms)

Table 2: Performance results for data structure benchmarks. The time column gives the time taken to execute the test case
once, averaged over 500 runs. The rate column gives the percentage of executions in which the data race is detected among

500 runs.
Test C11Tester
Time rate

barrier 4ms 76.6%
chase-lev-deque | 2ms 94.6%
dekker-fences 2ms 21.6%
linuxrwlocks 2ms 86.2%
mcs-lock 3ms 89.4%
mpmc-queue 4ms 59.4%
ms-queue 4ms 100.0%
Average 75.4%

tsanllrec tsan11
Time rate Time rate
19ms 36.4% 12ms 0.0 %
7ms 0.0 % 3ms 0.0 %
10ms 41.4% 5ms 53.2 %
10ms 53.4% 5ms 1.6 %
11ms 71.4% 14ms 0.8 %
10ms 58.2% 5ms 04 %
136ms 100.0% | 9ms 100.0%
51.5% 22.3%

store-release atomics. Volatile variables were commonly used to
implement atomic memory accesses before C/C++11. However, this
usage of volatile is technically incorrect, because the C++ standard
provides no guarantee when volatiles are mixed with atomics, and
weaker behaviors for volatiles can be exhibited by ARM processors.

We ran both tsanllrec and tsan11 on Silo for 100 runs with 30s
each run. Tsanllrec was not able to reproduce the weak behaviors
that C11Tester discovered, while tsan11 could reproduce the weak
behaviors 35% of the time. Tsan11rec and tsan11 both found racy
accesses on volatile variables that were used to implement a spin
lock. C11Tester did not report an error message for the volatile
races because C11Tester intentionally elides race warnings for races
involving volatiles and atomic accesses or races involving volatiles
and volatiles because volatiles are in practice still commonly used
to implement atomics.

When measuring performance for Silo, we turned off invari-
ant checking. We measured performances in terms of aggregate
throughput reported by Silo. C11Tester is faster than tsanll in
the single-core configuration, because reporting data races caused
significant overhead for tsan11 in the case of Silo.

Mabain. Mabain is a lightweight key-value store li-
brary [19]. Mabain contains a few test drivers that insert
key-value pairs concurrently into the Mabain system—we used
mb_multi_thread_insert_test.cpp. All tools discovered an
application bug that caused assertions in the test driver to fail,
although tsan11 required us to set a different number of threads
than our standard test harness to detect it. For performance
measurements, we turned off assertions in the test driver. All tools
found data races in Mabain.

The application bug is as follows. The test driver has one asyn-
chronous writer and a few workers. The workers and the writer
communicate via a shared queue protected by a lock. The writer
consumes jobs (insertion into the database) in the queue and insert
values into the Mabain database, while the workers submit jobs

into the queue. When workers finish submitting all jobs into the
queue, the writer is stopped. However, there is no check to make
sure that all jobs in the queue have been cleared before the writer
is stopped. Thus, after the writer is stopped, some values may not
be found in the Mabain database, causing assertion failures.

The time reported in Table 1 was measured for inserting 100,000
key-value pairs into the Mabain system.

GDAX. GDAX [7] implements an in-memory copy of the order
book for the GDAX cryptocurrency exchange using a lock-free
skip list with garbage collection from the libeds library [32]. The
original GDAX fetches data from a server, but we have recorded
input data from a previous run and modified GDAX to read local
data. All tools reported data races in GDAX.

In our experiment, GDAX was run for 120s each time, during
which 5 threads kept iterating over the data set. We counted the
number of iterations the data set was iterated over by each tool in
each run and computed statistics based on 10 runs.

Iris. Iris [57] is a low latency asynchronous C++ logging library
that buffers data using lock-free circular queues. The test driver
we used to measure performance was test_lfringbuffer.cpp,
in which there is one producer and one consumer. To make the
test driver finish in a timely manner, we reduced the number of
ITERATIONS to 1 million in the test driver. All tools reported data
races in Iris.

Firefox JavaScript Engine. We compiled the Firefox JavaScript
engine release 50.0.1 following the instructions for building the
JavaScript shell with Thread Sanitizer given by the developers of
Firefox. > We tested the JavaScript engine with the JSBench suite,
which contains 25 JavaScript benchmarks, sampled from real-world
applications. The Python script of JSBench first calculated the arith-
metic mean of all 25 benchmarks over 10 runs, and then took the
geometric means of the 25 arithmetic mean, as reported in Table 1.

Shttps://developer.mozilla.org/en-US/docs/Mozilla/Projects/Thread_Sanitizer

640

ASPLOS 21, April 19-23, 2021, Virtual, USA

160 Performance Comparisons by Benchmarks

8.01
4.0 1

2.0

[N

1.0 4

v

0.5 4

=
///)>‘
won

0.25 4

0.125 4

S S s

0.0625 4
0.03125 4
L
L]

CllTester (S)
tsanllrec (S)
Cl1Tester (A)
tsanllrec (A)
tsan1l (A)

0.015625 1

\
SIISIIISSSSSSD)

0.0078125 4

7/////////>>>>j

0.00390625

Speedups relative to tsanll on the single-core configuration

0.001953125

T T T T T
Silo GDAX Mabain Iris JSBench

Figure 12: Speedups compared to tsan11 on the single-core
configuration for all three tools under both configurations,
derived from Table 1. The performance results of tsan11 on
the single-core configuration is set as the baseline and is
omitted in the Figure. The larger values the faster the tools
are. The "(S)" label stands for the single-core configuration,
and "(A)" stands for the all-core configuration.

Performance Comparisons For Data Structure Benchmarks
140 . h : h A

CllTester
tsanllrec

1307 mm tsan11

120/ L

20.0.7 -

17.5 1

15.0 4

Time (in ms)

12.5

10.0

JJJ‘JI

barrier chase-lev-deque dekkerfences finuxnwiocks

7.

«n
L

5.

=)

2.

&)

0.

=)

mcsqueue mpmc-queue ms-queue

Figure 13: Performance comparisons for data structure
benchmarks, based on data in table 2.

7.3 Data Structure Benchmarks

To assess the ability of C11Tester to discover data races, we also
used the data structure benchmarks that were originally used to
evaluate CDSChecker and subsequently modified to evaluate tsan11
and tsanllrec. We used the version of the benchmarks available at
https://github.com/mc-imperial/tsan11. Note that sleep statements
were added to 6 of these benchmarks to induce some variability
in the schedules explored by the tsan11 [37]. We replicated the
same timing strategy used in [37] and reported times that were
the sum of the user time and system time measured by the time
command. Due to differences in the implementation of the sleep
statement, sleep time is partially included in C11Tester’s user time

641

Weiyu Luo and Brian Demsky

and thus we removed the sleep statements for C11Tester to make
the comparison fair. We executed the benchmarks in the all-core
configuration to ensure that we did not put tsan11 at a disadvantage
since it does not control the thread schedule.

Table 2 summarizes the experiment results for the data structure
benchmarks. The times reported in Table 2 were averaged over 500
runs, and the rate columns report data races detection rates based
on 500 runs. Out of 7 benchmarks, C11Tester detects data races
with rates higher than tsanllirec in 4 benchmarks and tsan11 in 5
benchmarks. Tsan11 and tsanllrec did not detect races in chase-
lev-deque, but C11Tester did. All three tools always detected races
in ms-queue.

8 RELATED WORK

Related work falls into three categories: model checkers, fuzzers,
and race detectors.

Model Checkers. In the context of weak hardware memory mod-
els, researchers have developed stateful model checkers [30, 35, 47].
Stateful model checkers however are limited by the state explosion
problem and have the general problem of comparing abstractly
equivalent but concretely different program states.

Stateless model checkers have been developed for the C/C++
memory model. CDSChecker can model check real-world C/C++
concurrent data structures [44, 45]. More recent work has led to
the development of other model checking tools that can efficiently
check fragments of the C/C++ memory model [5, 33, 34]. Recent
work on model checking for sequential consistency has developed
partial order reduction techniques that only explore all reads-from
relations and do not need to explore all sequentially consistent
orderings [4]. Other tools such as Herd [6], Nitpick [10], and Cpp-
Mem [8] are intended to help understand the behaviors of memory
models and do not scale to real-world data structures.

Dynamic Partial Order Reduction [26] and Optimal Dynamic
Partial Order Reduction [2] seek to make stateless model checking
more efficient by skipping equivalent executions. Maximal causal
reduction [27] further refines the technique with the insight that it
is only necessary to explore executions in which threads read differ-
ent values. Recent work has extended these algorithms to handle the
TSO and PSO memory models [3, 29, 56]. SATCheck further devel-
ops partial order reduction with the insight that it is only necessary
to explore executions that exhibit new behaviors [18]. CheckFence
checks concurrent code by translating it into SAT [16]. Despite
these advances, model checking faces fundamental limitations that
prevent it from scaling to full applications.

Fuzzers. The Relacy race detector [55] explores thread interleav-
ings and memory operation reorderings for C++ code. The Relacy
race detector has several limitations that cause it to miss executions
allowed by the C/C++ memory model. Relacy imposes an execution
order on the program under test in which it executes the program.
Relacy then derives the modification order from the execution or-
der; it cannot simulate (legal) executions in which the modification
order is inconsistent with the execution order.

Adversarial memory increases the likelihood of observing weak
memory system behaviors for the purpose of testing [25]. In the
context of Java, prescient memory can simulate some of the weak

C11Tester: A Race Detector for C/C++ Atomics

behaviors allowed by the Java memory model [17]. Prescient mem-
ory however requires that the entire application be amenable to
deterministic record and replay and uses a single profiling run to
generate future values limiting the executions it can discover.

Concutest-JUnit extends JUnit with checks for concurrent unit
tests and support for perturbing schedules using randomized
waits [49]. Concurrit is a DSL designed to help reproduce con-
currency bugs [21]. Developers write code in a DSL to help guide
Concurrit to a bug reproducing schedule. CalFuzzer more uniformly
samples non-equivalent thread interleavings by using techniques in-
spired by partial order reduction [50]. These approaches are largely
orthogonal to C11Tester.

Race Detectors. Several tools have been designed to detect data
races in code that uses standard lock-based concurrency control [22—
24, 28, 39]. These tools typically verify that all accesses to shared
data are protected by a locking discipline. They miss higher-level se-
mantic races that occur when the locks allow unexpected orderings
that produce incorrect results.

9 CORRECTNESS OF MO-GRAPH

To prove the correctness of mo-graphs, we first prove three Lemmas
and then prove Theorem 1. Lemma 1 and Lemma 2 characterize
some important properties of mo-graph clock vectors. Lemma 3
proves one direction in Theorem 1. Mo-graph clock vectors are
simply referred to as clock vectors in the following context.

LEMMA 1. Let Cy m Cy m.n Cn be a path in a modification
order graph G, such that CV¢, < ... < CVc, . Then if any new edge

E is added to G using procedures in Figure 4, it holds that
CVG, < SCVE (9.1)

for the updated clock vectors. We define CV/. := CVc, if the values
of CVc, are not actually updated.

Proor. To simplify notation, we define CV; := CV, for all i €
{0...,n}. Let’s first consider the case where no rmw edge is added,
i.e.,, the ADDRMWEDGE procedure is not called.

By the definition of the union operator, each slot in clock vectors
is monotonically increasing when the MERGE procedure is called.
By the structure of procedure ADDEDGE’s algorithm, a node X is
added to Q if and only if this node’s clock vector is updated by the
MERGE procedure.

Let’s assume that adding the new edge E updates any of
CW, ...,CV,. Otherwise, it is trivial. Let i be the smallest integer
in {0, ...,n} such that CV; is updated. Then CVk’ = CV} for all
k eI:={0,...,i — 1}, and we have

CVy <...<CV}. (9.2)

If i = 0, then we take I = @. There are two cases.

Case 1: Suppose CV, < CV; for some j € {i +1,...,n}, let jo be
the smallest such integer. Then CVk’ = CV for all k € {jy,...,n}, as
nodes {Cj, ..., Cn} Will not be added to Q in the ADDEDGE proce-
dure, and it holds trivially that

CV; <. <CV,. 9.3)
By line 14 to line 24 in the ADDEDGE procedure, we have
CV{ =CV uCV/_,, (9.4)

642

ASPLOS 21, April 19-23, 2021, Virtual, USA

forallk € S := {i+1,..., jo — 1}. If jo happens to be i + 1, then take

S = @. And we have for allk € S, CV/_, < CV/. Then combining
with inequality (9.2), we have
CVy <. SCVi <. <OV

<

Together with inequality (9.3), we only need to show that CVJ:) a4 =
CV]; to complete the proof.

If jo = i + 1, then we are done, because by assumption CV; <
Cvj, = CV]:) If jo > i+1, then CV/ < CVj; and CVi1q < CVj, imply
that CV/, | = CVi41 UCV/ < CVj, = CVJ:) Based on equation (9.4),
we can deduce in a similar way that CV/,, < ... < CVJ.:)_1 < CVJ:)

Case 2: Suppose CV; £ CVj for all j € {i +1,...,,n}. Then by
line 14 to line 24 in the ADDEDGE procedure, all nodes {C;, ...,Cp}
are added to Q in the ADDEDGE procedure, and CV} = CV, UCV/_,
forallk € S := {i+1, ..., n}. This recursive formula guarantees that
forallk € S, CV/_| < CV/. Therefore, combining with inequality
(9.2), we have CVj < ... < CV,.

Now suppose the newly added edge E is a rmw edge. If E : X RUN
C; where i € {0, ...,n} and X is some node not in path P, then the
path P remains unchanged and ADDEDGE(X,C;) is called. Then the

rmw

above proof shows that inequality (9.1) holds. If E : C; — X,
then C; ire Ci4+1 is migrated to X ire Ci+1 by line 3 to line 7 in the

ADPDRMWEDGE procedure, and C; ™x is added.
If X is not in path P, then path P becomes

mo

mo mo
Co — ..

mo
> Ci >

mo mo
X > Ciy1 > ... > Cy.

Since ADDEDGE(C;,X) is called, the same proof in the case without
rmw edges applies. If X is in path P, then X can only be C;1; and
the path P remains unchanged. Otherwise, a cycle is created and
this execution is invalid. In any case, the same proof applies. O

Let ¥ = (x1, x2, ..., X). We define the projection function U; that
extracts the i position of X as U;(X) = x;, where we assume i < n.

LEMMA 2. Let A be a store with sequence number sy performed by
thread i in an acyclic modification order graph G. Then U;(CV,) =
Ui(Lcv,) = sa throughout each execution that terminates.

Proor. We will prove by contradiction. Let S = {A1, A3, ...}
be the sequence of stores performed by thread i with sequence
numbers {s1, s2, ...}, respectively. Suppose that there is a point of
time in a terminating execution such that the first store A, in
the sequence with U;(CVy,) > s, appears. Sequence numbers
are strictly increasing and by the MERGE procedure, U;(CVy,) €
{Sn+1,Sn+2, ..., }. Let Uj(CVy,,) = sy for some N > n.

For U;(CV4,,) to increase to s from s,, CV4, must be merged
with the clock vector of some node X (i.e., some store X) in G such
that U;(CVx) = sn. Such X is modification ordered before A;,.

If X is performed by thread i, then X has to be the store Ay,
because U;(CV4;) is unique for all stores A; in the sequence S
other than A,. Then Ly, >1cy, . By the definition of initial
values of clock vectors and sequence numbers, X happens after and
is modification ordered after A,,. However, X is also modification
ordered before A, and we have a cycle in G. This is a contradiction.

If X is not performed by thread i, then Uj(Lcy,) = 0. For
U;(CVx) to be sy, X must be modification ordered after by some
store Y in G such that U;(CVy) = sn. If Y is done by thread i, then

ASPLOS 21, April 19-23, 2021, Virtual, USA

the same argument in the last paragraph leads to a contradiction;
otherwise, by repeating the same argument as in this paragraph
finitely many times (there are only a finite number of stores in such
a terminating execution), we would eventually deduce that X is
modification ordered after some store by thread i. Hence, we would
have a cycle in G, a contradiction.

|

LEMMA 3. Let A and B be two nodes that write to the same location
in an acyclic modification order graph G. If B is reachable from A in
G, then CVy < CVg.

Proor. Suppose that B is reachable from A in G. Let A Ba®
.. 8 Cp1 & Bbe the shortest path P from A to B in graph G. To

simplify notation, X ™Y is abbreviated as X — Y in the following.
As the ADDRMWEDGE procedure calls the ADDEDGE procedure to
create an mo edge, we can assume that all the mo edges in P are
created by directly calling ADDEDGE.

Base Case 1: Suppose the path P has length 1, ie., A imme-
diately precedes B. Then when the edge A — B was formed by
calling ADDEDGE(A,B), CVp was merged with CVy in line 14 of the
ADDEDGE procedure. In other words, CVg = CVg U CVy4 > CVy4.

Base Case 2: Suppose the path P has length 2, i.e, A — C; — B.
There are two cases:

(a)If A — Cy was formed first, then CV4 < CV¢,. WhenC; — B
was formed, CVg was merged with CV, and CV¢, < CVp. Accord-
ing to Lemma 1, adding the edge C; — B or any edge not in path
P (if any such edges were formed before C; — B was formed)
to G would not break the inequality CV4 < CV(,. It follows that
CVy < CV¢, < CVp.

(b) If C; — B was formed first, then CV, < CVp. Based on
Lemma 1, this inequality remains true when A — C; was formed.
Therefore CVy < CV¢, < CVp.

Inductive Step: Suppose that B being reachable from A implies
that CV4 < CVp for all paths with length k or less, for some k > 2.
We want to prove that the same holds for paths with length k + 1.
Let P be a path from A to B with length k + 1,

P:A=Cy—C — ..—>C; = Cxs =B.

We denote A as Cy and B as C in the following.

Let E : C; — Ci+1 be the last edge formed in path P, where i €
{0, ..., k}. Then before edge E was formed, the inductive hypothesis
implies that CV¢, < ... < CV¢, and CV¢,,, < ... < CV,,,,because

both Cyp — ... = Cj and Cj41 — ... = Cy41 have length k or less.
Lemma 1 guarantees that
CVe, £ ... < CV¢,,
CVey <. < CVCk+1

remain true if any edge not in path P was added to G as well as
the moment when E was formed. Therefore when the edge E was
formed, we have CV¢, < CV¢,,,, and

CVq=CVg, < ... £CV¢,, =CVg.
m]
THEOREM 1. Let A and B be two nodes that write to the same

location in an acyclic modification order graph G for a terminating
execution. Then CVy < CVp iff B is reachable from A in G.

643

Weiyu Luo and Brian Demsky

PrROOF. Lemma 3 proves the backward direction, so we only need
to prove the forward direction. Suppose that CV4 < CVp. Let’s first
consider the situation where the graph G contain no rmw edges.

Case 1: A and B are two stores performed by the same thread
with thread id i. Then it is either A happens before B or B happens
before A. If A happens before B, then A precedes B in the modifi-
cation order because A and B are performed by the same thread.
Hence B is reachable from A in G. We want to show that the other
case is impossible.

If B happens before A and hence precedes A in the modification
order, then A is reachable from B. By Lemma 3, A being reachable
from B implies that CVg < CVy. Since CV4 < CVpg by assump-
tion, we deduce that CV4 = CVp. This is impossible according to
Lemma 2, because each store has a unique sequence number and
Ui(CVy) = s4 # sg = Ui(CVp), implying that CVy # CVp.

Case 2: A and B are two stores done by different threads. Sup-
pose that A is performed by thread i. Let CV4 = (...,s4,...) and
CVg = (..., tp, ...) where both s4 and t, are in the i*" position. By
assumption, we have 0 < sq < f3.

Since B is not performed by thread i, we have U;j(Lcy,) = 0.
We can apply the same argument similar to the second, third and
fourth paragraphs in the proof of Lemma 2 and deduce that B is
modification ordered after A or some store sequenced after A. Since
modification order is consistent with sequenced-before relation, if
follows that B is reachable from A in graph G.

Now, consider the case where rmw edges are present. Adding a
rmw edge from a node S to a node R first transfers to R all outgoing
mo edges coming from S and then adds a normal mo edge from S
to R. So, any updates in CVgs are propagated to all nodes that are
reachable from S. Therefore, the above argument still applies. O

10 CONCLUSION

We have presented C11Tester, which implements a novel approach
for efficiently testing C/C++11 programs. C11Tester supports a
larger fragment of the C/C++ memory model than prior work while
still delivering competitive performance to prior systems. C11Tester
uses a constraint-based approach to the modification order that
allows testing tools to make decisions about the modification or-
der implicitly when they select the store that a load reads from.
C11Tester includes a data race detector that can identify races.
C11Tester supports controlled scheduling for C/C++11 at lower
overhead than prior systems. Our evaluation shows that C11Tester
can find bugs in all of our benchmark applications including bugs
that were missed by other tools.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their thorough and insight-
ful comments. We are especially grateful to our shepherd Caroline
Trippel for her feedback. We also thank Derek Yeh for his work
on performance improvement for the C11Tester tool. This work is
supported by the National Science Foundation grants CNS-1703598,
OAC-1740210, and CCF-2006948.

C11Tester: A Race Detector for C/C++ Atomics

A ARTIFACT APPENDIX
A.1 Abstract

The artifact contains a cll1tester-vagrant directory and a
tsan11-tsan11rec-docker directory. The c11tester-vagrant
directory is a vagrant repository that compiles source codes for
C11Tester, LLVM, the companion compiler pass, and benchmarks
for C11Tester. The tsan11-tsan11rec-docker directory contains
benchmarks and a docker image with prebuilt LLVMs for tsan11
and tsanllrec. We had attempted to install tsan11 and tsanllirec
in the same VM as C11Tester. However, tsanllrec became signifi-
cantly slower and some benchmarks were even unrunnable under
tsanllrec. So we had to build tsan11, tsanl1rec, and benchmarks
under the same environment as provided by their artifact documen-
tations.

A.2 Artifact Check-List (Meta-Information)

o Algorithm: Testing/race detection algorithm for C/C++ memory
model.

Program: Cl1Tester.

Compilation: Clang 8.0.0 for C11Tester, Clang 3.9.0 for tsanll,
and Clang 4.0.0 for tsanllrec.

Transformations: An LLVM pass.

Binary: Modified LLVMs for tsanl1 and tsanllrec are included in
the docker image.

e Run-time environment: Ubuntu 18.04 for C11Tester and Ubuntu
14.04 for tsan11 and tsanllrec.

Hardware: An Intel x86 machine with 6 cores.

Execution: Automated via shell scripts.

e Metrics: Execution time, data race detection rate, assertion detec-

tion rate.

Output: Numerical results printed in console.

Experiments: GDAX, Iris, Silo, Mabain, the Javascript Engine of

Firefox, a broken seqlock, a broken reader-writer lock, and some

data structure benchmarks. We measure both the performance (exe-

cution time or throughput) and the ability to detect data races and
assertions.

e How much disk space required (approximately)?: 10G for the
VM that contains C11Tester and 15G for the docker container that
contains tsan11 and tsanllrec.

e How much time is needed to prepare workflow (approxi-
mately)?: About 40 minutes for compilation.

o How much time is needed to complete experiments (approx-

imately)?: 2 hours for C11Tester, 3 hours for tsanl1, and 6.5 hours

for tsanllrec.

Publicly available?: Yes.

e Code licenses (if publicly available)?: GNU GPL v2.

e Data licenses (if publicly available)?: Varies depending on
benchmark.

o Workflow framework used?: Vagrant & scripts are provided to

automate the measurements.

Archived (provide DOI)?: https://doi.org/10.1145/3410278

A.3 Description

A.3.1 How to Access. The artifact is available at: https://doi.org/10.1145/
3410278

A.3.2 Hardware Dependencies. An Intel x86 CPUs with at least 6 cores and
at least 40G RAM is required to reproduce results. The VM for C11Tester
requires 40G RAM because one particular benchmark (GDAX) consumes

644

ASPLOS 21, April 19-23, 2021, Virtual, USA

36G RAM under C11Tester. Experiments additionally require CPUs to have
Intel VT-d support.

A.3.3 Software Dependencies. C++ Compiler, CMake, Clang, LLVM Com-
piler Infrastructure, Docker, Vagrant, and VirtualBox.

A.4 Installation

First download the artifact and extract it. The extracted file contains two
folders: c11tester-vagrant and tsan11-tsan11rec-docker.
$ cd clltester-artifact

To build C11Tester and benchmarks using Vagrant:
$ cd clltester-vagrant
$ vagrant up

The tsan11-tsan11rec-docker folder contains a docker image named
tsan11-tsanl1rec-image. tar.gz with prebuilt LLVMs for tsanll and
tsanllrec. For instructions on creating docker containers from the docker
image, please see the README.md file in the tsan11-tsan11rec-docker
repository.

To find the IP address of the container (assuming the container is named
tsanl1-tsanllrec-container):
$ docker inspect tsanll-tsanlirec-container

Then use scp to copy the scripts and src directories in the
tsan11-tsan11rec-docker folder to the container (replace 172.17.0.2 by
the container’s IP address):
$ scp -i insecure_key -r scripts root@172.17.0.2:/data
$ scp -i insecure_key -r src root@172.17.0.2:/data

Logging into the container as root (replace 172.17.0.2 by the container’s
IP address):
$ ssh -i insecure_key root@172.17.0.2

After logging into the docker container, to build benchmarks for tsan11
and tsanllrec:
./data/scripts/setup.sh

A.5 Experiment Workflow

Scripts are provided to run experiments. To run experiments for C11Tester,
logging into the Vagrant VM:

$ cd ~/clitester-benchmarks

$./do_test_all.sh

To run experiments for tsan11, logging into the docker container:
cd /data/tsanl1-benchmarks
./do_test_all.sh

To run experiments for tsanllrec, inside the same docker container:
cd /data/tsanllirec-benchmarks
./do_test_all.sh

A.6 Evaluation and Expected Results

Once the workflow is completed, the data race detection rates and assertion
rates for data structure benchmarks are printed in the console.

For application benchmarks, the result for each benchmark is writ-
ten to log files (such gdax.log and silo.log, etc). These log files
are stored in all-core/ and single-core/ directories under the
benchmark directories c11tester-benchmarks, tsan11-benchmarks, and
tsanl1rec-benchmarks.

ASPLOS 21, April 19-23, 2021, Virtual, USA

The do_test_all.sh script also executes the python script
calculator.py that prints out result summaries for all of five ap-
plication benchmarks executed under both the all-core and single-core
configurations. Each benchmark directory has this python script. If
you wish to regenerate result summaries from log files using the
python script, you can first go to one benchmark directory (we will use
cll1tester-benchmarks as an example here):
$ cd ~/clitester-benchmarks
and type:
$ python calculator.py all-core
or
$ python calculator.py single-core
to print out result summaries for all of five application benchmarks
executed under the all-core of single-core configuration.

A.7 Experiment Customization
In the benchmark directory, the two scripts

e tsanll-missingbug/test.sh
e cdschecker_modified_benchmarks/test.sh

can be customized to run different times by changing the shell variable
TOTAL_RUN.

The run.sh and app_assertion_test. sh scripts in the benchmark di-
rectory accept an optional argument that specifies how many times the test
programs are run. The default is 10 times. Besides that, you can also decide
which test program are run by modifying the TESTS variable in these two
scripts.

A.8 Notes

Tsanl1 may occasionally get stuck when testing Silo in the single-core
configuration. If this happens, we suggest to rerun Silo individually by
customizing the tsan11-benchmarks/run.sh script.

REFERENCES

[1] 2020. N4849: Working Draft, Standard for ProgrammingLanguage C++. http:

/Iwww.open-std.org/jtc1/sc22/wg21/docs/papers/2020/n4849.pdf.

Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. 2014.

Optimal Dynamic Partial Order Reduction. In Proceedings of the 2014 Symposium

on Principles of Programming Languages. 373-384. http://doi.acm.org/10.1145/

2535838.2535845

Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt Jonsson,

Carl Leonardsson, and Konstantinos Sagonas. 2015. Stateless model checking

for TSO and PSO. In Proceedings of the 21st International Conference on Tools

and Algorithms for the Construction and Analysis of Systems. 353-367. http:

//link.springer.com/chapter/10.1007%2F978-3-662-46681-0_28

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, Magnus Lang,

Tuan Phong Ngo, and Konstantinos Sagonas. 2019. Optimal Stateless Model

Checking for Reads-from Equivalence Under Sequential Consistency. Proceedings

of ACM on Programming Languages 3, OOPSLA, Article 150 (Oct. 2019), 29 pages.

https://doi.org/10.1145/3360576

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Tuan Phong Ngo.

2018. Optimal Stateless Model Checking Under the Release-acquire Semantics.

Proceedings of the ACM on Programming Languages 2, OOPSLA, Article 135 (Oct.

2018), 29 pages. https://doi.org/10.1145/3276505

Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats:

Modelling, Simulation, Testing, and Data Mining for Weak Memory. ACM

Transactions on Programming Languages and Systems 36, 2 (July 2014), 7:1-7:74.

http://doi.acm.org/10.1145/2627752

F. Eugene Aumson. 2018. gdax-orderbook-hpp. https://github.com/feuGeneA/

gdax-orderbook-hpp.

Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011.

Mathematizing C++ Concurrency. In Proceedings of the 38th Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages.

Pete Becker. 2011. ISO/IEC 14882:2011, Information Technology ~ Programming

Languages — C++.

[10] Jasmin Christian Blanchette, Tjark Weber, Mark Batty, Scott Owens, and Susmit
Sarkar. 2011. Nitpicking C++ Concurrency. In Proceedings of the 13th International
ACM SIGPLAN Symposium on Principles and Practices of Declarative Programming.
113-124. http://doi.acm.org/10.1145/2003476.2003493

[2

=

S
&

[4

=

[5

=

(6]

645

Weiyu Luo and Brian Demsky

[11] Hans Boehm and Brian Demsky. 2014. Outlawing Ghosts: Avoiding Out-of-
Thin-Air Results. In Proceedings of ACM SIGPLAN Workshop on Memory Systems
Performance and Correctness. 7:1-7:6. http://doi.acm.org/10.1145/2618128.2618134
Hans-J. Boehm. 2012. Can Seqlocks Get Along with Programming Language
Memory Models?. In Proceedings of the 2012 ACM SIGPLAN Workshop on Memory
Systems Performance and Correctness. 12-20. http://doi.acm.org/10.1145/2247684.
2247688

Hans-J. Boehm. 2013. N3786: Prohibiting “out of thin air” results in C++14.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3786.htm.

Hans-J. Boehm, Mark Batty, Brian Demsky, Olivier Giroux, Paul McKenney, Peter
Sewell, Francesco Zappa Nardelli, et al. 2013. N3710: Specifying the absence of
“out of thin air” results (LWG2265). http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2013/n3710.html.

Hans-J. Boehm, Olivier Giroux, and Viktor Vafeiades. 2018. P0982R0: Weaken
Release Sequences. http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2018/
p0982r0.html.

Sebastian Burckhardt, Rajeev Alur, and Milo M. K. Martin. 2007. CheckFence:
Checking Consistency of Concurrent Data Types on Relaxed Memory Models.
In Proceedings of the 2007 Conference on Programming Language Design and
Implementation. 12-21. http://doi.acm.org/10.1145/1250734.1250737

Man Cao, Jake Roemer, Aritra Sengupta, and Michael D. Bond. 2016. Prescient
Memory: Exposing Weak Memory Model Behavior by Looking into the Future.
In Proceedings of the 2016 ACM SIGPLAN International Symposium on Memory
Management. 99-110. http://doi.acm.org/10.1145/2926697.2926700

Brian Demsky and Patrick Lam. 2015. SATCheck: SAT-Directed Stateless Model
Checking for SC and TSO. In Proceedings of the 2015 Conference on Object-Oriented
Programming, Systems, Languages, and Applications. 20-36. http://doi.acm.org/
10.1145/2814270.2814297

Changxue Deng. 2018. Mabain: A fast and light-weighted key-value store library.
https://github.com/chxdeng/mabain.

Ulrich Drepper. 2013. ELF Handling For Thread-Local Storage. https://akkadia.
org/drepper/tls.pdf.

Tayfun Elmas, Jacob Burnim, George Necula, and Koushik Sen. 2013. CON-
CURRIT: A Domain Specific Language for Reproducing Concurrency Bugs. In
Proceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation (Seattle, Washington, USA) (PLDI ’13). 153-164.
https://doi.org/10.1145/2491956.2462162

Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. 2007. Goldilocks: A Race
and Transaction-Aware Java Runtime. In Proceedings of the 2007 ACM SIG-
PLAN Conference on Programming Language Design and Implementation. 245-255.
http://doi.acm.org/10.1145/1250734.1250762

Dawson Engler and Ken Ashcraft. 2003. RacerX: Effective, Static Detection of Race
Conditions and Deadlocks. In Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles. 237-252. http://doi.acm.org/10.1145/945445.945468
Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: Efficient and Precise
Dynamic Race Detection. In Proceedings of the 2009 ACM SIGPLAN Conference
on Programming Language Design and Implementation. 121-133. http://doi.acm.
org/10.1145/1542476.1542490

Cormac Flanagan and Stephen N. Freund. 2010. Adversarial memory for de-
tecting destructive races. In Proceedings of the 2010 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. 244-254. http:
//doi.acm.org/10.1145/1806596.1806625

Cormac Flanagan and Patrice Godefroid. 2005. Dynamic Partial-Order Reduction
for Model Checking Software. In Proceedings of the 2005 Symposium on Principles
of Programming Languages. 110-121. http://doi.acm.org/10.1145/1040305.1040315
Jeff Huang. 2015. Stateless Model Checking Concurrent Programs with Maximal
Causality Reduction. In Proceedings of the 2015 Conference on Programming Lan-
guage Design and Implementation. 165-174. http://doi.acm.org/10.1145/2813885.
2737975

Jeff Huang, Patrick Meredith, and Grigore Rosu. 2014. Maximal Sound Predictive
Race Detection with Control Flow Abstraction. In Proceedings of the 35th annual
ACM SIGPLAN conference on Programming Language Design and Implementation
(PLDI'14). ACM, 337-348. https://doi.org/10.1145/2594291.2594315

Shiyou Huang and Jeff Huang. 2016. Maximal Causality Reduction for TSO
and PSO. In Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications. 447-461.
http://doi.acm.org/10.1145/2983990.2984025

Bengt Jonsson. 2009. State-space exploration for concurrent algorithms under
weak memory orderings. SIGARCH Computer Architecture News 36, 5 (June 2009),
65-71. http://doi.acm.org/10.1145/1556444.1556453

ISO JTC. 2011. ISO/IEC 9899:2011, Information Technology — Programming
Languages - C.

Max Khiszinsky. 2017. https://github.com/khizmax/libcds.

Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor Vafeiadis.
2017. Effective Stateless Model Checking for C/C++ Concurrency. Proceedings
of the ACM on Programming Languages 2, POPL, Article 17 (December 2017),
32 pages. https://doi.org/10.1145/3158105

[12]

[13

[14

[15

[16

(17

jpry
)

[19

[20

[21

[22

~
&

[24

[25

[26

[27

[28

[29

C11Tester: A Race Detector for C/C++ Atomics

[34]

[35

[36

™
=

[38

[39

[40]

[41

[42

[43]

[44]

Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019. Model Check-
ing for Weakly Consistent Libraries. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Phoenix, AZ,
USA) (PLDI 2019). 96-110. https://doi.org/10.1145/3314221.3314609

Michael Kuperstein, Martin Vechev, and Eran Yahav. 2010. Automatic inference of
memory fences. In Proceedings of the Conference on Formal Methods in Computer-
Aided Design. 111-120. http://dl.acm.org/citation.cfm?id=1998496.1998518
Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM 21, 7 (July 1978), 558-565.

Christopher Lidbury and Alastair F. Donaldson. 2017. Dynamic Race Detection
for C++11. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages (Paris, France) (POPL 2017). ACM, New York, NY, USA,
443-457. https://doi.org/10.1145/3009837.3009857

Christopher Lidbury and Alastair F. Donaldson. 2019. Sparse Record and Replay
with Controlled Scheduling. In Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI 2019). 576-593.
https://doi.org/10.1145/3314221.3314635

Brandon Lucia, Luis Ceze, Karin Strauss, Shaz Qadeer, and Hans Boehm. 2010.
Conflict Exceptions: Simplifying Concurrent Language Semantics with Precise
Hardware Exceptions for Data-Races. In Proceedings of the 37th Annual Inter-
national Symposium on Computer Architecture. 210-221. http://doi.acm.org/10.
1145/1815961.1815987

Weiyu Luo and Brian Demsky. 2021. C11Tester: A Race Detector for C/C++
Atomics. Technical Report. (2021). arXiv:2102.07901 [cs.PL]

Nuno Machado, Brandon Lucia, and Luis Rodrigues. 2015. Concurrency Debug-
ging with Differential Schedule Projections. SIGPLAN Not. 50, 6 (June 2015),
586—595. https://doi.org/10.1145/2813885.2737973

Nuno Machado, Brandon Lucia, and Luis Rodrigues. 2016. Production-Guided
Concurrency Debugging. SIGPLAN Not. 51, 8, Article 29 (Feb. 2016), 12 pages.
https://doi.org/10.1145/3016078.2851149

Pablo Montesinos, Luis Ceze, and Josep Torrellas. 2008. DeLorean: Record-
ing and Deterministically Replaying Shared-Memory Multiprocessor Execu-
tion Efficiently. SIGARCH Comput. Archit. News 36, 3 (June 2008), 289-300.
https://doi.org/10.1145/1394608.1382146

Brian Norris and Brian Demsky. 2013. CDSChecker: Checking Concurrent Data
Structures Written with C/C++ Atomics. In Proceedings of the 2013 Conference
on Object-Oriented Programming, Systems, Languages, and Applications. 131-150.
http://doi.acm.org/10.1145/2544173.2509514

Brian Norris and Brian Demsky. 2016. A Practical Approach for Model Checking
C/C++11 Code. ACM Transactions on Programming Languages and Systems 38, 3

646

[46

[47

(48

[49

[50

[51

(52

ASPLOS 21, April 19-23, 2021, Virtual, USA

(May 2016), 10:1-10:51.

Peizhao Ou and Brian Demsky. 2018. Towards Understanding the Costs of
Avoiding Out-of-thin-air Results. Proceedings of the ACM on Programming Lan-
guages Volume 2 Issue OOPSLA 2, OOPSLA (Oct. 2018), 136:1-136:29. https:
//doi.org/10.1145/3276506

Seungjoon Park and David L. Dill. 1999. An Executable Specification and Verifier
for Relaxed Memory Order. IEEE Trans. Comput. 48, 2 (February 1999), 227-235.
http://dx.doi.org/10.1109/12.752664

Gregor Richards, Andreas Gal, Brendan Eich, and Jan Vitek. 2011. Automated Con-
struction of JavaScript Benchmarks. In Proceedings of the 2011 ACM International
Conference on Object Oriented Programming Systems Languages and Applications
(Portland, Oregon, USA) (OOPSLA d4AZ11). Association for Computing Machinery,
New York, NY, USA, 677aA$694. https://doi.org/10.1145/2048066.2048119
Mathias Guenter Ricken. 2011. A Framework for Testing Concurrent Pro-
grams. Ph.D. Dissertation. Houston, TX, USA. Advisor(s) Cartwright, Robert.
AAI3463989.

Koushik Sen. 2007. Effective Random Testing of Concurrent Programs. In
Proceedings of the Twenty-second IEEE/ACM International Conference on Auto-
mated Software Engineering (Atlanta, Georgia, USA) (ASE '07). 323-332. https:
//doi.org/10.1145/1321631.1321679

Stephen Tu, Wenting Zheng, and Eddie Kohler. 2015. Silo: Multicore in-memory
storage engine. https://github.com/stephentu/silo.

Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
2013. Speedy Transactions in Multicore In-memory Databases. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles (SOSP ’13).
18-32. https://doi.org/10.1145/2517349.2522713

Paul Turner. 2013. User-level threads...with threads. https://blog.
linuxplumbersconf.org/2013/ocw/system/presentations/1653/original/LPC%20-
%20User%20Threading.pdf#4.

Viktor Vafeiadis and Chinmay Narayan. 2013. Relaxed separation logic: A pro-
gram logic for C11 concurrency. In Proceedings of the 2013 ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming, Systems, Languages, and
Applications. 867-884.

Dmitriy Vyukov. 2011. Relacy Race Detector. http://relacy.sourceforge.net/.
Naling Zhang, Markus Kusano, and Chao Wang. 2015. Dynamic Partial Order
Reduction for Relaxed Memory Models. In Proceedings of the 36th ACM SIGPLAN

Conference on Programming Language Design and Implementation. 250-259. http:
//dol.acm.org/10.1145/2737924.2737956

Xinjing Zhou. 2015. Iris: A low latency asynchronous C++ logging library.
https://github.com/zxjcarrot/iris.

	Abstract
	1 Introduction
	1.1 Comparison to Prior Work on Testing C/C++11
	1.2 Contributions

	2 C/C++ Memory Model Fragment
	3 C11Tester Overview
	4 Memory Model Support
	4.1 Modification Order Graph
	4.2 Clock Vectors
	4.3 Eliminating Rollback in Mo-graph

	5 Operational Model
	5.1 Happens-Before Clock Vectors
	5.2 Formal Operational Model
	5.3 Operational Semantics
	5.4 Equivalent to Axiomatic Model

	6 Implementation
	6.1 Pruning the Execution Graph
	6.2 Race Detection
	6.3 Scheduling
	6.4 Thread Context Borrowing
	6.5 Repeated Execution

	7 Evaluation
	7.1 Benchmarks with Injected Bugs
	7.2 Real-World Applications
	7.3 Data Structure Benchmarks

	8 Related Work
	9 Correctness of Mo-graph
	10 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-List (Meta-Information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Results
	A.7 Experiment Customization
	A.8 Notes

	References

