
1

Supervised Learning and Canonical Decomposition
of Multivariate Functions
Nikos Kargas, Nicholas D. Sidiropoulos, Fellow, IEEE

Abstract—Learning a function from input and output data
pairs is one of the most fundamental tasks in machine learning.
In this work, we propose a generalization of the Canonical
Polyadic Decomposition (CPD) from tensors to multivariate
functions of continuous variables, and show how it can be
applied to supervised learning. We approximate a compactly
supported multivariate function using a tensor of truncated
multidimensional Fourier series coefficients and propose a hidden
tensor factorization formulation for learning a low-rank CPD
model of the Fourier coefficients tensor. In contrast to prior
work, our method is quite general as it can model any compactly
supported multivariate function that can be well-approximated
by a finite multidimensional Fourier series, and under certain
conditions it guarantees that the unknown function is uniquely
characterized by the given input-output data. Furthermore, our
model naturally allows stochastic gradient updates allowing
it to scale to larger datasets. We develop two optimization
algorithms and demonstrate promising results on synthetic and
real multivariate regression tasks.

Index Terms—Canonical polyadic decomposition, supervised
learning, Fourier series expansion.

I. INTRODUCTION

Currently, the most popular methods for approximating
nonlinear functions rely on neural networks. Despite their huge
success, it is not well understood yet why they work so well,
are difficult to interpret, and do not offer insights regarding the
structure of the function being approximated. The universal
approximation theorem [1] states that a feedforward neural
network with a linear output layer and at least one hidden
layer can approximate any continuous function on a compact
set, provided that the number of hidden units is large enough.
However, it is not guaranteed that the neural network will
actually learn the true function; not only because training is
a hard non-convex problem and the optimization algorithm
may fail, but more importantly because the neural network
may learn a different function which is also able to reproduce
the training examples (i.e., one that agrees with the sought
one over the training set). Two different networks that have
fitted the training data equally well, may differ substantially
on samples that have not been observed [2]. This is because
the sought function may not be identifiable from the given
input-output data. This motivates the study of models that
possess identifiability guarantees, and learn unique mappings
between the input-output data pairs. In this work, we take

Manuscript received July 21, 2020; revised December 1, 2020; accepted
January 12, 2021. This work was supported by NSF IIS-1704074.

N. Kargas is with the Department of ECE, University of Minnesota, Min-
neapolis, MN 55455; N. D. Sidiropoulos is with the Department of ECE, Uni-
vercity of Virginia, Charlottesville, VA 22904 (e-mail: karga005@umn.edu;
nikos@virginia.edu).

a step towards this direction and propose a novel method for
learning a nonlinear function based on the Canonical Polyadic
Decomposition (CPD), also known as Parallel Factor Analysis
(PARAFAC) [3] of N -way tensors.

Tensor decomposition has been successfully applied in
many fields such as machine learning, data mining, signal
processing and statistics [4]–[6]. The CPD has been success-
ful in modeling large multi-dimensional and multi-relational
data [7], [8], understanding large knowledge bases [9], [10]
and building recommender system models [11]. Tensor de-
composition has also been used in deep learning, for speed-
ing up and compressing neural network models [12], [13].
CPD is a powerful tool, that can help us build identifiable
and parsimonious models which can approximate complex
nonlinear functions [14]. Learning parsimonious models leads
to significant reduction in the number of parameters, and
identifiability of the parameters can offer important insights
regarding the inner structure of a function.

In this paper, we tackle the problem of learning a nonlinear
function, using a low-rank CPD model of a finite multidimen-
sional Fourier series expansion of the unknown multivariate
function. If a function is compactly supported and sufficiently
smooth, then it can be well approximated using a finite sum
of orthogonal complex exponentials. Finite orthogonal series
expansion has been mainly used in univariate or bivariate
regression tasks where an expansion based on cosine, wavelet
or polynomial functions is used to predict a single output vari-
able [15]. However, when dealing with multivariate functions
with N � 2, the approach quickly becomes infeasible from
the computation and memory point of view, since the number
of series coefficients scales as O

(
KN

)
, where K is the

number of coefficients associated with each variable and N is
the number of variables. To remedy this problem, we propose
to decompose the N -way Fourier series tensor using CPD.
This yields a generalized canonical polyadic decomposition
(GCPD) representation of compactly supported multivariate
functions. We present two methods for fitting the resulting
model and evaluate our approach on several regression tasks.
Our approach has the following important properties:
• Expressiveness: Our model is quite general, as it can

model any compactly supported multivariate function that
can be well approximated by a finite multidimensional
Fourier series. The basis functions imply smoothness of
the function so that the model is able to generalize, while
the tensor rank and the number of Fourier coefficients
are used to control the expressiveness of the model.
Specifically, the rank and number of coefficients let us
control the approximation error, which is bounded for a

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2021.3055000

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

broad class of functions.
• Efficiency: The complexity of predicting the output re-

sponse given an input vector scales linearly with the di-
mension of the input, which makes our approach suitable
for large-scale problems.

• Identifiability: Under certain conditions, our approach
guarantees that the unknown function is uniquely char-
acterized by the given input-output data i.e., there is
a single set of parameters that describes the nonlinear
mapping between the input-output pairs. Identifiability of
the parameters is necessary for model interpretability.

The rest of the paper is organized as follows. We first
present related prior work and highlight the main differences
between our proposed work and existing work in Section II.
In Section III, we review necessary background on tensor
decomposition and Fourier series. We present our model
and two methods for learning it in Section IV. Finally, we
provide experimental results on synthetic and real datasets in
Section V, and we conclude in Section VI.

II. RELATED WORK

Polynomial Networks (PN) and Factorization Machines
(FM) are related approaches which rely on low-rank param-
eterization of the coefficient tensor of multivariate polynomi-
als [16], [17]. The core model of the two approaches is the
Polynomial Regression (PR) model. Polynomial regression is
usually limited to low-order interactions since the computa-
tional complexity scales as O

(
Nd
)
, where d is the degree of

the polynomial, rendering it impractical even for small number
of variables. Both PN and FM use low-rank CPD models to
break the curse of dimensionality. Their main difference is that
FM uses a subset of all possible feature interactions, which
makes the optimization problem multi-convex, and allows for
a simple coordinate descent algorithm to be applied. FM
has been extended to higher degree polynomials (d > 3)
and has been very successful in sparse high-dimensional data
regression tasks [18]. Other tensor decomposition models,
such as the Tensor Train (TT) [19] and the Tucker model [20],
have also been used for parameterizing polynomial func-
tions [21], [22]. In [23] a tensor-based method was proposed
that computes a decoupled representation of a vector-valued
polynomial function. The proposed method builds a tensor
that contains as frontal slabs the Jacobian matrix of the
function, evaluated at a set of points and extracts a simpler
function representation based on univariate polynomials. Its
identifiability properties have been studied in [24].

Tensor decomposition has also been used for learning
more general functions. For example, a TT decomposition
approach has been proposed for learning a multidimensional
Fourier series expansion of a function [25]. The authors have
proposed a simple block coordinate descent algorithm with
linear complexity on the input dimension. TT decomposition
depends on the ordering of the input variables and has been
shown to possess structure similar to that of a recurrent neural
network [26], which is not desirable for non-sequential data.
In addition, unlike the CPD, the model parameters of the
TT decomposition are not identifiable, i.e., there may exist

multiple sets of model parameters that can synthesize the same
tensor.

Recently, a single high-order CPD model was used for
modeling nonlinear functions with finite-alphabet inputs [14].
The problem was formulated as a tensor completion problem
with smooth latent factors. The proposed approach cannot be
directly applied to continuous inputs without a discretization
step, which results in performance degradation when the dis-
cretization is coarse, or high complexity and poor generaliza-
tion when the discretization is very fine. Generalizations of the
CPD to multivariate functions of continuous inputs have been
proposed in [27], [28]. The authors assume a low-rank model
of the multivariate function where each component belongs to
a reproducing kernel Hilbert space (RKHS). However, it is not
clear what class of functions this model spans, and whether
this is a valid assumption for a general multivariate function.

In this work, we propose a novel approach based on a gener-
alized canonical polyadic decomposition suitable for modeling
compactly supported multivariate functions with continuous
inputs. Our model is very general since it only requires that
the multivariate function has compact support and continuous
derivatives. A drawback of the models in [27], [28] is that
the complexity of a prediction depends on the number of
training samples, which can be very high. For example, in
the ALS algorithm developed in [28], the authors propose
solving a kernel regression problem for each component at
each ALS iteration, which is computationally very expensive.
On the other hand, our approach is simple and computationally
efficient – a parsimonious model that naturally lends itself to
stochastic gradient updates, as we will see.

Last but not least, our use of multidimensional Fourier series
to convert a continuous multivariate function approximation
problem to finite multidimensional tensor decomposition is
pleasing, being near and dear to our signal processing fun-
damentals. Note that unlike conventional uses of multivariate
Fourier series, which are typically limited to 2-D or 3-D
signals, our approach entails N -D Fourier series with N that
can easily run in the order of 30 − 100, and much higher
in modern applications. Our judicious use of CPD modeling
enables us to tackle problems in this regime with relative ease.

III. BACKGROUND

In this section, we review necessary background on tensor
decomposition and Fourier series that will prove useful for
developing our method.

A. Notation

We use the symbols x, X, X for vectors, matrices and ten-
sors respectively. We use the notation x[n], X[:, n], X [:, :, n]
to refer to a particular element of a vector, a column of a
matrix and a slab of a tensor. Symbols ◦, ⊗, ~, � denote
the outer, Kronecker, Hadamard and Khatri-Rao (column-wise
Kronecker) product respectively. The vectorization operator is
denoted as vec(X), vec(X) for a matrix and tensor respec-
tively. The set of integers S = {1, . . . ,M} is denoted as [M].

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2021.3055000

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

B. Canonical Polyadic Decomposition

A real-valued tensor is a multi-dimensional array
X ∈ RK1×···×KN , where N is the order of the tensor
and Kn is the size of its nth mode. Canonical Polyadic
Decomposition (CPD) expresses an N -way tensor X as a
sum of rank-1 components, i.e.,

X = [[A1,A2, . . . ,AN]]R =
R∑
r=1

a1r ◦ a2r ◦ · · · ◦ aNr , (1)

where An = [an1 , · · · ,anR] ∈ RKn×R. Elementwise, we have

X [k1, . . . , kN] =
R∑
r=1

N∏
n=1

An[kn, r]. (2)

The rank R is the minimum number of components needed to
synthesize X . The CPD model is universal, i.e., every tensor
admits a CPD of finite rank and CPD is unique under mild
conditions – see [4] for a recent overview of results in this
area.

There are several ways of expressing the CPD model.
For example, the CPD of a tensor can be expressed in
a matricized form using the mode-n matrix unfolding of
X = [[A1, . . . ,AN]]R

X (n) = (�i6=nAi)A
T
n , (3)

where

(�i6=nAi) = AN � · · · �An+1 �An−1 � · · · �A1.

The CPD can also be written in a vectorized form as

vec(X) =
(
�Ni=1Ai

)
1. (4)

The n-mode product of a tensor X ∈ RK1×···×KN with a
matrix V ∈ RKn×J is denoted by X ×n V, and is given by

(X ×n V)[k1, . . . , kn−1, j, kn+1, . . . , kN]

=

Kn∑
kn=1

X [k1, . . . , kN]V[kn, j],

i.e., each n-th mode fiber is multiplied by the columns of V

(X ×n V)(n) = X (n)V. (5)

If X = [[A1, . . . ,AN]]R, then by combining (3) and (5) we
have

X ×n V = [[A1, . . . ,V
TAn, . . . ,AN]]R. (6)

C. Fourier Series

Fourier series can be used to represent a large class of
periodic functions. A function f : R → R is periodic with
period T , if f(x+ T) = f(x) ∀x ∈ R. One class of periodic
functions that can be represented using a Fourier series, is
square integrable functions f ∈ L2 i.e., functions that have
finite energy over a single period

‖f‖2L2
:=

∫
T

|f(x)|2dx <∞. (7)

Fig. 1. Fourier series representation of a function of three variables. Tensor
X ∈ RK×K×K contains the Fourier coefficients and vectors v1,v2,v3 the
values of the (cosine) basis functions for the input x ∈ R3. The output is
computed using the n-mode product.

Theorem 1: (e.g., see [29][p. 10]) Every periodic function
f ∈ L2 has a unique representation of the form

f(x) =
∑
k∈Z

αke
jkω0x, αk =

1

T

∫
T

f(x)e−jkω0xdx,

where ω0 := 2π
T and (SKf) :=

∑K
k=−K αke

jkω0x converges
in L2 to f , i.e.,

lim
K→∞

‖SKf − f‖L2
= 0.

Fourier series can also be used for modeling non-periodic
functions with compact support. Consider a univariate function
f(·) supported on the interval [0, 1]. Note that restricting
the domain of the function on the interval [0, 1] can be
done without loss of generality for any compactly supported
function, by appropriate shift and scaling of the input. The
function f(·) can be extended to [−1, 1] as an even or odd
function, by defining f(x) = f(−x) or f(x) = −f(−x) for
x < 0. The new function can then be made periodic with
period T = 2, by demanding that f(x) = f(x+2) = f(x−2).
This is called the even (odd) periodic extension of f(·) and it
can be shown that it is expressed by a Fourier cosine or sine
series respectively. Using the even periodic extension we have

f(x) = α0 +
∞∑
k=1

αk
√
2 cos(kπx), (8)

using orthogonal basis functions φ0(x) = 1 and
φk(x) =

√
2 cos(kπx), k > 0. In this work, we consider

only the cosine extension but different basis functions can be
used and can be easily incorporated in our framework e.g.,
Legendre, Chebyshev polynomials, wavelets 1.

Similar to the univariate case, a multivariate function f :
[0, 1]N → R, can be represented using a tensor-product basis
as

f(x) =
∞∑
k1=0

· · ·
∞∑

kN=0

αk

N∏
n=1

φkn (x[n]) , (9)

1Chebyshev series is related to a Fourier cosine series through a change of
variables.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2021.3055000

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

Fig. 2. Generalization of the CPD to compactly supported multivariate
functions. A compactly supported function f : [0, 1]3 → R is represented
using a sum of R rank-1 components. Each rank-1 component is given by
the product of three univariate functions.

where k = (k1, . . . , kN) ∈ NN is a multi-index . The idea of
a series estimator is to approximate f(·) by a truncated series
with cutoffs K1, . . . ,KN , i.e.,

f(x) =

K1−1∑
k1=0

· · ·
KN−1∑
kN=0

αk

N∏
n=1

φkn (x[n]) . (10)

Note that Equation (10) defines an inner-product between two
tensors. Let us define an N -way tensor X ∈ RK×···×K holding
the Fourier coefficients with X [k1, . . . , kN] = αk and a rank-1
tensor V = [[v1, . . . ,vN]], where vn[kn] = φkn(x[n]). Then,
the inner product between these two tensors is given by

〈X ,V〉 = (vN ⊗ · · · ⊗ v1)
T vec(X)

= X ×1 v1 · · · ×N vN .
(11)

A visualization is shown in Figure 1 for a function of 3
variables.

Theorem 1 can be extended to multi-dimensional Fourier
series as well. However, convergence of the Fourier series does
not automatically imply that a truncated Fourier series will be a
good approximation for f(·). The approximation error between
the function and the truncated series depends on how fast the
Fourier coefficients tend to zero. The smoother the function
is, the faster its Fourier coefficients and the error tend to zero
as it is illustrated by the following theorem.

Theorem 2: [29][p. 164] Let p ∈ N. If the partial derivatives
∂β1

∂x1
· · · ∂

βN

∂xN
f(x) of f(·) exist and are absolutely integrable for

all β1, . . . , βN with
∑N
n=1 βn ≤ p then

lim
‖k‖2→∞

(1 + ‖k‖p2)αk = 0. (12)

In other words, αk decays faster than the sequence 1
1+‖k‖p2

.
Finite orthogonal series expansion is mainly used in univariate
or bivariate regression tasks where one has to estimate the
Fourier coefficients from input-output data pairs.

IV. PROPOSED APPROACH

In this section, we give a detailed description of our ap-
proach. Specifically, we present our model in Section IV-A,
and present two different ways for training the model in
Sections IV-B, IV-C.

A. Generalized Canonical Polyadic Decomposition

Our goal is to learn a high-dimensional compactly sup-
ported function f : [0, 1]N → R from M input-output pairs
{xm, ym}Mm=1

ym = f(xm) + wm, m ∈ [M],

where wm represents noise. The output ym may correspond
to a continuous value we want to estimate (regression) or a
discrete class label (classification). Initially, we assume that
the data points {xm}Mm=1 are uniformly and independently
sampled from the unit hypercube [0, 1]N and wm ∼ N (0, σ2).

We propose using a truncated cosine series expansion with
cutoffs K1 = · · · = KN = K. Orthogonal series approxi-
mation is mainly used when N is small. When dealing with
functions of many variables the approach becomes impractical
even for small K, since the number of parameters grows
exponentially with N . Even if we are able to compute the
series coefficients, the variance of the estimates can be high
when M is small. More complicated estimation procedures
are required in this case involving for example, hard or soft
thresholding of the coefficients [15]. One way of dealing with
these problems is to further restrict the class of functions, using
for example, additive models of univariate functions [15], [30].

Instead, we propose a novel approach based on low-rank
tensor decomposition. Specifically, we propose fitting a low-
rank CPD on the N -way cosine series coefficient tensor. Let
us assume a rank-R CPD model for the N -way coefficient
tensor X ∈ RK×···×K

X [k1, . . . , kN] =
R∑
r=1

N∏
n=1

arn[kn], (13)

where arn ∈ RK . Substituting Equation (13) in Equation (10),
we have

f(x) =
K−1∑
k1=0

· · ·
K−1∑
kN=0

R∑
r=1

N∏
n=1

arn[kn]vn[kn]

=
R∑
r=1

K−1∑
k2,...,kN=1

N∏
n=2

arn[kn]vn[kn]

K−1∑
k1=0

ar1[k1]v1[k1]︸ ︷︷ ︸
fn,r(x[1])

,
(14)

where vn[kn] = φkn(x[n]). We note that Equation (14) can
also be understood using the mode-n multiplication property in
Equation (6). By carrying out the computations in this manner,
the expression for f(·) is greatly simplified to

f(x) =
R∑
r=1

f1,r(x[1]) · · · fN,r(x[N]). (15)

Each univariate function in Equation (15) can be expressed as

fn,r(x[n]) =
K−1∑
kn=0

arn[kn]vn[kn] = vTnA[:, r], (16)

i.e., each component fn,r(·) is a expressed using a truncated
Fourier cosine series. Comparing Equations (2) and (15) we
can see that our model is a generalization of the CPD to
compactly supported multivariate functions. Any compactly

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2021.3055000

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

Algorithm 1 FSA-LR & WFSA-LR
Input: X, y, R, K
// Initialization //
if R ≤ K then
{An}Nn=1 ← CP-GEVD(X)

end if
repeat

// Training the model //
for n = 1 to N do

Solve for An via (20)
end for

until termination criterion is satisfied
// Refinement step //
repeat

for n = 1 to N do
for k = 1 to K do

Solve for An[k, :] via (22)
end for

end for
until termination criterion is satisfied
return {An}Nn=1

supported multivariate function can be modeled using a count-
able tensor of Fourier coefficients. Continuity allows us to
truncate this tensor to a finite one by choosing the number of
Fourier coefficients. The CPD model is universal, i.e, any finite
coefficient tensor X admits a CPD with finite rank, which
implies that any compactly supported multivariate function
that can be expressed (approximated) as a finite multivariate
Fourier series can be modeled (approximated, respectively) as
in Equation (15). The proposed generalized canonical polyadic
decomposition is visualized for a function of three variables
in Figure 2.

Employing this model, we circumvent the curse of dimen-
sionality, as the number of parameters drops from O(KN) to
O(KNR). The output of the model given the input vector x
is given via (15), (16) as

ŷ = (vT1 A1 ~ · · ·~ vTNAN)1 = (~Nn=1v
T
nAn)1. (17)

The complexity of computing the response of a new data
point is O(NKR), which makes our model suitable for high-
dimensional data. The number of coefficients K controls the
desired smoothness of the function and the rank controls the
expressiveness. Next, we propose two different methods for
learning the model.

B. Direct Optimization

Let us denote the training set by X = [x1, . . . ,xM]T ∈
RM×N and y = [y1, . . . , yM]T ∈ RM . Our aim is to compute
a low-rank representation of the Fourier series coefficients.
The Fourier coefficients αk are given by

αk =

∫ 1

0

· · ·
∫ 1

0

f(x)φk(x)dx,

where φk(x) =
∏N
n=1 φkn(x[n]). Assuming that {xm}Mm=1

are uniformly sampled from the unit hypercube, a natural
estimator for each coefficient αk is

X [k1, . . . , kN] = α̂k =
1

M

M∑
m=1

ymφk(xm). (18)

Equation (18) is an unbiased estimator for the coefficients i.e.,

E[α̂k] = E [(f(x) + w)φk(x)] = αk.

Having obtained an estimate for each coefficient, a straight-
forward approach is to approximate X using a low-rank CPD
model by minimizing the squared error

min
{An}Nn=1

‖X − [[A1, . . . ,AN]]R‖2F . (19)

We refer to this approach as Fourier series Approxima-
tion with Low-Rank constraint (FSA-LR). Optimization prob-
lem (19) involves a multilinear form, and the most popular
approach for tackling this kind of problem is via Alternating
Least Squares (ALS) [4]. A nice property of ALS is that it
ensures monotonic decrease of the cost function. Additionally,
convergence to a stationary point can be guaranteed by adding
a proximal regularization term to the cost function [31]. The
key idea of ALS is to cyclically update the variables while
keeping all but one fixed. The updates for each factor matrix
An are given by

An ← argmin
A

‖X (n) − (�i6=nAi)A
T ‖2F . (20)

When the tensor rank is small, CPD can be computed exactly.
For example, if the factor matrices are full column rank,
the CPD can be computed using a Generalized Eigenvalue
Decomposition [3], [32]. In practice, X will never be low-rank
due to noise. Nevertheless, in many practical applications, the
associated tensors can be well-approximated using low-rank
and the output of GEVD provides a good initial estimate.

When M is small, we expect the variance of the coefficient
estimates to be large. Therefore we use a refinement step,
by weighting each coefficient inversely proportional to its
variance. An estimate of the variance can be obtained using
the training set

σ̂2
k1,...,kN =

1

M

M∑
m=1

(X [k1, . . . , kN]− ymφk(xm))
2
.

Let us define the tensorW asW[k1, . . . , kN] = σ̂−1k1,...,kN . We
refine the estimate obtained from (19) by solving

min
{An}Nn=1

‖W ~ (X − [[A1, . . . ,AN]]R)‖2F . (21)

This is a weighted tensor factorization problem. Similarly
as before, we can tackle the weighted tensor decomposition
problem with an ALS algorithm. The optimization problem
can be equivalently written as

min
{An}Nn=1

∥∥∥X̂ (n) −W(n) ~
(
(�i6=nAj)A

T
n

)∥∥∥2
F
.

A simple update rule can be obtained by fixing all except for
a single row of An. The update for each row is given by

An[kn, :]← argmin
an,kn

‖zn,kn −Qn,knan,kn‖
2
F , (22)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2021.3055000

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

(a) True function (b) Observed data points

(c) FSA (d) WFSA-LR

Fig. 3. Toy example on learning a rank-1 bivariate function.

where

zn,kn = X̂ (n)[:, kn],Qn,kn = diag(W(n)[:, kn]) (�i6=nAj) .

After the algorithm has converged, we use the learned factor
matrices {An}Nn=1 to compute the model prediction for a new
data point x according to Equation (17). We refer to this ap-
proach as Weighted Fourier Series Approximation with Low-
Rank constraint (WFSA-LR). The full procedure is shown in
Algorithm 1.

Toy Example: An example to illustrate the effect of the
weighted low-rank decomposition is shown in Figure 3. We
generate M = 100 data points {xm, ym}Mm=1 according to

ym = f1(xm[1])f2(xm[2]) + wm,

which is a product of univariate functions and corresponds to
a rank-1 model. The functions f1(·), f2(·) are defined on the
interval [0, 1] as a mixture of Gaussians

fn(x) = sn1N
(
x;µ1,n, σ

2
1,n

)
+ sn2N

(
x;µ2,n, σ

2
2,n

)
,

where sni,r ∈ {−1, 1}.
The true function is shown in Figure 3(a). Figure 3(b) shows

the output of the function for 100 uniformly sampled data
points, distorted by white Gaussian noise. We use these points
as our training set and compare Fourier Series Approximation
(FSA) learned without assuming low-rank against FSA-LR and
WFSA-LR with rank R = 1. For plain FSA we estimate the
Fourier series coefficients using all the training data points
and Equation (18). For FSA-LR and WFSA-LR we further
decompose the estimated coefficient tensor using a CPD model
of rank-1. We evaluate the learnt functions on unseen data
points using Equation (10). We choose the number of Fourier
coefficients using a validation set (15% of the training set).

Figure 3(c) shows the function learned without assuming a
low-rank solution. WFSA-LR filters the noise and produces
a smoother estimate as shown in Figure 3(d) (where ‘plain’
FSA-LR is not shown to save space). The improvement was
also numerically verified by computing the Mean Squared
Error (MSE) at 300 unseen points. The MSE of the different
methods is 0.067 (FSA), 0.039 (FSA-LR), and 0.027 (WFSA-
LR).

The downside of FSA-LR and WFSA-LR is that every
Fourier coefficient needs to be estimated (but not necessarily
stored, as it can be estimated on-the-fly during computa-
tions). Additionally, in order to have unbiased estimates of
the coefficients, we require that the samples are uniformly
drawn from the unit hypercube, something that we cannot
guarantee in applications. In the following, we bypass both
these restrictions.

C. Hidden Tensor Factorization

A standard approach in supervised learning is to learn a
function by minimizing the empirical risk. In this section we
propose fitting the coefficients directly on the training data by
minimizing the error between the true and predicted response
i.e.,

1

M

M∑
m=1

L(ym − f(xm)) +G(f), (23)

where L(·) is a loss function and G(·) a regularization term. In
this work, we focus on regression tasks and choose the squared
error as our loss function. Let us define matrices Vn ∈ RK×M
as Vn[k,m] = φk (x

m[n]). Recall that each output response
can be viewed as an inner product between two tensors

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2021.3055000

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

Algorithm 2 FSA-HTF (ALS)
Input: X, y, Xval, yval R, K0, K, maxiter
Initialize {An ∈ RK0×F }Nn=1

repeat
for n = 1 to N do

Compute Qn via (25)
Solve for An via (26)

end for
Compute MSEval using Xval, yval

if K0 < K and MSEval has not improved then
for n = 1 to N do

An ←
[
An

0T

]
end for
K0 = K0 + 1

end if
until maxiter is reached or MSEval stops improving
return {An}Nn=1

as in Equation (11). By minimizing the loss function in
Equation (23) we arrive at the following optimization problem

min
{An}Nn=1

1

M

∥∥y − (�Nn=1Vn)
T
(
�Ni=1Ai

)
1
∥∥2
2

+
N∑
n=1

ρ‖An‖2F ,

where we have used the vectorized representation of the tensor
X and ρ is a regularization parameter. We observed that adding
this regularization term enhances the generalization ability of
our method in practice. The problem is conceptually similar
to a linear least squares problem, but with a tensor rank-
constrained solution [33]. Moreover, the measurement matrix
has a very special structure, as each row corresponds to a
rank-1 tensor. We refer to this approach as Fourier Series
Approximation via Hidden Tensor Factorization (FSA-HTF),
because we do not directly observe the full tensor. Instead, we
aim at recovering the CPD model from rank-1 measurements
of the ’hidden’ tensor. Because of the special structure of the
measurement matrix, we can avoid instantiating the tensor and
the Khatri-Rao product. In scalar form we have

min
{An}Nn=1

1

M

M∑
m=1

(
ym −

(
~Nn=1(Vn[:,m]TAn)

)
1
)2

+
N∑
n=1

ρ‖An‖2F .

Similarly as before, we can develop a simple ALS algorithm.
Fixing all variables except for An we have

min
An

1

M

M∑
m=1

(
ym −Vn[:,m]TAnQn[:,m]

)2
+ ρ ‖An‖2F ,

(24)

where Qn ∈ RR×M with

Qn =
(
~i6=n(A

T
i Vi)

)
. (25)

Optimization problem (24) is a least squares problem. Setting
the gradient equal to zero we have the following set of linear
equations

1

M

M∑
m=1

(
Vn[:,m]TAnQn[:,m]

)
Vn[:,m]QT

n [:,m]

+ ρAn =
1

M

M∑
m=1

ymV[:,m]QT [:,m].

(26)

We solve the system of linear equations using conjugate gra-
dient descent [34]. Conjugate gradient is an iterative algorithm
with a complexity of O(KRM) per each iteration.

When the number of samples M is large, we propose
using Stochastic Gradient Descent (SGD). At each step we
update all factors simultaneously by first sampling a batch
F ⊂ {1, . . . ,M} of size |F| and taking a gradient step i.e,

An ← An − αGn, (27)

where α is the stepsize and Gn is the gradient with respect
to the sampled points

Gn =
1

|F|
∑
m∈F

(
Vn[:,m]TAnQn[:,m]

)
Vn[:,m]QT

n [:,m]

+ ρAn −
1

|F|

M∑
m=1

ymV[:,m]QT [:,m].

Each step of SGD has a complexity of O(NKR|F|). For
the termination of both algorithms we compute the MSE on a
validation set and stop if a limit on the number of iterations has
been reached, or the validation MSE has not improved in the
last T iterations. The full procedures are shown in Algorithm 2
and Algorithm 3 respectively.

Initialization: It was empirically observed that random
initialization was not effective in real data experiments for
FSA-HTF. The algorithm exhibits better performance when
starting from a smoother and simpler model. Therefore, when
training FSA-HTF with ALS, we generate factor matrices
An ∈ RK0×F , where K0 is a value smaller than K. If the
current MSE on the validation stops improving, we augment
factors An by adding an extra row. The algorithm is terminated
when no improvement is observed on the validation set and
K0 = K. When training FSA-HTF via SGD, factors An

are initially set to zero except for the first K0 rows. For all
experiments we set K0 = 2.

D. Uniqueness of the proposed model

In this section, we briefly discuss conditions under which
the proposed model is identifiable i.e., there exist unique factor
matrices An that synthesize the tensor X . This is important
because it tells us when it is possible to recover the underlying
nonlinear function, and hence learn the true mapping between
the input and output pairs.

If the function f(·) can be written as a finite multidimen-
sional Fourier series, then under certain rank conditions on the
Fourier series coefficient tensor, the decomposition is unique.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2021.3055000

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

Algorithm 3 FSA-HTF (SGD)
Input: X, y, Xval, yval R, K, |F|
Initialize {An}Nn=1

repeat
Sample |F| data points
for n = 1 to N do

Update An via (27)
end for
Compute MSEval using Xval, yval

until maxiter is reached or MSEval stops improving
return {An}Nn=1

Specifically, given a decomposition of the Fourier coefficient
tensor X = [[A1, . . . ,AN]]R, if

N∑
n=1

kAn ≥ 2R+N − 1,

then the factor matrices are unique up to common permutation
and scaling/counterscaling of their columns [4]. Here, kA
denotes the Kruskal rank of the matrix A, which is equal to
the largest integer such that every subset of kA columns are
linearly independent. For generic An and maximal u such that
K ≥ 2u, it holds that the decomposition of X is almost surely
unique if R ≤ 2(N−1)(u−1) [35]. The upshot is that under
certain rank conditions on the Fourier coefficient tensor, it is
possible to recover a unique representation of the multivariate
function from a finite set of input-output measurements.

Remark: We should mention that the above identifiability
results are derived for tensors under an exact low-rank de-
composition. In practice, the Fourier series coefficient tensor
will not have an exact low-rank decomposition mainly due
to noise and/or limited number of samples. However, prac-
tical experience is that many real-life tensors can be well-
approximated using low ranks and the uniqueness results
often carry even in the approximate case – as we will also
demonstrate in the experimental results section. Even when
the low-rank assumption does not strictly hold, our approach
is a very reasonable “principal component” approximation and
can identify a controllable approximation of the true function.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed approach on
synthetic and real datasets.

A. Synthetic Data: Low-rank GCPD Model

As a first sanity check, we consider a function which
can modeled using a low-rank generalized canonical polyadic
decomposition model similar to Equation (15).

ym =
R∑
r=1

N∏
n=1

fn,r(xm[n]) + wm. (28)

Each function fn,r(·) is defined on the interval [0, 1] as follows

fn,r(x) =

2∑
i=1

sni,rN
(
x;µni,r, σ

n
i,r

2
)
,

where sni,r takes the value +1 or −1 with equal probability,
µn1,r ∼ U(0.1, 0.4), µn2,r ∼ U(0.6, 0.9) and σni,r ∼ U(0.2, 0.5).
We set N = 5, R = 3 and generate 1000 data points that are
uniformly sampled from the [0, 1] interval. We generate the
corresponding outputs using Equation (28). We use 85% of
the data as the training set and the remaining as the test set.
We compare 6 different approaches; FSA (without low-rank
assumption), FSA-LR, WFSA-LR, FSA-HTF, a feedforward
neural network with sigmoid activation function and a feed-
forward neural network with ReLU activation function. The
parameters of the different models, i.e., number of coefficients,
rank, number of layers and number of nodes for each layer
are tuned using 5-fold cross-validation. We repeat the above
procedure 10 times and report the average results.

We first compare the performance of the methods while
varying the Signal-to-Noise Ratio (SNR). Figure 4(a) shows
the MSE on the test set as a function of the SNR. As
expected, the performance of WFSA-LR is slightly better than
FSA-LR. Both perform better than plain FSA but after a
certain point they reach a plateau, which is due to the small
number of samples and the high variance of the estimator.
FSA-HTF performs the best, as it generalizes better and is
able to learn the true function. We observe that the choice
of the nonlinear function is crucial as it highly affects the
performance of the neural network. Specifically, the neural
network with the sigmoid activation function performs the
worst and fails to generalize to the test set. On the other hand,
the neural network with the ReLU activation function performs
reasonably well and its performance increases as we decrease
the noise variance.

Next, we compare the methods while keeping the SNR
fixed and increasing the number of training samples. We set
SNR = 5 and fix the number of test samples to be 500.
We vary the number of training samples from 500 to 15000.
Figure 4(b) shows the MSE on the test set as a function of
the total number of samples. Both FSA-HTF and the neural
network with the ReLu activation function are able to learn the
function using approximately 1000 samples. The performance
of all methods improves as we increase the number of samples
and we observe that using 15000 samples, all approaches
except for FSA, perform similarly.

B. Synthetic Data: 1-Layer Neural Network
Here we consider a function which is not necessarily low-

rank. We generate 1000 data points according to a neural net-
work with 1 hidden layer with 20 nodes and ReLU activation
function. We set the input dimension N = 5. Specifically, the
input-output data pairs are generated according to

y = wT
2 ReLU(W1x), (29)

where W1 ∈ R20×5,w2 ∈ R20. We use 85% of the data as the
training set and the remaining as the test set. The parameters of
the different models, i.e., number of coefficients, rank, number
of layers and number of nodes for each layer are tuned using
5-fold cross-validation. For the two neural networks, we make
sure that the true parameters are also examined during the
cross-validation. We perform 10 Monte Carlo simulations and
report the average results.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2021.3055000

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
SNR

100

101

M
SE

FSA
FSA-LR
WFSA-LR
NNET (Sigmoid)
NNET (ReLU)
FSA-HTF

(a) True model: GCPD, M = 1000.

2000 4000 6000 8000 10000 12000 14000 16000
samples

8

10

12

14

16

M
SE

FSA
FSA-LR
WFSA-LR
NNET (Sigmoid)
NNET (ReLU)
FSA-HTF

(b) True model: GCPD, SNR=5 dB.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
SNR

100

101

M
SE

FSA
FSA-LR
WFSA-LR
NNET (Sigmoid)
NNET (ReLU)
FSA-HTF

(c) True model: NN, M = 1000.

2000 4000 6000 8000 10000 12000 14000 16000
samples

5.0

5.5

6.0

6.5

7.0

7.5

M
SE

FSA
FSA-LR
WFSA-LR
NNET (Sigmoid)
NNET (ReLU)
FSA-HTF

(d) True model: NN, SNR=5 dB.

Fig. 4. MSE on datasets generated using a mixture of products of univariate functions (top row) and a 1-Layer neural network using ReLU (bottom row).

We compare the performance of the methods while varying
the SNR. Figure 4(c) shows the MSE on the test set as
a function of the SNR. As before, we observe that FSA,
FSA-LR and WFSA-LR quickly reach a plateau. The neural
network which uses the correct activation function and agrees
with the model that generated the data, performs the best.
Note that misspecification of the activation function hurts
the performance. The neural network which uses a sigmoid
activation function performs much worse. FSA-HTF performs
reasonably well and its performance increases as we decrease
the noise variance.

Next, we compare the methods when keeping the SNR fixed
SNR = 5 and increasing the number of training samples
(Fig. 4(d)). The MSE drops as the number of samples in-
creases for all methods. FSA-HTF and the two neural network
approaches perform similarly when we increase the number of
samples to 15000.

The above experiments serve as a sanity check that our
method can indeed learn a function which admits a low-rank
model, but can also learn functions that are not known to be
low-rank – such as a neural network with random weights.
Moreover, we see how important is the choice of the activation
function and how it can affect the performance of a neural
network.

C. Real Data

Next, we evaluate the proposed approach on several re-
gression tasks using datasets obtained from the UCI machine
learning repository [36]. The name and dimensions of each

TABLE I
DATASETS INFORMATION.

DATASET N M

QSAR AQUATIC TOXICITY (QSAR) 9 546
ENERGY EFFICIENCY (EE) 8 788

AIRFOIL SELF-NOISE (ASN) 6 1503
SKILLCRAFT MASTER TABLE (SMT) 18 3337

ABALONE (AB) 8 4177
CYCLE POWER PLANT (CPP) 4 9568

SUPERCONDUCTIVTY (SC) 81 21263
PHYSICOCHEMICAL PROPERTIES (PP) 9 45730

dataset are shown in Table I. For real data experiments we
evaluate only FSA-HTF since real data are not uniformly
and independently sampled, hence violating the conditions
assumed by FSA-LR. We compare our approach against vari-
ous standard baselines: Linear Regression (LR), Polynomial
Regression (PR), Support Vector Regression (SVR) with a
Gaussian kernel, a Neural Network with ReLU activation
function (NNET) and a Decision Tree (DT). We also com-
pare our method against two other tensor methods, namely
AMP [28] which assumes a low-rank generalized canonical
polyadic decomposition model where each component belongs
to a RKHS; and our own earlier CSID method [14] which
leverages a low-rank CPD model but requires the input data
to be discrete (or discretized).

For each dataset we split the data into two sets; 85% used
for training and 15% used for testing. The parameters for each

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2021.3055000

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

TABLE II
MSE PERFORMANCE OF STANDARD BASELINE MODELS.

DATASET LR PR SVR (RBF) NNET DT

QSAR 1.41± 0.31 1.41± 0.44 1.19± 0.30 1.42± 0.55 1.64± 0.37
EE [1] 8.15± 1.13 0.76± 0.08 4.69± 0.68 0.31± 0.08 0.30± 0.03
EE [2] 10.39± 1.84 2.87± 0.36 7.36± 1.66 2.03± 0.71 3.21± 0.26
ASN 23.27± 1.74 15.95± 1.21 11.09± 1.60 6.61± 1.24 6.45± 0.35
SMT 1.03± 0.06 1.02± 0.09 1.01± 0.05 1.03± 0.06 1.06± 0.04
AB 4.91± 0.30 4.54± 0.12 4.44± 0.21 4.33± 0.22 5.29± 0.22
CPP 19.57± 0.50 17.18± 0.41 15.60± 0.51 16.08± 0.50 14.85± 0.97
SC 315.93± 6.76 171.52± 5.41 213.60± 6.71 125.12± 8.13 130.56± 8.35
PP 27.10± 0.27 25.05± 1.06 21.24± 0.42 17.55± 0.38 19.24± 0.23

TABLE III
MSE PERFORMANCE OF CPD-BASED MODELS.

DATASET AMP [28] CSID [14] FSA-HTF (THIS PAPER)

QSAR 1.65± 0.50 1.48± 0.17 1.38± 0.53
EE [1] 0.31± 0.06 0.18± 0.02 0.16± 0.10
EE [2] 0.46± 0.10 0.34± 0.06 0.24± 0.09
ASN 8.73± 1.29 3.05± 0.53 4.01± 0.32
SMT 0.99± 0.05 0.98± 0.06 0.94± 0.06
AB 4.75± 0.3 4.95± 0.21 4.52± 0.30
CPP N/A 15.25± 0.45 15.00± 0.66
SC N/A N/A 127.76± 11.86
PP N/A 18.21± 0.45 16.77± 0.35

TABLE IV
AVERAGE EXECUTION TIME PER MONTE-CARLO SIMULATION IN

SECONDS.

Dataset NNET FSA-HTF

QSAR 96 103
EE [1] 267 174
EE [2] 256 209
ASN 294 206
SMT 193 657
AB 385 244
CPP 625 211
SC 1521 4549
PP 3434 5120

method are chosen using 5-fold cross-validation and we report
the average MSE of 5 Monte-Carlo simulations. When training
the PR model, we test 2nd and 3rd order polynomials for all
datasets except for SC due to the high computational cost. For
the neural network model, we vary the number of layers from
1 to 5 and the number of nodes for each layer from 10 to 500.
For FSA-HTF we vary the number of coefficients per mode
from 5 to 50 and the rank from 5 to 30. We used alternating
least squares for all datasets except for SC and PP for which
we used SGD due to the larger number of samples. All the
baselines except for CSID were implemented using the sklearn
library [37].

The performance of the standard baseline models is shown
in Table II and the performance of the tensor based models in
Table III. Among the standard baselines, the NNET approach

works the best followed by the DT. The linear and polynomial
models do not perform as well as they are usually too
restrictive in practice, especially for larger datasets. Overall,
we observe that the performance of our proposed method is
very satisfactory, outperforming the baselines in 4 datasets
and performing comparable to the winning method in the
remaining ones. Our method outperforms the neural network
in the smaller datasets (QSAR, EE, ASB and SMT) but also
in two of the larger datasets (CPP, PP).

Compared to the tensor methods, FSA-HTF performs better
in all except one dataset. AMP is a more complex method
which assumes that each component fn,r(·) belongs to a
RKHS. It requires solving a kernel regression for each n
and r at each step with a complexity of O(M3) making it
not suitable even for datasets of moderate size. We did not
run AMP for the larger datasets (CPP, SC, PP) since the
computational complexity was very high and the algorithm
did not terminate in a reasonable amount of time (> 1 day
of training including cross validation). CSID is more suitable
for datasets with discrete input as it requires a discretization
step otherwise which leads to performance degradation. As
shown in table III, it performs worse than FSA-HTF in all
but one datasets which may be due to the function not being
sufficiently smooth.

In table IV we report the average execution time of 5 Monte-
Carlo simulations (including cross validation) for the neural
network and the FSA-HTF algorithm. The average execution
times of the two methods are comparable (same order of
magnitude) although we haven’t optimized our algorithms to
take advantage of the algebraic structure of our model.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2021.3055000

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

VI. CONCLUSION

In this paper, we proposed a generalized CPD representation
of functions which follows from compactness of support
and continuous differentiability. Our method approximates
a compactly supported multivariate function using a tensor
of truncated multidimensional Fourier series coefficients and
under a low-rank assumption in the Fourier domain, provides
correct identification of the unknown function. We proposed
two learning algorithms: one that explicitly constructs and
decomposes the Fourier tensor (WFSA-LR), and another that
learns the CPD model indirectly, without instantiating the
Fourier tensor (FSA-HTF). In the synthetic data experiments,
we observed that when the true function is indeed low-rank,
WFSA-LR requires more data but eventually both methods
converge to the same solution. For real data, FSA-HTF is
more suitable since the conditions assumed by WFSA-LR
are violated. Our algorithm FSA-HTF demonstrated promising
results on real multivariate regression tasks with tensors of
high-order using very low ranks.

REFERENCES

[1] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural networks, vol. 2, no. 5,
pp. 359–366, 1989.

[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[3] R. A. Harshman, “Foundations of the PARAFAC procedure: Models
and conditions for an “explanatory” multimodal factor analysis,” UCLA
Working Papers Phonetics, vol. 16, pp. 1–84, 1970.

[4] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalex-
akis, and C. Faloutsos, “Tensor decomposition for signal processing and
machine learning,” IEEE Transactions on Signal Processing, vol. 65,
no. 13, pp. 3551–3582, July 2017.

[5] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, “Tensors
for data mining and data fusion: Models, applications, and scalable
algorithms,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 8, no. 2, pp. 1–44, 2016.

[6] N. Kargas, N. D. Sidiropoulos, and X. Fu, “Tensors, learning, and
“Kolmogorov extension” for finite-alphabet random vectors,” IEEE
Transactions on Signal Processing, vol. 66, no. 18, pp. 4854–4868, 2018.

[7] U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos, “Gigatensor:
scaling tensor analysis up by 100 times-algorithms and discoveries,”
in Proceedings of the 18th International Conference on Knowledge
Discovery and Data Mining, 2012, pp. 316–324.

[8] N. Vervliet, O. Debals, L. Sorber, and L. De Lathauwer, “Breaking the
curse of dimensionality using decompositions of incomplete tensors:
Tensor-based scientific computing in big data analysis,” IEEE Signal
Processing Magazine, vol. 31, no. 5, pp. 71–79, 2014.

[9] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard,
“Complex embeddings for simple link prediction,” in Proceedings of the
33rd International Conference on Machine Learning, 2016, pp. 2071–
2080.

[10] T. Lacroix, N. Usunier, and G. Obozinski, “Canonical tensor decompo-
sition for knowledge base completion,” in International Conference on
Machine Learning, 2018, pp. 2863–2872.

[11] A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver, “Multiverse
recommendation: n-dimensional tensor factorization for context-aware
collaborative filtering,” in Proceedings of the 4th ACM Conference on
Recommender Systems, 2010, pp. 79–86.

[12] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempit-
sky, “Speeding-up convolutional neural networks using fine-tuned CP-
decomposition,” in Proceedings of the 3rd International Conference on
Learning Representations, 2015.

[13] A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov, “Tensoriz-
ing neural networks,” in Advances in Neural Information Processing
Systems, 2015, pp. 442–450.

[14] N. Kargas and N. D. Sidiropoulos, “Nonlinear system identification via
tensor completion,” in Proceedings of the 34th AAAI Conference on
Artificial Intelligence, 2020.

[15] S. Efromovich, Nonparametric curve estimation: methods, theory, and
applications. Springer Science & Business Media, 2008.

[16] S. Rendle, “Factorization machines,” in Proceedings of the IEEE Inter-
national Conference on Data Mining, Dec 2010, pp. 995–1000.

[17] M. Blondel, M. Ishihata, A. Fujino, and N. Ueda, “Polynomial net-
works and factorization machines: New insights and efficient training
algorithms,” in Proceedings of the 33rd International Conference on
Machine Learning, 2016, pp. 850–858.

[18] M. Blondel, A. Fujino, N. Ueda, and M. Ishihata, “Higher-order fac-
torization machines,” in Advances in Neural Information Processing
Systems, 2016, pp. 3351–3359.

[19] I. V. Oseledets, “Tensor-train decomposition,” SIAM Journal on Scien-
tific Computing, vol. 33, no. 5, pp. 2295–2317, 2011.

[20] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.

[21] A. Novikov, M. Trofimov, and I. Oseledets, “Exponential machines,” in
International Conference on Learning Representations Workshop, 2016.

[22] I. Perros, F. Wang, P. Zhang, P. Walker, R. Vuduc, J. Pathak, and
J. Sun, “Polyadic regression and its application to chemogenomics,”
in Proceedings of the SIAM International Conference on Data Mining,
2017, pp. 72–80.

[23] P. Dreesen, M. Ishteva, and J. Schoukens, “Decoupling multivariate
polynomials using first-order information and tensor decompositions,”
SIAM Journal on Matrix Analysis and Applications, vol. 36, no. 2, pp.
864–879, 2015.

[24] P. Comon, Y. Qi, and K. Usevich, “Identifiability of an x-rank decom-
position of polynomial maps,” SIAM Journal on Applied Algebra and
Geometry, vol. 1, no. 1, pp. 388–414, 2017.

[25] S. Wahls, V. Koivunen, H. V. Poor, and M. Verhaegen, “Learning
multidimensional fourier series with tensor trains,” in Proceedings of the
IEEE Global Conference on Signal and Information Processing, 2014,
pp. 394–398.

[26] V. Khrulkov, A. Novikov, and I. V. Oseledets, “Expressive power of
recurrent neural networks,” in Proceedings of the 6th International
Conference on Learning Representations, 2018.

[27] M. Signoretto, L. De Lathauwer, and J. A. Suykens, “Learning tensors
in reproducing kernel hilbert spaces with multilinear spectral penalties,”
arXiv preprint, 2013.

[28] T. Suzuki, H. Kanagawa, H. Kobayashi, N. Shimizu, and Y. Tagami,
“Minimax optimal alternating minimization for kernel nonparametric
tensor learning,” in Advances in Neural Information Processing Systems,
2016, pp. 3783–3791.

[29] G. Plonka, D. Potts, G. Steidl, and M. Tasche, Numerical Fourier
Analysis. Springer, 2018.

[30] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, ser. Springer Series in Statistics, 2009.

[31] M. Razaviyayn, M. Hong, and Z.-Q. Luo, “A unified convergence
analysis of block successive minimization methods for nonsmooth
optimization,” SIAM Journal on Optimization, vol. 23, no. 2, pp. 1126–
1153, 2013.

[32] S. E. Leurgans, R. T. Ross, and R. B. Abel, “A decomposition for three-
way arrays,” SIAM Journal on Matrix Analysis and Applications, vol. 14,
no. 4, pp. 1064–1083, 1993.

[33] M. Boussé, N. Vervliet, I. Domanov, O. Debals, and L. De Lathauwer,
“Linear systems with a canonical polyadic decomposition constrained
solution: Algorithms and applications,” Numerical Linear Algebra with
Applications, vol. 25, no. 6, p. e2190, 2018.

[34] D. P. Bertsekas, “Nonlinear programming,” Journal of the Operational
Research Society, vol. 48, no. 3, pp. 334–334, 1997.

[35] L. Chiantini and G. Ottaviani, “On generic identifiability of 3-tensors of
small rank,” SIAM Journal on Matrix Analysis and Applications, vol. 33,
no. 3, pp. 1018–1037, 2012.

[36] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

[37] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2021.3055000

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12

Nikos Kargas received the Diploma and M.Sc.
degree in electronic and computer engineering from
the Technical University of Crete (TUC), Chania,
Greece, in 2013 and 2015, respectively, and Ph.D.
degree in electrical engineering from University
of Minnesota, Minneapolis, in 2020. His research
interests include machine learning, statistics and
optimization.

Nicholas D. Sidiropoulos (Fellow, IEEE) received
the Diploma in electrical engineering from the
Aristotle University of Thessaloniki, Thessaloniki,
Greece, and the M.S. and Ph.D. degrees in electrical
engineering from the University of Maryland at
College Park, College Park, MD, USA, in 1988,
1990, and 1992, respectively. He has served on the
faculty of the University of Virginia, the University
of Minnesota, and the Technical University of Crete,
Greece, prior to his current appointment as Louis T.
Rader Professor and Chair of ECE at UVA. From

2015 to 2017, he was an ADC Chair Professor with the University of
Minnesota. His research interests are in signal processing, communications,
optimization, tensor decomposition, and factor analysis, with applications in
machine learning and communications. He received the NSF/CAREER award
in 1998, the IEEE Signal Processing Society (SPS) Best Paper Award in 2001,
2007, and 2011, served as IEEE SPS Distinguished Lecturer (2008–2009),
and as Vice President - Membership of IEEE SPS (2017–2019). He received
the 2010 IEEE Signal Processing Society Meritorious Service Award, and
the 2013 Distinguished Alumni Award from the University of Maryland,
Department of ECE. He is a fellow of EURASIP (2014).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2021.3055000

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

