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ABSTRACT

With the great advances in location-based services (LBS), Wi-Fi
localization has attracted great interest due to its ubiquitous avail-
ability in indoor environments. Deep neural network (DNN) is a
powerful method to achieve high localization performance using
Wi-Fi signals. However, DNN models are shown vulnerable to ad-
versarial examples generated by introducing a subtle perturbation.
In this paper, we propose adversarial deep learning for indoor local-
ization system using Wi-Fi received signal strength indicator (RSSI).
In particular, we study the impact of adversarial attacks on floor
classification and location prediction with Wi-Fi RSSI. Three white-
box attacks methods are examined, including fast gradient sign
attack (FGSM), projected gradient descent (PGD), and momentum
iterative method (MIM). We validate the performance of DNN-based
floor classification and location prediction using a public dataset
and show that the DNN models are highly vulnerable to the three
white-box adversarial attacks.
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1 INTRODUCTION

With the rapid growth of mobile wireless systems, there has been
great interest in location-based service (LBS). Wi-Fi based indoor lo-
calization has become a mainstreaming technique for LBS because
of its ubiquitous availability. Wi-Fi fingerprinting based methods
can estimate an unknown location by comparing the stored finger-
prints with the newly received fingerprints and finding the best
match. Existing Wi-Fi fingerprinting-based indoor localization sys-
tems mainly utilize two types of wireless signals, i.e., Received
Signal Strength Indicator (RSSI) and Channel State Information
(CSI). RADAR is the first RSSI-based scheme with a deterministic
location estimation method [1]. Horus improves the localization
accuracy by using a probabilistic, K-nearest-neighbor (KNN) ap-
proach [2]. RSSI is a coarse-grained representation of the Wi-Fi
channel, which is usually significantly affected by the complex in-
door propagation environment. Compared with RSSI, CSI is more
stable and effective to capture the multipath effect. FIFS utilizes
the weighted average of CSI amplitudes over multiple antennas
for location estimation [3], while SpotFi achieves centimeter-level
localization by estimating angle of arrival(AoA) using CSI [4].

Deep learning also greatly benefits indoor localization systems.
DeepFi is the first work to apply a deep autoencoder to extract
location features from CSI amplitudes as fingerprints [5]. Further,
PhaseFi uses calibrated phase values to train a deep autoencoder [6],
while BiLoc exploits bimodal CSI data [7]. Moreover, deep convo-
lutional neural network (DCNN) is introduced as a classifier to
simplify the fingerprinting based localization system. CiFi is the
first work that utilizes DCNN with CSI data [8]. Unlike previous
works, only one group of weights is required in CiFi for localiza-
tion. Similarly, ConFi also uses the DCNN classifier with images
generated from CSI amplitude data [9]. The recent work ResLoc
leverages a deep residual sharing learning model with bimodal CSI
tensors for improved localization accuracy [10].

Although deep learning has been effectively on improving indoor
localization accuracy, Szegedy et al. [11] found that the state-of-
the-art deep neural networks (DNN) are likely to be misled by
adversarial examples including unrecognizable perturbations to the
human eye. To defend against and understand the adversarial ex-
ample, Goodfellow et al. [12] also proposed the Fast Gradient Sign
Method (FGSM) attack method, and the corresponding defending
strategy where the robustness of the network can be effectively
enhanced by the modified adversarial objective function. Several
adversarial attack methods were proposed based on FGSM. For ex-
ample, Projected Gradient Descent (PGD) is a multiple-step variant
of FGSM, which leverages the local first order information about
the network [13]. The Momentum Iterative Method (MIM) attack
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strengthens the effectiveness of the FGSM attack by introducing
the momentum term [14]. Adversarial attacks are being studied
under various wireless communication systems (e.g., modulation
recognition, end-to-end communication system, and wireless secu-
rity) [15-22].

Motivated by the previous adversarial attack works, in this paper,
we propose adversarial deep learning models for indoor localization
and floor classification with Wi-Fi RSSI values. The idea is to use ad-
versarial examples to test the models’ indoor localization and floor
classification performance by adding a subtle perturbation to Wi-Fi
RSSI. We first present the system model, where floor recognition is
modeled as a classification problem and location prediction is mod-
eled as a regression problem in deep learning. We then present the
problem formulation and introduce three white-box attack meth-
ods (i.e., FGSM, PGD, and MIM). We examine the performances
of DNN-based floor classification and location prediction using a
public dataset, and show that the DNN models are vulnerable to
the three white-box attacks.

The main contributions of this paper are summarized as follows.

o To the best of our knowledge, this is the first work to study
adversarial attacks on DNN and Wi-Fi RSSI-based floor clas-
sification and indoor localization.

e We model floor recognition as a classification problem and
location prediction as a regression problem in deep learning.

e Using a public, large-scale indoor localization dataset that
includes three buildings and 13 floors, our experimental
study demonstrates that the three white-box attack meth-
ods greatly influence DNN models’ performance on floor
classification and localization .

The remainder of this paper is organized as follows. The system
model is described in Section 2. We present the problem formulation
and adversarial attacks in Section 3. Our experimental study is
presented in Section 4. Section 5 summarizes this paper.

2 SYSTEM MODEL

Most existing Wi-Fi based localization works are fingerprinting
based methods, where fingerprinting data (i.e., pairs of Wi-Fi RSSI
and location) are stored in a database in the offline training stage,
and the distance matching method is used to find the location in
the online test. To reduce the data storage and improve the loca-
tion estimation accuracy, fingerprinting based localization can be
formulated as a classification problem (e.g., in a small area) or a
regression problem (e.g., in a large area). Naturally, compared with
traditional machine learning methods, DNN becomes a powerful
method to solve such localization problem when a large dataset
is available. However, Szegedy et al. [11] found that DNN models
are vulnerable to the adversarial examples that are only slightly
different from the original data. Specifically, adversarial examples
can be leveraged to fool a well-trained DNN model, thus generat-
ing incorrect predictions. Consequently, DNN based localization
systems are also vulnerable to adversarial attacks.

2.1 System Architecture

Fig. 1 shows the architecture of the proposed floor classification and
indoor localization system. Similar to traditional DNN based indoor
localization systems, the proposed system also includes an offline
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Figure 1: System architecture.

training stage and an online test stage. In the data preprocessing
stage, the input data will be normalized to improve the performance
of DNN models. In the offline stage, the training dataset is used
to train two DNN models for floor classification and location pre-
diction, respectively. In the online stage, adversarial perturbations
generated by three white-box attacks will be introduced to the new
Wi-Fi RSSI data. Then, we use the trained models to validate the
performances of floor classification and location prediction. To the
best of our knowledge, this is the first work to study the impact of
adversarial attacks on a deep regression model in the wireless field,
while most of the previous works mainly focus on classification
problems (e.g., wireless modulation recognition).

We use the public UJlIndoorLoc dataset (i.e., a multi-building
and multi-floor database) [23] for Wi-Fi fingerprinting based indoor
localization and floor classification. This database was collected
from more than 20 users and 25 devices in three buildings (totally
13 floors) with 520 wireless access points (WAPs). The UJlIndoorLoc
database has 19,937 reference records in the training and validation
sets (e.g., used in the offline training stage) and 1,111 reference
records in the test set (e.g., used in the online test stage) in Fig. 2.
From every location, we can extract 520 RSSI values from all the
WAPs, which can be used as input to the proposed DNN models for
floor classification and location prediction. In the next section we
will present the DNN models for floor classification and location
prediction used in this work.

2.2 DNN Models for Floor Classification and
Location Prediction

To study the effect of adversarial attacks on DNN based floor classi-
fication and indoor localization, two DNN models are adopted in the
proposed system, which are shown in Fig. 3 and Fig. 4, respectively.

For floor classification, the building and floor attribute values are
concatenated to format the output values. There are three unique
building identification (ID) values in the range of [0, 1, 2], and
five unique floor ID values in the range of [0, 1, 2, 3, 4]. We then



Adversarial Attacks on Deep Learning-based Floor Classification and Indoor Localization

le6
4.86500 - -
4.86495 4 .
: -
g 0D ) N -
4.86490 - ey
= G d?
E :
< 4.86485 - v J,'{t' 2 Lo
" N "*,/
4.86480 - & -
b S
4.86475 - \9
T T T T T
—7700 -7600 —7500 —7400 —7300
LONGITUDE

Figure 2: Campus map for the training and test datasets.
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Figure 3: The DNN classification model.
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Figure 4: The DNN regression model.

create 13 corresponding unique IDs as floor labels, as shown in
Table 1, where each label represents both building ID and floor ID
(e.g., “12” indicates building ID “1” and floor ID “2”). Thus, our floor
classification problem also includes building recognition. Fig. 3
presents the DNN classification model, which is used for floor
classification, where 520 RSSI values and 13 labels are the input
and output of DNN, respectively. The DNN classification model
consists of five dense layers with 100, 50, 25, 10, and 5 neurons,
respectively, where ReLU is used as the activation function. The last
layer has 13 neurons using the Softmax function for classification.
Cross-entropy is used as the loss function for training.

For location estimation, we use 520 RSSI values from the WAPs
as input, and two values (i.e., longitude and latitude) are the output
to train the DNN regression model in the offline stage, and then
use the trained DNN model to predict location using 520 new RSSI
samples. Fig. 4 shows the DNN regression model, where six dense
layers are used with 200, 100, 100, 50, 10, and 5 neurons, respectively.
Relu, linear, and Leaky RelU are used as activation functions.
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Table 1: Labels for Floor Classification

Building ID  Floor ID Labels

0 0,1,2,3 {00, 01, 02, 03}
1 0,1,2,3 {10, 11, 12, 13}
2 0,1,2,3,4  {20,21,22, 23, 24}

The last layer has two neurons with linear activation function,
where the loss function for the DNN regression model is the mean
squared error (MSE). In addition, we use Adam as the optimizer for
both DNN models, with a batch size of 128.

3 PROBLEM FORMULATION AND
ADVERSARIAL ATTACK MODELS

In this section, we provide a general formulation for floor classifica-
tion and location prediction using Wi-Fi RSSI values. We will also
introduce three white-box adversarial attack methods, including
FGSM, PGD, and MIM, used to evaluate the resilience performance
of the proposed system.

3.1 Problem Formulation

Let x denote the input data (i.e., 520 RSSI values), and y denote the
output (e.g., 13 neurons for the floor classification problem or 2
neurons for the indoor localization regression problem). Further,
we use f to denote the DNN model function, £ as the loss function
of the DNN model (i.e. cross-entropy for classification and MSE for
regression), and 6 as the weight parameters of the DNN model. For
floor classification and location prediction problems, our objective
is to minimize the loss function by finding the optimal weight
parameters of the DNN model, which can be formulated as

arg(;ninﬁ(f(x, 0),y)- @

By training the DNN model to minimize the loss function, we can
identify the optimal weight parameters 0%, which will be used for
floor classification and location prediction in the online stage with
new collected RSSI values.

However, adversarial examples can mislead the DNN model by
introducing a small perturbation to the new RSSI data. In fact, the
objective of the adversary is to degrade the performance the DNN
model by maximizing the following loss function.

ar}g maX-E(f(xad‘u’e*)v y), (2

adv

where x4, is the adversarial example. The adversarial example
Xqado can be generated as x,4,, = x + 1, where 7 is the perturbation.
Given a trained DNN model f with parameter §*, generating an
adversarial example x,4,, can be formulated as a box-constrained
optimization problem (e.g., L-BFGS attack needs to use a binary
search to find the optimal parameter value) [11]. However, this
could be time-consuming and impractical. Thus, in this paper, we
focus on the one-step attack method (i.e., FGSM) and two iterative
attack methods (PGD and MIM) as the follows.

3.2 Fast Gradient Sign Method

The FGSM attack method is to obtain a perturbation by calculat-
ing the gradient of the loss function with a given input [12]. The
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perturbation 7 is generated by
’7 =€ Sign(vx-E(f(xa 0*)7 y))s (3)

where € is a hyper-parameter, which controls the magnitude of
the perturbation. Since L is the loss function of the model, the
perturbation 7 could be calculated by using the first derivative of
L(f(x,0%),y) through the backpropagation algorithm. The Fast
Gradient Method (FGM) [24] is a generalization of FGSM, where
the perturbation is given by

I]IG' vx‘L(f(x79*)ay)
v L(f(x.0%).9)ll,

Using (4), the perturbation can be conveniently generated.

©

3.3 Projected Gradient Descent Attack

Based on the one-step FGM, the iterative version of FGM (i.e., the
PGD attack) was proposed to improve the attack performance [13].
PGD can also help to enhance the robustness of DNN model against
first-order attacks. By using iterative methods, the adversarial ex-
amples are created as follows.

x4 = x,

(5)
Vo L(f(x10,0%),y)
[vxL(reegte,0m,9), )

where «a is a hyper-parameter in each iteration; when € is given, it
could be set to €/N. The perturbation is always small and around the
original input x in the L? ball. Moreover, Clip, ¢ is used to project
the perturbation back into the L ball. PGD has been recognized as
a stronger adversarial attack method than the one-step FGM/FGSM.

adv
xN +o-

(6)

adv _ .
XN+1 = Chpx,e

3.4 Momentum Iterative Method

Instead of using the gradient in one iteration to update the pertur-
bation, MIM uses the gradient of the previous iterations to help
update the perturbation. To create adversarial examples using the
MIM method, we first obtain the gradient in the (N + 1)th iteration,
which is given by

Ve L(f(x41?,67),9)
[vxL(rexete,0m, ),

where gn includes the gradients from previous N — 1 iterations
with a decay factor p. The adversarial examples are computed by

®)

™

9(N+1) =H gN t+

adv adv

X(N+1) XN T sign(gn+)),

where « could be set to €/N when € is provided.

4 EXPERIMENTAL STUDY

4.1 Experiment Configuration

Experiments have been performed using the public UJIndoorLoc
dataset. This dataset consists of a training dataset with the 19,937
reference records and a test dataset with 1,111 reference records
(that were collected four months later) in three buildings with totally
13 floors. Wi-Fi RSSI values were measured at Wi-Fi receivers (e.g.,
smartphones, laptops, and other devices) of more than 20 users with
25 devices, which are used as features in floor classification and
indoor localization. In the training and validation datasets, there
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are totally 529 features for each sample, where the first 520 features
are from Wi-Fi WAPs corresponding to the RSSI values. The normal
range is from -104 dBm to 0 dBm. For example, -109 dBm means
that there is no signal or an extremely weak signal. There are nine
other features, including Latitude, Longitude, Floor ID, Building
ID, Space ID, Relative Position, User ID, Phone ID, and Timestamp.
In this paper, we consider location coordinates (i.e., latitude and
longitude) in the location estimation model, and use floor ID and
building ID in the floor classification model.

Data pre-processing is very important for the proposed DNN
models to achieve satisfactory results. Scaling of the input features
has been achieved with normalization. After implementing normal-
ization there are few access points that were undetectable from
all the locations. These access points could be removed to accel-
erate the training process. In addition, the training dataset with
the 19,937 reference records for floor classification and location
prediction is divided into two subsets: 70% for training and 30% for
validation, respectively. Then, we use the test dataset with 1,111
reference records to verify the proposed methods.

Three types of adversarial attacks (i.e., FGSM, PGD, and MIM)
have been performed independently for floor classification as well
as location prediction. All adversarial attacks have been performed
in the validation and testing stages using different epsilon values.
In addition, all the experiments are conducted using Python and
the Tensorflow, Keras, and Scikit-Learn libraries for training both
models. Further, Google Colab Pro is used as a cloud service to train
these models.

In the following section, we will present the performance of DNN-
based floor classification and location prediction, and evaluate their
performances under three types of adversarial attacks.

4.2 Results and Discussions

Fig. 5 presents the experiment results for floor classification. Specifi-
cally, Fig. 5(a) shows the accuracy over different epochs for training
and validation of the floor classification model. The DNN classi-
fication model is trained over 30 epochs in the offline stage. The
accuracy quickly increases with the increase of epochs. Moreover,
the accuracy curves for training and validation both converge when
the number of epochs is over 10. Fig. 5(b) shows the confusion ma-
trix for the floor classification model using the validation data and
Fig. 5(c) presents the confusion matrix using the test data. It is
easy to see that the classification accuracy for the validation data is
better than that for the test data, because the test data is collected
at a different time (i.e., four months later).

Fig. 5(d) shows the accuracy of floor classification over different e
values under FGSM attack. The adversarial examples are generated
by adding a small perturbation under different € values, which
determine the strength of the noise added to the original input data.
The perturbation is calculated for each € value in the range of [0.001,
0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09]. In Fig. 5(d), the accuracy
with clean data is denoted by “Validation” and “Test,” while the
accuracy with adversarial examples is expressed by “Validation
(FGSM)” and “Test (FGSM),” respectively. We find that after adding
the perturbation data, the accuracy over all epsilons becomes very
poor. For example, when € = 0.02, the accuracy of validation data
drops from 0.98 to 0.093 and the test data accuracy drops from
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Figure 5: Floor classification results with and without FGSM, MIM and PGD attacks.

0.81 to 0.059. Fig. 5(e) shows the accuracy of the floor classification
model under MIM attacks. When e = 0.02, the accuracy using
validation data drops from 0.98 to 0.072 and the test data accuracy
decreases to 0.067 from 0.81. Fig. 5(f) shows the accuracy under
PGD attacks. when e = 0.02, the validation data accuracy drops
from 0.98 to 0.072. Thus, we conclude that all three adversarial
attacks can easily fool the floor classification model, and the impact
is relatively independent to epsilon values.

Fig. 6 presents the experiment results of location prediction.
Specifically, Fig. 6(a) shows the longitude predictions without ad-
versarial attacks on the validation data using 100 samples. We can
see that the predicated longitude values are very close to the ground
truth. Fig. 6(b) presents the true longitude values and predicted val-
ues under the FGSM attack when € = 0.05. We can see that the
predicted values do not match the ground truth anymore due to
the small perturbation introduced to the validation data with the
same 100 samples. Fig. 6(c) illustrates the campus map in latitude
and longitude for predicted values using clear validation data (i.e.,
red color) and predicted values using the perturbed validation data
under FGSM when € = 0.05 (i.e., green color). We can conclude that
adversarial attacks (e.g., FGSM) can greatly degrade the location
prediction performance.

We also apply these three types of attacks to the localization
estimation model. Fig. 6(d) plots the localization errors under FGSM
attacks for different € values. The mean localization error with clear
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validation data is 7.62 meters and that for clean test data is 11.83
meters. Under FGSM attacks, with increased €, the localization error
also increases. Specifically, with € = 0.02, the localization error
drastically increases from 7.62 meters to 168.72 meters with the
validation data, and to 170.41 meters with the test data. Fig. 6(e) and
Fig. 6(f) present the localization errors under MIM and PGD attacks,
respectively, with different € values. The localization error increases
with e under both attacks. Compared with FGSM, MIM and PGD
generate much larger errors. For example, when € = 0.02, the errors
are 208.63 meters with the validation data and 204.63 meters with
the test data under MIM attacks. Under PGD attacks when € = 0.02,
the error increases to 211.27 meters with the validation data and
207.70 meters with the test data.

5 CONCLUSIONS

In this paper, we studied adversarial attacks on DNN-based floor
classification and location estimation using Wi-Fi RSSI. We intro-
duced the system model including floor recognition as a classifi-
cation problem and location prediction as a regression problem in
deep learning. Then, three white-box attack methods (i.e., FGSM,
PGD, and MIM) were discussed. Through experiments with a public
and large-scale indoor localization dataset, our results demonstrated
that the performances of floor classification and indoor localization
are highly susceptible to adversarial attacks.
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