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In this study, we used molecular images as a representation for organic compounds and combined them with a
convolutional neural network (CNN) to develop quantitative structure-activity relationships (QSARs) for pre-
dicting compound rate constants toward OH radicals. We applied transfer learning and data augmentation to
train molecular image-CNN models and the Gradient-weighted Class Activation Mapping (Grad-CAM) method to
interpret them. Results showed that data augmentation and transfer learning can effectively enhance the
robustness and predictive performance of the models, with the root-mean-square-error (RMSE) values on the test
dataset (RMSEes) decreasing from (0.395-0.45) to (0.284-0.339) after applying data augmentation, and the
RMSE on the training dataset (RMSE,,in) decreasing from (0.452-0.592) to (0.123-0.151) after applying transfer
learning. The obtained molecular image-CNN models showed comparative predictive performance (RMSEqest
0.284-0.339) with the molecular fingerprint-based models (RMSEs 0.30-0.35). Grad-CAM interpretation
showed that the molecular image-CNN models correctly chose the molecular features in the images and iden-
tified key functional groups that influenced the reactivity. The applicability domain analysis showed that the
molecular image-CNN models have a broader applicability domain than molecular fingerprints-based models and
the reactivity of any new compounds with a maximum similarity of over 0.85 to the compounds in the training
dataset can be reliably predicted. This study demonstrated that molecular image-CNN is a new tool to develop
QSARs for environmental applications and can be used to build trustful models that make meaningful
predictions.

1. Introduction

Quantitative structure-activity relationships (QSARs) play important
roles in the environmental field [1-3], based on which one can readily
predict the activity of new compounds so that labor-intensive and
expensive experiments can be largely avoided. In water treatment, for
example, QSARs are often developed for different oxidants or re-
ductants, such as HyO5 [2,4], O3 [4,5], Fe(VI) [6], HOe [1,5,7], SOY
[8,91, and hydrated electrons [10]. An important step to develop QSAR
models is to express different organic compounds numerically. Three
most often used representations are molecular descriptors, molecular
fingerprints and the group contribution method. These representations
extract information of compounds to numbers with certain
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physicochemical meanings. For example, molecular descriptors can
quantify different physicochemical properties of organic compounds,
such as Hammett constants, reduction potential, and topological polar
surface area. Molecular fingerprints encode a compound structure into a
binary vector (i.e., only containing O s and 1 s), in which only 1 s
represent certain atom groups in the structure and the positions of 1 s in
the vector represent the identity of the atom groups. A more specific
example of molecular fingerprints is listed in our recent papers [11,12].
The group contribution method decomposes a compound structure into
several sub-groups, with each group contributing to a portion of the
reactivity [13-15]. All of these three representations are sophisticated
representations of organic compounds, and can be further combined
with various statistical and/or machine learning algorithms to develop
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QSAR models. Compared with traditional statistical methods, such as
multiple linear regression, machine learning algorithms are particularly
capable of handling complex non-linear relationships based on big data.
Non-linear relationships between chemical structures and reactivity
may exist when more and more organic contaminants are involved in the
dataset. Hence, QSAR models developed by machine learning methods
often show better predictive performance than those by multiple linear
regression [1], especially for large datasets.

However, a simpler and more intuitive method to represent com-
pounds is by 2D molecular images and every chemical has its unique
molecular image. Different chemicals can be differentiated from each
other in their images based on the type of atoms, their relative positions
in the images and the connections of atoms in the molecules. For
example, chlorine can be used to differentiate phenol and 2-chlorophe-
nol while the position of chlorine can be used to differentiate 2-cholro-
phenol and 3-chlorophenol. For compounds with enantiomer structures,
molecular images can still be used by using solid or dotted wedge-shapes
to indicate the bond positions in the 3D space. Although traditional
machine learning algorithms cannot handle image data efficiently, with
the development of deep learning, especially the convolutional neural
network (CNN), image data can be directly handled to, for example,
develop QSAR models. The first example of such an application is
“Chemception” [16], which feeds 2D images of molecules to a deep
CNN. Chemception slightly outperforms molecular fingerprint-based
QSAR models in predicting biochemical activity and solvation but
slightly underperforms in predicting toxicity. In Chemception, the 2D
images of molecules are not 2D drawing of chemicals but “grid” images,
in which a 2D drawing is mapped onto a 80 x 80 grid, where each atom
is assigned a number based on its atomic mass unit, bonds are assigned
number 2, and the other parts of the grid are empty (i.e., vacuum) and
defaulted to number 0. Following that work, Fernandez et al. directly
used 2D drawings of chemicals to develop molecular image-CNN models
to predict toxicity of compounds [17]. They found that the new models
showed comparable predictive accuracy with molecular descriptor-
based models. Shi et al. also used the same approach to building pre-
dictive models for absorption, distribution, metabolism, elimination,
and toxicity of drug compounds and demonstrated a comparable per-
formance to available machine learning models based on manual
structural description and feature selection [18]. However, previous
studies have not fully used the power of CNN, such as transfer learning
and data augmentation, likely because the data volume in biomedicine is
often large such that transfer learning and data augmentation are not
needed. In the environmental field, unfortunately, data scarcity is a
common issue; hence, transfer learning and data augmentation (details
below) are expected to mitigate its impact [19,20]. After model devel-
opment, CNN models in the previous studies are also not interpreted,
although techniques of interpreting CNN models are available.

Transfer learning refers to applying a model being pre-trained for one
task to another with some modification. There are many CNN architec-
tures that have been well-trained on large datasets to effectively extract
features from numerous images, such as edges, colors and shapes of ob-
jects. Adapting these architectures to a much smaller, different dataset
will allow extraction of more relevant features from the dataset to achieve
more accurate predictions. This is especially applicable here given that
molecular images are often much less complex than many other images
such as those in the ImageNet dataset [21]. Data augmentation can be
readily achieved by, for example, rotating or flipping images, during
which the objects in the images change their positions to generate new
data points but their labels remain unchanged, which is not possible in the
molecular descriptor-, molecular fingerprint- and group contribution-
based methods. Both transfer learning and data augmentation can help
address the issue of data scarcity, a common problem for experimental
research such as measuring contaminant reactivity but detrimental to
building robust ML models that require a large amount of data. For ma-
chine learning interpretation, our previous study has listed some inter-
pretation methods [12]. For CNN interpretation, there are generally three
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methods: Gradients, DeconvNets and Guided Backpropagation, to
generate saliency maps, i.e., heat maps. Adebayo et al. showed that only
Gradients are effective among these three methods [22]. Hence, we
employed a gradients-based method to interpret our CNN model in this
study. The Gradient-weighted Class Activation Mapping (Grad-CAM)
method was recently developed, which can highlight the regions of the
molecular images that are linked to model predictions by the CNN. Grad-
CAM works by using gradients of a given target to highlight the most
related regions in images to the predicted target, and the detailed working
mechanism has been fully described in the literature (a brief introduction
to Grad-CAM is in Text S2) [23]. This interpretation step is crucial for
validating and trusting our “black box” deep CNN models.

Here, we for the first time extended the molecular image-CNN
method to the environmental field by developing QSARs to predict the
rate constants of organic compounds toward HOe radicals (logkgo.) in
the aqueous phase. We applied transfer learning and data augmentation
to train our molecular image-CNN models and interpret it by the Grad-
CAM method. The effects of transfer learning and data augmentation on
the robustness and predictive performance of models were investigated.
A dataset containing 1089 compounds and their rate constants toward
OH radicals in water, which was previously used to successfully develop
molecular fingerprint-based models [12], was used here. We also
compared the molecular image-CNN models with those molecular
fingerprint-based models. Finally, we used Grad-CAM to interpret which
regions of the images were chosen by the CNN to make prediction. To
intuitively show how Grad-CAM works, we developed classification
models to successfully recognize 5 randomly selected functional groups
in the 1089 compounds, namely —-OH, —CN, halogen, =0 and aromatic
carbon. Grad-CAM was then applied to check if this classification model
chose the correct molecular features in the molecular images for these
functional groups. After validating the reliability of Grad-CAM, we
interpreted our final regression model to evaluate its trustability.

2. Materials and methods
2.1. Dataset and 2D molecular images

A dataset containing 1,089 organic compounds and their rate con-
stants toward HOe radicals was compiled from our previous study and
an detail description of the dataset can be found there [12]. Although we
used the same dataset as the previous one, we employed a very different
approach to develop QSAR models. In this way, we can make a fair
comparison between the newly developed molecular image-CNN
method and the previously published molecular fingerprint-machine
learning method. Through this comparison, we highlighted a few ad-
vantages of the new approach, including transfer learning, data
augmentation and structure visualization. This dataset contains logkgoe
values that are close to the diffusion-control limit [24,25]. This may
cause problems for other methods such as the group contribution
method but not for deep learning methods because the latter can still
learn the structural characteristics of those compounds whose reactivity
will approach the diffusion-control limit. For example, if the rate con-
stants of one class of compounds are always close to the diffusion-control
limit, deep learning models can still correctly predict the rate constants
of similar compounds—also close to the diffusion-control limit. Solva-
tion and steric hindrance can be expected to affect the reactions, but
because these effects have already been reflected in the measured
logkyo., deep learning models can still learn the relationship between
logkno. and these effects.

We used the same training, validation and test datasets (8:1:1) as in
the previous study [12] so that we can make a fair comparison between
molecular fingerprint-based and molecular image-CNN models. The
dataset was also rearranged to form five groups of datasets, each con-
taining one training, one validation and one test dataset. This was to
check if the model performance was dependent on the data splitting or
not. The training dataset was used to train a CNN model, the validation
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Fig. 1. Flow chart of the model development and interpretation process for classification and regression applications.

dataset was used to avoid overfitting the data, and the test dataset was
used to evaluate the generalization ability of the CNN model. Note that
the test dataset had never been exposed to the model during the training
process.

The ‘SMILES’ strings for all compounds were obtained by the
ChemDraw program and then converted to the corresponding 2D
structural images with a uniform style by the RDKit package in Python®.
“SMILES” is short for Simplified Molecular-Input Line-Entry System,
which refers to a line notation for encoding molecular structures and
specific instances [26]. We then trained one model for each of the five
groups and obtained five models as model-C-x or model-R-x, where C
represents the classification application, R represents the regression
application, and x = 1-5. For the classification application, five func-
tional groups, namely, -OH, —CN, halogen, =0 and aromatic carbon,
were randomly chosen as the targets for demonstration of the efficiency
of the Grad-CAM method. The chosen functional groups do not have
special reactivity or mechanisms toward OH radicals. Note that we did
not have to limit to these five functional groups and any other functional
groups can be chosen here. This classification example was only used to
show how Grad-CAM works; therefore, it did not matter which func-
tional groups were chosen. Definitely, choosing representative func-
tional groups for OH radical reaction is also feasible and we expect to see
a similar finding as what we have observed. For each functional group,
we manually labeled the 1,089 compounds with a combination of Os and
1s in which 1 represents its presence and 0 is for its absence. This is
different from the regression modeling, where the labels, i.e., log-
transformed rate constants logkyo., were recorded when we collected
the data points. When making predictions for logkpoe, we only need the

2D images of the chemicals as the input to the molecular image-CNN
models.

2.2. Transfer learning, DenseNet121 architecture, and data augmentation

For transfer learning, we used a pre-trained DenseNet121 that had
been well trained on the ImageNet dataset [21], which contains over
1,000,000 images in 1,000 categorical classes. This well-trained Den-
seNet121 can thus effectively extract feature information from images.
DenseNet121, the state-of-the-art architecture of CNNs developed in
2016 [27], is a CNN architecture of DenseNet with 121 layers. The de-
tails about DenseNet have been well-documented (a brief introduction
to DenseNet121 is in Text S1) [27]. When applying transfer learning to
our task, we first froze the convolutional layers of DenseNet121 and only
trained its last fully connected layer. The model performance, however,
was not satisfactory because molecular images are still different from the
images in the ImageNet. While allowing the last fully connected layer of
DenseNet121 being well trained, we then unfroze the convolutional
layers and trained them again so they were more adaptive to our mo-
lecular images. The effect of transfer learning was investigated by
comparing the predictive performance of the models trained with and
without applying transfer learning to the same dataset.

When training models for the molecular images, we also applied data
augmentation to expand the volume of our dataset. This can help the
models to well recognize molecules independent of their positions and
angles in the images. For example, phenol is still phenol no matter how
we flip or rotate its image. For every molecular image, we randomly
flipped it horizontally or vertically or rotated it with a random degree of
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Fig. 2. The effect of data augmentation (A) and transfer learning (B) on the predictive performance of the CNN models.

less than 90° in every training epoch. Early stopping was used to control
overfitting during the training process. The effect of data augmentation
was investigated by comparing the predictive performance of models
trained with and without applying data augmentation to the same
dataset.

After training the models, we randomly chose one model from the 5
models for either the classification or regression application (i.e., Model-
C-x or Model-R-x) and applied Grad-CAM to interpret which regions of
the images were chosen as the most related feature(s) for the pre-
dictions. Fig. 1 summarizes the process of model development and
interpretation, including molecular image generation, data augmenta-
tion, transfer learning, the CNN architecture used, and the model
interpretation by Grad-CAM.

2.3. Evaluation metrics

For the classification application, accuracy, F1 score and AUC (Area
Under The Curve)-ROC (Receiver Operating Characteristics) were used
to evaluate performance of the developed models. Accuracy is the per-
centage of compounds that are correctly classified in the total number of
compounds, as shown in eq. (1). F1 score ranges from 0 to 1 and is
calculated by the precision and recall, as shown in eq. (2), in which a F1
score of close to 1 suggests a good model performance. A detailed
explanation of F1 score is in Text S4. An AUC-ROC curve quantifies the
classification performance at various thresholds. With the maximum
AUC-ROC value of 1, higher AUC-ROC values indicate better model
performance.
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where TN and TP are the true negative and positive cases that are
correctly identified while FP and FN are the false negative and positive
cases that are not correctly identified.

For the regression application, the root mean square error (RMSE),
mean absolute error (MAE) and R? were used to evaluate the perfor-
mance of the developed models. RMSE is the standard deviation of the
residuals (prediction errors) (eq. (5)), MAE measures the average ab-
solute difference between the predicted and real values (eq. (6)), and R?
is the coefficient of determination ranging from 0 to 1 (eq. (7)) [28].
Good models have low RMSE and MAE values and R? values closer to 1.

* €X] e 2
>~ (logkiyh, — logkyye))

RMSE = 4| = - (5)

" 1 kexp _1 kprrd
MAE — > i llog Hoh 0gkyo. | 6)

3 (logkssh — logk).

R2=1- L
> (logkiyy, — logklyo. )

@)

where logk®% , logkr?, and logk%2 are the experimental, predicted and
average experimental logkyoe

Table 1

The predictive performance of molecular image-CNN QSARs on the test datasets from 5 groups.
Groups Model Training Validation Test

MAE RMSE R? MAE RMSE R? MAE RMSE R?

1 Model-R-1 0.09 0.12 0.96 0.24 0.31 0.75 0.22 0.33 0.60
2 Model-R-2 0.10 0.14 0.95 0.22 0.29 0.73 0.24 0.32 0.73
3 Model-R-3 0.08 0.14 0.95 0.20 0.28 0.72 0.23 0.34 0.68
4 Model-R-4 0.09 0.13 0.96 0.23 0.32 0.70 0.22 0.31 0.73
5 Model-R-5 0.10 0.15 0.95 0.20 0.28 0.76 0.20 0.28 0.67
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Fig. 3. The scatter plots of the experimental versus predicted logkyo. by the molecular image-CNN models for the five groups: (A) G1, (B) G2, (C) G3, (D) G4, and
(E) G5.
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Fig. 4. The comparison of scatter plots of the experimental versus predicted logkyo. between the molecular fingerprint-based and molecular image-CNN models for

group 4.

2.4. Applicability domain (AD)

AD is used to evaluate if a reliable prediction can be made for a new
compound. It can be determined by comparing the similarity between a
new compound and the compounds in the training dataset. The more
similar the new compound is to the compounds in the training dataset,
the more reliable the prediction is. Here, we compared the image of each
compound in the test dataset with that of every compound in the
training dataset one by one, and obtained sets of similarity values.
Similar to our previous study [12], two similarity metrics were used:
maximum similarity and mean similarity, which were calculated by
taking the maximum and mean values from one set of similarity values,
respectively. If the similarity of a compound in the test dataset was lower
than the threshold value, this compound was determined to be outside
the AD and then removed from the test dataset. RMSE was then
recalculated and the optimum threshold value was the one that led to
the minimum recalculated RMSE;.st with the least number of compounds
determined to be outside the AD. The similarity between two images is
quantified by the Structural SIMilarity (SSIM) index [29]. The SSIM
index can be viewed as a quantitative measure of one of the images as
compared to that of another image that is regarded as of perfect quality.
The range of SSIM is O to 1, in which the higher the SSIM index value, the
more similar these two images are. A detailed description of this index
can be found in the paper [29]. The similarity was obtained by the
package of scikit-image with the command “skimage.measure.compar-
e ssim(imagel, image2, multichannel = True)”.

Table 2
The prediction accuracy, F1 scores and AUC-ROC values for functional group
recognition on the test datasets from 5 groups.

Group Model Accuracy (%) F1 score AUC-ROC
1 Model-C-1 91.7 0.977 0.98
2 Model-C-2 95.4 0.987 0.99
3 Model-C-3 94.5 0.984 0.98
4 Model-C-4 96.3 0.992 0.99
5 Model-C-5 93.5 0.983 0.98

3. Results and discussion

3.1. Effect of transfer learning and data augmentation on the predictive
performance of the models

Fig. 2 shows the comparison of predictive performance of models
trained with/without applying data augmentation or transfer learning.
Fig. 2A shows that without applying data augmentation the general-
ization ability of models on the test dataset became worse (RMSE st
0.284-0.339 vs. 0.395-0.45), although its predictive performance on
the training dataset was similar to that with data augmentation applied
(RMSE1ain: 0.123-0.151 vs. 0.118-0.142). This is because without data
augmentation the same atom groups at different positions in images
cannot be well recognized by CNN [30]. By flipping or rotating images in
data augmentation this issue can be largely mitigated. Fig. 2B shows that
without transfer learning the obtained CNN models have poor perfor-
mance even on the training dataset (RMSEqin: 0.452-0.592). This is
because the CNN models without transfer learning had to “learn” from
scratch. With transfer learning, the CNN had already acquired the ability
to effectively extract key features from images, so the predictive per-
formance of the models for training, validation and test datasets were all
considerably improved.

3.2. The predictive performance of QSAR models obtained by molecular
image-CNN with transfer learning and data augmentation versus by
molecular fingerprints-based models

We trained CNN with transfer learning and data augmentation to
develop molecular image-CNN QSAR models and listed the results in
Table 1. All the 5 models for 5 groups showed similar predictive per-
formance in terms of MAE, RMSE, and R? for training, validation and
test datasets, indicating that the performance of the models was inde-
pendent of data splitting. We previously used the same dataset and
molecular fingerprints to develop QSAR models and compared them
with recently reported molecular descriptor-based QSARs (details can be
found in our previous paper) [12]. Table S2 lists a comparison between
the molecular image-CNN model and other molecular descriptor-based
and molecular fingerprint-based models. The molecular image-CNN
models had RMSE, ranging from 0.28 to 0.34, which was slightly
better than that of molecular fingerprint-based models (RMSEqes:
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Fig. 5. The highlighted areas (heat maps) were obtained by Grad-CAM as the identified features for the corresponding functional groups in (A) 5-(hydroxymethyl)
furan-2-carbaldhyde and (B) 2,2-dichloroacetic acid. The true labels are on the top of each image. The heat maps of all other compounds are provided in the SI (file
name: Classifiction Grad CAM_MIs.pdf).

(B)
(A)

[ Highlighted molecules
I Not highlighted molecules

Fig. 6. (A) The percentages of images in which the molecules were or were not highlighted (in part or in whole) by Grad-CAM; (B) The heat maps of some com-
pounds whose structures were not highlighted by Grad-CAM, in which the bright yellow color is the highlighted areas while the dark purple color is not the
highlighted areas (The heat maps of all the compounds are in the SI with the file name Regression MIs and Grad CAM.pdf). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)



S. Zhong et al.

0.30-0.35) [12]. Fig. 3 shows the scatter plots of the experimental versus
predicted logkioe by the molecular image-CNN models. All the data
points centered on the perfect fitting line (dotted line) with similar
RMSE, MAE and R? for the training, validation and test datasets,
respectively.

Our previous molecular fingerprint-based models showed particu-
larly less accurate prediction for compounds with experimental logkpoe
values below 9, as shown in Fig. 4 (black squares). This was because
there is only a small number of compounds with experimental logkyoe
values <9. Although the accuracy could be improved if we obtain more
data points for compounds with logkpoe below 9, which is experimen-
tally demanding, we can more easily improve the accuracy by applying
data augmentation, as shown in Fig. 4 (red circles). After applying data
augmentation, the molecular image-CNN models showed similar accu-
rate predictions for compounds with experimental logkyo. below 9 and
over 9.

3.3. Functional group recognition and Grad-CAM interpretation

The above results showed that the molecular image-CNN models had
been well trained and ready to be interpreted. We first examined a
classification application to test the reliability of Grad-CAM toward
feature identification. Based on the molecular image-CNN models, we
trained 5 molecular image-CNN classifiers for five random functional
groups, namely, ~-OH, —CN, halogen, =O and aromatic carbon, in com-
pounds from the same 5 groups as above. This classification test was
conducted because it can easily tell if molecular image-CNN classifiers
choose the most relevant parts of the molecular images to predict the
correct functional groups.

Table 2 shows the predictive performance of the 5 molecular image-
CNN classifiers on the test dataset in terms of accuracy, F1 score and
AUC-ROC. The obtained high accuracy (>91.7%), F1 scores (>0.977)
and AUC-ROC values (>>0.98) for all the five classification models on the
corresponding test datasets indicated that the performance of the models
was independent of data splitting and the models had been well trained
and ready to be interpreted. We then applied Grad-CAM to interpret one
of the classification models (Model-C-4) by checking if the model had
chosen the most relevant feature(s) in the images as the target functional
groups. Fig. 5 shows two examples of the Grad-CAM results (the Grad-
CAM results for all the compounds are supplied in the file named
“Classifiction_Grad_CAM_MlIs.pdf” in the SI), in which the highlighted
areas represent the features, as unveiled by the Grad-CAM method, that
the CNN relied on to classify as the target functional groups. There are
three labeled functional groups (-OH, =O and aromatic-C) in 5-
(hydroxymethyl) furan-2-carbaldhyde (Fig. 5A), all of which have been
successfully identified by the model. Likewise, the three functional
groups of —~OH, halogen and =0 in 2,2-dichloroacetic acid have also
been chosen correctly (Fig. 5B). These results indicate that Grad-CAM is
a reliable method to highlight what features of the images are chosen by
CNN to make predictions.

3.4. Molecular image-CNN QSAR model interpretation

After validating the reliability of the Grad-CAM method, we can now
interpret the molecular image-CNN QSAR models. Firstly, we should
check if the models chose structural features rather than blank areas in
the molecular images when making prediction because this should be a
prerequisite for any meaningful prediction. Otherwise, we should not
trust the model. Fig. 6A shows that for over 90% of the compounds their
molecular images were highlighted in part or in whole, indicating that
the molecular image-CNN models were at least not based on blank areas
in the images to make prediction.

We then carefully visited the compounds whose structures were not
highlighted in the images and found that, interestingly, all of them are
recalcitrant to oxidation by HOe radicals, such as halogenated com-
pounds (examples in Fig. 6B). For these compounds, electron-
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withdrawing groups largely decrease their electron density, and hence
lower their reactivity toward HOe radicals which mainly attack
electron-rich molecules. When developing QSARs, CNN darkened these
groups so that other blank areas were highlighted instead. We thus can
identify structural features in molecular images that can decrease
logknoe based on these darkened areas in the heat maps. Based on this
rule, we found that the CNN can accurately identify groups that can
reduce the reactivity (i.e., logkyo.), as examples shown in Figure S5. The
groups of -CN, —-NO,, -SOs, —F, and -COOH are all well-known electron-
withdrawing groups when attached to aromatic rings and can decrease
the logkpo.. Table 4 shows that 100% of common aromatic substitutes
with negative electronic effects were correctly identified by the molec-
ular image-CNN.

We next evaluate if the highlighted features by the CNN are linked to
higher reactivity of the compounds containing these features. Table 5
lists 10 common classes of organic compounds; interestingly, the high-
lighted sites for all 10 classes except for nitriles are indeed all known to
increase the reactivity. For nitriles, -CN is an electron-withdrawing
group whose presence can decrease the logkyo. and, thus, should not
be highlighted. The CNN highlighted the blank areas in the molecular
images instead, which is correct in that the —CN is the least reactive
feature on the images (less reactive than no structural features).

We have to recognize that molecular image-CNN models, similar to
conventional molecular descriptor-based QSARs, cannot directly reflect
reaction mechanisms between organic compounds and OH radicals,
such as elementary reactions and rate-limiting steps. This is under-
standable because reaction mechanisms are not directly related to the
reactivity. Rather, conventional QSARs rely on selected molecular de-
scriptors to represent properties that would affect the reactivity, e.g.,
Hammett constants for electronic properties, whereas the obtained CNN
model identifies key structural features that can enhance or inhibit the
reaction toward the OH radical. Because the main purpose of QSAR
models is to predict logkppe, correctly using the knowledge of how
functional groups affect logkyo, is relevant to making predictions, as
indeed correctly utilized by our CNN-model.

3.5. Applicability domain (AD)

We finally defined the applicability domain (AD) of our models to
evaluate if a reliable prediction can be made for a given compound. A
reliable prediction can be made if the new compound is structurally
similar to the ones used in the training dataset [31-33]. Here, we used
model-C-3 to determine its AD and compare it with that of the molecular
fingerprint-based models in our previous study [12]. Table 6 shows that
with increasing threshold values for both the maximum and mean
similarity, more compounds in the test dataset were outside the AD, but
the recalculated RMSE.e; first decreased and then increased. The
threshold value determines if a new compound is outside the AD or not.
For example, if the threshold value of the maximum similarity is set as
0.86, a new compound that has a maximum similarity of over 0.86 is
inside the AD, otherwise, it is outside the AD. Based on the maximum
similarity, a threshold of 0.85 led to a minimal RMSE s (0.334) with
only one compound outside the AD, while based on the mean similarity a
threshold of 0.81 yielded a minimal RMSE.s (0.335) with two com-
pounds outside the AD. Based on the principle that the optimum
threshold value is the one that leads to the minimum RMSE;s; with the
least number of compounds determined as outside the AD, the optimum
similarity metric and threshold value are the maximum similarity and
0.85, respectively. We can thus conclude that if the maximum structural
similarity of a given compound to the ones in the training dataset is
higher than 0.85, our molecular image-CNN models can make a reliable
prediction.

We also compared the AD of the molecular image-CNN models with
that of the molecular fingerprint-based models in our previous study
[12]. There were three compounds determined as outside the AD for the
molecular fingerprint-based models [12], which is more than that of the
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Table 4
Percentages of common aromatic substituents with negative electronic effects
that have been correctly identified by molecular image-CNN.

Functional No. of compounds No. of correctly Percentage
group with the FG identified compounds (%)
-NO, 36 36 100
-CN 23 23 100
—-CHO 11 11 100
-COCH3 9 9 100
—CONH, 6 6 100
—-CONHR 9 9 100
—-CONR; 1 1 100
-N=0 2 2 100
Halogen 266 266 100
Table 5

The known features of 10 classes of compounds that are beneficial to the reac-
tivity and the highlighted features by the CNN.

Compound class Compound No.” Highlighted features
Alkane 41-46 —CH,—/-CH3
Aldehyde 0-5 —CH,-/-CH3
Nitrile 810-813 Blank area
Primary amine 285-302 —CH,—/-CHj3
Cycloalkane 667-671 —CHo—
Alkene 49-52 -C=C
Alcohol 850-853 —-CH,-/-CHj3
Thiol 1016-1018 -SH

Ether 736-751 —CH,—/-CH3
Thioether 973-981 -S-

? The indices of the compounds in the dataset (file name dataset.xlsx in the SI).

Table 6
The thresholds of similarity, the number of compounds outside the AD for each
threshold value, and the corresponding RMSE;g;.

Similarity Threshold # of Compounds outside ~ Recalculated
metrics value the AD RMSEest
Maximum 0.84 0 0.340
similarity 0.85 1 0.334
0.86 2 0.335
0.87 3 0.336
Mean similarity 0.80 0 0.340
0.805 1 0.341
0.81 2 0.335
0.83 5 0.339
0.84 12 0.347
(A)

OH

"10H

oH OH

Molecular image-CNN
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molecular image-CNN models. This result indicated that the molecular
image-CNN models can be applied to a slightly broader range of com-
pounds than the molecular fingerprint-based models. This may result
from the benefits of transfer learning and data augmentation. Fig. 7
shows the specific compounds that are outside the ADs for the molecular
image-CNN and molecular fingerprint-based models. Different models
excluded different compounds because they used different chemical
representations so that the similarity comparison between compounds is
different. Molecular image-CNN chose one compound with a more
complex structure than those of the molecular fingerprint-based models.

4. Conclusions

This study developed molecular image-CNN models with techniques
of transfer learning and data augmentation. These two techniques can
largely enhance the robustness and predictive performance of models.
The obtained models showed a better prediction performance than
molecular fingerprint-based models. The Grad-CAM method demon-
strated that the models correctly chose the relevant molecular features
and identified the key functional groups in the molecular images, indi-
cating that we can trust the molecular image-CNN-based models.
Compared with molecular fingerprint-based models, the molecular
image-CNN models had a broader AD, which can be applied to a wider
range of compounds. This study not only offered a new, easy way to
develop QSARs for environmental applications but also evaluated the
trustworthiness of the models, which, as far as we know, should be a
mandatory step when “black box” machine learning algorithms are
employed. The application of this new modeling approach is not limited
to HOe radicals but can be extended to any applications that involve
many organic compounds. Given continuous needs for QSARs in various
environmental applications and the fact that more and more contami-
nants may arise in the future [34], the molecular image-CNN-based
approach will show great applications in the environmental field.
Moreover, we encourage researchers targeting other environmental is-
sues to be more creative in data analysis by, for example, considering
converting their own data to images as the inputs for CNN so that the
advantages of CNN, including transfer learning, data augmentation, and
intuitive interpretation, can be used to generate more robust, easily
interpretable models.
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Fig. 7. The compounds that are determined as outside the AD for the molecular image-CNN models (A) and molecular fingerprint-based models (B).
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