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Abstract—This paper aims at predicting accurate outdoor
and indoor locations using deep neural networks, for the data
collected using the Long-Range Wide-Area Network (LoRaWAN)
communication protocol. First, we propose an interpolation
aided fingerprinting-based localization system architecture. We
propose a deep autoencoder method to effectively deal with the
large number of missing samples/outliers caused by the large
size and wide coverage of LoRa networks. We also leverage
three different deep learning models, i.e., the Artificial Neural
Network (ANN), Long Short-Term Memory (LSTM), and the
Convolutional Neural Network (CNN), for fingerprinting based
location regression. The superior localization performance of the
proposed system is validated by our experimental study using a
publicly available outdoor dataset and an indoor LoRa testbed.

I. INTRODUCTION

Due to the explosive increase in Internet of Things (IoT)

applications and location-based services, where billions of

devices and gateways are involved, wireless positioning tech-

niques in Low Power Wide Area Network (LPWAN) become

an important problem [1]–[4]. Currently, outdoor location

information is mostly obtained with the global positioning

system (GPS), which can achieve a localization accuracy of

about 5 m in line-of-sight (LOS) conditions for civilian use [5].

However, GPS suffers from bad performance in outdoor, rich-

scattering environments and urban canyons. Moreover, GPS

receivers are not only power hungry, which greatly limits

the battery lifetime, but also too costly to be integrated into

many IoT devices [3]. Since GPS does not work indoors,

where many location-based services are offered, it does not

provide an integrated indoor/outdoor solution. Alternative

outdoor localization methods are proposed, e.g., using long

term evolution (LTE) with observed-time-difference-of-arrival

(OTDOA) [6], massive multiple-input and multiple-output

(MIMO) in sub-6 GHz [7], as well as mmWave [8]. How-

ever, these techniques usually have high power consumption,

making them not suitable for IoT devices.

Fingerprinting based solutions with deep learning have

been proposed recently, which are highly suitable for non-

line-of-sight (NLOS) environments and can achieve better

performance than traditional machine learning based schemes.

This is because the received signal from NLOS can be used as

features for location estimation with deep learning. Generally,

fingerprinting-based localization requires a training phase to

create a database of many location and data pairs, and a test

phase to search for the most matched fingerprint for location

estimation. Our previous work, termed DeepFi, is the first to

apply deep learning for localization using WiFi channel state

information (CSI) amplitude [9], [10]. Our other works apply

an autoencoder to handle CSI phase difference and bi-modal

CSI data [11], [12]. In addition, our recent work CiFi is the

first to utilize a deep convolutional neural network (DCNN)

for indoor localization using images constructed with CSI

phase difference data between different subcarriers [13]. On

the other hand, although there are several Long Range (LoRa)-

based outdoor fingerprinting schemes [1], [2], they only use

traditional machine learning methods, e.g., k-Nearest Neigh-

bors (KNN) [14]–[16], Support Vector Regression (SVR) [17],

and Bayesian methods [18], which are not very effective in

exploiting LoRa signal data for high localization accuracy.

In this paper, we address the problem of fingerprinting based

localization in complex indoor and outdoor environments.

The goal is to design an efficient, indoor/outdoor integrated

solution with the LoRa technology and deep learning tech-

niques. This approach will provide a better location estima-

tion solution in comparison to other machine learning-based

approaches due to the higher learning capability of the deep

learning models. First, we will introduce the background of the

LoRa technique. Then, we present the system design for the

LoRa-based localization system. We will also introduce dif-

ferent interpolation methods including linear, cubic, quadratic

methods, and propose a deep autoencoder method to improve

the interpolation performance with LoRa signals. Moreover,

we incorporate three different deep learning models, including

the Artificial Neural Network (ANN), Long Short-Term Mem-

ory (LSTM), and the Convolutional Neural Network (CNN),

into the fingerprinting system and evaluate their performance.

Finally, we use hyperparameter tuning for the deep learning

networks to reduce their location errors. We evaluate the

localization performance of the proposed schemes, and com-

pare their performance with several baseline schemes, using

an open-source LoRa dataset for outdoor experiments and a

LoRa testbed for indoor experiments. Our experimental study

demonstrates that the deep learning methods can achieve a

superior localization performance than the traditional machine

learning based schemes.

In the following, the preliminaries are introduced in Sec-

tion II. We present the system design and the performance

study in Section III and our performance study in Section IV.

Section V summaries this paper.

978-1-7281-8298-8/20/$31.00 ©2020 IEEE

GL
O

BE
CO

M
 2

02
0 

- 2
02

0 
IE

EE
 G

lo
ba

l C
om

m
un

ic
at

io
ns

 C
on

fe
re

nc
e 

| 
97

8-
1-

72
81

-8
29

8-
8/

20
/$

31
.0

0 
©

20
20

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

GL
O

BE
CO

M
42

00
2.

20
20

.9
32

22
61

Authorized licensed use limited to: Auburn University. Downloaded on August 18,2021 at 05:16:53 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. Sensor-gateway interaction over the LPWAN technology.

II. PRELIMINARIES

A. Long-Range Wide-Area Network (LoRaWAN)

The fourth industrial revolution is heavily dependent on IoT

networks where billions of devices are interconnected over the

Internet. The challenges related to these devices include power

efficiency, cost-constraints, and the ability to communicate

reliably over long ranges. Long-Range Wide-Area Network

(LoRaWAN) is a relatively new protocol for LPWAN, which

provides solutions to address these issues.

LoRaWAN is a widely adopted proprietary technology for

long range communications, where the chirp spread spectrum

(CSS) modulation technique is employed for LoRa [1]. LoRa

operates in different frequency bands at different geolocations.

The Europe region uses the frequency band from 863 MHz to

870 MHz, the US region uses the band from 902 MHz to 928

MHz, while China operates between 779 MHz to 787 MHz [1].

In addition, LoRa symbols can be encoded using a number

of chirps, which spreads the signal over various channels.

This technique helps to reduce interference with other signals.

The Spreading Factor (SF) determines the number of chirps

needed, which ranges from 7 to 12. An SF value closer to

12 means longer ranges, which is achieved at the expense

of low data rates in comparison to a lower spreading factor.

The relation between SF and signal range has a direct effect

on the received signal strength indicator (RSSI) and distance

mapping [1], [14].

As shown in Fig. 1, a LoRa node (or, sensor) communicates

with a single or multiple channel gateways over a single

hop, resulting in a TCP/IP uplink (sensor to gateway) to the

LoRaWAN cloud server like the Things Network [19]. The

network server is mainly responsible for passing messages

between edge sensors and applications. Any type of com-

munications in this network architecture will be encrypted

twice, i.e., once using the network session key and again using

the application session key. Microservices to handle gateway

traffic are written in the publisher and subscriber model using

the Apache ActiveMQ-MQTT broker [1].

End-nodes are physical hardware sensor devices that contain

sensing capabilities and computing power up to some extent.

Gateways, also known access-points, are used to pick up

all message payloads from edge devices. These payloads or

radio frequency (RF) packets are converted to IP packets (in

arrays of bits) over the network server and are further sent

through traditional IP networks to the application server. The

application server is the place where the actual IoT application

is residing and handles the data collected from edge devices.

Application servers can run mostly on the cloud to perform

advanced analytics, data preprocessing, and create RESTful

web-services [1].

Compared to other communication technologies like Sigfox

and NB-IoT, LoRa helps to enable localization using Time Dif-

ference of Arrival (TDoA) [20], where accurate synchroniza-

tion amongst receiving gateways is required. Fingerprinting

based localization methods using LoRa RSSI values have been

proposed, which have a low cost and are easy to deploy and

operate. In fact, fingerprinting based localization with LoRa

signals using traditional machine learning techniques does not

help to achieve high outdoor localization accuracy. This is

because of the large amount of data streams from an enormous

number of LoRa nodes, which are hard to be fully exploited

by traditional machine learning menthods.

B. Problem Statement

In this paper, we aim to address fingerprinting based lo-

calization problems in complex indoor and outdoor environ-

ments. The challenges include the non-linearity, multipath,

and obstacles. We aim to design an efficient solution with

LoRa to accurately estimate location using deep learning based

methods. The deep learning techniques used are supervised

learning based on the LoRa data, which can better handle

non-linear Gaussian noise than other traditional approaches,

such as KNN, and are more accurate as they can adjust neural

weights and the number of hidden layers with hyperparameter

tuning to reduce the mean location error.

III. SYSTEM DESIGN

Fingerprinting-based localization requires a specific setup in

terms of hardware and software, which can be pre-configured

in the cloud [19]. This approach is divided into two phases:

an offline (training) phase and an online (testing) phase. In the

offline phase, RSSI values are collected for each predefined

location. The data samples are stored in a database.

The online phase is a testing phase where RSSI values

are known and the testing locations (i.e., the latitude and

longitude) in indoor or outdoor environments are unknown.

Using deep-learning techniques can estimate these testing

locations and reduce the location error. The training of the

model is done using TensorFlow framework [21], Keras, and

Scikit-Learn libraries. Additionally, Google Colab has been

used as a free cloud service to train these models as it provides

hardware accelerators such as graphics processing unit (GPU)

and tensor processing unit (TPU).

A. System Architecture

The architecture of LoRa-based localization is shown in

Fig. 2, illustrating the high-level architectural components. A

LoRa sensor node sends data payloads to multiple Gateways.
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Fig. 2. System architecture of LoRa based localization.

The RSSI of the LoRa signal is an important indicator to

measure the signal quality at base-stations or gateways. The

other information, such as SF and horizontal dilution of

precision (HDOP), are also collected at the Gateway endpoint

and stored in the form of a time-series in a database as a

part of the training (offline) phase. At each location, several

instantaneous RSSI readings are collected as a part of the

offline phase. The instability and fluctuations of RSSI values

are mostly due to the multipath effect.

Deep learning based LoRa localization helps to address

the multipath issues. Deep networks e.g., LSTM, can han-

dle Gaussian noise better than traditional machine learning

algorithms. LSTM handles sequential data efficiently for fin-

gerprinting based localization, as it compares the LoRa node’s

current location with the node’s previous location in the same

trajectory. Moreover, as the size of sensor data increases, it

becomes difficult to train the basic machine learning models.

Deep learning models are more effective in handling issues

related to spatial ambiguity and RSSI instability. In this paper,

we consider three different deep learning models (i.e., ANN,

LSTM, and CNN) as regression methods for LoRa-based

indoor and outdoor localization.

Before implementing a deep learning model, data prepro-

cessing is executed to remove outliers using interpolation

techniques. In particular, denoising auto-encoder network, one

of the interpolation methods, can be leveraged as a part

of the training phase to extract information of the outliers.

Auto-encoders are a type of neural networks used to extract

encoded data information in an unsupervised manner and

decode true features of the dataset. We will discuss the detailed

implementations of interpolation and the deep learning model

in the following.

B. Data Preprocessing with Interpolation

From received LoRa singals, useful information, such as

RSSI, ID, timestamp, spreading factor (SF), HDOP, and ge-

olocation co-ordinates, can be extracted. Each base-station

can have different channel conditions, and thus there could

be many missing data samples (and outliers) in the process,

especially in outdoor environments, which can greatly degrade

the localization accuracy. Therefore, such missing data sam-

ples should be interpolated using the measured dataset, using

interpolation techniques such as linear, cubic, quadratic, and

denoising auto-encoder.

Linear interpolation used here is a method of fitting the

curve using linear polynomials to estimate new data points

within some discrete range of known data points. Similarly,

we implement cubic and quadratic interpolation as well, where

quadratic interpolation uses second-order polynomials and cu-

bic uses third-order polynomials. Therefore, base-stations with

missing values interpolate the missing values using forward

or backward pattern of known data. In addition, autoencoders

have also been used as a part of deep learning neural networks,

which are mainly used for feature extraction, data denoising

and reconstruction [22]. In our problem, due to the large

amount of LoRa nodes, many data samples are missing (could

be as high as 50%). For such cases, denoising autoencoders

can solve the problem by corrupting the missing and outlier

data and converting them to null values.

In our implementation of the denoising autoencoder, we use

a function to shuffle data around and learn more about the data

by attempting to reconstruct it. This process of shuffling helps

to learn the features within the noise and will allow us to

classify the input values. While training the neural network,

it generates a model and measures the distance between the

benchmark that has been set and the model through a loss

function. The training process attempts to reduce the loss

function by resampling the shuffled inputs and re-constructing

the data-value until it finds those inputs which are true to

the actual value. Therefore, the entire process attempts to

convert missing samples and outliers to null values and the

autoencoder must then denoise or learn to reconstruct it back,

minimizing the log-loss function.

We compare the performance of linear, cubic, and quadratic

interpolation functions (implemented with python SciPy in-

built library functions), and the denoising autoencoder. Table I

presents the comparison of interpolation results of LoRa

signals of 100 random points for each of the two base-stations.

The original data is divided into 70% training and 30% testing

datasets. After interpolation, the fingerprint map for each base-

station has been generated as training data. The difference

between the original RSSI value and interpolated RSSI value

has been calculated for each test data. It can be seen that the

denoising autoencoder outperforms the other three techniques

in terms of lower average error and lower standard deviation

from its interpolated data. We also compare our results with

that from fingerprint maps and find the denoising auto-encoder

perform well in extrapolated areas.

C. Deep Neural Networks

Deep neural networks are also a class of machine learning

algorithms that relies on non-linear processing neurons for

feature extraction. Deep neural networks require specific type

of hardware accelerators such as GPU or TPU, random-access

memory (RAM), physical memory, and storage depending on
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TABLE I
COMPARISON OF INTERPOLATION METHODS

Gateway Interpolation Algorithm Average Standard Deviation

BS-1 Linear 7.85 7.52
Cubic 10.12 9.23

Quadratic 12.47 10.63
Denoising Autoencoder 6.52 3.79

BS-2 Linear 6.97 7.17
Cubic 9.24 8.47

Quadratic 10.47 9.37
Denoising Autoencoder 5.62 3.47

the complexity of the problem at hand. They have multiple

hidden layers that help to model complicated functions. Non-

linear data features are usually handled by deep neural net-

works and are useful in big data use cases. In this paper, we

mainly use the following three types of deep neural networks,

i.e., ANN, LSTM, and CNN, which are discussed below.

1) Artificial Neural Networks: ANN belongs to the class

of machine learning models, where the computation of each

neuron takes place internally and the networks are used

to have inter-connectivity amongst them. Neurons from the

current layer receive input from previous layers for further

computation along with weights adjusted. The connection

between these interconnected neurons is identified by weights

and learning parameters, which are updated during training to

get a favorable output. This type of networks are feed-forward

neural networks (no loop connections), where the first layer

is an input layer, followed by hidden layers and an output

layer. Data is transferred using hidden layers from input to the

output layer. There are several parameters, such as activation

function, optimizer, epoch, and batch-size, used to configure

and train the ANN model. Specially, four dense layers for the

ANN model in this paper are used for LoRa dataset, where

two nodes (i.e., latitude and longitude) are exploited for the

last dense layer.

2) Long Short-Term Memory: LSTM is used to deal with

sequence prediction problems, which can remember patterns

for a longer duration of time. Compared with recurrent neural

network (RNN), LSTM avoids long-term dependency prob-

lems, resulting into better accuracy [23]. LSTM also has a

different structure for the repeating module. The cell state has

limited linear interactions through the whole chain. There is a

gate-like structure that helps to add or remove information in

the cell state. These gates allow information to flow through

and are composed of a Sigmoid function as an activation

function to perform pointwise multiplication operation.

In our implementation of LSTM, to optimize fingerprinting

localization, we have created an x-array and a y-array matrix.

These matrices are returned as numpy arrays while calling the

sequence function. These sequence functions are set to size of

1, which helps provide results for the latitude and longitude

for each LoRa node. The LSTM model is sequential in nature

and has a linear stack of layers. This model can be passed

with the input-shape argument to the first layer as well as the

three dense layers.

Dropout is a regularization method where recurrent connec-

tions to LSTM and inputs are removed from activation and

weight changes while training the network. Dropout is used

here to avoid overfitting and to improve model performance in

case of indoor localization as we have very few data-points.

3) Convolutional Neural Network: CNN is a class of deep-

learning algorithms which are usually used to deal with

computer vision problems, such as image recognition, digit

recognition, or object recognition [24]. The other concepts

in CNN are related to padding, which helps to preserve the

dimensions of input in the output label. The pooling layer is

similar to the convolutional layer, which is helpful to reduce

the spatial dimensions of the network by creating feature

maps. It provides an approach of down-sampling. Max-pooling

and average pooling are different types of pooling layers in

the CNN architecture. In our implementation, we have used

CNN as a regression model to estimate locations, where two

convolutional layers and two dense layers are used for the

CNN model.

D. Hyperparameter Tuning

Hyperparameter tuning is a part of model optimization

to minimize the testing error [25]. Choosing the correct

number and diversity of these parameters is dependent on

each classifier and can vary accordingly. We have imple-

mented hyperparameter tuning in the neural network models

to minimize localization error by using different permutations

and combinations of optimal parameters, such as batch-size,

learning-rate, optimizer, activation function, and hidden layers.

IV. EXPERIMENTAL STUDY

A. Outdoor Dataset

The outdoor experiment is carried out using a publicly avail-

able LoRaWAN dataset [14]. Fig. 3 shows the data collected

over a period of 3-4 months from Antwerp, Belgium. The

goal of their approach was to create a benchmark to evaluate

localization in outdoor environments using the kNN approach.

The dataset consists of 123,529 LoRaWAN messages received

at 68 base-stations, which are the gateways to transfer data

from LoRa devices to the application layer. The LoRa nodes

are spatially scattered over a larger radius in the city area and

thus the location estimation has a relatively large error.

B. Indoor Experimental Setup

Indoor localization was implemented using a specific setup

using Dragino LoRa gateways and a sensor node sending

data payloads at different training and testing locations. The

hardware required for this experiment is LoRa Dragino Kit,

which includes Arduino UNO, LoRa Gateway, different sen-

sors, LoRa GPS shield, and required cables for connections.

The software part of LoRa setup has been done in C, while

model training and evaluation have been done in python. The

hardware setup is shown in Fig. 4.

We choose Riverside Hall, 3rd Floor, at Sacramento State

to carry out our experiments. The data-collection strategy
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Fig. 3. Map of the outdoor localization dataset from Antwerp, Belgium [14].

Fig. 4. The LoRa node hardware configuration.

Fig. 5. The floor map of Riverside Hall, 3rd Floor at Sacramento State for
indoor localization.

has been carried out, i.e., dividing the floor into a (X , Y )

coordinate system, so as to collect 2D data in all directions of

the floor as a part of offline phase. As shown in Fig. 5, Dragino

LoRa LG01 gateways, i.e., the base-stations, have been set up

in the RVR 3rd floor lab, at fixed locations. The black arrows

in Fig. 5 indicate the user’s walking trajectory; the DHT11

sensor sends data to these gateways from different locations.

The horizontal corridor is 28 m long, while vertical corridor is

8 m long. The training and testing data are randomly collected

within 1-3 m of difference.

The RSSI value is the most important indicator of the

received LoRa signal. The values are measured in dBm and

can take values from 0 dBm (excellent strength) to -120 dBm

(extremely poor). The other features that we can measure
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Fig. 6. Outdoor localization results (mean location errors).

in the process are the SF, which is the duration of the

packets received, and HDOP, which measures the GPS signal

quality using the satellite configuration. Note that HDOP is

not used for the indoor localization experiments. Latitude and

Longitude are denoted in the (X, Y ) coordinate format.

C. Experimental Results

Fig. 6 presents the LoRa based outdoor localization reb-

sults from deep learning models and traditional methods. We

can see that the deep-learning models outperforms the basic

machine learning models, i.e., KNN [14], SVR, and Linear

regression (LR). Moreover, LSTM achieves the best mean

location error of 191.52726 m using 64 neurons, ReLu as

activation function, and Adam as an optimizer, with a batch-

size of 512, epochs as 10, and dropout as 0.1 to avoid over-

fitting. The mean squared error is used as the loss function. For

the LSTM model, ‘sequence-size’ is kept to 1. In many cases,

the training of the model converges very fast. The validation

split was 0.3, and the batch size was tweaked to remove biases

and variance in the model. The training loss was 0.1360 and

validation loss was 0.0911 when the model stops its training

after the 5th epoch.

The mean error achieved by various deep learning model

configurations are presented in Table II. ANN and CNN also

perform better than the basic machine learning models. The

best ANN model achieves a mean error of 284.7837 m with

a batch size of 256 and epoch size of 20. On the other

hand, CNN with a batch size 64 and epoch size of 3, can

achieve a mean error of 215.06 m. Although KNN achieves the

best performance among the three traditional machine learning

schemes (i.e., LR, SVR and KNN), its mean error is 372.37

m (the mean error reported in [14] using KNN and the same

dataset is 398.4 m), which is much larger than that of the deep

learning based approaches.

The indoor data collected using the LoRa testbed discussed

above is split according to a 70%:30% ratio. Table III presents

the indoor localization errors using different deep learning

models with different configurations. We can see that all the

deep learning models can achieve a mean location error under

2 m. In addition, we can see that ANN and LSTM performs
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TABLE II
MEAN LOCATION ERRORS OF THE OUTDOOR EXPERIMENT

Models Epoch Batch Size Dropout Mean Error (m)

ANN-1 10 64 None 284.78475
ANN-2 20 256 None 284.78366
ANN-3 10 512 None 284.81696
LSTM-1 10 512 0.1 191.52726
LSTM-2 12 256 0.5 194.77348
CNN-1 3 64 0.3 215.06072
CNN-2 3 81 0.5 221.75332

TABLE III
MEAN LOCATION ERRORS OF THE INDOOR EXPERIMENT

Models Epoch Batch Size Dropout Mean Error (m)

ANN-1 10 256 None 1.324271
ANN-2 15 512 None 1.270332
ANN-3 20 256 None 1.286759
LSTM-1 10 512 0.1 1.409174
LSTM-2 10 81 0.5 1.348190
LSTM-3 20 256 0.3 1.799690
CNN-1 3 64 0.5 1.804363
CNN-2 3 81 0.5 1.886141
CNN-3 3 128 0.5 1.786397

better than CNN. Because we only use 2 base stations in the

experiment, it is not easy to create high-dimensional image

data to improve the accuracy using CNN based methods.

The indoor experimental results demonstrate that LoRa signals

with RSSI values can be effective for indoor localization.

V. CONCLUSION

In this paper, we presented deep learning based indoor

and outdoor localization with LoRa. We presented the system

design, including fingerprinting based system architecture,

interpolation methods, and three deep learning models, i.e.,

ANN, LSTM, and CNN. Our experimental results showed that

deep learning methods can achieve satisfactory localization

accuracy using LoRa signals in both indoor and outdoor

scenarios.
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