

ASPLOS ’21, April 19–23, 2021, Virtual, USA Weiyu Luo and Brian Demsky

the value a load reads and does not require them to eagerly decide
the modification order.

Fibers provide a more efficient means to control thread sched-
ules than kernel threads. However, C/C++ programs commonly
make use of thread local storage (TLS) and fibers do not directly
support TLS. This paper presents a new technique, thread context
borrowing, that allows fiber-based scheduling to support thread lo-
cal storage without incurring dependencies on TLS implementation
details that can vary across different library versions.

1.1 Comparison to Prior Work on Testing
C/C++11

Prior work on data race detectors for C/C++11 such as tsan11 [37]
and tsan11rec [38] require hb ∪ rf ∪ mo ∪ sc be acyclic and thus
miss potentially bug-revealing executions that both are allowed
by the C/C++ memory model and can be produced by mainstream
hardware including ARM processors. We have found examples of
bugs that C11Tester can detect but tsan11 and tsan11rec miss due
to the set of hb ∪ rf edges orders writes in the modification order.

C11Tester’s constraint-based approach to modification order sup-
ports a larger fragment of the C/C++ memory model than tsan11
and tsan11rec. C11Tester adds minor constraints to the C/C++mem-
ory model to forbid out-of-thin-air (OOTA) executions for relaxed
atomics. Furthermore, these constraints appear to incur minimal
overheads on existing ARM processors [46] while x86 and PowerPC
processors already implement these constraints.

1.2 Contributions

This paper makes the following contributions:

• Scalable Concurrency Testing Tool: It presents a tool for
the C/C++ memory model that can test full programs.

• Supports a Larger Fragment of the C/C++ Memory

Model: It presents a tool that supports a larger fragment of
the C/C++ memory model than previous tools.

• Constraint-Based Modification Order: The modification
order relation is not directly visible to the application, instead
it constrains the behaviors of visible relations such as the
reads-from relation. We develop a scalable constraint-based
approach to modeling the modification order relation that
allows algorithms to ignore the modification order relation
and focus on program visible behaviors.

• Support for Limiting Memory Usage: The size of the
C/C++ execution graph and execution trace grows as the
program executes and thus limits the length of executions
that a testing tool can support. Naively freeing portions of
the graph can cause a tool to produce executions that are
forbidden by the memory model. We present techniques that
can limit the memory usage of C11Tester while ensuring
that C11Tester only produces executions that are allowed by
the C/C++ memory model.

• Fiber-based Support for Thread Local Storage: Fibers
are the most efficient way to control the scheduling of the
application under test, but supporting thread local storage
with fibers is problematic. We develop a novel approach for
borrowing the context of a kernel thread to support thread
local storage.

• Evaluation: We evaluate C11Tester on several applications
and compare against both tsan11 and tsan11rec. We show
that C11Tester can find bugs that tsan11 and tsan11rec miss.
We present a performance comparison with both tsan11 and
tsan11rec.

2 C/C++ MEMORY MODEL FRAGMENT

We next describe the fragment of the C/C++ memory model that
C11Tester supports. Our memory model has the following changes
based on the formalization of Batty et al. [8]:

1) Use the C/C++20 release sequence definition: Since
the original C/C++11 memory model, the definition of release
sequences has been weakened [15]. This change is part of the
C/C++20 standard [1]. C11Tester uses the newly weakened def-
inition. The new definition of release sequences does not allow
memory_order_relaxed stores by the thread that originally per-
formed the memory_order_release store that heads the release
sequence to appear in the release sequence.

2) Add hb ∪ sc ∪ rf is acyclic: Supporting load buffering or
out-of-thin-air executions is extremely difficult and the existing
approaches introduce high overheads in dynamic tools [17, 44,
45]. Thus, we prohibit out-of-thin-air executions with a similar
assumption made by much work on the C/C++ memory model Ð
we add the constraint that the union of happens-before, sequential
consistency, and reads-from relations, i.e., hb∪sc∪rf, is acyclic [54].1

This feature of the C/C++ memory model is known to be generally
problematic and similar solutions have been proposed to fix the
C/C++ memory model [11, 13, 14, 46].

3) Strengthen consume atomics to acquire: No compilers
support the consume access mode. Instead, all compilers strengthen
consume atomics to acquire.

We formalize the above changes in Section A.1 of our technical
report [40]. Our fragment of the C/C++ memory model is larger
than that of tsan11 and tsan11rec [37, 38]. The tsan11 and tsan11rec
tools add a very strong restriction to the C/C++ memory model
that requires that hb ∪ sc ∪ rf ∪mo be acyclic.

3 C11TESTER OVERVIEW

We present our algorithm in this section. In our presentation, we
adapt some terminology and symbols from stateless model checking
[26]. We denote the initial state with s0. We associate every state
transition t taken by thread p with the dynamic operation that
affected the transition. We use enabled(s) to denote the set of all
threads that are enabled in state s (threads can be disabled when
waiting on a mutex, condition variable, or when completed). We
say that next(s,p) is the next transition in thread p at state s .

Figure 2 presents pseudocode for C11Tester’s exploration algo-
rithm. C11Tester calls Exploremultiple timesÐeach time generates
one program execution. The thread schedule does not uniquely de-
fine the behavior of C/C++ atomics, due to the weak behaviors
of C/C++ atomics. Therefore, we split the exploration into two
components: (1) selecting the next thread to execute and (2) select-
ing the behavior of that thread’s next operation. C11Tester has a
pluggable framework for testing algorithmsÐC11Tester generates
a set of legal choices for the next thread and behavior, and then

1The C/C++11 memory model already requires that hb ∪ sc is acyclic.

631

C11Tester: A Race Detector for C/C++ Atomics ASPLOS ’21, April 19–23, 2021, Virtual, USA

1: procedure Explore

2: s := s0
3: while enabled(s) is not empty do

4: Select p from enabled(s)
5: t := next(s, p)
6: behaviors(t) := {Initial behaviors}
7: Select a behavior b from behaviors(t)
8: s := Execute(s, t, b)
9: end while

10: end procedure

Figure 2: Pseudocode for C11Tester’s Algorithm

the plugin selects the next thread and behavior. The default plugin
implements a random strategy.

Scheduling. Thread scheduling decisions are made at each atomic
operation, threading operation, or synchronization operation (such
as locking a mutex). Every time a thread finishes a visible operation,
the next thread to execute is randomly selected from the set of
enabled threads. However, when a thread performs several consec-
utive stores with memory order release or relaxed, the scheduler
executes these stores consecutively without interruption from other
threads. Executing these stores consecutively does not limit the set
of possible executions and provides C11Tester with more stores to
select from when deciding which store a load should read from.

Transition Behaviors. The source of multiple behaviors for a
given schedule arises from the reads-from relationÐin C/C++, loads
can read from stores besides just the łlastž store to an atomic object.

We use the concept of a may-read-from set, which is an overap-
proximation of the stores that a given atomic load may read from
that just considers constraints from the happens-before relation.
The may-read-from set for a load Y is constructed as:

may-read-from(Y) = {X ∈ stores(Y) | ¬(Y
hb
→ X)∧

(�Z ∈ stores(Y) . X
hb
→ Z

hb
→ Y)},

where stores(Y) denotes the set of all stores to the same object from
which Y reads. C11Tester selects a store from the may-read-from
set. C11Tester then checks that establishing this rf relation does not
violate constraints imposed by the modification order, as described
in Section 4. If the given selection is not allowed, C11Tester repeats
the selection process. C11Tester delays the modification order check
until after a selection is made to optimize for performance.

4 MEMORY MODEL SUPPORT

In this section, we present how C11Tester efficiently supports key
aspects of the C/C++ memory model.

CDSChecker [44] initially introduced the technique of using a
constraint-based treatment of modification order to remove redun-
dancy from the search space it explores. There are essentially two
types of constraints on the modification order: (1) that a store sA
is modification ordered before a store sB and (2) that a store sA
immediately precedes an RMW rB in the modification order.

CDSChecker models these constraints using a modification or-
der graph. Two types of edges correspond to these two types of
constraints. Edges only exist between two nodes if they both rep-
resent memory accesses to the same location. There is a cycle in

the modification order graph if and only if the graph corresponds
to an unsatisfiable set of constraints. Otherwise, a topological sort
of the graph (with the additional constraint that an RMW node
immediately follows the store that it reads from) yields a modifica-
tion order that is consistent with the observed program behavior.
CDSChecker used depth first search to check for cycles in the graph.
CDSChecker would add edges to the modification order graph to
determine whether a given reads-from edge was plausible Ð if the
edge made the set of constraints unsatisfiable, CDSChecker would
rollback the changes that the edge made to the graph.

This approach works well for model checking where the graphs
are smallÐthe fundamental scalability limits of model checking
ensure that the executions always contain a very small number of
stores. This approach is infeasible when executions (and thus the mod-
ification order graphs) can contain millions of atomic stores, because
the graph traversals become extremely expensive.

4.1 Modification Order Graph

We next describe the modification order graph in more detail. We
represent modification order (mo) as a set of constraints, built as a
constraint graph, namely the modification order graph (mo-graph).
A node in the mo-graph represents a single store or RMW in the
execution. There are two types of edges in the graph. An mo edge

from node A to node B represents the constraint A
mo
→ B. A rmw

edge from node A to node B represents the constraint that Amust

immediately precede B or formally that:A
mo
→ B and ∀C .C , A∧C ,

B ⇒ (A
mo
→ C ⇒ B

mo
→ C) ∧ (C

mo
→ B ⇒ C

mo
→ A).

C11Tester must only ensure that there exists some mo that sat-
isfies the set of constraints, or equivalently an acyclic mo-graph.
C11Tester dynamically adds edges to mo-graph when new rf and
hb relations are formed. We briefly summarize the properties ofmo
as implications [44] in Figure 3. C11Tester maintains a per-thread
list of atomic memory accesses to each memory location. When-
ever a new atomic load or store is executed, C11Tester uses this
list to evaluate the implications in Figure 3 as well as additional
implications for fences.

4.2 Clock Vectors

Due to the high cost of graph traversals for large graphs, graph
traversals are not a feasible implementation approach for C11Tester.
We next describe howwe adapt clock vectors [36] to efficiently com-
pute reachability in the mo-graph and scale the constraint-based
modification order approach to large executions. We associate a
clock vector with each node in the mo-graph. It is important to
note that our use of clock vectors in the mo-graph is not to track the
happens-before relation. Instead we use clock vectors to efficiently com-
pute reachability between nodes in the mo-graph. Thus, our mo-graph
clock vectors model a partial order that contains the current set of
ordering constraints on the modification order.

Each event E 2 in C11Tester has a unique sequence number sE .
Sequence numbers are a global counter of events across all threads,
which is incremented by one at each event. We denote the thread
that executed E as tE . Each node in the mo-graph represents an

2Events in each thread consist of atomic operations, thread creation and join, mutex
lock and unlock, and other synchronization operations.

632

C11Tester: A Race Detector for C/C++ Atomics ASPLOS ’21, April 19–23, 2021, Virtual, USA

1: procedure Merge(Node dst, Node src)
2: if src.cv ≤ dst.cv then
3: return false

4: end if

5: dst.cv := dst.cv ∪ src.cv
6: return true

7: end procedure

1: procedure AddEdge(Node from, Node to)
2: mustAddEdge := (from.rmw == to ∨ from.tid == to.tid)
3: if from.cv ≤ to.cv ∧¬ mustAddEdge then
4: return

5: end if

6: while from.rmw , null do
7: next := from.rmw
8: if next == to then

9: break

10: end if

11: from := next
12: end while

13: from.edges := from.edges ∪ to
14: if Merge(to, from) then
15: Q := { to }
16: while Q is not empty do

17: node := remove item from Q
18: for each dst in node.edges do
19: if Merge(dst, node) then
20: Q := Q ∪ dst
21: end if

22: end for

23: end while

24: end if

25: end procedure

1: procedure AddRMWEdge(Node from, Node rmw)
2: from.rmw := rmw
3: for each dst in from.edges do
4: if dst , rmw then

5: rmw.edges := rmw.edges ∪ dst
6: end if

7: end for

8: from.edges := ∅

9: AddEdge(from, rmw)
10: end procedure

Figure 4: Pseudocode for Updatingmo-graph

1: procedure AddEdges(set, S)
2: nS := GetNode(S)

3: for each e in set do
4: ne := GetNode(e)

5: AddEdge(ne , nS)
6: end for

7: end procedure

Figure 5: Helper method for adding a set of edges to the

mo-graph

The mo-graph is updated whenever a new atomic store, atomic
load, or atomic RMW is encountered. Processing a new atomic store,
atomic load, or atomic RMW can potentially add multiple edges
to the mo-graph. We next analyze each case to understand how to
avoid rollback:

• Atomic Store: Since an atomic load can only read from
past stores, a newly created store node in mo-graph has no
outgoing edges. By the properties ofmo, only incoming edges
from other nodes to this new node will be created. Hence, a
new store node cannot introduce any cycles.

• Atomic Load: Consider a new atomic load Y that reads
from a store X0. Forming a new rf relation may only cause
edges to be created from other nodes to the node repre-
senting the store X0. We denote this set of "other nodes" as
ReadPriorSet(X0) and compute it using the ReadPriorSet
procedure in Figure 11. Lines 6, 7, and 8 in the ReadPri-

orSet procedure consider statements 5, 4, and 6 in Section
29.3 of the C++11 standard. Line 9 in the procedure consid-
ers write-read and read-read coherences. Therefore, the set
returned by the ReadPriorSet procedure captures the set
of stores from where new mo relations are to be formed if
the rf relation is established.
Before forming the rf relation, C11Tester checks whether
any node in ReadPriorSet(X0) is reachable fromX0. If so, then
having loadY read from storeX0 will introduce a cycle in the
mo-graph, so we discard X0 and try another store. While it
is possible for a cycle to contain two or more edges in the set
of newly created edges, this also implies that there is a cycle
with one edge (since all edges have the same destination).

• Atomic RMWs: An atomic RMW is similar to both a load
and store, but with the constraint that it must be immedi-
ately modification ordered after the store it reads from. We
implement this by moving modification order edges from
the store it reads from to the RMW. Thus, the same checks
used by the load suffice to check for cycles for atomic RMWs.

Thus, C11Tester first computes a set of edges that reading from
a given store would add to the mo-graph. Then for each edge, it
checks the mo-graph clock vectors to see if the destination of the
edge can reach the source of the edge. If none of the edges would
create a cycle, it adds all of the edges to the mo-graph using the
AddEdge and AddRMWEdge procedures.

5 OPERATIONAL MODEL

We present our operational model with respect to the tsan11 [37]
core language described by the grammar in Figure 6. A program
is a sequence of statements. LocNA and LocA denote disjoint sets
of non-atomic and atomic memory locations. A statement can be
one of these forms: an if statement, assigning the result of an
expression to a non-atomic location, forking a new thread, joining
a thread via its thread handle, and atomic statements. The symbol ϵ
denotes an empty statement. Atomic statements denoted by StmtA

include atomic loads, store, RMWs, and fences. An RMW takes a functor,
F, to implement RMW operations, such as atomic_fetch_add. We
omit loops for simplicity and leave the details of an expression
unspecified. We omit lock and unlock operations because they can
be implemented with atomic statements.

5.1 Happens-Before Clock Vectors

We next discuss the various happens-before clock vectors that
C11Tester uses to implement happens-before relations. Figure 7
presents our algorithm for updating clock vectors used to track

634

ASPLOS ’21, April 19–23, 2021, Virtual, USA Weiyu Luo and Brian Demsky

Prog ::= Stmt ; ϵ

Stmt ::= Stmt ; Stmt

| if (LocNA) {Stmt} else {Stmt}

| LocNA := Expr

| LocNA = Fork(Prog)

| Join(LocNA)

| StmtA

| ϵ

StmtA ::= LocNA = Load(LocA , MO)

| Store(LocNA , LocA , MO)

| RMW(LocA , MO , F)

| Fence(MO)

MO ::= relaxed | release | acquire | rel_acq

| seq_cst

Expr ::= <literal > | LocNA | Expr op Expr

Figure 6: Syntax for our core language

States:

Tid ≜ Z Seq ≜ Z C : Tid → CV

Frel : Tid → CV RF : Seq → CV Facq : Tid → CV

[RELEASE STORE]

RF′ = RF[s := Ct]
(

C, RF, Frel, Facq
)

⇒storerel(s,t)
(

C, RF′, Frel, Facq
)

[RELAXED STORE]

RF′ = RF[s := Frelt]
(

C, RF, Frel, Facq
)

⇒storerlx(s,t)
(

C, RF′, Frel, Facq
)

[RELEASE RMW]

RF′ = RF[s := Ct ∪ RFs′]
(

C, RF, Frel, Facq
)

⇒rmwrel(s,t),rf(s
′
,t ′)

(

C, RF′, Frel, Facq
)

[RELAXED RMW]

RF′ = RF[s := Frelt ∪ RFs′]
(

C, RF, Frel, Facq
)

⇒rmwrlx(s,t),rf(s
′
,t ′)

(

C, RF′, Frel, Facq
)

[ACQUIRE LOAD]

C′ = C[t := Ct ∪ RFs′]
(

C, RF, Frel, Facq
)

⇒loadacq(s,t),rf(s′,t ′)
(

C′, RF, Frel, Facq
)

[RELAXED LOAD]

Facq
′
= C[t := F

acq
t ∪ RFs′]

(

C, RF, Frel, Facq
)

⇒loadrlx(s,t),rf(s
′
,t ′)

(

C, RF, Frel, Facq
′
)

[RELEASE FENCE]

Frel
′
= Frel[t := Ct]

(

C, RF, Frel, Facq
)

⇒fencerel(t)
(

C′, RF, Frel
′
, Facq

)

[ACQUIRE FENCE]

C′ = C[t := Ct ∪ F
acq
t]

(

C, RF, Frel, Facq
)

⇒
fenceacq(t)

(

C′, RF, Frel, Facq
)

Figure 7: Semantics for tracking happens-before clock vec-

tors for atomic loads, stores, RMWs, and fences. An RMW

also triggers a load rule initially.

happens-before relations for atomic loads, stores, RMWs, and fences.
The union operator ∪ between clock vectors is defined the same
way as in Section 4.2.

For each thread t , the algorithm maintains the thread’s own
clock vector Ct , and release- and acquire-fence clock vectors Frelt

and F
acq
t . The algorithm also records a reads-from clock vector RFs

for each atomic store and RMW. Recall that the sequence number
is a global counter of events across all threads, and thus uniquely
identifies an event. We useC,Frel,Facq andRF to denote these clock
vectors across all threads, and atomic stores and RMWs. The rules
for atomic loads and RMWs also require the stores or RMWs that
are read from to be specified, which are denoted as rf.

Release Sequences. The 2011 standard used a complicated defi-
nition of release sequences that allowed the possibility of relaxed
writes blocking release sequences [37]. The 2020 standard simpli-
fies and weakens the definition of release sequences. In a recently
approved draft [1], a store-release heads a release sequence and an
RMW is part of the release sequence if and only if it reads from a
store or RMW that is part of the release sequence. A load-acquire
synchronizes with a store-release S if the load reads from a store or
RMW in the release sequence headed by S .

We first discuss C11Tester’s treatment of release sequences in the
absence of fences. C11Tester uses two clock vectors for store/RMW
operations: both the current thread clock vector Ct and a second
reads-from clock vectorRFS that tracks the happens-before relation
for all release sequences that the RMW/store S is part of. For a
normal store release, these two clock vectors are the same. When a
relaxed or release RMW A reads from another store B, C11Tester
computes the RMW’s reads-from clock vector RFA as the union
of: (1) the store B’s reads-from clock vector RFB and (2) the RMW
A’s current thread clock vector CtA if A is a release. When a load-
acquire A reads from a store-release or RMW, C11Tester computes
the load-acquire’s new thread clock vector as the union of: (1) the
load-acquire’s current thread clock vector CtA and (2) the store
release/RMW’s reads-from clock vector.

Fences. The C/C++ memory model also contains fences. Fences
can have one of four different memory orders: acquire, release,
acq_rel, and seq_cst. Release fences effectively make later relaxed
stores into store-releases, but the happens-before relation is estab-
lished at the fence-release. C11Tester maintains a release fence clock
vector Frelt for each thread and uses this clock vector when comput-
ing the clock vector for release sequences. Acquire fences effectively
make previous relaxed loads into load-acquires, but the happens-
before relation starts at the fence. When a relaxed load reads from
a release sequence, C11Tester updates the per-thread acquire-fence
clock vector F

acq
t . When C11Tester processes an acquire fence, it

uses F
acq
t to update the thread’s clock vector Ct . Seq_cst fences

constrain the interactions between sequentially consistent atomics
and non-sequentially consistent atomics. The behavior of seq_cst
fences can be represented as rules for generating modification order
constraints [8]. C11Tester maintains a list of all seq_cst fences for
each thread so that C11Tester can quickly locate the relevant fence
instructions. It then generates the relevant modification order edges
to implement the fence semantics.

5.2 Formal Operational Model

Figure 8 formalizes the operational state of a program. The state of
system State consists of the list of ThrState, the mappingALocs from
memory locations to atomic information, the mappingNALocs from

635

C11Tester: A Race Detector for C/C++ Atomics ASPLOS ’21, April 19–23, 2021, Virtual, USA

memory locations to values stored at non-atomic locations, the map-
ping FenceInfo, and the mo-graph described in Section 4. ALocInfo
records the list of atomic loads, stores, and RMWs performed at a
given atomic location. FenceInfo records the list of fences performed
by each thread. Prog is a program described by the grammar in
Figure 6. The initial state of the system has empty mappings ALocs
and NALocs, and FenceInfo, only one thread representing the main
function, and an empty mo-graph.

Tid ≜ Z Epoch ≜ Z Val ≜ Z Seq ≜ Z

CV ≜ Tid → Epoch

ThrState ≜ (t : Tid) × (C : CV) × (F{rel,acq} : CV) × (RF : Seq → CV)

× (P : Prog)

StoreElem ≜ (t : Tid) × (s : Seq) × (a : LocA) × (mo : MemoryOrder)

× (v : Val)

LoadElem ≜ (t : Tid) × (s : Seq) × (a : LocA) × (mo : MemoryOrder)

× (rf : StoreElem)

RMWElem ≜ (t : Tid) × (s : Seq) × (a : LocA) × (mo : MemoryOrder)

× (rf : StoreElem or RMWElem) × (v : Val)

FenceElem ≜ (t : Tid) × (s : Seq) × (mo : MemoryOrder)

ALocInfo ≜ (StoreElem or LoadElem or RMWElem) list

FenceInfo ≜ Tid → FenceElem list

ALocs ≜ LocA → ALocInfo

NALocs ≜ LocNA → Val

State ≜ ThrState list × ALocs × NALocs

× FenceInfo × (M : mo-graph)

Figure 8: Operational State

5.3 Operational Semantics

Figures 9 to 11 present state transitions and related algorithms
for our operational model. A system under evaluation is a triple
of the form (Σ, ss, T), where Σ represents the state of the system
State, ss is the program being executed, and T represents ThrState
of the thread currently running the program. The current thread
only updates its own state T when the program ss executes, which
causes the copy ofT in Σ to become outdated. However, the updated
T will replace the old copy in Σ when the thread switching function
δ is called at the end of each atomic statement. The mo-graph is
a data structure in State and represented as Σ.M . The mo-graph
has methods Merge, AddEdge, AddRMWEdge, and AddEdges

described in Figure 4 and Figure 5.
Figure 9 shows semantics for atomic statements. Every time

an atomic statement is encountered, a corresponding LoadElem,
StoreElem, RMWElem, or FenceElem is created with the sequence
number auto-assigned. The process of assigning sequence numbers
are omitted in Figure 9. Function calls [LOAD], [STORE], [RMW],
and [FENCE] invokes the corresponding inference rules for up-
dating clock vectors described in Figure 7 based on the type of
atomic statements and the memory orders. Atomic statements with
seq_cst or acq_rel memory orderings invoke both acquire and
release clock vector rules if they apply. [LOAD], [STORE], [RMW],
and [FENCE] take the current state of the system, the current atomic
element, and the state of the current thread as arguments, pass nec-
essary input into the inference rules for updating clock vectors, and
finally return the updated state of the current thread.

For atomic loads and RMWs, the store that is read from is ran-
domly selected from the may-read-from set computed using the
algorithm BuildMayReadFrom presented in Figure 10, and the
store must satisfy the constraint that the second return value of
ReadPriorSet is true, i.e., having the load reading from the se-
lected store does not create a cycle in the mo-graph. The atomic
RMW rule first triggers an atomic load rule, and the store/RMW S

that is read from is recorded in the rf field of the RMWElem. Then,
the mo-graph is updated using the procedure AddRMWEdge, and
the atomic RMW rules is finally finished by invoking an atomic
store rule. Both atomic load and atomic store rules call the helper
method AddEdges in Figure 5 to add edges to the mo-graph.

Figure 11 presents the procedures ReadPriorSet andWritePri-

orSet which compute the set of atomic actions (mo-graph nodes)
from where new mo edges will be formed.

We use the following helper functions in Figure 10 and Figure 11:

• last_sc_fence(t) returns the last seq_cst fence in thread t ;
• last_sc_store(a, S) returns the last seq_cst store performed
at location a and is different from S ;

• sc_fences(t) returns the list of seq_cst fences performed by
thread t ;

• sc_stores(t ,a) returns the list of seq_cst stores and RMWs
performed by thread t at location a;

• stores(t ,a) returns the list of stores and RMWs performed by
thread t at location a;

• loads_stores(t ,a) returns the list of loads, stores, and RMWs
performed by thread t at location a;

• last(list) returns the element with the largest sequence num-
ber in the list, excluding null elements;

• get_write(A) returns A if A is an atomic store or RMW and
returns A.rf if A is an atomic load.

All the above functions return null if the result does not exist.

5.4 Equivalent to Axiomatic Model

We make our axiomatic model precise and prove the equivalence of
our operational and axiomatic models in Section A of our technical
report [40].

6 IMPLEMENTATION

We next present several aspects of the C11Tester implementation.

6.1 Pruning the Execution Graph

While keeping the complete C/C++ execution graph and execution
trace is feasible for short executions and can help with debugging,
for longer executions their size eventually becomes too large to
store in memory. Naively pruning the execution trace to retain
the most recent actions is not safeÐan older store SA to an atomic
location X in the trace can be modification ordered after a later
store SB to X in the trace. If a thread has already read from SA, it
cannot read from SB because it is modification ordered before SA.
Naively pruning SA from execution graph without also removing
SB might erroneously produce an invalid execution in which a
thread reads from SA and then SB .

C11Tester supports two approaches to limiting memory usage:
(1) a conservative mode that limits the size of the execution graph

636

ASPLOS ’21, April 19–23, 2021, Virtual, USA Weiyu Luo and Brian Demsky

[ATOMIC LOAD]

(Σ, T) →load (Σ, T
′)

L.t = T ′
.t L.a = a L.mo = mo S ∈ BuildMayReadFrom(L)

L.rf = S
(pset, ret) = ReadPriorSet(L, S) ret == T rue T ′′

= [LOAD](Σ, L, T ′)
Σ
′
= Σ[M := Σ.M .AddEdges(pset, S)]

Σ
′′
= Σ

′[NALocs := Σ
′
.NALocs[l := S .v]]

Σ
′′′
= Σ

′′[ALocs := Σ
′′
.ALocs(a).pushback(L)]

(Σ, l = Load(a, mo); ss, T) ⇒ (Σ′′, δ ; ss, T ′′)

[ATOMIC STORE]

(Σ, T) →store (Σ
′
, T) S .t = T .t

S .a = a S .mo = mo S .v = Σ
′
.NALocs(l) pset = WritePriorSet(S)

T ′
= [STORE](Σ′, S, T)

Σ
′′
= Σ

′[M := Σ
′
.M .AddEdges(pset, S)]

Σ
′′′
= Σ

′′[ALocs := Σ
′′
.ALocs(a).pushback(S)]

(Σ, Store(l, a, mo); ss, T) ⇒ (Σ′′′, δ ; ss, T ′)

[ATOMIC RMW]

(Σ, T) →rmw (Σ′, T ′) R .t = T ′
.t R .a = a R .mo = mo

(Σ′, l = Load(a, mo), T ′) → (Σ′′, ss, T ′′)
R .rf = S T ′′′

= [RMW](Σ′′, R, T ′′)
Σ
′′′
= Σ

′′[M := Σ
′′
.M .AddRMWEdge(GetNode(R .rf), GetNode(R))]

Σ
′′′′
= Σ

′′′[ALocs := Σ
′′′
.ALocs(a).pushback(R)]

(Σ, RMW(a, mo, F); ss, T) ⇒
(Σ′′′′, l = F (l);R .v = Σ

′′′′
.NALocs(l); Store(l, a, mo); δ ; ss, T ′′′)

[ATOMIC FENCE]

F .t = T .t F .mo = mo
T ′
= [FENCE](Σ, F , T) Σ

′
= Σ[FenceInfo := Σ.FenceInfo(t).pushback(F)]

(Σ, Fence(mo); ss, T) ⇒ (Σ′, δ ; ss, T ′)

Figure 9: Semantics for atomic statements

1: procedure BuildMayReadFrom(L)
2: ret := ∅
3: if L.mo == seq_cst then
4: S := last_sc_store(L.a, L)
5: end if
6: for all threads t do
7: stores := stores(t, L.a)

8: base := {X ∈ stores | ¬(X
hb
→ L) ∨ (X

hb
→ L ∧ (�Y ∈ stores . X

sb
→ Y

hb
→

L))}
9: if L.mo == seq_cst ∧ S , null then

10: base := base \ {X ∈ stores | X
sc
→ S ∨ X

hb
→ S }

11: end if
12: ret := ret ∪ base
13: end for
14: if L is rmw then
15: ret := {X ∈ ret | no rmw has read from X }
16: end if
17: return ret
18: end procedure

Figure 10: Pseudocode for computingmay-read-from sets

with the constraint that C11Tester must retain the ability to gen-
erate all possible executions and (2) an aggressive mode that can
potentially reduce the set of executions that C11Tester can produce.

Conservative Mode. The key idea behind the conservative mode
is to compute a set of older stores that can no longer be read by any
thread and thus can be safely removed from the execution graph.
The basic idea is to compute the latest action At for each thread t
such that for the last action Lt ′ in every other thread t ′, we have

At
hb
→ Lt ′ . If action S is a store that either happens before At or

is At , then any new loads from the same memory location must
either read from S or some store that is modification ordered after S .

1: procedureWritePriorSet(S)
2: priorset := ∅; FS := last_sc_fence(S .t); is_sc_store := (S .mo == seq_cst)
3: if is_sc_store then
4: add last_sc_store(S .a, S) to priorset
5: end if
6: for all threads t do
7: Ft := last_sc_fence(t)

8: Fb := last({F ∈ sc_fences(t) |FS , null ∧ F
sc
→ FS })

9: S1 := last({X ∈ stores(t, S .a) | is_sc_store ∧ Ft , null ∧ X
sb
→ Ft })

10: S2 := last({X ∈ sc_stores(t, S .a) | FS , null ∧ X
sc
→ FS })

11: S3 := last({X ∈ stores(t, S .a) | Fb , null ∧ X
sb
→ Fb })

12: S4 := last({X ∈ load_stores(t, S .a) | X
hb
→ S })

13: add get_write (last({S1, S2, S3, S4 })) to priorset
14: end for
15: return priorset
16: end procedure

1: procedure ReadPriorSet(L, S)
2: priorset := ∅; FL := last_sc_fence(L.t); is_sc_load := (L.mo == seq_cst)
3: for all threads t do
4: Ft := last_sc_fence(t)

5: Fb := last({F ∈ sc_fences(t) | FL , null ∧ F
sc
→ FL })

6: S1 := last({X ∈ stores(t, L.a) | is_sc_load ∧ Ft , null ∧ X
sb
→ Ft })

7: S2 := last({X ∈ sc_stores(t, L.a) | FL , null ∧ X
sc
→ FL })

8: S3 := last({X ∈ stores(t, L.a) | Fb , null ∧ X
sb
→ Fb })

9: S4 := last({X ∈ load_stores(t, L.a) | X
hb
→ L })

10: A := get_write(last({S1, S2, S3, S4 }))
11: if A , S then
12: add A to priorset
13: end if
14: end for
15: for each e in priorset do
16: if e is reachable from S in mo-graph then
17: return (∅, false)
18: end if
19: end for
20: return (priorset, true)
21: end procedure

Figure 11: Pseudocode for computing priorsets for atomic

stores and loads

Thus any store Sold that is modification ordered before the store S
can no longer be read from by any thread and can be safely pruned.

C11Tester efficiently computes a clock vector CVmin to identify
such actions At for each thread by using the intersection operator,
∩, to combine the clock vectors of all running threads. We define
the intersection operator ∩ as follows:

CV1 ∩CV2 ≜ λt .min(CV1(t),CV2(t)).

C11Tester then searches for stores that happen before these
operations. It then uses themo-graph to identify old stores to prune.
Finally, it prunes these stores and any loads that read from them.

Aggressive Mode. If a thread fails to synchronize with other
threads, this can prevent C11Tester from freeing much of the execu-
tion graph or execution trace as such a thread can potentially read
from older stores in the execution trace and thus prevent freeing
those stores. In the aggressive mode, the user provides a window
of the trace that C11Tester attempts to keep in the graph. Simply
deleting all memory operations before that window is not sound
as newer (with respect to the trace) memory operations may be
modification ordered before older memory operations. Thus remov-
ing older memory operations could cause C11Tester to erroneously
allow loads to read from stores they should not.

637

C11Tester: A Race Detector for C/C++ Atomics ASPLOS ’21, April 19–23, 2021, Virtual, USA

For a store S outside of this window, C11Tester attempts to
remove all stores modification ordered before S . Such stores can
in some cases be inside of the window that C11Tester attempts to
preserve, but they must also be removed. C11Tester then removes
any loads that read from the removed stores.

Fences. Release fences that happen before actions whose se-
quence numbers correspond to components ofCVmin are not neces-
sary to keep since every running thread has already synchronized
with a later point in the respective thread’s execution. Thus such
release fences can be safely removed.

After an acquire fence is executed, its effect is summarized in
the clock vector of subsequent actions in the same thread. Thus
acquire fences can be safely removed.

Sequentially consistent fences that happen before CVmin are no
longer necessary since the happens-before relation will enforce the
same orderings. Thus, such sequentially consistent fences can be
safely removed.

6.2 Race Detection

C11Tester uses a FastTrack [24]-like approach to race detectionwith
the per-thread happens-before clock vectors from the operational
semantics. It uses the standard C/C++ definition of races. Section
7.2 of our technical report [40] discusses this in more detail.

6.3 Scheduling

There are two general techniques for controlling the schedule for
executing threads. The first technique is to map application threads
to kernel threads and then use synchronization constructs to control
which thread takes a step. The second technique is to simulate
application threads with user threads or fibers that are all mapped to
one kernel thread.While there is a proposal for user-space control of
thread scheduling that provides very low latency context switches,
unfortunately it still has not been implemented in the mainline
Linux kernel [53] after six years.

We implemented a microbenchmark on x86 to measure the con-
text switch costs for several implementations of these two tech-
niques. Our microbenchmark starts two threads or fibers and mea-
sures the time to switch between these threads. The experiment
results are available in our technical report [40].

For the kernel threads, we implemented four approaches to con-
text switches. The first approach uses standard pthread condition
variables and was generally the slowest approach. The second ap-
proach uses Linux futexes and is a little faster. The next two ap-
proaches use spinning to wait. Simply spinning is very fast if every
thread has its own core. As soon as two threads have to share a core,
this approach becomes 10,000× slower than the other approaches
because it has to wait for a scheduling epoch to occur to switch
contexts. We also implemented a version that adds a yield call. This
hurts performance if both threads run on their own core, but sig-
nificantly helps performance if threads share a core. But in general,
spinning is problematic as idle threads keep cores busy.

For the fiber-based approaches, we used both swapcontext and
setjmp to implement fibers. Swapcontext is significantly slower
than setjmp because it makes a system call to update the signal
mask. An issue with these approaches is that neither call updates

the register that points to thread local storage. Updating this register
requires a system call, and this slows down both fiber approaches.

For practical implementation strategies, the fiber-based approach
is faster than kernel threads. Thus, C11Tester uses fibers imple-
mented via swapcontext to simulate application threads.

6.4 Thread Context Borrowing

Amajor challenge with implementing fibers is supporting thread lo-
cal storage. The specification for thread local storage on x86-64 [20]
is complicated and leaves many important details implementation-
defined and these details vary across different versions of the stan-
dard library. Generating a correct thread local storage region for
each thread is a significant effort as it requires continually updating
C11Tester code to support the current set of library implementation
strategies. This is complicated by the fact that creating the thread
local storage may involve calling initializers and freeing the thread
local storage may involve calling destructors.

Instead, C11Tester implements a technique for borrowing the
thread context including the thread local storage from a kernel
thread. The idea is that for each fiber C11Tester creates a real kernel
thread and the fiber borrows the kernel thread’s entire context
including its thread local storage.

C11Tester implements thread context borrowing by first creating
and locking a mutex to protect the thread context and then creating
a new kernel thread to serve as a lending thread that lends its con-
text to C11Tester. The lending thread then creates a fiber context
and switches to the fiber context. The fiber context then transfers
the lending thread’s context along with its thread local storage to
the C11Tester. Finally, the fiber context grabs the context mutex
to wait for the C11Tester to return its context. Once the applica-
tion thread is finished, C11Tester returns the thread context to the
lending thread by releasing the context mutex. The lending thread
then switches back to its original context, frees its fiber context,
and then exits. Migrating thread local storage on x86 requires a
system call to change the fs register. C11Tester implements thread
context borrowing for x86, but the basic idea should work for any
architecture.

6.5 Repeated Execution

C11Tester supports repeatedly executing the same benchmark to
find hard-to-trigger bugs. It can be desirable for testing algorithms
to maintain state between executions to attempt to explore different
program behaviors across different executions. C11Tester maintains
its internal state across executions of the application under test and
resets the application’s state between executions.

C11Tester uses fork-based snapshots to restore the application
to its initial state. C11Tester uses the mmap library call to map a
shared memory region to store its internal state. The data in this
shared memory region persists across different executions. This
state allows C11Tester to report data races only once as opposed to
reporting the same race on each execution. It also allows for the
creation of smart plugins that explore different behaviors across
different executions.

638

ASPLOS ’21, April 19–23, 2021, Virtual, USA Weiyu Luo and Brian Demsky

7 EVALUATION

We compare C11Tester with both tsan11rec, a race detector that
supports controlled execution [38] and tsan11 [37], a race detector
that relies on the operating system scheduler to control the sched-
uling of threads. We ran our experiments on an Ubuntu Linux 18.04
LTS machine with a 6 core Intel Core i7-8700K CPU and 64GB RAM.
We first evaluated the above tools on buggy implementations of
seqlock and reader-writer lock to check whether all three tools can
detect the injected bugs. Then we evaluated the three tools on both
a set of five applications that make extensive use of C/C++ atomics
and the data structure benchmarks used to evaluate CDSChecker
previously [44].

The way these three tools support multi-threading differs signif-
icantly. C11Tester sequentializes thread executions and only allows
one thread to execute at a single time, tsan11 allowsmultiple threads
to execute in parallel, while tsan11rec falls in betweenÐit sequen-
tializes visible operations (such as atomics, thread operations, and
synchronization operations) and runs invisible operations in paral-
lel. The closest tool to compare C11Tester with is tsan11rec because
both C11Tester and tsan11rec support controlled scheduling, while
results for tsan11 are also presented for completeness. Although
both tsan11 and tsan11rec execute all or some operations in parallel,
we present a best effort comparison in the following.

7.1 Benchmarks with Injected Bugs

We have injected bugs into two commonly used data structures and
verified that both tsan11 and tsan11rec miss these bugs due to the
restrictions of their memory models and that the buggy executions
contained cycles in hb ∪ rf ∪mo ∪ sc.

Seqlock. We took the seqlock implementation from Figure 5 of
Hans Boehm’s MSPC 12 paper [12], made the writer correctly use
release atomics for the data field stores, and injected a bug by
weakening atomics that initially increment the counter to relaxed
memory ordering.

Reader-Writer Lock. We also implemented a broken reader-writer
lock where the write-lock operation incorrectly uses relaxed atom-
ics. The test case uses the read-lock to protect reads from atomic
variables and the write-lock to protect writes to atomic variables.

C11Tester was able to detect the injected bugs in the broken
seqlock and reader-writer lock with bug detection rates of 28.8% and
55.3%, respectively, in 1,000 runs. However, tsan11 and tsan11rec
failed to detect the bugs in 10,000 runs.

7.2 Real-World Applications

Ideally, we would evaluate the tools against real world applications
that make extensive use of C/C++ atomics. However, to our knowl-
edge, no such standard benchmark suite exists so far. Sowe gathered
our benchmarks through searching for benchmarks evaluated in
previous work as well as concurrent programs on GitHub.

The five large applications that we have gathered include:
GDAX [7], an in-memory copy of the order book of the GDAX
cryptocurrency exchange; Iris [57], a low-latency C++ logging li-
brary; Mabain [19], a key-value store library; Silo [51, 52], a multi-
core in-memory storage engine; and the Firefox JavaScript engine

release 50.0.1.3 To make our results as reproducible as possible, we
tested the JavaScript engine using the offline version of JSBench
v2013.1. [48] 4

As the three tools supported multi-threading in different ways,
to make a fair comparison, we ran each experiment on application
benchmarks in both the all-core configuration, where all hardware
cores could be utilized, and the single-core configuration, where the
tools were restricted to running on a single CPU using the Linux
command taskset. As it is always trivial to parallelize testing by
running several copies of a tool in parallel, the rationale behind the
single-core experiment is to compare the total CPU time used to
execute a benchmark or the equivalent throughput under different
tools. However, to understand the performance benefits of paral-
lelism for the other tools, we also ran experiments in the all-core
configuration. The performance of C11Tester does not vary much
in two configurations, because C11Tester only schedules one thread
to run at a time.

Table 1 summarizes the average and relative standard deviation
(in parentheses) of execution time or throughput for each of the five
benchmarks in the single-core and all-core configurations. Table 1
reports wall-clock time for Iris and Mabain. The throughput of
Silo is the aggregate throughput (agg_throughput) reported by
Silo, and the unit is ops/sec, i.e., the number of database operations
performed per second. The throughput of GDAX is the number of
iterations which the entire data set is iterated over in 120s. The
time and relative standard deviation reported for JSBench are the
statistics reported by the python script in JSBench over 10 runs.
For the other four benchmarks, the average and relative standard
deviation of the time and throughput are calculated over 10 runs.

C11Tester is slower than tsan11 in all benchmarks except Silo in
the single-core configuration. C11Tester is faster than tsan11rec in
all benchmarks except JSBench in the all-core configuration.

Figure 12 summarizes speedups compared to tsan11 on the single-
core configuration for each tool under both configurations, which
are derived from data in Table 1. Tsan11 on the single-core configu-
ration is set as the baseline and is omitted from Figure 12.

Based on the results in Figure 12, we further calculated the geo-
metric mean of the speedup over the five benchmarks for each
tool under both configurations. According to the geometric means,
C11Tester is 14.9× and 11.1× faster than tsan11rec in the single-core
configuration and all-core configuration, respectively. C11Tester is
1.6× and 3.1× slower than tsan11 in the single-core configuration
and all-core configuration, respectively.

Silo. Silo [51, 52] is an in-memory database that is designed for
performance and scalability for modern multicore machines. The
test driver we used is dbtest.cc. We ran the driver for 30 seconds
each run with option "-t 5", i.e., 5 threads in parallel.

In the first part of the experiment, Silo was compiled with in-
variant checking turned on. C11Tester found executions in which
invariants were violated. We found that it was because Silo used
volatiles with gcc intrinsic atomics to implement a spinlock and
assumed stronger behaviors from volatiles than C11Tester’s de-
fault handling of volatiles as relaxed atomics. The bug disappeared
when we handled volatile loads and stores as load-acquire and

3https://ftp.mozilla.org/pub/firefox/releases/50.0.1/source/
4https://plg.uwaterloo.ca/~dynjs/jsbench/

639

C11Tester: A Race Detector for C/C++ Atomics ASPLOS ’21, April 19–23, 2021, Virtual, USA

Table 1: Performance results for application benchmarks in the single-core and all-core configurations. The results are aver-

aged over 10 runs. Relative standard deviation is reported in parentheses. Larger throughputs are better for throughput-based

measurements, smaller times are better for time-based measurements.

Single-core Configuration All-core Configuration
Test C11Tester tsan11rec tsan11 C11Tester tsan11rec tsan11 Measurement

Silo 15267 (0.45%) 436 (2.52%) 5496 (4.54%) 15297 (1.17%) 438.3 (0.59%) 46688 (1.68%) Throughput (ops/sec)
GDAX 2953 (1.80%) 69.3 (0.97%) 15700 (0.12%) 2946 (1.64%) 49.4 (1.04%) 53362 (11.4%) Throughput (# of iterations)
Mabain 5.77 (0.25%) 593.4 (0.98%) 3.513 (1.15%) 5.69 (0.04%) 441.6 (0.69%) 7.00 (0.22%) Time (in s)
Iris 8.95 (1.46%) 31.31 (0.89%) 4.873 (1.64%) 8.86 (0.22%) 17.20 (1.05%) 2.725 (4.07%) Time (in s)
JSBench 1835 (0.26%) 2522 (1.41%) 867.8 (0.21%) 1836 (0.35%) 970.7 (0.68%) 781.9 (0.61%) Time (in ms)

Table 2: Performance results for data structure benchmarks. The time column gives the time taken to execute the test case

once, averaged over 500 runs. The rate column gives the percentage of executions in which the data race is detected among

500 runs.

Test C11Tester tsan11rec tsan11
Time rate Time rate Time rate

barrier 4ms 76.6% 19ms 36.4% 12ms 0.0 %
chase-lev-deque 2ms 94.6% 7ms 0.0 % 3ms 0.0 %
dekker-fences 2ms 21.6% 10ms 41.4% 5ms 53.2 %
linuxrwlocks 2ms 86.2% 10ms 53.4% 5ms 1.6 %
mcs-lock 3ms 89.4% 11ms 71.4% 14ms 0.8 %
mpmc-queue 4ms 59.4% 10ms 58.2% 5ms 0.4 %
ms-queue 4ms 100.0% 136ms 100.0% 9ms 100.0%
Average 75.4% 51.5% 22.3%

store-release atomics. Volatile variables were commonly used to
implement atomic memory accesses before C/C++11. However, this
usage of volatile is technically incorrect, because the C++ standard
provides no guarantee when volatiles are mixed with atomics, and
weaker behaviors for volatiles can be exhibited by ARM processors.

We ran both tsan11rec and tsan11 on Silo for 100 runs with 30s
each run. Tsan11rec was not able to reproduce the weak behaviors
that C11Tester discovered, while tsan11 could reproduce the weak
behaviors 35% of the time. Tsan11rec and tsan11 both found racy
accesses on volatile variables that were used to implement a spin
lock. C11Tester did not report an error message for the volatile
races because C11Tester intentionally elides race warnings for races
involving volatiles and atomic accesses or races involving volatiles
and volatiles because volatiles are in practice still commonly used
to implement atomics.

When measuring performance for Silo, we turned off invari-
ant checking. We measured performances in terms of aggregate
throughput reported by Silo. C11Tester is faster than tsan11 in
the single-core configuration, because reporting data races caused
significant overhead for tsan11 in the case of Silo.

Mabain. Mabain is a lightweight key-value store li-
brary [19]. Mabain contains a few test drivers that insert
key-value pairs concurrently into the Mabain systemÐwe used
mb_multi_thread_insert_test.cpp. All tools discovered an
application bug that caused assertions in the test driver to fail,
although tsan11 required us to set a different number of threads
than our standard test harness to detect it. For performance
measurements, we turned off assertions in the test driver. All tools
found data races in Mabain.

The application bug is as follows. The test driver has one asyn-
chronous writer and a few workers. The workers and the writer
communicate via a shared queue protected by a lock. The writer
consumes jobs (insertion into the database) in the queue and insert
values into the Mabain database, while the workers submit jobs

into the queue. When workers finish submitting all jobs into the
queue, the writer is stopped. However, there is no check to make
sure that all jobs in the queue have been cleared before the writer
is stopped. Thus, after the writer is stopped, some values may not
be found in the Mabain database, causing assertion failures.

The time reported in Table 1 was measured for inserting 100,000
key-value pairs into the Mabain system.

GDAX. GDAX [7] implements an in-memory copy of the order
book for the GDAX cryptocurrency exchange using a lock-free
skip list with garbage collection from the libcds library [32]. The
original GDAX fetches data from a server, but we have recorded
input data from a previous run and modified GDAX to read local
data. All tools reported data races in GDAX.

In our experiment, GDAX was run for 120s each time, during
which 5 threads kept iterating over the data set. We counted the
number of iterations the data set was iterated over by each tool in
each run and computed statistics based on 10 runs.

Iris. Iris [57] is a low latency asynchronous C++ logging library
that buffers data using lock-free circular queues. The test driver
we used to measure performance was test_lfringbuffer.cpp,
in which there is one producer and one consumer. To make the
test driver finish in a timely manner, we reduced the number of
ITERATIONS to 1 million in the test driver. All tools reported data
races in Iris.

Firefox JavaScript Engine. We compiled the Firefox JavaScript
engine release 50.0.1 following the instructions for building the
JavaScript shell with Thread Sanitizer given by the developers of
Firefox. 5 We tested the JavaScript engine with the JSBench suite,
which contains 25 JavaScript benchmarks, sampled from real-world
applications. The Python script of JSBench first calculated the arith-
metic mean of all 25 benchmarks over 10 runs, and then took the
geometric means of the 25 arithmetic mean, as reported in Table 1.

5https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Thread_Sanitizer

640

C11Tester: A Race Detector for C/C++ Atomics ASPLOS ’21, April 19–23, 2021, Virtual, USA

behaviors allowed by the Java memory model [17]. Prescient mem-
ory however requires that the entire application be amenable to
deterministic record and replay and uses a single profiling run to
generate future values limiting the executions it can discover.

Concutest-JUnit extends JUnit with checks for concurrent unit
tests and support for perturbing schedules using randomized
waits [49]. Concurrit is a DSL designed to help reproduce con-
currency bugs [21]. Developers write code in a DSL to help guide
Concurrit to a bug reproducing schedule. CalFuzzer more uniformly
samples non-equivalent thread interleavings by using techniques in-
spired by partial order reduction [50]. These approaches are largely
orthogonal to C11Tester.

Race Detectors. Several tools have been designed to detect data
races in code that uses standard lock-based concurrency control [22ś
24, 28, 39]. These tools typically verify that all accesses to shared
data are protected by a locking discipline. They miss higher-level se-
mantic races that occur when the locks allow unexpected orderings
that produce incorrect results.

9 CORRECTNESS OFMO-GRAPH

To prove the correctness ofmo-graphs, we first prove three Lemmas
and then prove Theorem 1. Lemma 1 and Lemma 2 characterize
some important properties of mo-graph clock vectors. Lemma 3
proves one direction in Theorem 1. Mo-graph clock vectors are
simply referred to as clock vectors in the following context.

Lemma 1. Let C0
mo
→ C1

mo
→ ...

mo
→ Cn be a path in a modification

order graph G, such that CVC0
≤ ... ≤ CVCn . Then if any new edge

E is added to G using procedures in Figure 4, it holds that

CV ′
C0

≤ ... ≤ CV ′
Cn

(9.1)

for the updated clock vectors. We define CV ′
Ci

:= CVCi if the values

of CVCi are not actually updated.

Proof. To simplify notation, we define CVi := CVCi for all i ∈
{0...,n}. Let’s first consider the case where no rmw edge is added,
i.e., the AddRMWEdge procedure is not called.

By the definition of the union operator, each slot in clock vectors
is monotonically increasing when theMerge procedure is called.
By the structure of procedure AddEdge’s algorithm, a node X is
added to Q if and only if this node’s clock vector is updated by the
Merge procedure.

Let’s assume that adding the new edge E updates any of
CV0, ...,CVn . Otherwise, it is trivial. Let i be the smallest integer
in {0, ...,n} such that CVi is updated. Then CV ′

k
= CVk for all

k ∈ I := {0, ..., i − 1}, and we have

CV ′
0 ≤ ... ≤ CV ′

i . (9.2)

If i = 0, then we take I = �. There are two cases.
Case 1: Suppose CV ′

i ≤ CVj for some j ∈ {i + 1, ...,n}, let j0 be
the smallest such integer. ThenCV ′

k
= CVk for all k ∈ {j0, ...,n}, as

nodes {Cj0 , ...,Cn } will not be added to Q in the AddEdge proce-
dure, and it holds trivially that

CV ′
j0
≤ ... ≤ CV ′

n . (9.3)

By line 14 to line 24 in the AddEdge procedure, we have

CV ′
k
= CVk ∪CV ′

k−1, (9.4)

for all k ∈ S := {i + 1, ..., j0 − 1}. If j0 happens to be i + 1, then take
S = �. And we have for all k ∈ S , CV ′

k−1
≤ CV ′

k
. Then combining

with inequality (9.2), we have

CV ′
0 ≤ ... ≤ CVi ≤ ... ≤ CV ′

j0−1
.

Together with inequality (9.3), we only need to show thatCV ′
j0−1

≤

CV ′
j0
to complete the proof.

If j0 = i + 1, then we are done, because by assumption CV ′
i ≤

CVj0 = CV
′
j0
. If j0 > i + 1, thenCV ′

i ≤ CVj0 andCVi+1 ≤ CVj0 imply

that CV ′
i+1 = CVi+1 ∪CV ′

i ≤ CVj0 = CV
′
j0
. Based on equation (9.4),

we can deduce in a similar way that CV ′
i+2 ≤ ... ≤ CV ′

j0−1
≤ CV ′

j0
.

Case 2: Suppose CVi ≰ CVj for all j ∈ {i + 1, ...,n}. Then by
line 14 to line 24 in the AddEdge procedure, all nodes {Ci , ...,Cn }
are added toQ in the AddEdge procedure, andCV ′

k
= CVk ∪CV

′
k−1

for all k ∈ S := {i + 1, ...,n}. This recursive formula guarantees that
for all k ∈ S , CV ′

k−1
≤ CV ′

k
. Therefore, combining with inequality

(9.2), we have CV ′
0 ≤ ... ≤ CV ′

n .

Now suppose the newly added edge E is a rmw edge. If E : X
rmw
−−−→

Ci where i ∈ {0, ...,n} and X is some node not in path P , then the
path P remains unchanged and AddEdge(X ,Ci) is called. Then the

above proof shows that inequality (9.1) holds. If E : Ci
rmw
−−−→ X ,

then Ci
mo
→ Ci+1 is migrated to X

mo
→ Ci+1 by line 3 to line 7 in the

AddRMWEdge procedure, and Ci
mo
→ X is added.

If X is not in path P , then path P becomes

C0
mo
→ ...

mo
→ Ci

mo
→ X

mo
→ Ci+1

mo
→ ...

mo
→ Cn .

Since AddEdge(Ci ,X) is called, the same proof in the case without
rmw edges applies. If X is in path P , then X can only be Ci+1 and
the path P remains unchanged. Otherwise, a cycle is created and
this execution is invalid. In any case, the same proof applies. □

Let ®x = (x1,x2, ...,xn). We define the projection functionUi that
extracts the ith position of ®x asUi (®x) = xi , where we assume i ≤ n.

Lemma 2. Let A be a store with sequence number sA performed by
thread i in an acyclic modification order graph G. Then Ui (CVA) =
Ui (⊥CVA) = sA throughout each execution that terminates.

Proof. We will prove by contradiction. Let S = {A1,A2, ...}
be the sequence of stores performed by thread i with sequence
numbers {s1, s2, ...}, respectively. Suppose that there is a point of
time in a terminating execution such that the first store An in
the sequence with Ui (CVAn) > sn appears. Sequence numbers
are strictly increasing and by the Merge procedure, Ui (CVAn) ∈
{sn+1, sn+2, ..., }. LetUi (CVAn) = sN for some N > n.

ForUi (CVAn) to increase to sN from sn , CVAn must be merged
with the clock vector of some node X (i.e., some store X) in G such
thatUi (CVX) = sN . Such X is modification ordered before An .

If X is performed by thread i , then X has to be the store AN ,
because Ui (CVAj

) is unique for all stores Aj in the sequence S

other than An . Then ⊥CVX ≥⊥CVAn
. By the definition of initial

values of clock vectors and sequence numbers, X happens after and
is modification ordered after An . However, X is also modification
ordered beforeAn , and we have a cycle inG . This is a contradiction.

If X is not performed by thread i , then Ui (⊥CVX) = 0. For
Ui (CVX) to be sN , X must be modification ordered after by some
store Y in G such that Ui (CVY) = sN . If Y is done by thread i , then

642

ASPLOS ’21, April 19–23, 2021, Virtual, USA Weiyu Luo and Brian Demsky

the same argument in the last paragraph leads to a contradiction;
otherwise, by repeating the same argument as in this paragraph
finitely many times (there are only a finite number of stores in such
a terminating execution), we would eventually deduce that X is
modification ordered after some store by thread i . Hence, we would
have a cycle in G, a contradiction.

□

Lemma 3. LetA and B be two nodes that write to the same location
in an acyclic modification order graph G. If B is reachable from A in
G, then CVA ≤ CVB .

Proof. Suppose that B is reachable from A inG . Let A
mo
→ C1

mo
→

...
mo
→ Cn−1

mo
→ B be the shortest path P from A to B in graph G. To

simplify notation, X
mo
→ Y is abbreviated as X → Y in the following.

As the AddRMWEdge procedure calls the AddEdge procedure to
create an mo edge, we can assume that all the mo edges in P are
created by directly calling AddEdge.

Base Case 1: Suppose the path P has length 1, i.e., A imme-
diately precedes B. Then when the edge A → B was formed by
calling AddEdge(A,B), CVB was merged with CVA in line 14 of the
AddEdge procedure. In other words, CVB = CVB ∪CVA ≥ CVA .

Base Case 2: Suppose the path P has length 2, i.e.,A → C1 → B.
There are two cases:

(a) IfA → C1 was formed first, thenCVA ≤ CVC1
. WhenC1 → B

was formed, CVB was merged withCVC1
andCVC1

≤ CVB . Accord-
ing to Lemma 1, adding the edge C1 → B or any edge not in path
P (if any such edges were formed before C1 → B was formed)
to G would not break the inequality CVA ≤ CVC1

. It follows that
CVA ≤ CVC1

≤ CVB .
(b) If C1 → B was formed first, then CVC1

≤ CVB . Based on
Lemma 1, this inequality remains true when A → C1 was formed.
Therefore CVA ≤ CVC1

≤ CVB .
Inductive Step: Suppose that B being reachable from A implies

that CVA ≤ CVB for all paths with length k or less, for some k > 2.
We want to prove that the same holds for paths with length k + 1.
Let P be a path from A to B with length k + 1,

P : A = C0 → C1 → ...→ Ck → Ck+1 = B.

We denote A as C0 and B as Ck+1 in the following.
Let E : Ci → Ci+1 be the last edge formed in path P , where i ∈

{0, ...,k}. Then before edge E was formed, the inductive hypothesis
implies thatCVC0

≤ ... ≤ CVCi andCVCi+1 ≤ ... ≤ CVCk+1 , because
both C0 → ...→ Ci and Ci+1 → ...→ Ck+1 have length k or less.
Lemma 1 guarantees that

CVC0
≤ ... ≤ CVCi ,

CVCi+1 ≤ ... ≤ CVCk+1

remain true if any edge not in path P was added to G as well as
the moment when E was formed. Therefore when the edge E was
formed, we have CVCi ≤ CVCi+1 , and

CVA = CVC0
≤ ... ≤ CVCk+1 = CVB .

□

Theorem 1. Let A and B be two nodes that write to the same
location in an acyclic modification order graph G for a terminating
execution. Then CVA ≤ CVB iff B is reachable from A in G.

Proof. Lemma 3 proves the backward direction, so we only need
to prove the forward direction. Suppose thatCVA ≤ CVB . Let’s first
consider the situation where the graph G contain no rmw edges.

Case 1: A and B are two stores performed by the same thread
with thread id i . Then it is either A happens before B or B happens
before A. If A happens before B, then A precedes B in the modifi-
cation order because A and B are performed by the same thread.
Hence B is reachable from A in G. We want to show that the other
case is impossible.

If B happens before A and hence precedes A in the modification
order, then A is reachable from B. By Lemma 3, A being reachable
from B implies that CVB ≤ CVA. Since CVA ≤ CVB by assump-
tion, we deduce that CVA = CVB . This is impossible according to
Lemma 2, because each store has a unique sequence number and
Ui (CVA) = sA , sB = Ui (CVB), implying that CVA , CVB .

Case 2: A and B are two stores done by different threads. Sup-
pose that A is performed by thread i . Let CVA = (..., sA, ...) and
CVB = (..., tb , ...) where both sA and tb are in the ith position. By
assumption, we have 0 < sA ≤ tb .

Since B is not performed by thread i , we have Ui (⊥CVB) = 0.
We can apply the same argument similar to the second, third and
fourth paragraphs in the proof of Lemma 2 and deduce that B is
modification ordered afterA or some store sequenced afterA. Since
modification order is consistent with sequenced-before relation, if
follows that B is reachable from A in graph G.

Now, consider the case where rmw edges are present. Adding a
rmw edge from a node S to a node R first transfers to R all outgoing
mo edges coming from S and then adds a normal mo edge from S

to R. So, any updates in CVS are propagated to all nodes that are
reachable from S . Therefore, the above argument still applies. □

10 CONCLUSION

We have presented C11Tester, which implements a novel approach
for efficiently testing C/C++11 programs. C11Tester supports a
larger fragment of the C/C++ memory model than prior work while
still delivering competitive performance to prior systems. C11Tester
uses a constraint-based approach to the modification order that
allows testing tools to make decisions about the modification or-
der implicitly when they select the store that a load reads from.
C11Tester includes a data race detector that can identify races.
C11Tester supports controlled scheduling for C/C++11 at lower
overhead than prior systems. Our evaluation shows that C11Tester
can find bugs in all of our benchmark applications including bugs
that were missed by other tools.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their thorough and insight-
ful comments. We are especially grateful to our shepherd Caroline
Trippel for her feedback. We also thank Derek Yeh for his work
on performance improvement for the C11Tester tool. This work is
supported by the National Science Foundation grants CNS-1703598,
OAC-1740210, and CCF-2006948.

643

C11Tester: A Race Detector for C/C++ Atomics ASPLOS ’21, April 19–23, 2021, Virtual, USA

A ARTIFACT APPENDIX

A.1 Abstract

The artifact contains a c11tester-vagrant directory and a
tsan11-tsan11rec-docker directory. The c11tester-vagrant

directory is a vagrant repository that compiles source codes for
C11Tester, LLVM, the companion compiler pass, and benchmarks
for C11Tester. The tsan11-tsan11rec-docker directory contains
benchmarks and a docker image with prebuilt LLVMs for tsan11
and tsan11rec. We had attempted to install tsan11 and tsan11rec
in the same VM as C11Tester. However, tsan11rec became signifi-
cantly slower and some benchmarks were even unrunnable under
tsan11rec. So we had to build tsan11, tsan11rec, and benchmarks
under the same environment as provided by their artifact documen-
tations.

A.2 Artifact Check-List (Meta-Information)
• Algorithm: Testing/race detection algorithm for C/C++ memory
model.

• Program: C11Tester.
• Compilation: Clang 8.0.0 for C11Tester, Clang 3.9.0 for tsan11,
and Clang 4.0.0 for tsan11rec.

• Transformations: An LLVM pass.
• Binary: Modified LLVMs for tsan11 and tsan11rec are included in
the docker image.

• Run-time environment: Ubuntu 18.04 for C11Tester and Ubuntu
14.04 for tsan11 and tsan11rec.

• Hardware: An Intel x86 machine with 6 cores.
• Execution: Automated via shell scripts.
• Metrics: Execution time, data race detection rate, assertion detec-
tion rate.

• Output: Numerical results printed in console.
• Experiments: GDAX, Iris, Silo, Mabain, the Javascript Engine of
Firefox, a broken seqlock, a broken reader-writer lock, and some
data structure benchmarks. We measure both the performance (exe-
cution time or throughput) and the ability to detect data races and
assertions.

• Howmuch disk space required (approximately)?: 10G for the
VM that contains C11Tester and 15G for the docker container that
contains tsan11 and tsan11rec.

• How much time is needed to prepare workflow (approxi-

mately)?: About 40 minutes for compilation.
• Howmuch time is needed to complete experiments (approx-

imately)?: 2 hours for C11Tester, 3 hours for tsan11, and 6.5 hours
for tsan11rec.

• Publicly available?: Yes.
• Code licenses (if publicly available)?: GNU GPL v2.
• Data licenses (if publicly available)?: Varies depending on
benchmark.

• Workflow framework used?: Vagrant & scripts are provided to
automate the measurements.

• Archived (provide DOI)?: https://doi.org/10.1145/3410278

A.3 Description
A.3.1 How to Access. The artifact is available at: https://doi.org/10.1145/
3410278

A.3.2 Hardware Dependencies. An Intel x86 CPUs with at least 6 cores and
at least 40G RAM is required to reproduce results. The VM for C11Tester
requires 40G RAM because one particular benchmark (GDAX) consumes

36G RAM under C11Tester. Experiments additionally require CPUs to have
Intel VT-d support.

A.3.3 Software Dependencies. C++ Compiler, CMake, Clang, LLVM Com-
piler Infrastructure, Docker, Vagrant, and VirtualBox.

A.4 Installation
First download the artifact and extract it. The extracted file contains two
folders: c11tester-vagrant and tsan11-tsan11rec-docker.
$ cd c11tester-artifact

To build C11Tester and benchmarks using Vagrant:
$ cd c11tester-vagrant

$ vagrant up

The tsan11-tsan11rec-docker folder contains a docker image named
tsan11-tsan11rec-image.tar.gz with prebuilt LLVMs for tsan11 and
tsan11rec. For instructions on creating docker containers from the docker
image, please see the README.md file in the tsan11-tsan11rec-docker
repository.

To find the IP address of the container (assuming the container is named
tsan11-tsan11rec-container):
$ docker inspect tsan11-tsan11rec-container

Then use scp to copy the scripts and src directories in the
tsan11-tsan11rec-docker folder to the container (replace 172.17.0.2 by
the container’s IP address):
$ scp -i insecure_key -r scripts root@172.17.0.2:/data

$ scp -i insecure_key -r src root@172.17.0.2:/data

Logging into the container as root (replace 172.17.0.2 by the container’s
IP address):
$ ssh -i insecure_key root@172.17.0.2

After logging into the docker container, to build benchmarks for tsan11
and tsan11rec:
./data/scripts/setup.sh

A.5 Experiment Workflow
Scripts are provided to run experiments. To run experiments for C11Tester,
logging into the Vagrant VM:
$ cd ~/c11tester-benchmarks

$./do_test_all.sh

To run experiments for tsan11, logging into the docker container:
cd /data/tsan11-benchmarks

./do_test_all.sh

To run experiments for tsan11rec, inside the same docker container:
cd /data/tsan11rec-benchmarks

./do_test_all.sh

A.6 Evaluation and Expected Results
Once the workflow is completed, the data race detection rates and assertion
rates for data structure benchmarks are printed in the console.

For application benchmarks, the result for each benchmark is writ-
ten to log files (such gdax.log and silo.log, etc). These log files
are stored in all-core/ and single-core/ directories under the
benchmark directories c11tester-benchmarks, tsan11-benchmarks, and
tsan11rec-benchmarks.

644

ASPLOS ’21, April 19–23, 2021, Virtual, USA Weiyu Luo and Brian Demsky

The do_test_all.sh script also executes the python script
calculator.py that prints out result summaries for all of five ap-
plication benchmarks executed under both the all-core and single-core
configurations. Each benchmark directory has this python script. If
you wish to regenerate result summaries from log files using the
python script, you can first go to one benchmark directory (we will use
c11tester-benchmarks as an example here):
$ cd ~/c11tester-benchmarks

and type:
$ python calculator.py all-core

or
$ python calculator.py single-core

to print out result summaries for all of five application benchmarks
executed under the all-core of single-core configuration.

A.7 Experiment Customization
In the benchmark directory, the two scripts

• tsan11-missingbug/test.sh

• cdschecker_modified_benchmarks/test.sh

can be customized to run different times by changing the shell variable
TOTAL_RUN.

The run.sh and app_assertion_test.sh scripts in the benchmark di-
rectory accept an optional argument that specifies how many times the test
programs are run. The default is 10 times. Besides that, you can also decide
which test program are run by modifying the TESTS variable in these two
scripts.

A.8 Notes
Tsan11 may occasionally get stuck when testing Silo in the single-core
configuration. If this happens, we suggest to rerun Silo individually by
customizing the tsan11-benchmarks/run.sh script.

REFERENCES
[1] 2020. N4849: Working Draft, Standard for ProgrammingLanguage C++. http:

//www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/n4849.pdf.
[2] Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. 2014.

Optimal Dynamic Partial Order Reduction. In Proceedings of the 2014 Symposium
on Principles of Programming Languages. 373ś384. http://doi.acm.org/10.1145/
2535838.2535845

[3] Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt Jonsson,
Carl Leonardsson, and Konstantinos Sagonas. 2015. Stateless model checking
for TSO and PSO. In Proceedings of the 21st International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. 353ś367. http:
//link.springer.com/chapter/10.1007%2F978-3-662-46681-0_28

[4] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, Magnus Lång,
Tuan Phong Ngo, and Konstantinos Sagonas. 2019. Optimal Stateless Model
Checking for Reads-from Equivalence Under Sequential Consistency. Proceedings
of ACM on Programming Languages 3, OOPSLA, Article 150 (Oct. 2019), 29 pages.
https://doi.org/10.1145/3360576

[5] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Tuan Phong Ngo.
2018. Optimal Stateless Model Checking Under the Release-acquire Semantics.
Proceedings of the ACM on Programming Languages 2, OOPSLA, Article 135 (Oct.
2018), 29 pages. https://doi.org/10.1145/3276505

[6] Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats:
Modelling, Simulation, Testing, and Data Mining for Weak Memory. ACM
Transactions on Programming Languages and Systems 36, 2 (July 2014), 7:1ś7:74.
http://doi.acm.org/10.1145/2627752

[7] F. Eugene Aumson. 2018. gdax-orderbook-hpp. https://github.com/feuGeneA/
gdax-orderbook-hpp.

[8] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011.
Mathematizing C++ Concurrency. In Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages.

[9] Pete Becker. 2011. ISO/IEC 14882:2011, Information Technology ś Programming
Languages ś C++.

[10] Jasmin Christian Blanchette, Tjark Weber, Mark Batty, Scott Owens, and Susmit
Sarkar. 2011. Nitpicking C++ Concurrency. In Proceedings of the 13th International
ACM SIGPLAN Symposium on Principles and Practices of Declarative Programming.
113ś124. http://doi.acm.org/10.1145/2003476.2003493

[11] Hans Boehm and Brian Demsky. 2014. Outlawing Ghosts: Avoiding Out-of-
Thin-Air Results. In Proceedings of ACM SIGPLAN Workshop on Memory Systems
Performance and Correctness. 7:1ś7:6. http://doi.acm.org/10.1145/2618128.2618134

[12] Hans-J. Boehm. 2012. Can Seqlocks Get Along with Programming Language
Memory Models?. In Proceedings of the 2012 ACM SIGPLAN Workshop on Memory
Systems Performance and Correctness. 12ś20. http://doi.acm.org/10.1145/2247684.
2247688

[13] Hans-J. Boehm. 2013. N3786: Prohibiting łout of thin airž results in C++14.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3786.htm.

[14] Hans-J. Boehm, Mark Batty, Brian Demsky, Olivier Giroux, Paul McKenney, Peter
Sewell, Francesco Zappa Nardelli, et al. 2013. N3710: Specifying the absence of
łout of thin airž results (LWG2265). http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2013/n3710.html.

[15] Hans-J. Boehm, Olivier Giroux, and Viktor Vafeiades. 2018. P0982R0: Weaken
Release Sequences. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/
p0982r0.html.

[16] Sebastian Burckhardt, Rajeev Alur, and Milo M. K. Martin. 2007. CheckFence:
Checking Consistency of Concurrent Data Types on Relaxed Memory Models.
In Proceedings of the 2007 Conference on Programming Language Design and
Implementation. 12ś21. http://doi.acm.org/10.1145/1250734.1250737

[17] Man Cao, Jake Roemer, Aritra Sengupta, and Michael D. Bond. 2016. Prescient
Memory: Exposing Weak Memory Model Behavior by Looking into the Future.
In Proceedings of the 2016 ACM SIGPLAN International Symposium on Memory
Management. 99ś110. http://doi.acm.org/10.1145/2926697.2926700

[18] Brian Demsky and Patrick Lam. 2015. SATCheck: SAT-Directed Stateless Model
Checking for SC and TSO. In Proceedings of the 2015 Conference on Object-Oriented
Programming, Systems, Languages, and Applications. 20ś36. http://doi.acm.org/
10.1145/2814270.2814297

[19] Changxue Deng. 2018. Mabain: A fast and light-weighted key-value store library.
https://github.com/chxdeng/mabain.

[20] Ulrich Drepper. 2013. ELF Handling For Thread-Local Storage. https://akkadia.
org/drepper/tls.pdf.

[21] Tayfun Elmas, Jacob Burnim, George Necula, and Koushik Sen. 2013. CON-
CURRIT: A Domain Specific Language for Reproducing Concurrency Bugs. In
Proceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation (Seattle, Washington, USA) (PLDI ’13). 153ś164.
https://doi.org/10.1145/2491956.2462162

[22] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. 2007. Goldilocks: A Race
and Transaction-Aware Java Runtime. In Proceedings of the 2007 ACM SIG-
PLAN Conference on Programming Language Design and Implementation. 245ś255.
http://doi.acm.org/10.1145/1250734.1250762

[23] Dawson Engler and KenAshcraft. 2003. RacerX: Effective, Static Detection of Race
Conditions and Deadlocks. In Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles. 237ś252. http://doi.acm.org/10.1145/945445.945468

[24] Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: Efficient and Precise
Dynamic Race Detection. In Proceedings of the 2009 ACM SIGPLAN Conference
on Programming Language Design and Implementation. 121ś133. http://doi.acm.
org/10.1145/1542476.1542490

[25] Cormac Flanagan and Stephen N. Freund. 2010. Adversarial memory for de-
tecting destructive races. In Proceedings of the 2010 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. 244ś254. http:
//doi.acm.org/10.1145/1806596.1806625

[26] Cormac Flanagan and Patrice Godefroid. 2005. Dynamic Partial-Order Reduction
for Model Checking Software. In Proceedings of the 2005 Symposium on Principles
of Programming Languages. 110ś121. http://doi.acm.org/10.1145/1040305.1040315

[27] Jeff Huang. 2015. Stateless Model Checking Concurrent Programs with Maximal
Causality Reduction. In Proceedings of the 2015 Conference on Programming Lan-
guage Design and Implementation. 165ś174. http://doi.acm.org/10.1145/2813885.
2737975

[28] Jeff Huang, Patrick Meredith, and Grigore Rosu. 2014. Maximal Sound Predictive
Race Detection with Control Flow Abstraction. In Proceedings of the 35th annual
ACM SIGPLAN conference on Programming Language Design and Implementation
(PLDI’14). ACM, 337ś348. https://doi.org/10.1145/2594291.2594315

[29] Shiyou Huang and Jeff Huang. 2016. Maximal Causality Reduction for TSO
and PSO. In Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications. 447ś461.
http://doi.acm.org/10.1145/2983990.2984025

[30] Bengt Jonsson. 2009. State-space exploration for concurrent algorithms under
weak memory orderings. SIGARCH Computer Architecture News 36, 5 (June 2009),
65ś71. http://doi.acm.org/10.1145/1556444.1556453

[31] ISO JTC. 2011. ISO/IEC 9899:2011, Information Technology ś Programming
Languages ś C.

[32] Max Khiszinsky. 2017. https://github.com/khizmax/libcds.
[33] Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor Vafeiadis.

2017. Effective Stateless Model Checking for C/C++ Concurrency. Proceedings
of the ACM on Programming Languages 2, POPL, Article 17 (December 2017),
32 pages. https://doi.org/10.1145/3158105

645

C11Tester: A Race Detector for C/C++ Atomics ASPLOS ’21, April 19–23, 2021, Virtual, USA

[34] Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019. Model Check-
ing for Weakly Consistent Libraries. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Phoenix, AZ,
USA) (PLDI 2019). 96ś110. https://doi.org/10.1145/3314221.3314609

[35] Michael Kuperstein, Martin Vechev, and Eran Yahav. 2010. Automatic inference of
memory fences. In Proceedings of the Conference on Formal Methods in Computer-
Aided Design. 111ś120. http://dl.acm.org/citation.cfm?id=1998496.1998518

[36] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM 21, 7 (July 1978), 558ś565.

[37] Christopher Lidbury and Alastair F. Donaldson. 2017. Dynamic Race Detection
for C++11. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages (Paris, France) (POPL 2017). ACM, New York, NY, USA,
443ś457. https://doi.org/10.1145/3009837.3009857

[38] Christopher Lidbury and Alastair F. Donaldson. 2019. Sparse Record and Replay
with Controlled Scheduling. In Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI 2019). 576ś593.
https://doi.org/10.1145/3314221.3314635

[39] Brandon Lucia, Luis Ceze, Karin Strauss, Shaz Qadeer, and Hans Boehm. 2010.
Conflict Exceptions: Simplifying Concurrent Language Semantics with Precise
Hardware Exceptions for Data-Races. In Proceedings of the 37th Annual Inter-
national Symposium on Computer Architecture. 210ś221. http://doi.acm.org/10.
1145/1815961.1815987

[40] Weiyu Luo and Brian Demsky. 2021. C11Tester: A Race Detector for C/C++
Atomics. Technical Report. (2021). arXiv:2102.07901 [cs.PL]

[41] Nuno Machado, Brandon Lucia, and Luís Rodrigues. 2015. Concurrency Debug-
ging with Differential Schedule Projections. SIGPLAN Not. 50, 6 (June 2015),
586ś595. https://doi.org/10.1145/2813885.2737973

[42] Nuno Machado, Brandon Lucia, and Luís Rodrigues. 2016. Production-Guided
Concurrency Debugging. SIGPLAN Not. 51, 8, Article 29 (Feb. 2016), 12 pages.
https://doi.org/10.1145/3016078.2851149

[43] Pablo Montesinos, Luis Ceze, and Josep Torrellas. 2008. DeLorean: Record-
ing and Deterministically Replaying Shared-Memory Multiprocessor Execu-
tion Efficiently. SIGARCH Comput. Archit. News 36, 3 (June 2008), 289ś300.
https://doi.org/10.1145/1394608.1382146

[44] Brian Norris and Brian Demsky. 2013. CDSChecker: Checking Concurrent Data
Structures Written with C/C++ Atomics. In Proceedings of the 2013 Conference
on Object-Oriented Programming, Systems, Languages, and Applications. 131ś150.
http://doi.acm.org/10.1145/2544173.2509514

[45] Brian Norris and Brian Demsky. 2016. A Practical Approach for Model Checking
C/C++11 Code. ACM Transactions on Programming Languages and Systems 38, 3

(May 2016), 10:1ś10:51.
[46] Peizhao Ou and Brian Demsky. 2018. Towards Understanding the Costs of

Avoiding Out-of-thin-air Results. Proceedings of the ACM on Programming Lan-
guages Volume 2 Issue OOPSLA 2, OOPSLA (Oct. 2018), 136:1ś136:29. https:
//doi.org/10.1145/3276506

[47] Seungjoon Park and David L. Dill. 1999. An Executable Specification and Verifier
for Relaxed Memory Order. IEEE Trans. Comput. 48, 2 (February 1999), 227ś235.
http://dx.doi.org/10.1109/12.752664

[48] Gregor Richards, Andreas Gal, Brendan Eich, and Jan Vitek. 2011. Automated Con-
struction of JavaScript Benchmarks. In Proceedings of the 2011 ACM International
Conference on Object Oriented Programming Systems Languages and Applications
(Portland, Oregon, USA) (OOPSLA âĂŹ11). Association for ComputingMachinery,
New York, NY, USA, 677âĂŞ694. https://doi.org/10.1145/2048066.2048119

[49] Mathias Guenter Ricken. 2011. A Framework for Testing Concurrent Pro-
grams. Ph.D. Dissertation. Houston, TX, USA. Advisor(s) Cartwright, Robert.
AAI3463989.

[50] Koushik Sen. 2007. Effective Random Testing of Concurrent Programs. In
Proceedings of the Twenty-second IEEE/ACM International Conference on Auto-
mated Software Engineering (Atlanta, Georgia, USA) (ASE ’07). 323ś332. https:
//doi.org/10.1145/1321631.1321679

[51] Stephen Tu, Wenting Zheng, and Eddie Kohler. 2015. Silo: Multicore in-memory
storage engine. https://github.com/stephentu/silo.

[52] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
2013. Speedy Transactions in Multicore In-memory Databases. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles (SOSP ’13).
18ś32. https://doi.org/10.1145/2517349.2522713

[53] Paul Turner. 2013. User-level threads...with threads. https://blog.
linuxplumbersconf.org/2013/ocw/system/presentations/1653/original/LPC%20-
%20User%20Threading.pdf#4.

[54] Viktor Vafeiadis and Chinmay Narayan. 2013. Relaxed separation logic: A pro-
gram logic for C11 concurrency. In Proceedings of the 2013 ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming, Systems, Languages, and
Applications. 867ś884.

[55] Dmitriy Vyukov. 2011. Relacy Race Detector. http://relacy.sourceforge.net/.
[56] Naling Zhang, Markus Kusano, and Chao Wang. 2015. Dynamic Partial Order

Reduction for Relaxed Memory Models. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 250ś259. http:
//doi.acm.org/10.1145/2737924.2737956

[57] Xinjing Zhou. 2015. Iris: A low latency asynchronous C++ logging library.
https://github.com/zxjcarrot/iris.

646

	Abstract
	1 Introduction
	1.1 Comparison to Prior Work on Testing C/C++11
	1.2 Contributions

	2 C/C++ Memory Model Fragment
	3 C11Tester Overview
	4 Memory Model Support
	4.1 Modification Order Graph
	4.2 Clock Vectors
	4.3 Eliminating Rollback in Mo-graph

	5 Operational Model
	5.1 Happens-Before Clock Vectors
	5.2 Formal Operational Model
	5.3 Operational Semantics
	5.4 Equivalent to Axiomatic Model

	6 Implementation
	6.1 Pruning the Execution Graph
	6.2 Race Detection
	6.3 Scheduling
	6.4 Thread Context Borrowing
	6.5 Repeated Execution

	7 Evaluation
	7.1 Benchmarks with Injected Bugs
	7.2 Real-World Applications
	7.3 Data Structure Benchmarks

	8 Related Work
	9 Correctness of Mo-graph
	10 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-List (Meta-Information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Results
	A.7 Experiment Customization
	A.8 Notes

	References

