
Chemical Engineering Journal 408 (2021) 127998

Available online 7 December 2020
1385-8947/© 2020 Elsevier B.V. All rights reserved.

Molecular image-convolutional neural network (CNN) assisted QSAR 
models for predicting contaminant reactivity toward OH radicals: Transfer 
learning, data augmentation and model interpretation 

Shifa Zhong a,1, Jiajie Hu b,1, Xiong Yu a,b, Huichun Zhang a,* 

a Department of Civil and Environmental Engineering, Case Western Reserve University, 2104 Adelbert Road, Cleveland, OH 44106-7201, USA 
b Department of Electrical Engineering and Computer Science, Case Western Reserve University, 2104 Adelbert Road, Cleveland, OH 44106-7201, USA   

A R T I C L E  I N F O   

Keywords: 
Convolutional neural network (CNN) 
Hydroxyl radical 
Model interpretation 
Machine learning 
Molecular images 
QSARs 

A B S T R A C T   

In this study, we used molecular images as a representation for organic compounds and combined them with a 
convolutional neural network (CNN) to develop quantitative structure-activity relationships (QSARs) for pre
dicting compound rate constants toward OH radicals. We applied transfer learning and data augmentation to 
train molecular image-CNN models and the Gradient-weighted Class Activation Mapping (Grad-CAM) method to 
interpret them. Results showed that data augmentation and transfer learning can effectively enhance the 
robustness and predictive performance of the models, with the root-mean-square-error (RMSE) values on the test 
dataset (RMSEtest) decreasing from (0.395–0.45) to (0.284–0.339) after applying data augmentation, and the 
RMSE on the training dataset (RMSEtrain) decreasing from (0.452–0.592) to (0.123–0.151) after applying transfer 
learning. The obtained molecular image-CNN models showed comparative predictive performance (RMSEtest 
0.284–0.339) with the molecular fingerprint-based models (RMSEtest 0.30–0.35). Grad-CAM interpretation 
showed that the molecular image-CNN models correctly chose the molecular features in the images and iden
tified key functional groups that influenced the reactivity. The applicability domain analysis showed that the 
molecular image-CNN models have a broader applicability domain than molecular fingerprints-based models and 
the reactivity of any new compounds with a maximum similarity of over 0.85 to the compounds in the training 
dataset can be reliably predicted. This study demonstrated that molecular image-CNN is a new tool to develop 
QSARs for environmental applications and can be used to build trustful models that make meaningful 
predictions.   

1. Introduction 

Quantitative structure-activity relationships (QSARs) play important 
roles in the environmental field [1–3], based on which one can readily 
predict the activity of new compounds so that labor-intensive and 
expensive experiments can be largely avoided. In water treatment, for 
example, QSARs are often developed for different oxidants or re
ductants, such as H2O2 [2,4], O3 [4,5], Fe(VI) [6], HO• [1,5,7], SO4

•- 

[8,9], and hydrated electrons [10]. An important step to develop QSAR 
models is to express different organic compounds numerically. Three 
most often used representations are molecular descriptors, molecular 
fingerprints and the group contribution method. These representations 
extract information of compounds to numbers with certain 

physicochemical meanings. For example, molecular descriptors can 
quantify different physicochemical properties of organic compounds, 
such as Hammett constants, reduction potential, and topological polar 
surface area. Molecular fingerprints encode a compound structure into a 
binary vector (i.e., only containing 0 s and 1 s), in which only 1 s 
represent certain atom groups in the structure and the positions of 1 s in 
the vector represent the identity of the atom groups. A more specific 
example of molecular fingerprints is listed in our recent papers [11,12]. 
The group contribution method decomposes a compound structure into 
several sub-groups, with each group contributing to a portion of the 
reactivity [13–15]. All of these three representations are sophisticated 
representations of organic compounds, and can be further combined 
with various statistical and/or machine learning algorithms to develop 
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QSAR models. Compared with traditional statistical methods, such as 
multiple linear regression, machine learning algorithms are particularly 
capable of handling complex non-linear relationships based on big data. 
Non-linear relationships between chemical structures and reactivity 
may exist when more and more organic contaminants are involved in the 
dataset. Hence, QSAR models developed by machine learning methods 
often show better predictive performance than those by multiple linear 
regression [1], especially for large datasets. 

However, a simpler and more intuitive method to represent com
pounds is by 2D molecular images and every chemical has its unique 
molecular image. Different chemicals can be differentiated from each 
other in their images based on the type of atoms, their relative positions 
in the images and the connections of atoms in the molecules. For 
example, chlorine can be used to differentiate phenol and 2-chlorophe
nol while the position of chlorine can be used to differentiate 2-cholro
phenol and 3-chlorophenol. For compounds with enantiomer structures, 
molecular images can still be used by using solid or dotted wedge-shapes 
to indicate the bond positions in the 3D space. Although traditional 
machine learning algorithms cannot handle image data efficiently, with 
the development of deep learning, especially the convolutional neural 
network (CNN), image data can be directly handled to, for example, 
develop QSAR models. The first example of such an application is 
“Chemception” [16], which feeds 2D images of molecules to a deep 
CNN. Chemception slightly outperforms molecular fingerprint-based 
QSAR models in predicting biochemical activity and solvation but 
slightly underperforms in predicting toxicity. In Chemception, the 2D 
images of molecules are not 2D drawing of chemicals but “grid” images, 
in which a 2D drawing is mapped onto a 80 × 80 grid, where each atom 
is assigned a number based on its atomic mass unit, bonds are assigned 
number 2, and the other parts of the grid are empty (i.e., vacuum) and 
defaulted to number 0. Following that work, Fernandez et al. directly 
used 2D drawings of chemicals to develop molecular image-CNN models 
to predict toxicity of compounds [17]. They found that the new models 
showed comparable predictive accuracy with molecular descriptor- 
based models. Shi et al. also used the same approach to building pre
dictive models for absorption, distribution, metabolism, elimination, 
and toxicity of drug compounds and demonstrated a comparable per
formance to available machine learning models based on manual 
structural description and feature selection [18]. However, previous 
studies have not fully used the power of CNN, such as transfer learning 
and data augmentation, likely because the data volume in biomedicine is 
often large such that transfer learning and data augmentation are not 
needed. In the environmental field, unfortunately, data scarcity is a 
common issue; hence, transfer learning and data augmentation (details 
below) are expected to mitigate its impact [19,20]. After model devel
opment, CNN models in the previous studies are also not interpreted, 
although techniques of interpreting CNN models are available. 

Transfer learning refers to applying a model being pre-trained for one 
task to another with some modification. There are many CNN architec
tures that have been well-trained on large datasets to effectively extract 
features from numerous images, such as edges, colors and shapes of ob
jects. Adapting these architectures to a much smaller, different dataset 
will allow extraction of more relevant features from the dataset to achieve 
more accurate predictions. This is especially applicable here given that 
molecular images are often much less complex than many other images 
such as those in the ImageNet dataset [21]. Data augmentation can be 
readily achieved by, for example, rotating or flipping images, during 
which the objects in the images change their positions to generate new 
data points but their labels remain unchanged, which is not possible in the 
molecular descriptor-, molecular fingerprint- and group contribution- 
based methods. Both transfer learning and data augmentation can help 
address the issue of data scarcity, a common problem for experimental 
research such as measuring contaminant reactivity but detrimental to 
building robust ML models that require a large amount of data. For ma
chine learning interpretation, our previous study has listed some inter
pretation methods [12]. For CNN interpretation, there are generally three 

methods: Gradients, DeconvNets and Guided Backpropagation, to 
generate saliency maps, i.e., heat maps. Adebayo et al. showed that only 
Gradients are effective among these three methods [22]. Hence, we 
employed a gradients-based method to interpret our CNN model in this 
study. The Gradient-weighted Class Activation Mapping (Grad-CAM) 
method was recently developed, which can highlight the regions of the 
molecular images that are linked to model predictions by the CNN. Grad- 
CAM works by using gradients of a given target to highlight the most 
related regions in images to the predicted target, and the detailed working 
mechanism has been fully described in the literature (a brief introduction 
to Grad-CAM is in Text S2) [23]. This interpretation step is crucial for 
validating and trusting our “black box” deep CNN models. 

Here, we for the first time extended the molecular image-CNN 
method to the environmental field by developing QSARs to predict the 
rate constants of organic compounds toward HO• radicals (logkHO•) in 
the aqueous phase. We applied transfer learning and data augmentation 
to train our molecular image-CNN models and interpret it by the Grad- 
CAM method. The effects of transfer learning and data augmentation on 
the robustness and predictive performance of models were investigated. 
A dataset containing 1089 compounds and their rate constants toward 
OH radicals in water, which was previously used to successfully develop 
molecular fingerprint-based models [12], was used here. We also 
compared the molecular image-CNN models with those molecular 
fingerprint-based models. Finally, we used Grad-CAM to interpret which 
regions of the images were chosen by the CNN to make prediction. To 
intuitively show how Grad-CAM works, we developed classification 
models to successfully recognize 5 randomly selected functional groups 
in the 1089 compounds, namely –OH, –CN, halogen, =O and aromatic 
carbon. Grad-CAM was then applied to check if this classification model 
chose the correct molecular features in the molecular images for these 
functional groups. After validating the reliability of Grad-CAM, we 
interpreted our final regression model to evaluate its trustability. 

2. Materials and methods 

2.1. Dataset and 2D molecular images 

A dataset containing 1,089 organic compounds and their rate con
stants toward HO• radicals was compiled from our previous study and 
an detail description of the dataset can be found there [12]. Although we 
used the same dataset as the previous one, we employed a very different 
approach to develop QSAR models. In this way, we can make a fair 
comparison between the newly developed molecular image-CNN 
method and the previously published molecular fingerprint-machine 
learning method. Through this comparison, we highlighted a few ad
vantages of the new approach, including transfer learning, data 
augmentation and structure visualization. This dataset contains logkHO•

values that are close to the diffusion-control limit [24,25]. This may 
cause problems for other methods such as the group contribution 
method but not for deep learning methods because the latter can still 
learn the structural characteristics of those compounds whose reactivity 
will approach the diffusion-control limit. For example, if the rate con
stants of one class of compounds are always close to the diffusion-control 
limit, deep learning models can still correctly predict the rate constants 
of similar compounds––also close to the diffusion-control limit. Solva
tion and steric hindrance can be expected to affect the reactions, but 
because these effects have already been reflected in the measured 
logkHO•, deep learning models can still learn the relationship between 
logkHO• and these effects. 

We used the same training, validation and test datasets (8:1:1) as in 
the previous study [12] so that we can make a fair comparison between 
molecular fingerprint-based and molecular image-CNN models. The 
dataset was also rearranged to form five groups of datasets, each con
taining one training, one validation and one test dataset. This was to 
check if the model performance was dependent on the data splitting or 
not. The training dataset was used to train a CNN model, the validation 
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dataset was used to avoid overfitting the data, and the test dataset was 
used to evaluate the generalization ability of the CNN model. Note that 
the test dataset had never been exposed to the model during the training 
process. 

The ‘SMILES’ strings for all compounds were obtained by the 
ChemDraw program and then converted to the corresponding 2D 
structural images with a uniform style by the RDKit package in Python®. 
“SMILES” is short for Simplified Molecular-Input Line-Entry System, 
which refers to a line notation for encoding molecular structures and 
specific instances [26]. We then trained one model for each of the five 
groups and obtained five models as model-C-x or model-R-x, where C 
represents the classification application, R represents the regression 
application, and × = 1–5. For the classification application, five func
tional groups, namely, –OH, –CN, halogen, =O and aromatic carbon, 
were randomly chosen as the targets for demonstration of the efficiency 
of the Grad-CAM method. The chosen functional groups do not have 
special reactivity or mechanisms toward OH radicals. Note that we did 
not have to limit to these five functional groups and any other functional 
groups can be chosen here. This classification example was only used to 
show how Grad-CAM works; therefore, it did not matter which func
tional groups were chosen. Definitely, choosing representative func
tional groups for OH radical reaction is also feasible and we expect to see 
a similar finding as what we have observed. For each functional group, 
we manually labeled the 1,089 compounds with a combination of 0s and 
1s in which 1 represents its presence and 0 is for its absence. This is 
different from the regression modeling, where the labels, i.e., log- 
transformed rate constants logkHO•, were recorded when we collected 
the data points. When making predictions for logkHO•, we only need the 

2D images of the chemicals as the input to the molecular image-CNN 
models. 

2.2. Transfer learning, DenseNet121 architecture, and data augmentation 

For transfer learning, we used a pre-trained DenseNet121 that had 
been well trained on the ImageNet dataset [21], which contains over 
1,000,000 images in 1,000 categorical classes. This well-trained Den
seNet121 can thus effectively extract feature information from images. 
DenseNet121, the state-of-the-art architecture of CNNs developed in 
2016 [27], is a CNN architecture of DenseNet with 121 layers. The de
tails about DenseNet have been well-documented (a brief introduction 
to DenseNet121 is in Text S1) [27]. When applying transfer learning to 
our task, we first froze the convolutional layers of DenseNet121 and only 
trained its last fully connected layer. The model performance, however, 
was not satisfactory because molecular images are still different from the 
images in the ImageNet. While allowing the last fully connected layer of 
DenseNet121 being well trained, we then unfroze the convolutional 
layers and trained them again so they were more adaptive to our mo
lecular images. The effect of transfer learning was investigated by 
comparing the predictive performance of the models trained with and 
without applying transfer learning to the same dataset. 

When training models for the molecular images, we also applied data 
augmentation to expand the volume of our dataset. This can help the 
models to well recognize molecules independent of their positions and 
angles in the images. For example, phenol is still phenol no matter how 
we flip or rotate its image. For every molecular image, we randomly 
flipped it horizontally or vertically or rotated it with a random degree of 

Fig. 1. Flow chart of the model development and interpretation process for classification and regression applications.  
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less than 90◦ in every training epoch. Early stopping was used to control 
overfitting during the training process. The effect of data augmentation 
was investigated by comparing the predictive performance of models 
trained with and without applying data augmentation to the same 
dataset. 

After training the models, we randomly chose one model from the 5 
models for either the classification or regression application (i.e., Model- 
C-x or Model-R-x) and applied Grad-CAM to interpret which regions of 
the images were chosen as the most related feature(s) for the pre
dictions. Fig. 1 summarizes the process of model development and 
interpretation, including molecular image generation, data augmenta
tion, transfer learning, the CNN architecture used, and the model 
interpretation by Grad-CAM. 

2.3. Evaluation metrics 

For the classification application, accuracy, F1 score and AUC (Area 
Under The Curve)-ROC (Receiver Operating Characteristics) were used 
to evaluate performance of the developed models. Accuracy is the per
centage of compounds that are correctly classified in the total number of 
compounds, as shown in eq. (1). F1 score ranges from 0 to 1 and is 
calculated by the precision and recall, as shown in eq. (2), in which a F1 
score of close to 1 suggests a good model performance. A detailed 
explanation of F1 score is in Text S4. An AUC-ROC curve quantifies the 
classification performance at various thresholds. With the maximum 
AUC-ROC value of 1, higher AUC-ROC values indicate better model 
performance. 

Accuracy =
TN + TP

TN + TP + FP + FN
(1)  

F1score = 2x
precision*recall

precision + recall
(2)  

Precision =
TP

TP + FP
(3)  

Recall =
TP

TP + FN
(4)  

where TN and TP are the true negative and positive cases that are 
correctly identified while FP and FN are the false negative and positive 
cases that are not correctly identified. 

For the regression application, the root mean square error (RMSE), 
mean absolute error (MAE) and R2 were used to evaluate the perfor
mance of the developed models. RMSE is the standard deviation of the 
residuals (prediction errors) (eq. (5)), MAE measures the average ab
solute difference between the predicted and real values (eq. (6)), and R2 

is the coefficient of determination ranging from 0 to 1 (eq. (7)) [28]. 
Good models have low RMSE and MAE values and R2 values closer to 1. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(logkexp

HO. − logkpred
HO. )

2

n

√
√
√
√
√

(5)  

MAE =

∑n
i |logkexp

HO. − logkpred
HO. |

n
(6)  

R2 = 1 −

∑
(logkexp

HO. − logkexp
HO.)

2

∑
(logkexp

HO. − logkpred
HO. )

2 (7)  

where logkexp
HO., logkpred

HO. , and logkexp
HO. are the experimental, predicted and 
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0.0

0.2

0.4

0.6

Without data augmentation

TestValidation

R
M

S
E

Training

With data augmentation(A)

0.0

0.2

0.4

0.6

0.8

Without transfer learning

TestValidation

R
M

S
E

Training

With transfer learning(B)

Fig. 2. The effect of data augmentation (A) and transfer learning (B) on the predictive performance of the CNN models.  

Table 1 
The predictive performance of molecular image-CNN QSARs on the test datasets from 5 groups.  

Groups Model Training Validation Test 

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 

1 Model-R-1  0.09  0.12  0.96  0.24  0.31  0.75  0.22  0.33  0.60 
2 Model-R-2  0.10  0.14  0.95  0.22  0.29  0.73  0.24  0.32  0.73 
3 Model-R-3  0.08  0.14  0.95  0.20  0.28  0.72  0.23  0.34  0.68 
4 Model-R-4  0.09  0.13  0.96  0.23  0.32  0.70  0.22  0.31  0.73 
5 Model-R-5  0.10  0.15  0.95  0.20  0.28  0.76  0.20  0.28  0.67  
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Fig. 3. The scatter plots of the experimental versus predicted logkHO• by the molecular image-CNN models for the five groups: (A) G1, (B) G2, (C) G3, (D) G4, and 
(E) G5. 
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2.4. Applicability domain (AD) 

AD is used to evaluate if a reliable prediction can be made for a new 
compound. It can be determined by comparing the similarity between a 
new compound and the compounds in the training dataset. The more 
similar the new compound is to the compounds in the training dataset, 
the more reliable the prediction is. Here, we compared the image of each 
compound in the test dataset with that of every compound in the 
training dataset one by one, and obtained sets of similarity values. 
Similar to our previous study [12], two similarity metrics were used: 
maximum similarity and mean similarity, which were calculated by 
taking the maximum and mean values from one set of similarity values, 
respectively. If the similarity of a compound in the test dataset was lower 
than the threshold value, this compound was determined to be outside 
the AD and then removed from the test dataset. RMSEtest was then 
recalculated and the optimum threshold value was the one that led to 
the minimum recalculated RMSEtest with the least number of compounds 
determined to be outside the AD. The similarity between two images is 
quantified by the Structural SIMilarity (SSIM) index [29]. The SSIM 
index can be viewed as a quantitative measure of one of the images as 
compared to that of another image that is regarded as of perfect quality. 
The range of SSIM is 0 to 1, in which the higher the SSIM index value, the 
more similar these two images are. A detailed description of this index 
can be found in the paper [29]. The similarity was obtained by the 
package of scikit-image with the command “skimage.measure.compar
e_ssim(image1, image2, multichannel = True)”. 

3. Results and discussion 

3.1. Effect of transfer learning and data augmentation on the predictive 
performance of the models 

Fig. 2 shows the comparison of predictive performance of models 
trained with/without applying data augmentation or transfer learning. 
Fig. 2A shows that without applying data augmentation the general
ization ability of models on the test dataset became worse (RMSEtest: 
0.284–0.339 vs. 0.395–0.45), although its predictive performance on 
the training dataset was similar to that with data augmentation applied 
(RMSEtrain: 0.123–0.151 vs. 0.118–0.142). This is because without data 
augmentation the same atom groups at different positions in images 
cannot be well recognized by CNN [30]. By flipping or rotating images in 
data augmentation this issue can be largely mitigated. Fig. 2B shows that 
without transfer learning the obtained CNN models have poor perfor
mance even on the training dataset (RMSEtrain: 0.452–0.592). This is 
because the CNN models without transfer learning had to “learn” from 
scratch. With transfer learning, the CNN had already acquired the ability 
to effectively extract key features from images, so the predictive per
formance of the models for training, validation and test datasets were all 
considerably improved. 

3.2. The predictive performance of QSAR models obtained by molecular 
image-CNN with transfer learning and data augmentation versus by 
molecular fingerprints-based models 

We trained CNN with transfer learning and data augmentation to 
develop molecular image-CNN QSAR models and listed the results in 
Table 1. All the 5 models for 5 groups showed similar predictive per
formance in terms of MAE, RMSE, and R2 for training, validation and 
test datasets, indicating that the performance of the models was inde
pendent of data splitting. We previously used the same dataset and 
molecular fingerprints to develop QSAR models and compared them 
with recently reported molecular descriptor-based QSARs (details can be 
found in our previous paper) [12]. Table S2 lists a comparison between 
the molecular image-CNN model and other molecular descriptor-based 
and molecular fingerprint-based models. The molecular image-CNN 
models had RMSEtest ranging from 0.28 to 0.34, which was slightly 
better than that of molecular fingerprint-based models (RMSEtest: 
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Fig. 4. The comparison of scatter plots of the experimental versus predicted logkHO• between the molecular fingerprint-based and molecular image-CNN models for 
group 4. 

Table 2 
The prediction accuracy, F1 scores and AUC-ROC values for functional group 
recognition on the test datasets from 5 groups.  

Group Model Accuracy (%) F1 score AUC-ROC 

1 Model-C-1  91.7  0.977  0.98 
2 Model-C-2  95.4  0.987  0.99 
3 Model-C-3  94.5  0.984  0.98 
4 Model-C-4  96.3  0.992  0.99 
5 Model-C-5  93.5  0.983  0.98  
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Fig. 5. The highlighted areas (heat maps) were obtained by Grad-CAM as the identified features for the corresponding functional groups in (A) 5-(hydroxymethyl) 
furan-2-carbaldhyde and (B) 2,2-dichloroacetic acid. The true labels are on the top of each image. The heat maps of all other compounds are provided in the SI (file 
name: Classifiction_Grad_CAM_MIs.pdf). 

Fig. 6. (A) The percentages of images in which the molecules were or were not highlighted (in part or in whole) by Grad-CAM; (B) The heat maps of some com
pounds whose structures were not highlighted by Grad-CAM, in which the bright yellow color is the highlighted areas while the dark purple color is not the 
highlighted areas (The heat maps of all the compounds are in the SI with the file name Regression MIs and Grad_CAM.pdf). (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.) 
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0.30–0.35) [12]. Fig. 3 shows the scatter plots of the experimental versus 
predicted logkHO• by the molecular image-CNN models. All the data 
points centered on the perfect fitting line (dotted line) with similar 
RMSE, MAE and R2 for the training, validation and test datasets, 
respectively. 

Our previous molecular fingerprint-based models showed particu
larly less accurate prediction for compounds with experimental logkHO•

values below 9, as shown in Fig. 4 (black squares). This was because 
there is only a small number of compounds with experimental logkHO•

values <9. Although the accuracy could be improved if we obtain more 
data points for compounds with logkHO• below 9, which is experimen
tally demanding, we can more easily improve the accuracy by applying 
data augmentation, as shown in Fig. 4 (red circles). After applying data 
augmentation, the molecular image-CNN models showed similar accu
rate predictions for compounds with experimental logkHO• below 9 and 
over 9. 

3.3. Functional group recognition and Grad-CAM interpretation 

The above results showed that the molecular image-CNN models had 
been well trained and ready to be interpreted. We first examined a 
classification application to test the reliability of Grad-CAM toward 
feature identification. Based on the molecular image-CNN models, we 
trained 5 molecular image-CNN classifiers for five random functional 
groups, namely, –OH, –CN, halogen, =O and aromatic carbon, in com
pounds from the same 5 groups as above. This classification test was 
conducted because it can easily tell if molecular image-CNN classifiers 
choose the most relevant parts of the molecular images to predict the 
correct functional groups. 

Table 2 shows the predictive performance of the 5 molecular image- 
CNN classifiers on the test dataset in terms of accuracy, F1 score and 
AUC-ROC. The obtained high accuracy (>91.7%), F1 scores (>0.977) 
and AUC-ROC values (>0.98) for all the five classification models on the 
corresponding test datasets indicated that the performance of the models 
was independent of data splitting and the models had been well trained 
and ready to be interpreted. We then applied Grad-CAM to interpret one 
of the classification models (Model-C-4) by checking if the model had 
chosen the most relevant feature(s) in the images as the target functional 
groups. Fig. 5 shows two examples of the Grad-CAM results (the Grad- 
CAM results for all the compounds are supplied in the file named 
“Classifiction_Grad_CAM_MIs.pdf” in the SI), in which the highlighted 
areas represent the features, as unveiled by the Grad-CAM method, that 
the CNN relied on to classify as the target functional groups. There are 
three labeled functional groups (–OH, =O and aromatic-C) in 5- 
(hydroxymethyl) furan-2-carbaldhyde (Fig. 5A), all of which have been 
successfully identified by the model. Likewise, the three functional 
groups of –OH, halogen and =O in 2,2-dichloroacetic acid have also 
been chosen correctly (Fig. 5B). These results indicate that Grad-CAM is 
a reliable method to highlight what features of the images are chosen by 
CNN to make predictions. 

3.4. Molecular image-CNN QSAR model interpretation 

After validating the reliability of the Grad-CAM method, we can now 
interpret the molecular image-CNN QSAR models. Firstly, we should 
check if the models chose structural features rather than blank areas in 
the molecular images when making prediction because this should be a 
prerequisite for any meaningful prediction. Otherwise, we should not 
trust the model. Fig. 6A shows that for over 90% of the compounds their 
molecular images were highlighted in part or in whole, indicating that 
the molecular image-CNN models were at least not based on blank areas 
in the images to make prediction. 

We then carefully visited the compounds whose structures were not 
highlighted in the images and found that, interestingly, all of them are 
recalcitrant to oxidation by HO• radicals, such as halogenated com
pounds (examples in Fig. 6B). For these compounds, electron- 

withdrawing groups largely decrease their electron density, and hence 
lower their reactivity toward HO• radicals which mainly attack 
electron-rich molecules. When developing QSARs, CNN darkened these 
groups so that other blank areas were highlighted instead. We thus can 
identify structural features in molecular images that can decrease 
logkHO• based on these darkened areas in the heat maps. Based on this 
rule, we found that the CNN can accurately identify groups that can 
reduce the reactivity (i.e., logkHO•), as examples shown in Figure S5. The 
groups of –CN, –NO2, –SO2, –F, and –COOH are all well-known electron- 
withdrawing groups when attached to aromatic rings and can decrease 
the logkHO•. Table 4 shows that 100% of common aromatic substitutes 
with negative electronic effects were correctly identified by the molec
ular image-CNN. 

We next evaluate if the highlighted features by the CNN are linked to 
higher reactivity of the compounds containing these features. Table 5 
lists 10 common classes of organic compounds; interestingly, the high
lighted sites for all 10 classes except for nitriles are indeed all known to 
increase the reactivity. For nitriles, –CN is an electron-withdrawing 
group whose presence can decrease the logkHO• and, thus, should not 
be highlighted. The CNN highlighted the blank areas in the molecular 
images instead, which is correct in that the –CN is the least reactive 
feature on the images (less reactive than no structural features). 

We have to recognize that molecular image-CNN models, similar to 
conventional molecular descriptor-based QSARs, cannot directly reflect 
reaction mechanisms between organic compounds and OH radicals, 
such as elementary reactions and rate-limiting steps. This is under
standable because reaction mechanisms are not directly related to the 
reactivity. Rather, conventional QSARs rely on selected molecular de
scriptors to represent properties that would affect the reactivity, e.g., 
Hammett constants for electronic properties, whereas the obtained CNN 
model identifies key structural features that can enhance or inhibit the 
reaction toward the OH radical. Because the main purpose of QSAR 
models is to predict logkHO•, correctly using the knowledge of how 
functional groups affect logkHO• is relevant to making predictions, as 
indeed correctly utilized by our CNN-model. 

3.5. Applicability domain (AD) 

We finally defined the applicability domain (AD) of our models to 
evaluate if a reliable prediction can be made for a given compound. A 
reliable prediction can be made if the new compound is structurally 
similar to the ones used in the training dataset [31–33]. Here, we used 
model-C-3 to determine its AD and compare it with that of the molecular 
fingerprint-based models in our previous study [12]. Table 6 shows that 
with increasing threshold values for both the maximum and mean 
similarity, more compounds in the test dataset were outside the AD, but 
the recalculated RMSEtest first decreased and then increased. The 
threshold value determines if a new compound is outside the AD or not. 
For example, if the threshold value of the maximum similarity is set as 
0.86, a new compound that has a maximum similarity of over 0.86 is 
inside the AD, otherwise, it is outside the AD. Based on the maximum 
similarity, a threshold of 0.85 led to a minimal RMSEtest (0.334) with 
only one compound outside the AD, while based on the mean similarity a 
threshold of 0.81 yielded a minimal RMSEtest (0.335) with two com
pounds outside the AD. Based on the principle that the optimum 
threshold value is the one that leads to the minimum RMSEtest with the 
least number of compounds determined as outside the AD, the optimum 
similarity metric and threshold value are the maximum similarity and 
0.85, respectively. We can thus conclude that if the maximum structural 
similarity of a given compound to the ones in the training dataset is 
higher than 0.85, our molecular image-CNN models can make a reliable 
prediction. 

We also compared the AD of the molecular image-CNN models with 
that of the molecular fingerprint-based models in our previous study 
[12]. There were three compounds determined as outside the AD for the 
molecular fingerprint-based models [12], which is more than that of the 
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molecular image-CNN models. This result indicated that the molecular 
image-CNN models can be applied to a slightly broader range of com
pounds than the molecular fingerprint-based models. This may result 
from the benefits of transfer learning and data augmentation. Fig. 7 
shows the specific compounds that are outside the ADs for the molecular 
image-CNN and molecular fingerprint-based models. Different models 
excluded different compounds because they used different chemical 
representations so that the similarity comparison between compounds is 
different. Molecular image-CNN chose one compound with a more 
complex structure than those of the molecular fingerprint-based models. 

4. Conclusions 

This study developed molecular image-CNN models with techniques 
of transfer learning and data augmentation. These two techniques can 
largely enhance the robustness and predictive performance of models. 
The obtained models showed a better prediction performance than 
molecular fingerprint-based models. The Grad-CAM method demon
strated that the models correctly chose the relevant molecular features 
and identified the key functional groups in the molecular images, indi
cating that we can trust the molecular image-CNN-based models. 
Compared with molecular fingerprint-based models, the molecular 
image-CNN models had a broader AD, which can be applied to a wider 
range of compounds. This study not only offered a new, easy way to 
develop QSARs for environmental applications but also evaluated the 
trustworthiness of the models, which, as far as we know, should be a 
mandatory step when “black box” machine learning algorithms are 
employed. The application of this new modeling approach is not limited 
to HO• radicals but can be extended to any applications that involve 
many organic compounds. Given continuous needs for QSARs in various 
environmental applications and the fact that more and more contami
nants may arise in the future [34], the molecular image-CNN-based 
approach will show great applications in the environmental field. 
Moreover, we encourage researchers targeting other environmental is
sues to be more creative in data analysis by, for example, considering 
converting their own data to images as the inputs for CNN so that the 
advantages of CNN, including transfer learning, data augmentation, and 
intuitive interpretation, can be used to generate more robust, easily 
interpretable models. 
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Fig. 7. The compounds that are determined as outside the AD for the molecular image-CNN models (A) and molecular fingerprint-based models (B).  

Table 6 
The thresholds of similarity, the number of compounds outside the AD for each 
threshold value, and the corresponding RMSEtest.  

Similarity 
metrics 

Threshold 
value 

# of Compounds outside 
the AD 

Recalculated 
RMSEtest 

Maximum 
similarity  

0.84 0  0.340  
0.85 1  0.334  
0.86 2  0.335  
0.87 3  0.336 

Mean similarity  0.80 0  0.340  
0.805 1  0.341  
0.81 2  0.335  
0.83 5  0.339  
0.84 12  0.347  

Table 4 
Percentages of common aromatic substituents with negative electronic effects 
that have been correctly identified by molecular image-CNN.  

Functional 
group 

No. of compounds 
with the FG 

No. of correctly 
identified compounds 

Percentage 
(%) 

–NO2 36 36 100 
–CN 23 23 100 
–CHO 11 11 100 
–COCH3 9 9 100 
–CONH2 6 6 100 
–CONHR 9 9 100 
–CONR2 1 1 100 
–N=O 2 2 100 
Halogen 266 266 100  

Table 5 
The known features of 10 classes of compounds that are beneficial to the reac
tivity and the highlighted features by the CNN.  

Compound class Compound No.a Highlighted features 

Alkane 41–46 –CH2–/–CH3 

Aldehyde 0–5 –CH2–/–CH3 

Nitrile 810–813 Blank area 
Primary amine 285–302 –CH2–/–CH3 

Cycloalkane 667–671 –CH2– 
Alkene 49–52 –C=C 
Alcohol 850–853 –CH2–/–CH3 

Thiol 1016–1018 –SH 
Ether 736–751 –CH2–/–CH3 

Thioether 973–981 –S–  

a The indices of the compounds in the dataset (file name dataset.xlsx in the SI). 
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