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Abstract

We study a model of cheap talk with one substantive assumption: The

sender's preferences are state independent. Our main observation is that such

a sender gains credibility by degrading self-serving information. Using this

observation, we examine the sender's bene�ts from communication, assess the

value of commitment, and explicitly solve for sender-optimal equilibria in three

examples. A key result is a geometric characterization of the value of cheap talk,

described by the quasiconcave envelope of the sender's value function. (JEL

D83, D82, M37, D86, D72)

Keywords: cheap talk, belief-based approach, securability, quasiconcave

envelope, persuasion, information transmission, information design

1 Introduction

How much can an expert bene�t from strategic communication with an uninformed

agent? A large literature, starting with Crawford and Sobel (1982) and Green and

Stokey (2007), has studied this question, focusing on the case in which the expert's

preferences depend on the state. However, many experts have state-independent

preferences: Salespeople want to sell products with higher commissions; politicians
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want to get elected; lawyers want favorable rulings; and so on. This paper analyzes

the extent to which such experts bene�t from cheap talk.

We consider a general cheap-talk model with one substantive assumption: The

sender has state-independent preferences. Thus, we start with a receiver facing a

decision problem with incomplete information. The relevant information is available

to an informed sender who cares only about the receiver's action. Wanting to in�uence

this action, the sender communicates with the receiver using costless messages.

Other papers have studied cheap-talk communication between a sender and a

receiver when the former has state-independent preferences.1 The most relevant is

Chakraborty and Harbaugh (2010). Looking at a multidimensional specialization of

our model, they show the sender can always communicate some information credibly

and in�uence the receiver's actions by trading o� dimensions.2 Chakraborty and

Harbaugh (2010) also observe that a need for sender indi�erence creates a role for

quasiconvexity and quasiconcavity. In particular, their second theorem says that, in

their environment, the sender likes (dislikes) in�uencing the receiver in equilibrium

whenever the sender's utility is a quasiconvex (quasiconcave) function of the receiver's

action.

Our main insight is that a sender with state-independent preferences gains cred-

ibility by degrading self-serving information, that is, by making messages that serve

as pro�table deviations less informative. To derive this insight, we take a belief-based

approach, as is common in the literature on communication.3 Thus, we summarize

communication via its induced information policy, a distribution over receiver poste-

rior beliefs that averages to the prior. Say that a payo� s is sender bene�cial if it

is larger than the sender's no-information payo�, and securable if the sender's lowest

ex-post payo� from some information policy is at least s. Theorem 1 shows a sender-

bene�cial payo� s can be obtained in equilibrium if and only if s is securable. Thus,

1Schnakenberg (2015) characterizes when an expert can convince voters to implement a proposal,
and when said communication harms the voting population. Margaria and Smolin (2018) prove a
folk theorem for a repeated interaction in which both a sender and a receiver are long-lived. With
a long-lived sender but short-lived receivers, Best and Quigley (2020) show that only partitional
information can be credibly revealed, and that well-chosen mediation protocols can restore the
commitment solution for a patient sender. Chung and Harbaugh (2019) test experimentally the
predictions of a recommendation game similar to our leading example.

2See Battaglini (2002) and Chakraborty and Harbaugh (2007) for applications of this idea in the
case of state-dependent sender preferences.

3For example, see Aumann and Maschler (1995), Aumann and Hart (2003), Kamenica and
Gentzkow (2011), Alonso and Câmara (2016), and Ely (2017).
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although the information policy securing s need not itself arise in equilibrium, its

existence is su�cient for the sender to obtain a payo� of s in some equilibrium. Intu-

itively, the securing policy leads to posteriors that provide too much sender-bene�cial

information to the receiver. By degrading said information posterior by posterior,

one can construct an equilibrium information policy attaining the secured value.

To illustrate our main result, consider a political think tank that advises a law-

maker. The lawmaker is contemplating whether to pass one of two possible reforms,

denoted by 1 and 2, or to maintain the status quo, denoted by 0. Evaluating each

proposal's merits requires expertise, which the think tank possesses. Given the think

tank's political leanings, it is known to prefer certain proposals to others. In partic-

ular, suppose the status quo is the think tank's least preferred option and the second

reform is the think tank's favorite option. Hence, let a ∈ {0, 1, 2} represent both the

lawmaker's choice and the think tank's payo� from that choice. To choose to imple-

ment a reform, the lawmaker must be su�ciently con�dent that the reform is good.

Suppose one reform is good and one is bad, where the state, θ ∈ {θ1, θ2}, indicates
the identity of the good reform. The lawmaker implements reform a whenever he

assigns θa a probability strictly above 3
4
. At 3

4
, the lawmaker is indi�erent between

said reform and the status quo, which the lawmaker chooses when neither reform is

su�ciently likely to be good. Both reforms are equally likely to be good under the

prior.

Suppose the think tank could reveal the state to the lawmaker; that is, the think

tank recommends that the lawmaker implement 1 when the state is θ1 and imple-

ment 2 when the state is θ2. Because following these recommendations is incentive-

compatible for the lawmaker, the think tank's ex-post payo� would be 1 when sending

implement 1 and 2 when sending implement 2. By contrast, under no information,

the think tank's payo� is 0. Thus, revealing the state secures the think tank a payo�

of 1, which is higher than its payo� under the prior. Notice that 1 is then the highest

payo� that the think tank can secure, because no information policy always increases

the probability that the lawmaker assigns to θ2. One can therefore apply Theorem 1

to learn two things: (i) 1 is an upper bound on the think tank's equilibrium payo�s,

and (ii) we can achieve this bound via a message-by-message garbling of said protocol.

For (ii), consider what happens when the think tank sends the implement 2 message
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according to

P {implement 2 |θ = θ1} =
1

3
,

P {implement 2 |θ = θ2} = 1,

and sends implement 1 with the complementary probabilities. As with perfect state

revelation, choosing proposal 1 is the lawmaker's unique best response to implement

1. However, given implement 2, the lawmaker assigns a probability of 3
4
to θ2. Being

indi�erent, the lawmaker mixes between keeping the status quo and implementing

2 with equal probabilities. Such mixing results in indi�erence by the think tank,

yielding an equilibrium.

In the general model, Theorem 1 allows us to geometrically characterize the

sender's maximal bene�t from cheap talk and compare this bene�t with her ben-

e�t under commitment.4 Kamenica and Gentzkow (2011) characterize the sender's

bene�t under commitment in terms of her value function, that is, the highest value

the sender can obtain from the receiver's optimal behavior given his posterior be-

liefs. Speci�cally, they show the sender's maximal commitment value is equal to the

concave envelope of her value function. As we show in Theorem 2, replacing the con-

cave envelope with the quasiconcave envelope gives the sender's maximal value under

cheap talk. Thus, the value of commitment is the di�erence between the concave and

quasiconcave envelopes of the sender's value function.

Figure 1 visualizes the geometric comparison between cheap talk and commit-

ment in the aforementioned think-tank example. Because the state is binary, the

lawmaker's belief can be summarized by the probability it assigns to the second re-

form being good (θ = θ2). Putting this probability on the horizontal axis, the �gure

plots the highest value the think tank can obtain from uninformative communication,

cheap talk, and commitment. That is, the �gure plots the think tank's value func-

tion (left), along with its quasiconcave (center) and concave (right) envelopes. The

two envelopes describe how communication bene�ts the think tank by allowing it to

connect points on the value function's graph. In contrast to communication with com-

mitment, which enables the think tank to connect points using any a�ne segment,

4Our assumption of sender state-independent preferences is common in the literature on commu-
nication with hard evidence (e.g., Glazer and Rubinstein, 2004, 2006; Hart et al., 2017; Rappoport,
2020). Many such studies explore su�cient conditions for receiver- (rather than sender-) optimal
equilibria to replicate receiver (rather than sender) commitment.
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only �at segments are allowed with cheap talk. The restriction to �at segments comes

from the think tank's incentive constraints: Because the think tank's preferences are

state independent, all equilibrium messages must yield the same payo�. As such, the

think tank can only connect points with the same payo� coordinate; that is, only �at

segments are feasible.
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2
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(a) Value function

1/4 3/4 1

1
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(b) Quasiconcave Envelope

1/4 3/4 1
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2
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(c) Concave Envelope

Figure 1: The simple think-tank example. The dashed lines represent the highest
value the think tank can obtain from no information (left), cheap talk (center), and
commitment (right).

The geometric di�erence between cheap talk and commitment allows us to show

that, in �nite settings, almost all priors fall into one of two categories: Either the

sender can get her �rst-best outcome with cheap talk, or she would strictly bene�t

from commitment. One can see this categorization holds in the simple think-tank

example for almost all beliefs by using Figure 1. The �gure clearly shows that unless

the second reform is never good, the concave envelope lies above the quasiconcave

envelope whenever the probability of the second reform being good is below 3
4
. When-

ever the second reform is good with probability 3
4
or above, the lawmaker is willing to

implement the think tank's favorite reform under the prior, and so the two envelopes

must coincide with the value function.

In section 5, we use our results in three speci�c economic settings. In a richer

version of the above think-tank example, we show a think tank's best equilibrium

involves giving the lawmaker noisy recommendations, where the noise is calibrated to

make the lawmaker indi�erent between the recommended reform and the status quo.

We also study a broker-investor relationship, in which an investor consults his broker

about an asset, and the broker earns a fee proportional to the investor's trades. We

identify a Pareto-dominant equilibrium in which the broker tells the investor whether
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his holdings should be above or below a fee-independent cuto� amount. Thus, the

lower the broker's fee, the better o� the investor, who pays less money for the same

information. Lower fees have an ambiguous e�ect on the broker because they reduce

her income per trade but increase equilibrium trade volume. We also conduct compar-

ative statics in market volatility. Although higher volatility cannot hurt the broker,

she strictly bene�ts from higher volatility only if she can e�ectively communicate

about it to the investor. The investor's attitude toward higher volatility is ambiguous

because it changes both the investor's prior uncertainty and the usefulness of the

broker's information. Our third example is a symmetric version of the multiple-goods

seller example of Chakraborty and Harbaugh (2010). Speci�cally, we consider a seller

who wants to maximize the probability of selling one of her many products to a buyer.

In this setting, we show the best the seller can do with cheap talk is tell the buyer

the identity of her best product. Moreover, we show being able to bene�t ex ante

from providing the buyer with additional information about the best product is a

necessary and su�cient condition for the seller to bene�t from commitment.

In section 6.1, we revisit Chakraborty and Harbaugh (2010). We point out that,

absent their speci�c parametric structure, Chakraborty and Harbaugh's (2010) rea-

soning shows the sender can in�uence the receiver's estimate of any multidimensional

statistic of the state. Whenever this estimate coincides with the receiver's best re-

sponse, the sender can also in�uence the receiver's actions. Otherwise, Chakraborty

and Harbaugh's (2010) reasoning delivers informative communication, which might

not in�uence the receiver's actions, as long as three or more states exist.

To summarize, we contribute to the literature on cheap talk with state-independent

sender preferences in three ways. First, we identify the ability to reduce the infor-

mativeness of pro�table messages as a key channel through which the sender gains

credibility. Using this channel, we obtain a complete characterization of the sender's

payo� set. Second, we show quasiconcavity fully summarizes the sender's ability to

bene�t from communication. Third, we apply our results to generate new insights in

economic applications.

2 Cheap Talk with State-Independent Preferences

Our model is an abstract cheap-talk model with the substantive restriction that the

sender has state-independent preferences. Thus, we have two players: a sender (S,
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she) and a receiver (R, he). The game begins with the realization of a random state,

θ ∈ Θ, which S observes. After observing the state, S sends R a message, m ∈ M . R

then observes m (but not θ) and decides which action, a ∈ A, to take. Whereas R's

payo�s depend on θ, S's payo�s do not.

We impose some technical restrictions on our model.5 Each of Θ, A, and M is a

compact metrizable space containing at least two elements, andM is su�ciently rich.6

The state, θ, follows some full-support distribution µ0 ∈ ∆Θ, which is known to both

players. Both players' utility functions are continuous, where we take uS : A → R to

be S's utility and uR : A×Θ → R to be R's.

We are interested in studying the game's equilibria, by which we mean perfect

Bayesian equilibria. An equilibrium consists of three measurable maps: a strategy

σ : Θ → ∆M for S; a strategy ρ : M → ∆A for R; and a belief system β : M → ∆Θ

for R; such that

1. β is obtained from µ0, given σ, using Bayes' rule;7

2. ρ (m) is supported on argmaxa∈A
�
Θ
uR (a, ·) dβ(·|m) for all m ∈ M ; and

3. σ (θ) is supported on argmaxm∈M
�
A
uS(·) dρ (·|m) for all θ ∈ Θ.

Any triple E = (σ, ρ, β) induces a joint distribution, PE , over realized states, messages,

and actions,8 which, in turn, induces (through β and ρ, respectively) distributions

over R's equilibrium beliefs and chosen mixed action.

The following are a few concrete examples of our setting.

Example 1. Consider the following richer version of the think-tank example from

the introduction. Thus, S is a think tank that is advising a lawmaker (R) on whether

5Let us describe some notational conventions we adopt throughout the paper. For a compact
metrizable space Y , we let ∆Y denote the set of all Borel probability measures over Y , endowed
with the weak* topology. Given y ∈ Y , we let δy ∈ ∆Y denote a unit atom on y, δy {y} = 1. For
γ ∈ ∆Y , we let supp γ denote the support of γ. For a set X, a transition g : X → ∆Y , a point
x̄ ∈ X, and a Borel subset Ŷ ⊆ Y , we let g(Ŷ |x̄) := g(x̄)(Ŷ ). For a set Z, a function h : X → Z,

and a subset X̂ ⊆ X, we let h(X̂) :=
{︂
h(x) : x ∈ X̂

}︂
. Finally, �co� refers to the convex hull, and

�co� refers to the closed convex hull.
6To simplify the statements of our results, we assume M ⊇ A∪∆A∪∆Θ. S's attainable payo�s

would be the same if we instead imposed either that |M | ≥ |A| or that Θ is �nite and |M | ≥ |Θ|, by
Proposition 2, Corollary 1, and Carathéodory's Theorem.

7That is,
�
Θ̂
σ(M̂ |·) dµ0 =

�
Θ

�
M̂

β(Θ̂|·) dσ(·|θ) dµ0(θ) for every Borel Θ̂ ⊆ Θ and M̂ ⊆ M .
8Speci�cally, E = (σ, ρ, β) induces measure PE ∈ ∆(Θ × M × A), which assigns probability

PE(Θ̂× M̂ × Â) =
�
Θ̂

�
M̂

ρ(Â|·) dσ(·|θ) dµ0(θ) for every Borel Θ̂ ⊆ Θ, M̂ ⊆ M, Â ⊆ A.
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to pass one of n ∈ N reforms or to pass none; that is, the lawmaker chooses from

A = {0, 1, . . . , n}. A given reform i ∈ {1, . . . , n} provides uncertain bene�t θi ∈ [0, 1]

to the lawmaker. From the lawmaker's perspective, reforms are ex-ante identical:

Their bene�ts are distributed according to an exchangeable prior µ0 over [0, 1]
n, and

each entails an implementation cost of c. Maintaining the status quo is costless but

generates no bene�ts, uR (0, θ) = 0. The think tank prefers higher-indexed reforms

to lower-indexed ones, and prefers some reform to no reform; that is, the think tank's

payo�s are given by a strictly increasing function, uS : A → R, where we normalize

uS (0) = 0.9 We analyze this example in section 5.1.

Example 2. R is an investor consulting a broker (S) about an asset. The broker

knows the investor's ideal position in the asset, θ ∈ Θ = [0, 1], which is distributed

according to the atomless prior, µ0. The investor's pre-existing position is a0 ∈ [0, 1].

After consulting his broker, the investor chooses a new position in the asset, a ∈ A =

[0, 1]. The broker's payo� accrues from brokerage fees proportional to the net volume

of trade; that is, uS(a) = ϕ|a− a0| for some ϕ > 0. The investor wants to match the

ideal holdings level, but must pay the broker's fees: uR(a, θ) = −1
2
(a−θ)2−uS(a). In

section 5.2, we �nd a Pareto-dominant equilibrium and conduct comparative statics

under the assumption that the investor's existing position is correct; that is, a0 =�
Θ
θ dµ0(θ).

Example 3. A buyer (R) can take an outside option or buy one of N goods from a

seller (S). The seller knows the vector θ = (θ1, . . . , θn), where θi denotes the buyer's net

value from product i. Product values are i.i.d. atomlessly distributed over [0, 1]. The

seller wants to maximize the probability of a sale, but does not care which product

is sold. Hence, the seller receives a value of 1 if the buyer chooses to purchase

product i ∈ {1, . . . , n}, and 0 if the buyer chooses the outside option, which we

denote by 0. Only the buyer knows her value from the outside option, ϵ, which is

distributed independently from θ according to G, a continuous, full-support CDF over

[0, 1]. Chakraborty and Harbaugh (2010) study this example and show the seller can

always bene�t from communication. In section 5.3, we use our tools to expand on

their analysis.

9This example is related to, but formally distinct from, the respective models of Che et al. (2013)
and Chung and Harbaugh (2019). The former studies a project-selection model with state-dependent
preferences for both players, and the latter tests experimentally a binary-state project-selection
model with a stochastic receiver outside option.
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We analyze our model via the belief-based approach, commonly used in the com-

munication literature. This approach uses the ex-ante distribution over R's posterior

beliefs, p ∈ ∆∆Θ, as a substitute for both S's strategy and the equilibrium belief sys-

tem. Clearly, every belief system and strategy for S generate some such distribution

over R's posterior belief. By Bayes' rule, this posterior distribution averages to the

prior, µ0. That is, p ∈ ∆∆Θ satis�es
�
µ dp (µ) = µ0. We refer to any p that averages

back to the prior as an information policy. Thus, only information policies can

originate from some σ and β. The fundamental result underlying the belief-based

approach is that every information policy can be generated by some σ and β.10 Let

I(µ0) denote the set of all information policies.

The belief-based approach allows us to focus on the game's outcomes. Formally,

an outcome is a pair, (p, s) ∈ ∆∆Θ× R, representing R's posterior distribution, p,

and S's ex-ante payo�, s. An outcome is an equilibrium outcome if it corresponds

to an equilibrium.11 An equilibrium outcome is informative if R's posterior distri-

bution is non-degenerate, p ̸= δµ0 . In contrast to equilibrium, a triple (σ, ρ, β) is a

commitment protocol if it satis�es the �rst two of the three equilibrium conditions

above; and (p, s) is a commitment outcome if it corresponds to some commitment

protocol. In other words, commitment outcomes do not require S's behavior to be

incentive compatible.

Using the belief-based approach, Aumann and Hart (2003) analyze, among other

things, the outcomes of the cheap-talk model with general S preferences over states

and actions. When S's preferences are state independent, their characterization es-

sentially specializes to Lemma 1 below,12 which describes the game's equilibrium

outcomes. To state the lemma, let V (µ) be S's possible continuation values from R

having µ as his posterior,

V : ∆Θ ⇒ R

µ ↦→ co uS

(︃
argmax

a∈A

�
uR(a, ·) dµ

)︃
.

10For example, see Aumann and Maschler (1995), Benoît and Dubra (2011) or Kamenica and
Gentzkow (2011).

11That is, an equilibrium E = (σ, ρ, β) exists such that p(B̂) = margMPE

[︂
β−1(B̂)

]︂
for every Borel

B̂ ⊆ ∆Θ, and s =
�
A
uS d margAPE .

12Because Aumann and Hart's (2003) setting is �nite, we provide a direct independent proof of
said lemma for the sake of completeness.
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By Berge's theorem, V is a Kakutani correspondence, and the value function,

v (·) := maxV (·), is upper semicontinuous.13

Lemma 1. The outcome (p, s) is an equilibrium outcome if and only if:

1. p ∈ I(µ0), that is,
�
µ dp (µ) = µ0, and

2. s ∈
⋂︁

µ∈supp(p) V (µ).

The lemma's conditions re�ect the requirements of perfect Bayesian equilibrium.

The �rst condition comes from the equivalence between Bayesian updating and p

being an information policy. The second condition combines both players' incentive-

compatibility constraints. For S, incentive compatibility requires her continuation

value to be the same from all posteriors in p's support, meaning her ex-ante value

must be equal to her continuation value upon sending a message. For R, incentive

compatibility requires that V (µ) contain S's continuation value from any message

that leaves R at posterior belief µ. Therefore, S's ex-ante value must be in V (µ) for

all posteriors µ in p's support.

Our setting nests the model of Chakraborty and Harbaugh (2010). In their model,

Θ = A ⊆ RN is a compact convex set with a nonempty interior, where N > 1, the

prior admits a full-support density, and argmaxa∈A
�
uR(a, ·) dµ =

{︁�
θ dµ(θ)

}︁
for

every µ ∈ ∆Θ. Chakraborty and Harbaugh's (2010) main result is that this setting

always admits an equilibrium in which S's messages in�uence R's actions. Using

Lemma 1, one can generalize Chakraborty and Harbaugh's (2010) logic to show S can

typically communicate information to R; that is, most versions of our model admit

an informative equilibrium. Because our analysis does not rely on the existence of an

informative equilibrium, we defer discussion of this result to section 6.1.

Another insight of Chakraborty and Harbaugh (2010) is that the reliance of equi-

librium communication on S indi�erence creates a role for quasiconcavity and qua-

siconvexity. In particular, they observe that a �nite-support distribution can give

a quasiconcave (quasiconvex) function a constant value only if said value is lower

(higher) than the function's value at the distribution's mean. This observation has

many useful implications. One implication is that in Chakraborty and Harbaugh's

(2010) setting, S always bene�ts from in�uencing R's action in equilibrium when uS

13That is, V is a nonempty-, compact-, and convex-valued, upper hemicontinuous correspondence,
and v(µ) := maxs∈V (µ) s is upper semicontinuous in µ ∈ ∆Θ. Notice v is well de�ned (i.e., maxV (µ)
exists) because V (µ) is non-empty and compact.
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is strictly quasiconvex. Another implication is that babbling is S's best (worst) equi-

librium whenever v is quasiconcave (quasiconvex) and R's best response is unique for

all beliefs.

In what follows, we show quasiconcavity completely summarizes S's ability to

bene�t from communication. More precisely, we prove S's maximal equilibrium payo�

is given by the quasiconcave envelope of v (Theorem 2). This result is based on our

main result (Theorem 1), presented in the next section.

3 Securability

This section presents our main result, Theorem 1, which characterizes S's equilibrium

payo�s. The characterization shows that as far as S's payo�s are concerned, one can

ignore S's incentive constraints by focusing on S's least favorite message in any given

information policy. Thus, using the theorem, one can use non-equilibrium information

policies to reason about S's possible equilibrium payo�s.

Let p be an information policy, and take s to be some possible S payo�. Say that

policy p secures s if p {v ≥ s} = 1,14 and that s is securable if an information policy

exists that secures s, that is, if µ0 ∈ co {v ≥ s}. Our main result shows securability

characterizes S's equilibrium values.

Theorem 1 (Securability). Suppose s ≥ v(µ0).
15 Then, an equilibrium inducing

sender payo� s exists if and only if s is securable.

The key observation behind Theorem 1 is that one can transform any policy p that

secures s into an equilibrium policy by degrading information. Speci�cally, we replace

every supported posterior µ with a di�erent posterior µ′ that lies on the line segment

between µ0 and µ. Because µ′ is between µ0 and µ, replacing µ with µ′ results in a

weakly less informative signal. To ensure the resulting signal is an equilibrium, we

take µ′ to be the closest posterior to µ0 among the posteriors between µ0 and µ that

make providing s incentive compatible for R. Thus, this transformation replaces a

potentially incentive-incompatible posterior µ with the incentive-compatible µ′. That

µ′ exists follows from two facts. First, s is between S's no-information value and

14Here, we use the standard notation: {v ≥ s} = {µ : v(µ) ≥ s}.
15Given our focus on S's bene�ts from cheap talk, we state the theorem for high S values. For

s ≤ min V (µ0), one replaces the requirement that s is securable with the existence of some p ∈ I (µ0)
such that p {min V ≤ s} = 1.
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her highest µ payo�, v (µ). Second, V is a Kakutani correspondence, admitting an

intermediate value theorem.16

The above logic also identi�es a class of equilibrium information policies that

span all of S's equilibrium payo�s above v (µ0). Say that p barely secures s if

{v ≥ s} ∩ co {µ, µ0} = {µ} holds for p-a.e. µ. In words, barely securing policies are

policies that secure a payo� higher than what S can attain at any belief between any

supported posterior and the prior. The construction behind Theorem 1 transforms

every securing policy into a barely securing policy that is also an equilibrium. Because

all equilibrium values are securable, we thus have that any high equilibrium value can

be attained in an equilibrium with a barely securing policy. Moreover, because barely

securing policies are left untouched by Theorem 1's transformation, every barely

securing policy must then be an equilibrium.

Theorem 1 highlights the way incentives constrain S's ability to extract value from

her information. Although S can always degrade self-serving information to guarantee

incentives, the same cannot be done to information that is self-harming.17 As such,

S's highest value is determined by the best worst message she must send if she could

commit. It follows S can do no better than no information if and only if she cannot

avoid sending R messages that are worse than providing no information. That is, the

set of beliefs at which S attains a value strictly higher than no information does not

contain the prior in its closed convex hull.18

Theorem 1 also yields a convenient formula for S's maximal equilibrium value,

which we present in Corollary 1 below.

Corollary 1. An S-preferred equilibrium exists, giving the sender a payo� of v∗(µ0),

where

v∗ (·) := max
p∈I(·)

inf v (supp p) .

16Theorem 1's proof is related (in that both use the intermediate value theorem to construct an
equilibrium) to the proof of Chakraborty and Harbaugh's (2010) Theorem 4. Their theorem says
that in Chakraborty and Harbaugh's (2010) specialization of our model, if uS is strictly quasiconvex,
a sequence of equilibria {Ek}∞k=1 exist such that Ek entails 2k on-path messages, and S's value from
Ek strictly increases in k. We thank an anonymous referee for making us aware of the relationship
between these two results.

17The statement is true for S-bene�cial payo�s. For S-harmful payo�s, the sender would degrade
excessively self-harming information to guarantee incentives.

18Formally, s ≤ v (µ0) for all equilibrium outcomes if and only if for every ϵ > 0, µ0 /∈
co {v ≥ v (µ0) + ϵ}. Schnakenberg (2015) shows a similar condition characterizes an expert's ability
to sway voters to support her favorite of two policies.
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Notice that inf v (supp p) is the highest value that p secures. Thus, Corollary 1

says that maximizing S's equilibrium value is equivalent to maximizing the highest

value S can secure across all information policies. In the next section, we provide a

geometric characterization of v∗.

4 Commitment's Value in Communication

The current section uses Theorem 1 to examine the value of commitment in strategic

communication. The main result of this section is Theorem 2, which geometrically

characterizes S's maximal equilibrium value. Take v̄ : ∆Θ → R and v̂ : ∆Θ → R
to denote the quasiconcave envelope and concave envelope of v, respectively.

That is, v̄ (resp. v̂) is the pointwise lowest quasiconcave (concave) and upper semi-

continuous function that majorizes v.19 Because concavity implies quasiconcavity,

the quasiconcave envelope lies (weakly) below the concave envelope. Figure 2 below

illustrates the de�nitions of the concave and quasiconcave envelopes for an abstract

function.

Figure 2: A function with its concave (left) and quasiconcave (right) envelopes.

As described in Aumann and Maschler (1995)20 and Kamenica and Gentzkow

(2011), v̂ gives S's payo� from her favorite commitment outcome. Theorem 2 below

shows v̄ gives S's maximal value under cheap talk.

19The appendix contains a proof that, for �nite Θ, the quasiconcave envelope is below every

quasiconcave function that majorizes v, even those that are not upper semicontinuous.
20Also see Aumann and Maschler (1966).
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Theorem 2 (Quasiconcavi�cation). S's maximal equilibrium value is given by v's

quasiconcave envelope; that is,

v∗ = v̄.

Proof of Theorem 2. We begin by showing v∗ is a quasiconcave, upper semicontin-

uous function that majorizes v. That v∗ majorizes v follows from existence of an

uninformative equilibrium. For upper semicontinuity, we refer the reader to Lemma

5, which we prove in the appendix.

We now argue v∗ is quasiconcave. For this purpose, �x µ′, µ′′ and λ ∈ (0, 1),

and consider the following observations. First, if p′ ∈ I (µ′), and p′′ ∈ I (µ′′), then

λp′+(1− λ) p′′ ∈ I (λµ′ + (1− λ)µ′′). Second, the support of the convex combination

of two distributions is the union of their supports. Taken together, these observations

imply the following inequality chain:

v∗ (λµ′ + (1− λ)µ′′) = max
p∈I(λµ+(1−λ)µ′)

inf v (supp p)

≥ max
p′∈I(µ′),p′′∈I(µ′′)

inf v (supp p′ ∪ supp p′′)

= max
p′∈I(µ′),p′′∈I(µ′′)

min {inf v (supp p′) , inf v (supp p′′)}

= min {v∗ (µ′) , v∗ (µ′′)} ,

where the last equality follows from reasoning separately for p′ and p′′.

To show v∗ = v̄, it remains to show that v∗ lies below any upper semicontinuous

and quasiconcave f : ∆Θ → R that majorizes v. Fixing some prior µ ∈ ∆Θ, take

p ∈ I (µ) to be an information policy securing S's favorite equilibrium value, v∗ (µ).

By choice of p, we have that, for D := supp p, both inf v (D) = v∗ (µ) and µ ∈ coD.

Combined with f being upper semicontinuous, quasiconcave, and above v, we have

f (µ) ≥ inf f (coD) = inf f (coD) = inf f (D) ≥ inf v (D) = v∗ (µ) .

Because µ and f were arbitrary, our proof is complete.

Theorem 2 provides a geometric comparison between communication's value un-

der cheap talk and under commitment. With commitment, communication is only

restricted by R's incentives and Bayes' rule. The value function's concave envelope

describes the maximal payo� S can attain in this manner. Replacing the value func-
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tion's concave envelope with its quasiconcave envelope expresses the value S loses in

cheap talk due to her incentive constraints. Graphically, both envelopes allow S to

extract value from connecting points on the graph of S's value correspondence. How-

ever, although with commitment S can connect points via any a�ne segment, cheap

talk restricts her to �at ones. One can see the associated value loss for the introduc-

tion's example in Figure 1: For priors µ ∈
(︁
0, 3

4

)︁
, S's highest cheap-talk value is 1,

whereas with commitment, her highest payo� is given by 1 + 4
3
µ.

Corollary 2 below uses the geometric di�erence between cheap talk and commit-

ment to show that in a �nite setting, commitment is valuable for most priors. In

particular, with �nite actions and states, the following is true for all priors lying out-

side a measure zero set: Either S attains her �rst-best feasible payo�, or S strictly

bene�ts from commitment.

Corollary 2. Suppose A and Θ are �nite. Then, for Lebesgue-almost all µ0 ∈ ∆Θ,

either v̄(µ0) = max v(∆Θ) or v̄ (µ0) < v̂ (µ0).

The intuition for the corollary is geometric: Except at S's �rst-best feasible payo�,

the concave envelope, v̂, must lie above the interior of any of the quasiconcave enve-

lope's �at surfaces. To see why, notice any prior µ0 in the interior of such a surface

can be expressed as a convex combination of another belief on the same surface and

a belief yielding S's �rst-best feasible value. Said formally, some λ ∈ (0, 1), µ, and

µ′ exist such that v̄ (µ) = v̄ (µ0), v̄ (µ
′) = max v (∆Θ), and µ0 = λµ + (1− λ)µ′.

Because v̄ lies below v̂, and because v̂ is concave, we obtain

v̄ (µ0) < λv̄ (µ) + (1− λ) v̄ (µ′) ≤ λv̂ (µ) + (1− λ) v̂ (µ′) ≤ v̂ (µ0) ,

as required.

5 Applications

5.1 The Think Tank

This section uses our results to analyze Example 1. We characterize the think tank's

maximal equilibrium value and �nd an equilibrium in a barely securing policy that

attains it. To ease notation, we assume in the main text that the probability that

two reforms yield the same bene�t to the lawmaker is zero.
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In the single-reform case, neither player can do better than no information: In this

case, think-tank indi�erence occurs only if the lawmaker's mixed action is constant

on path. With multiple reforms, one can analyze the example using the claim below,

made possible by Theorem 1.

Claim 1. The following are equivalent, given k ∈ {1, . . . , n}:

1. The think tank can attain the value uS (k) in equilibrium.

2. Eθ∼µ0

[︁
maxi∈{k...,n} θi

]︁
≥ c.

3. The policy, pk ∈ I (µ0), that reveals the random variable

ik := arg max
i∈{k,...,n}

θi

to the lawmaker secures uS (k).

The claim says the think tank attaining a value of uS (k) in equilibrium is equiv-

alent to two other conditions. First, always choosing the status quo is ex-ante worse

for the lawmaker than always choosing the best reform from {k, . . . , n} (Part 2). Sec-
ond, telling the lawmaker nothing but the identity of the best reform from {k, . . . , n}
secures uS (k) (Part 3).

Claim 1's Part 2 provides a simple necessary and su�cient condition for uS(k) to

be an equilibrium value. Using this condition, we can �nd S's maximal value across

all equilibria: it is given by uS (k
∗), where

k∗ := max

{︃
k ∈ {1, . . . , n} : Eθ∼µ0

[︃
max

i∈{k...,n}
θi

]︃
≥ c

}︃
.

That is, k∗ is the highest k for which Part 2 holds. With k∗ in hand, we can identify

a best equilibrium for the think tank using the claim's Part 3. This part tells us

the think tank's favorite equilibrium value, uS (k
∗), is securable by the information

policy, pk∗ , that reveals to the lawmaker the identity of the best reform from the set

{k∗, . . . , n}. Thus, to �nd an equilibrium, we can take pk∗ and garble information

message by message to obtain a new policy that barely secures uS (k
∗). Doing so

results in a policy that has the think tank randomizing between accurately recom-

mending the lawmaker's best reform from {k∗, . . . , n} with probability 1 − ϵ, and

recommending a uniformly drawn reform from {k∗, . . . , n} with probability ϵ. By
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choosing ϵ appropriately, one can degrade information so as to make the lawmaker

indi�erent between the suggested recommendation and the status quo. The result is

an equilibrium in which the lawmaker implements the suggested reform i with prob-

ability uS(k
∗)

uS(i)
and maintains the status quo with complementary probability. Thus,

all that remains is to calculate k∗ and ϵ, which depend on the prior: For example, if

θ1, . . . , θn are i.i.d. uniformly distributed on [0, 1] and c > 1
2
,21 then

k∗ =

⌊︃
n− 2c− 1

1− c

⌋︃
, and ϵ = 2

(︃
1− c− 2c− 1

n− k∗

)︃
.

The policy pk∗ also yields an easy lower bound on commitment's value. Speci�cally,

the value of commitment is at least the di�erence between k∗ and the think tank's

value function's expectation under pk∗ ,

�
v (·) dpk∗ − uS (k

∗) = 1
n−k∗+1

n∑︂
i=k∗

uS (i)− uS (k
∗) ,

which simpli�es to 1
2
(n− k∗) in the special case of uS (a) = a.

5.2 The Broker

We now revisit the setting of Example 2 under the assumption that the investor's

initial holdings are correct given her information, that is, that a0 =
�
θ dµ0(θ). Even

without this assumption, characterizing optimal behavior by the investor is straight-

forward. For any posterior belief µ ∈ ∆Θ, simple calculus yields that the investor's

best response is unique and given by

a∗(µ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�
θ dµ(θ) + ϕ :

�
θ dµ(θ)− a0 ≤ −ϕ

a0 :
�
θ dµ(θ)− a0 ∈ [−ϕ, ϕ]�

θ dµ(θ)− ϕ :
�
θ dµ(θ)− a0 ≥ ϕ.

As such, V is a single-valued correspondence, with v(µ) = ϕ
[︁
|
�
θ dµ(θ)− a0| − ϕ

]︁
+
.22

The above expression demonstrates this example is a speci�c instance of a class

of models in which Θ ⊆ R and S's value function is a quasiconvex function of R's

21When c ≤ 1
2 , the think tank can obtain its �rst-best outcome under no information; that is,

v (µ0) = uS (n).
22We let [·]+ := max {·, 0}.
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expectation of the state. The special one-dimensional structure of this class allows us

to focus on cuto� policies. Formally, p is a θ∗-cuto� policy if it reports whether the

state is above or below θ∗ ∈ Θ.23 The following proposition shows garblings of cuto�

policies are su�cient to attain any S equilibrium value in one-dimensional settings.

Claim 2. Suppose Θ ⊆ R, µ0 is atomless, and that v (µ) = vM
(︁�

θ dµ(θ)
)︁
, where

vM : coΘ → R is weakly quasiconvex. Then, the following are equivalent for all

s ≥ v (µ0):

1. S can attain payo� s in equilibrium.

2. The payo� s is securable by a cuto� policy.

Moreover, an S-preferred equilibrium outcome (p, s) exists such that p is a cuto�

policy.

We now apply the claim to our speci�c broker example. Notice the broker's

value function is given by v (µ) = vM
(︁�

θ dµ(θ)
)︁
, where vM (θ) = ϕ [|θ − a0| − ϕ]+.

Because vM is a convex function, Claim 2 implies an S-preferred equilibrium exists in

which S uses a cuto� policy. Consider the median-cuto� policy, where the broker tells

the investor whether the state is above or below the median. Let θ< and θ> denote the

investor's expectation of the state conditional on it being below or above the median,

respectively. Because a0 =
�
θ dµ0(θ) = 1

2
θ< + 1

2
θ>, one has |θ> − a0| = |θ< − a0|,

meaning vM(θ<) = vM(θ>). Thus, the median cuto� policy is an equilibrium policy.

Moreover, vM decreases on [θ<, a0] and increases on [a0, θ>], and so no alternative

cuto� policy can secure a higher value. Hence, Claim 2 tells us the median cuto�

policy yields a broker-preferred equilibrium. We can therefore calculate the broker's

maximal equilibrium payo�,

v̄ (µ0) = ϕ

[︃
1

2
(θ> − θ<)− ϕ

]︃
+

. (1)

In the median-cuto� equilibrium, the transmitted information does not depend on

ϕ. This observation simpli�es the task of conducting comparative statics in ϕ: The

broker's maximal equilibrium payo� is single-peaked in ϕ, with the optimal ϕ being
1
4
(θ> − θ<). Intuitively, increasing ϕ reduces trade but increases the broker's income

23In section B.2 in the appendix, we provide a de�nition of cuto� policies (and prove a version of
Claim 2) that applies for general priors. The two de�nitions coincide when the prior is atomless.
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per trade, with the latter e�ect dominating for low ϕ and the former dominating for

high ϕ.

It is easy to see the broker's maximal equilibrium payo� increases with mean-

preserving spreads of µ0; that is, the more volatile the market is, the better o� the

broker. However, not all volatility is equal: Mean-preserving spreads strictly increase

the broker's payo� if and only if they increase θ> − θ<. Thus, for the broker to

strictly bene�t from market volatility, she must be able to communicate about it to

the investor.

How does the investor fare in the broker's preferred equilibrium? Simple algebra

reveals the investor's payo� is 1
2ϕ2 s

2−Varθ∼µ0(θ) in any equilibrium yielding the broker

a payo� of s.24 Two consequences are immediate. First, the investor's equilibrium

payo�s increase with the broker's, meaning the broker's favorite equilibrium is Pareto

dominant. Second, the investor's payo�s in the Pareto-dominant equilibrium are

given by
1

2

{︃[︃
1

2
(θ> − θ<)− ϕ

]︃
+

}︃2

− Varθ∼µ0(θ).

Notice the investor is always better o� with lower brokerage fees: Because the broker's

information does not change with ϕ, a lower ϕ means the investor pays less for the

same information. By contrast, the investor's attitude toward higher prior volatility

(in the sense of mean-preserving spreads) is ambiguous. Intuitively, increased market

volatility both increases the investor's risk and increases the usefulness of the bro-

ker's recommendations. As such, higher volatility that does not change the broker's

recommendations unambiguously hurts the investor.

5.3 The Salesperson

In this section, we return to Example 3. This example was �rst analyzed by Chakraborty

and Harbaugh (2010),25 who show it always admits an in�uential equilibrium, that

is, an equilibrium in which di�erent messages lead to di�erent action distributions

by the buyer. Chakraborty and Harbaugh (2010) also noticed that every in�uential

equilibrium in this setting bene�ts the seller due to quasiconcavity. In this section,

we �nd a seller-preferred equilibrium and obtain a full characterization of when the

24The reader can �nd said algebra in appendix B.2.
25Chakraborty and Harbaugh (2014) study a similar example in which the buyer has product-

speci�c taste shocks.

19



seller bene�ts from commitment.

Because the buyer has private information, this example does not formally fall

within our model. Our analysis, however, still applies.26 Given a belief µ ∈ ∆Θ, the

buyer purchases the good with probability P
{︁
ϵ ≤ maxi

�
θi dµ(θ)

}︁
= G

(︁
maxi

�
θi dµ(θ)

)︁
.

Hence, the seller's continuation value from sending a message that gives the buyer a

posterior of µ is v (µ) := G
(︁
maxi

�
θi dµ(θ)

)︁
. Using the continuous function v as the

seller's value function, we can directly apply our results to this example.

Applying Theorem 2 yields an upper bound on the seller's equilibrium values. To

obtain this bound, de�ne the continuous function v̄∗ (µ) := G
(︁�

maxj∈{1,...,n} θj dµ(θ)
)︁
.

Being an increasing transform of an a�ne function, v̄∗ is quasiconcave.27 Moreover,

because G is increasing, Jensen's inequality tells us

v̄∗ (µ) = G

(︃�
max

j∈{1,...,n}
θj dµ(θ)

)︃
≥ G

(︃
max

j∈{1,...,n}

�
θj dµ(θ)

)︃
= v (µ) .

In other words, v̄∗ is a continuous quasiconcave function that majorizes the seller's

value function, and so lies above the value function's quasiconcave envelope. Theorem

2 then implies v̄∗ (µ0) is above any equilibrium seller value.

We now describe an equilibrium that attains the upper bound v̄∗ (µ0). Let p∗

be the information policy in which the seller tells the buyer the identity of the most

valuable product.28 Assuming the buyer believes the seller, the seller's expected value

from recommending product i is

G

(︃
Eθ∼µ0

[︃
θi

⃓⃓⃓⃓
i ∈ arg max

j∈{1,...,n}
θj

]︃)︃
= G

(︃�
max

j∈{1,...,n}
θj dµ0(θ)

)︃
= v̄∗ (µ0) ,

where the �rst equality follows from product values being i.i.d. Notice all recommen-

dations yield the seller the same value, meaning p∗ is an equilibrium. Moreover, p∗

attains the upper bound v̄∗ (µ0) on the seller's equilibrium values. In other words,

(p∗, v̄∗ (µ0)) is a seller-preferred equilibrium outcome.

26More generally, our results apply without change to the following model. R has a met-
ric space Z of payo� parameters such that the distribution of (θ, z) ∈ Θ × Z is µ0 ⊗ ζ0 for
some ζ0 ∈ ∆Z. R's payo�s are given by uR : A × Θ × Z → R that is measurable over Z
and continuous over A × Θ. In this extended model, V : ∆Θ ⇒ R takes the form V (µ) =�
Z
couS

(︁
argmaxa∈A

�
Θ
uR(a, θ, z) dµ (θ)

)︁
dζ0(z), a Kakutani correspondence.

27The logic yielding quasiconcavity of v̄∗ is similar to Chakraborty and Harbaugh's (2010) obser-
vation that S's utility function in this example is quasiconvex as an increasing transformation of a
convex function. We thank an anonymous referee for pointing out this connection.

28That is, the seller reveals the identity of argmaxi∈{1,...,n} θi.
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The identi�ed equilibrium is, in fact, Pareto dominant. To see why, notice that if

the seller's equilibrium payo� is s, the buyer's expected utility from the best product

is G−1 (s) for any on-path message. Therefore, the buyer's utility in equilibrium is

E [max {ϵ, G−1 (s)}]. Hence, all equilibria are Pareto-ranked, and so any seller-best

equilibrium is buyer-best as well.

When does the seller bene�t from commitment? The answer depends on the rela-

tionship betweenG and its concave envelope, Ĝ, evaluated at t∗0 :=
�
maxj∈{1,...,n} θj dµ0(θ).

Claim 3. The seller bene�ts from commitment if and only if Ĝ (t∗0) > G (t∗0).

To see that commitment can bene�t the seller only if Ĝ (t∗0) > G (t∗0), observe

that v̂∗(µ) := Ĝ
(︁�

maxj∈{1,...,n} θj dµ(θ)
)︁
is a continuous and concave function that

lies everywhere above the seller's value function. Hence, the concave envelope of the

seller's value function, v̂, lies below v̂∗. Thus, if the seller bene�ts from commitment,

Ĝ (t∗0) ≥ v̂(µ0) > v̄ (µ0) = G(t∗0).

Conversely, suppose Ĝ (t∗0) > G (t∗0). Then, by reasoning analogous to Kamenica

and Gentzkow's (2011) Proposition 3,29 a seller with commitment power can strictly

outperform p∗ by providing additional information about the value of the best good.

Thus, commitment always bene�ts the seller when Ĝ (t∗0) > G (t∗0).

Claim 3 reduces the question of whether commitment bene�ts the seller to com-

paring a one-dimensional function with its concave envelope. Such a comparison is

simple when G is well behaved. In particular, if G admits a decreasing, increasing,

or single-peaked density, G itself is concave, convex, or convex-concave, respectively,

and so characterizing its concave envelope is straightforward.

Claim 4. Suppose G admits a continuous density g.

1. If g is weakly decreasing, the seller does not bene�t from commitment.

2. If g is nonconstant and weakly increasing, the seller bene�ts from commitment.

3. If g is strictly quasiconcave, the seller bene�ts from commitment if and only if

g(t∗0) >
1
t∗0

� t∗0
0

g(t) dt.

29Proposition 3 of Kamenica and Gentzkow (2011) assumes the state space is �nite, and so does
not directly apply here. However, the extension to this example is straightforward given that G is
continuous. See appendix B.3.
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The claim's �rst part says the seller does not bene�t from commitment when g is

decreasing, that is, when G is concave. The second part says that when G is convex

and non-a�ne, the seller always bene�ts from commitment. The third part discusses

the seller's bene�ts from commitment when G is S-shaped. Speci�cally, it shows

commitment is valuable in this case if and only if G's density at t∗0 is strictly larger

than the average density up to t∗0.

6 Discussion

6.1 E�ective Communication

In a seminal paper, Chakraborty and Harbaugh (2010) show that a large special case

of our model always admits an in�uential equilibrium, namely, an equilibrium in

which R's action is non-constant across S's on-path messages. In this section, we

note their insight applies beyond their parametric setting, and implies informative

communication is possible whenever three or more states exist.

We begin with a few de�nitions. A statistic is a continuous function T from Θ

into some locally convex space X . Say T is multivariate if its range is noncollinear,

that is, the a�ne span of T (Θ) has dimension strictly greater than 1. Finally, given

a belief µ ∈ ∆Θ, its associated estimate of a statistic T is the barycenter
�
T dµ.30

The above-de�ned objects arise naturally in Chakraborty and Harbaugh's (2010)

setting. There, Θ and A are the same convex, multidimensional Euclidean set, and

the prior admits a density. Moreover, R's unique optimal action given belief µ is his

expectation of the state; that is, R chooses a =
�
T dµ, where T = idΘ. Chakraborty

and Harbaugh (2010) show an equilibrium exists in which the estimate of T , and

therefore R's action, changes on path. Adapting Chakraborty and Harbaugh's (2010)

logic, Proposition 1 highlights the key feature behind their result: T is multivariate.

Proposition 1. For any multivariate statistic T , an equilibrium outcome (p, s) exists

such that the estimate of T is not p-almost surely constant.

Observe Proposition 1 readily delivers an informative equilibrium whenever three

or more states exist. The reason is that, in this case, the mapping T (θ) := δθ taking

30Recall (p. 1, Phelps, 2001), the barycenter
�
T dµ is the unique τ ∈ coT (Θ) such that φ(τ) =�

φ ◦ T (θ) dµ(θ) for every continuous linear φ : X → R.
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each state to a degenerate belief is a multivariate statistic (taking values in the span

of ∆Θ). The proposition also yields an in�uential equilibrium whenever R's best

response equals his estimate of a multivariate statistic, as is the case in Chakraborty

and Harbaugh's (2010) model.

Proposition 1 delivers a generalization of another of Chakraborty and Harbaugh's

(2010) insights: S always bene�ts from communication via cheap talk when v is a

strictly quasiconvex function of R's estimate of a multivariate statistic. This conclu-

sion roughly follows from the fact that a strictly quasiconvex function can be constant

across a non-degenerate distribution only if it is strictly lower at the distribution's

mean.31

6.2 The Equilibrium Payo� Set

Despite our focus on S's favorite equilibrium, our approach is useful for analyzing the

entire equilibrium payo� set. To �nd S's payo� set, notice that because S's incentives

are characterized by indi�erence, the game's equilibrium set of S strategies is the

same regardless of whether S's objective is uS or −uS. Just as applying Theorem

1 to the original game characterizes S's high payo�s, one can apply the theorem

to the game with S objective −uS to �nd S's low equilibrium payo�s. Under this

objective, S's value function is given by −w, where w (·) := min V (·). Theorem 1

then implies s ≤ w (µ0) is an equilibrium payo� in the original game if and only if

some p ∈ I(µ0) exists such that p {w ≤ s} = 1. Applying Theorem 2 then tells us

S's lowest equilibrium payo� is given by the quasiconvex of envelope of w, which we

denote by w.32 The above reasoning gives S's entire equilibrium payo� set: s is an S

equilibrium payo� if and only if s ∈ [w (µ0) , v̄ (µ0)].

With S's equilibrium payo�s in hand, we can �nd R's possible equilibrium payo�s

using two observations. First, one can implement any particular payo� pro�le in

an equilibrium in which S recommends a pair of actions to R, and R responds by

mixing only over the recommended actions. Second, if S's equilibrium payo� is s,

S's recommended action pair must consist of one action yielding S a payo� above s,

and one action yielding S a payo� below s. Taking s as given, we can thus reduce

31When R may have multiple best responses to a given belief, an additional step is needed. See
appendix C.1 for details.

32More precisely, w is the highest quasiconvex and lower semicontinuous function that is every-
where below w.
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the number of action pairs that S may recommend in equilibrium. We discuss these

observations more formally in online appendix C.2.

6.3 Long and Transparent Cheap Talk

It is by now well-known that allowing multiple rounds of bilateral communication�that

is, long cheap talk�expands the set of feasible equilibrium outcomes (e.g., see Forges

(1990), Aumann and Hart (2003), and Krishna and Morgan (2004)). Forges (1990)

characterizes the long-cheap-talk payo� set in a striking example in which certain

outcomes require in�nitely many rounds of communication. Her characterization,

which uses repeated-games techniques (e.g., see Hart, 1985), was generalized by Au-

mann and Hart (2003). Broadly, one can describe the long cheap-talk outcome set

in terms of separation by diconvex functions (Aumann and Hart, 1986, 2003). When

S's preferences are state independent, one can obtain such a separating function for

S's payo�s using Theorem 1. One can then show that every S payo� attainable in

a Nash equilibrium with long cheap talk is also attainable in PBE of the one-shot

cheap-talk game.33 The same, however, is not true for R, who can bene�t from long

cheap talk. We refer the reader to appendix C.3 for the formal details.

6.4 Optimality of Full Revelation

In this section we ask when honesty is the best policy. More precisely, we provide a

su�cient condition for full revelation to be an S favorite equilibrium. To understand

our conditions, starting with the commitment case is useful. When S can commit,

full revelation is optimal whenever v is nowhere concave, that is, when every non-

extreme prior, µ0 ∈ ∆Θ \ {δθ}θ∈Θ, admits two beliefs, µ′, µ′′, and a λ ∈ (0, 1), such

that µ0 = λµ′+(1− λ)µ′′ and v (µ0) < λv (µ′)+ (1− λ) v (µ′′) . Intuitively, whenever

v is nowhere concave, one can strictly improve on any non-full revelation policy by

appropriately34 splitting non-extreme beliefs in the policy's support. Hence, a non-

33Although the formal results therein are limited to �nite settings, the Aumann and Hart (2003)
setting is conceptually richer than ours, featuring a sender who may also make payo�-relevant de-
cisions after communication concludes. For such settings, one can still show that one-shot bilateral

communication is without loss for sender payo�s given state-independent preferences over action pro-
�les. The driving observation is that jointly controlled lotteries deliver a Kakutani correspondence,
to which one can then apply Theorem 1.

34In particular, one can bene�t by splitting non-extreme beliefs in a measurable way. See appendix
C.4 for details.
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full revelation policy cannot be optimal. Because an optimal policy exists, it must be

full information.

Without commitment, one can use securability to obtain that full revelation is

an S-favorite equilibrium whenever v is nowhere quasiconcave, that is, when, for

every non-extreme prior, µ0 ∈ ∆Θ \ {δθ}θ∈Θ, two beliefs, µ′ and µ′′, and a λ ∈ (0, 1)

exist, such that µ0 = λµ′ + (1− λ)µ′′ and v (µ) < min {v (µ′) , v (µ′′)} . In fact, we

show v being nowhere quasiconcave implies full revelation barely secures S's maximal

equilibrium value. That full information secures S's maximal equilibrium value, v̄ (µ0),

under nowhere quasiconcavity is straightforward: By correctly splitting non-extreme

beliefs, one can weakly increase the value secured by any non-full revelation policy.

Showing full revelation barely secures v̄ (µ0) requires a more subtle argument. We

refer the reader to appendix C.4 for the precise details.

We should remark that, whereas strict convexity is su�cient for nowhere concavity,

strict quasiconvexity of v is insu�cient for v to be nowhere quasiconcave. Indeed,

full revelation can fail to be an equilibrium at any non-degenerate prior�even if v is

strictly quasiconvex. The reason is that a strictly quasiconvex function can exhibit

quasiconcavities on one-dimensional extreme subsets of its domain. We show such

quasiconcavity is the only possible issue, however: A strictly quasiconvex v is nowhere

quasiconcave if and only if it is nowhere quasiconcave on co {δθ, δθ′} for all θ, θ
′
.35

Notice a nowhere quasiconcave v must also be nowhere concave. Therefore, when-

ever v is nowhere quasiconcave, full revelation is both an S favorite equilibrium and

S's unique optimal commitment policy. Note S could still bene�t from commitment.

The reason is that under cheap talk, R might need to break ties against S's interests

due to S's incentive constraints. Appendix C.4 contains such an example. The exam-

ple also demonstrates that nowhere quasiconcavity is insu�cient for full information

to be S's unique favorite equilibrium. However, both issues disappear when R's best

response to each belief is unique. Said di�erently, when R's best responses are unique,

nowhere quasiconcavity of v is su�cient for full revelation to be the unique equilib-

rium attaining S's maximal commitment payo�. In this case, v's quasiconcave and

concave envelopes coincide, that is, v̄ = v̂.

35To prove this result, we note the generalization of Chakraborty and Harbaugh's (2010) ideas as
in Proposition 1 implies a strictly quasiconvex v is not quasiconcave at any non-binary belief.
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A Omitted Proofs: Main Results

A.1 Preliminaries and additional notation

We begin by noting an abuse of notation that we use throughout the appendix. For

a compact metrizable space Y , a Borel measure over it γ ∈ ∆Y , and a γ-integrable

function f : Y → R, we let f (γ) =
�
Y
f dγ.

We now document the (standard) notion of information ranking used throughout

the paper. This de�nition is motivated by the Hardy-Littlewood-Polya-Blackwell-

Stein-Sherman-Cartier Theorem (see Phelps, 2001).
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De�nition 1. Given p, p′ ∈ ∆∆Θ, say p is more (Blackwell) informative than

p
′
if p is a mean-preserving spread of p

′
, that is, if a measurable selector r of I :

∆Θ ⇒ ∆∆Θ exists such that p (D) =
�
∆Θ

r (D|·) dp′
for all Borel D ⊆ ∆Θ.

Now, we record a useful measurable selection result.

Lemma 2. If D ⊆ ∆Θ is Borel and f : D → R is any measurable selector of V |D,
a measurable function αf : D → ∆A exists such that, for all µ ∈ D, the measure

α̂ = αf (·|µ) satis�es:

1. uS(α̂) = f(µ);

2. α̂ ∈ argmaxα∈∆A uR(α, µ);

3. |supp(α̂)| ≤ 2.

Proof. The result follows readily from the measurable maximum theorem (Theorem

18.19 from Aliprantis and Border, 2006). De�ne

A∗ : ∆Θ ⇒ A

µ ↦→ argmax
a∈A

uR(a, µ).

Notice A∗ is nonempty-compact-valued and weakly measurable by the measurable

maximum theorem. Applying the same theorem to µ ↦→ argmaxa∈A∗(µ) uS (a) and

µ ↦→ argmina∈A∗(µ) uS (a), and noting V = co (uS ◦ A∗), delivers measurable selectors

a+ and a− of A∗ such that uS ◦ a+ = maxV and uS ◦ a− = minV .

But the same theorem delivers measurable selectors a+ and a− of A∗ such that

uS ◦ a+ = maxV and uS ◦ a− = minV . Now, de�ne the measurable map:

αf : D → ∆A

µ ↦→

⎧⎨⎩
v(µ)−f(µ)

v(µ)−minV (µ)
δa−(µ) +

f(µ)−minV (µ)
v(µ)−minV (µ)

δa+(µ) : minV (µ) ̸= f(µ)

δa−(µ) : minV (µ) = f(µ).

By construction, αf is as desired.

Next, we prove a variant of the intermediate value theorem, which is useful for our

setting. This result is essentially proven in Lemma 2 of de Clippel (2008). Because

the statement of that lemma is slightly weaker than we need, however, we provide a

proof here for the sake of completeness.
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Lemma 3. If F : [0, 1] ⇒ R is a Kakutani correspondence with minF (0) ≤ 0 ≤
maxF (1), and x̄ = inf {x ∈ [0, 1] : maxF (x) ≥ 0}, then 0 ∈ F (x̄).

Proof. By de�nition of x̄, some weakly decreasing {x+
n }

∞
n=1 ⊆ [x̄, 1] exists that con-

verges to x̄ such that maxF (x+
n ) ≥ 0 for every n ∈ N. De�ne the sequence {x−

n }
∞
n=1 ⊆

[0, x̄] to be the constant 0 sequence if x̄ = 0 and to be any strictly increasing sequence

that converges to x̄ otherwise. By de�nition of x̄ (and, in the case of x̄ = 0, because

minF (0) ≤ 0), it must be that minF (x−
n ) ≤ 0 ≤ maxF (x+

n ).

Passing to a subsequence if necessary, we may assume (as a Kakutani correspon-

dence has compact range) {maxF (x+
n )}

∞
n=1 converges to some y ∈ R, which would

necessarily be nonnegative. Upper hemicontinuity of F then implies maxF (x̄) ≥ 0.

An analogous argument shows minF (x̄) ≤ 0. Because F is convex-valued, it follows

that 0 ∈ F (x̄).

A.2 Proof for Section 2

Below is the proof of Lemma 1, which initializes our belief-based approach. For �nite

states, the result can be easily proven from results in Aumann and Hart (2003).

Although their ideas easily generalize to in�nite state spaces such as ours, we include

a direct proof here for completeness.

Proof of Lemma 1. First, take any equilibrium (σ, ρ, β) and let (p, s) be the induced

outcome. That p ∈ I(µ0) follows directly from the Bayesian property.

De�ne the interim payo�, ŝ : M → R via ŝ(m) := uS (ρ(m)). S incentive com-

patibility tells us some M∗ ⊆ M exists such that
�
Θ
β(M∗|·) dµ0 = 1, and for every

m ∈ M∗ and m′ ∈ M , we have ŝ(m) ≥ ŝ(m′). In particular, ŝ(m) = ŝ(m′) for every

m,m′ ∈ M∗; that is, some ŝ∗ ∈ R exists such that ŝ|M∗ = ŝ∗. But

s =

�
Θ

�
M∗

uS (ρ(m)) dσ(m|θ) dµ0(θ) =

�
Θ

�
M∗

ŝ∗ dµ0(θ) = ŝ∗,

so that by receiver incentive compatibility, s ∈ V (β(·|m)) for every m ∈ M∗. By

de�nition of p, then, s ∈ V (µ) for p-almost every µ ∈ ∆Θ. Because V is upper

hemicontinuous, it follows that s ∈
⋂︁

µ∈supp(p) V (µ).

Now suppose (p, s) satis�es the three conditions. De�ne the compact set D :=

supp(p). It is well known (see Benoît and Dubra (2011) or Kamenica and Gentzkow

(2011)) that every p ∈ I(µ0) exhibits some S strategy σ and Bayes-consistent belief
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map β : M → ∆Θ that induce distribution p over posterior beliefs.36 Without

disrupting the Bayesian property, we may without loss assume β(m) ∈ D for all

m ∈ M . Now let α = αs : D → ∆A be as given by Lemma 2. We can then de�ne

the receiver strategy σ := α ◦ β, which is incentive compatible for R by de�nition

of α. Finally, by construction,
�
A
uS dρ(·|m) = s for every m ∈ M , so that every S

strategy is incentive-compatible. Therefore, (σ, ρ, β) is an equilibrium that generates

outcome (p, s).

A.3 Proofs for Section 3

A.3.1 Proof of Theorem 1

Below, we prove a lemma that is at the heart of Theorem 1. It constructs an equilib-

rium (a barely securing policy, which we then show to be compatible with equilibrium)

of S value s from an arbitrary information policy securing s. The constructed equi-

librium policy is less informative than the original policy and requires fewer messages

to implement.

Lemma 4. Let p ∈ I(µ0) and s ∈ R.

1. If p secures s and s ≥ v(µ0), some p∗ ∈ I(µ0) exists such that p∗ barely secures

s, p∗ is weakly less Blackwell-informative than p, and |supp(p∗)| ≤ |supp(p)|.

2. If p barely secures s, (p, s) is an equilibrium outcome.

Proof. If s = v(µ0), both results are trivial: In this case, the uninformative policy

is the unique one that barely secures s. From this point, we focus on the case of

s > v(µ0).

Toward the �rst point, let p ∈ I(µ0) secure s, and D := supp (p). Notice v(µ) ≥ s

for every µ ∈ D because v is upper semicontinuous. De�ne the semicontinuous (and

so measurable) function,

λ = λp,s : D → [0, 1]

µ ↦→ inf
{︂
λ̂ ∈ [0, 1] : v

(︂
(1− λ̂)µ0 + λ̂µ

)︂
≥ s

}︂
.

By Lemma 3, it must be that s ∈ V ([1− λ(µ)]µ0 + λ(µ)µ) for every µ ∈ D.

36In particular, such (σ, β) exist with σ(∆Θ|θ) = 1 for all θ ∈ Θ and β(·|µ) = µ for all µ ∈ D.
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Notice some number ϵ > 0 exists such that λ ≥ ϵ uniformly. If no such ϵ existed, a

sequence {µn}n ⊆ D would exist such that λ(µn) converges to zero. But the sequence

{([1− λ(µn)]µ0 + λ(µn)µn, s)}n from the graph of V would then converge to (µ0,s).

Because V is upper hemicontinuous, such convergence would contradict s > v(µ0).

Therefore, such an ϵ > 0 exists, and so 1
λ
is a bounded function.

Now, de�ne p∗ = p∗s ∈ ∆∆Θ by letting

p∗(D̂) :=

(︃�
∆Θ

1
λ
dp

)︃−1

·
�
∆Θ

1
λ(µ)

1[1−λ(µ)]µ0+λ(µ)µ∈D̂ dp(µ)

for every Borel D̂ ⊆ ∆Θ. Direct computation shows p∗ ∈ I(µ0), and p∗ barely secures

s by construction.

Lastly, we note p∗ has the other required properties. The map µ ↦→ [1−λ(µ)]µ0+

λ(µ)µ is a surjection from supp(p∗) to supp(p), so that |supp(p∗)| ≤ |supp(p)|. Also
by construction, p∗ is weakly less informative than

(︁
1−

�
∆Θ

λ dp
)︁
δµ0 +

(︁�
∆Θ

λ dp
)︁
p,

which in turn is less informative than p. This proves (1).

Toward (2), suppose p barely secures s. That is, p-a.e. µ has {v ≥ s}∩co {µ, µ0} =

{µ}. For such µ, some subsequence of {v((1− 2−n)µ+ 2−nµ0)}∞n=1 ⊆ [minuS(A), s]

converges, leading to (as V is upper hemicontinuous) some element of V (µ) that is

weakly less than s. Because v(µ) ≥ s by hypothesis, and V is convex-valued, it

follows that s ∈ V (µ). But upper hemicontinuity of V then implies s ∈ V (µ′) for

each µ′ ∈ supp(p), and Lemma 1 delivers an equilibrium that generates S value s and

information policy p.

We now prove the securability theorem (Theorem 1).

Proof of Theorem 1. The �only if� direction follows directly from Lemma 1: For any

equilibrium outcome (p, s), information policy p secures payo� s. The �if� direction

is a direct consequence of (both parts of) Lemma 4.

A.3.2 Convexity of the equilibrium payo� set, and Corollary 1

Given Theorem 1, all that remains for proving Corollary 1 is that an S-best equilib-

rium exists, which follows from Corollary 3 below.

Corollary 3. The set of sender equilibrium payo�s is a compact interval.
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Proof. Let Π∗ be the set of equilibrium S payo�s, Π+ := {s ∈ Π∗ : s ≥ maxV (µ0)},
Π− := {s ∈ Π∗ : s ≤ minV (µ0)}, andΠ0 := {s ∈ Π∗ : minV (µ0) ≤ s ≤ maxV (µ0)}.

Because V is convex-valued, Π0 = Π∗ ∩ V (µ0). By considering uninformative

equilibria, we see that Π0 = V (µ0) = [minV (µ0),maxV (µ0)].

It follows immediately from Theorem 1 thatΠ+ is convex. Letting s+ := sup(Π+) ≥
v(µ0), a sequence {sn}∞n=1 ⊆ [v(µ0), s+] exists that converges to s+. Dropping to a

subsequence, if necessary, we may assume some {pn}∞n=1 ⊆ I(µ0) exists such that pn

secures sn for each n, and {pn}n converges to some p+ ∈ I(µ0). But p+ secures s+

because v is upper semicontinuous, so that (by Theorem 1) s+ ∈ Π+. It follows that

Π+ = [v(µ0), s+], a compact interval. By an identical argument, Π− is a compact

interval, say, [s−,minV (µ0)] as well.
37

Therefore, Π∗ = [s−,minV (µ0)] ∪ [minV (µ0),maxV (µ0)] ∪ [maxV (µ0), s+] =

[s−, s+].

A.4 Proofs for Section 4

A.4.1 Upper semicontinuity of v∗

We prove here that v∗ is upper semicontinuous, a fact that the main-text proof of

Theorem 2 takes as given.

Lemma 5. v∗ is upper semicontinuous.

Proof. Let ṽ∗ : ∆∆Θ → R be given by ṽ∗(p) := inf v (supp p), so that v∗(µ) :=

max
p∈I(µ)

ṽ∗(p) for every µ ∈ ∆Θ. The correspondence supp : ∆∆Θ ⇒ ∆Θ is lower

hemicontinuous (Theorem 17.14, Aliprantis and Border, 2006). Because v is upper

semicontinuous, it follows (Lemma 17.29, Aliprantis and Border, 2006) that ṽ∗ is

upper semicontinuous. Next, the correspondence I : ∆Θ ⇒ ∆∆Θ is upper hemicon-

tinuous because the barycenter map (p ↦→
�
∆Θ

µ dp(µ)) is continuous (Proposition

1.1, Phelps, 2001). Upper semicontinuity of v∗ follows (Lemma 17.30, Aliprantis and

Border, 2006).

37Notice the only property of V used in the proofs�that it is a Kakutani correspondence � is
also true of −V .
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A.4.2 Quasiconcave envelope with �nite states

The purpose of this section is to prove Corollary 4 below. The corollary says that,

with �nite states, v̄ is the lowest quasiconcave function majorizing v. In other words,

the �upper semincontinuous� quali�er in the de�nition of the quasiconcave envelope

is necessary only when the state is in�nite.

Corollary 4. Suppose Θ is �nite. Then, v̄ lies below every quasiconcave function

majorizing v.

Proof. Take any quasiconcave f : ∆Θ → Rmajorizing v. We show f ≥ v∗. The result

then follows from v∗ = v̄ (Theorem 2). Fix some prior µ ∈ ∆Θ and let p ∈ I (µ)

be an information policy securing S's favorite equilibrium value, v∗ (µ). Because Θ is

�nite, Carathéodory's Theorem delivers a �nite subset D ⊆ supp p whose convex hull

includes the prior. Combined with f being a quasiconcave function majorizing v, we

have that

v∗ (µ) = inf v (supp p) ≤ min v (D) ≤ min f (D) ≤ f (µ) ,

as required.

A.4.3 Corollary 2: Commitment is usually valuable

We now prove Corollary 2, for which it su�ces to show that Lebesgue-almost every

prior µ0 has either v̄(µ0) = sFB := max v(∆Θ) or v̂(µ0) > v̄(µ0).

Proof. First, observe

v̄ (∆Θ) = v∗ (∆Θ) ⊆ cl [v (∆Θ)] ⊆ cl [uS (A)] = uS (A) ,

which is �nite. Next, that v̄ is quasiconcave and implies {v̄ ≥ s} is convex for every

s ∈ uS(A). Let

D := (∆Θ)◦ \
⋃︂

s∈uS(A)

∂ {v̄ ≥ s}

be the set of full-support beliefs that are not on the boundary of any v̄-upper contour

set. Being the boundary of a bounded convex set in a (|Θ|−1)-dimensional space, the

set ∂ {v̄ ≥ s} is a manifold of dimension strictly lower than |Θ|−1 for each s ∈ uS(A),
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and so has zero Lebesgue measure. Because (∆Θ)◦ has full Lebesgue measure, the

�nite union ∆Θ \D is Lebesgue-null as well.38

Suppose µ0 ∈ D, and �x some belief µ ∈ ∆Θ such that some action in u−1
S (sFB)

is a best response for R to belief µ. By de�nition of D, su�ciently small ϵ ∈ (0, 1]

will have ϵµ ≤ µ0 and v̄
(︁
µ0−ϵµ
1−ϵ

)︁
≥ v̄(µ0). But v̂ being concave and lying above v̄,

v̂(µ0) ≥ (1− ϵ)v̄
(︁
µ0−ϵµ
1−ϵ

)︁
+ ϵv̄(µ) ≥ (1− ϵ)v̄(µ0) + ϵsFB.

Thus, the proof is complete: Either v̄(µ0) < v̂(µ0) or v̄(µ0) = sFB.

B Omitted Proofs: Applications

B.1 Proofs for Section 5.1: The Think Tank

In this example, A = {0, . . . , n}, Θ = [0, 1]n, µ0 is exchangeable, uS is increasing with

uS(0) = 0, and

uR(a, θ) =

⎧⎨⎩θi − c : a = i ∈ {1, . . . , n}

0 : a = 0.

We now invest in some notation. For θ ∈ Θ and k ∈ {1, . . . , n}, let θ
(1)
k,n :=

maxi∈{k,...,n} θi be the �rst-order statistic among reforms better (for S) than k. For

�nite M̂ ⊆ M , let U(M̂) ∈ ∆(M̂) ⊆ ∆M be the uniform measure over M̂ . Given

k ∈ {1, . . . , n}, let

σk : Θ → ∆ {k, . . . , n} ⊆ ∆M

θ ↦→ U
(︃
arg max

i∈{k,...,n}
θi

)︃
be the S strategy that reports the best reform from among those the think tank

prefers to k; let βk : M → ∆Θ be some belief map such that σk and βk are together

Bayes consistent; and let pk ∈ I(µ0) be the associated information policy. For any

measurable f : Θ → [0, 1], let E0f(θ) :=
�
f dµ0; and for k ∈ {1, . . . , n} and i ∈

{k, . . . , n}, let Ek
i f(θ) :=

�
f dβk(·|i). Finally, for any k ∈ {1, . . . , n}, let θ̂

k
:= E0θ

(1)
k,n.

38By the same argument, ∆Θ \D is also nowhere dense.
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B.1.1 Claim 1: Ranking the best reforms

Toward the proof of Claim 1, we �rst show the following.

Claim. Fix k ∈ {1, . . . , n} and i ∈ {k, . . . , n}. Then, i ∈ argmaxa∈A uR(a, βk(i)) if

and only if θ̂
k
≥ c.

Proof. For a given i ∈ {k, . . . , n}, exchangeability of µ0 implies the following four

facts:

(1) E0θi = E0θj = Ek
i θj for j ∈ {1, . . . , k − 1}.

(2) E0θi ∈ co
{︁
Ek

i θi, Ek
i θj

}︁
for j ∈ {k, . . . , n} \ {i}.

(3) Ek
i θi ≥ E0θi .

(4) Ek
i θi = θ̂

k
.

The �rst three facts collectively tell us Ek
i θi ≥ Ek

i θj for j ∈ {1, . . . , n} \ {i}. As

an implication, i ∈ argmaxa∈A uR(a, βk(i)) if and only if Ek
i θi ≥ c. The fourth fact

completes the proof of the claim.

Proof of Claim 1. Now, we prove the three-way equivalence of Claim 1. First, that

Part 2 implies Part 3 follows from the above claim. Next, that Part 3 implies Part 1

follows directly from Theorem 1. Now, to show Part 1 implies Part 2, consider any

equilibrium yielding S value uS(k). In this equilibrium, every on-path message yields

value uS(k) to S, implying some reform from {k, . . . , n} is incentive compatible for

R. That is, R has an optimal strategy in which his gross bene�t is one of {θi}ni=k

almost surely. But R's ex-ante payo� is no greater than the prior expectation of

maxi∈{k,...,n} θi − c. This expectation is then nonnegative by R's incentives: He does

not want to deviate to the status quo ex ante. Thus, Part 1 implies Part 2, completing

the proof of Claim 1.

B.1.2 Construction of an S-best equilibrium

Finally, Corollary 1 tells us the sender's best equilibrium value lies in {0, . . . , n}, so
that the S-optimal equilibrium payo� is uS(k

∗), where

k∗ =

⎧⎨⎩max
{︂
k ∈ {1, . . . , n} : θ̂

k
≥ c

}︂
: θ̂

1
≥ c

0 : θ̂
1
< c.
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As described in section 5.1, we can use the constructive proof of Theorem 1 to

explicitly derive the modi�cation of pk∗ that supports payo� uS(k
∗) as an equilibrium

payo� when k∗ > 0. Let ϵ := θ̂
k∗−c

θ̂
k∗−θ̂

n , and consider the truth-or-noise signal σ∗ :=

(1− ϵ)σk∗ + ϵU {k∗, . . . , n}. That is, among the proposals that the think tank weakly

prefers to k∗, it either reports the best (with probability 1 − ϵ, independent of the

state) or a random one. Following a recommendation i ∈ {k, . . . , n}, the lawmaker

is indi�erent between reform i and no reform at all. He responds with ρ(i|i) = uS(k
∗)

uS(i)

and ρ(0|i) = 1− ρ(i|i). The proof of Lemma 4 shows such play is in fact equilibrium

play.

B.2 Proofs for Section 5.2: The Broker

B.2.1 The one-dimensional model

In this section, we look at a one-dimensional version of our model, which generalizes

Example 2, analyzed in section 5.2. Our task is to prove a generalization of Claim 2

that applies for all priors (including those exhibiting atoms).

Suppose Θ ⊆ R and that some vM : coΘ → R exists such that v = vM ◦E, where
E : ∆Θ → coΘ maps each belief to its associated expectation of the state. This

setting, which we call the one-dimensional model, was studied in Gentzkow and

Kamenica (2016) and Dworczak and Martini (2019) under sender commitment power.

We assume without loss that coΘ = [0, 1], and denote the prior mean by θ0 = Eµ0.

An important concept to simplify analysis of the one-dimensional model is the

notion of a cuto� policy. Given q ∈ [0, 1], the q-quantile-cuto� policy is the

(necessarily unique) information policy pq ∈ I(µ0) of the form pq = qδµq
−
+(1− q)δµq

+
,

for µq
−, µ

q
+ ∈ ∆Θ with max supp(µq

−) ≤ min supp(µq
+); and let θq− := Eµq

− and

θq+ := Eµq
+. Say p ∈ I(µ0) is a cuto� policy if it is the q-quantile-cuto� policy for

some q ∈ [0, 1]. The following alternative characterization of cuto� policies, which is

immediate, is useful for analyzing the one-dimensional model.

Fact 1. For q ∈ [0, 1], the belief µq
− (µq

+) is the unique solution to the program

minµ∈∆Θ: qµ≤µ0 Eµ (maxµ∈∆Θ: (1−q)µ≤µ0 Eµ).

The q-quantile-cuto� policy reports whether the state is in the bottom q quantiles

or the top 1 − q quantiles, as measured according to the prior. More concretely, S
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simply reports whether the state is above or below some well-calibrated cuto�.39 As

the following claim shows, securability enables us to use cuto� policies to analyze

many one-dimensional applications of interest, including the broker example.

Claim 5. Suppose Θ ⊆ R and vM : coΘ → R is a weakly quasiconvex function such

that v = vM ◦ E. Then, the following are equivalent for all s ≥ v (µ0):

(i) S can attain a payo� s in equilibrium.

(ii) The payo� s is securable by a cuto� policy.

Moreover, an S-preferred equilibrium outcome (p, s) exists such that p is a cuto�

policy.

Proof. Because vM is quasiconvex, vM is either nonincreasing on [0, θ0] or nonde-

creasing on [θ0, 1]. Suppose the latter holds without loss. Because uninformative

communication is a cuto� policy with cuto� quantile 0 or 1, the result is immediate

if s = v(µ0), so we may assume s > v(µ0).

That (ii) implies (i) follows directly from Theorem 1. Now we suppose (i) holds

and show (ii) does as well. The nonempty (because s is securable) compact sets

ΘL := {θ ∈ [0, θ0] : vM(θ) ≥ s} and ΘR := {θ ∈ [θ0, 1] : vM(θ) ≥ s} both exclude

θ0 because s > v(µ0). Let θL := maxΘL and θR := minΘR. By Theorem 1 and

Lemma 4, a Bayes-plausible information policy p exists that barely secures s, which

then implies p ◦ E−1 {θL, θR} = 1. That is, some q̂ ∈ (0, 1), pL ∈ ∆ [E−1(θL)],

pR ∈ ∆ [E−1(θR)] exist such that p = q̂pL+(1− q̂)pR. But Fact 1 implies θq̂− ≤ θL and

θq̂+ ≥ θR. Because θq̂− ≤ θL < θ0 = θ1−, the intermediate value theorem (and Berge's

theorem, which tells us from Fact 1 that θ
(·)
− is continuous) delivers some q2 ∈ [q̂, 1)

such that θq2− = θL. Similarly, some q1 ∈ (0, q̂] exists such that θq1+ = θR. Now, because

θq2− = θL, θ
q2
+ ≥ θR, and vM |[θ0,1] is nondecreasing, it follows that pq2 secures s.

To prove the �moreover� part, we specialize to the case in which s = v̄(µ0). Let

Q := [q1, q2], Q+ := {q ∈ Q : vM(θq+) = s}, and Q− := {q ∈ Q : vM(θq−) = s}. That
no value strictly above s is securable implies Q = Q+ ∪Q−. Therefore, the union of

the closures has the same property: Q̄+ ∪ Q̄− = Q. Because Q is connected (because

vM is monotone on each side of q̂), some q ∈ Q̄+ ∩ Q̄− must then exist. That V

39This description is correct as stated in the case in which µ0 is atomless; if the cuto� is itself a
state with positive prior probability, S's message may need to be random conditional on the cuto�
state itself occuring.
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is upper hemicontinuous (together with Lemma 1) then implies the q-cuto� policy,

paired with payo� s, is an equilibrium outcome.

Although not directly relevant to the broker example, we brie�y note one can apply

Claim 5 to simplify the one-dimensional model even when vM is not quasiconvex. We

do so in Corollary 5 below.

Corollary 5. Suppose Θ ⊆ R and VM : coΘ ⇒ R is such that V = VM ◦E. Then, for

any equilibrium sender payo� s, an equilibrium outcome of the form (p, s) exists, such

that p is a garbling of a cuto� policy (with at most two supported posterior beliefs).

Proof. We have nothing to show for s ∈ V (µ0). We now focus on the case of s > v(µ0),

the alternative case being symmetric.

De�ne the correspondence Ṽ M : [0, 1] ⇒ R by letting Ṽ M(θ) := VM (co {θ, θ0})
for every θ ∈ [0, 1]. Appealing to Lemma 3, Ṽ M is a Kakutani correspondence, so

that Ṽ := Ṽ M ◦ E : ∆Θ ⇒ R is as well. We can therefore apply the mathematical

results of Claim 5, letting ṽM := max Ṽ M (which is quasiconvex and minimized at θ0)

replace vM to �nd a cuto� q ∈ [0, 1] such that ṽM(θq−), ṽM(θq+) ≥ s. But, by de�nition

of Ṽ M , some two-message garbling p′ of pq exists that secures s in the original game,

that is, has p′ {v ≥ s} = 1. Finally, Lemma 4 delivers a further two-message garbling

p of p′ such that (p, s) is an equilibrium outcome.

39



B.2.2 The investor's payo� (equation (1))

Suppose (p, s) is an equilibrium outcome of the broker example (Example 2), and let

r be R's associated payo�. Then,

r + Vθ∼µ0(θ)

=

� {︃
1
2

�
(a20 − 2a0θ + θ2) dµ0 − 1

2

� [︁
a∗(µ)2 − 2a∗(µ)θ + θ2

]︁
dµ− uS(a

∗(µ))

}︃
dp(µ)

=

� {︃� (︁
1
2
θ2 − a0θ

)︁
[dµ0(θ)− dµ(θ)] + [a∗(µ)− a0]Eµ+ 1

2

[︁
a20 − a∗(µ)2

]︁
− s

}︃
dp(µ)

= 0 +

�
[a∗(µ)− a0]

{︁
Eµ− 1

2
[a0 + a∗(µ)]

}︁
dp(µ)− s

=

�
[a∗(µ)− a0]

{︁
[Eµ− a∗(µ)] + 1

2
[a∗(µ)− a0]

}︁
dp(µ)− s

=

� {︁
[a∗(µ)− a0] [Eµ− a∗(µ)] + 1

2
[a∗(µ)− a0]

2}︁ dp(µ)− s

=

� [︃
s+ 1

2

(︂
s
ϕ

)︂2
]︃

dp(µ)− s

= 1
2ϕ2 s

2.

where the second to last equality follows from separately analyzing the case a∗ (µ) = a0

and the complementary case.

B.3 Proofs for Section 5.3: The Salesperson

We begin by providing an alternative version of Kamenica and Gentzkow's (2011)

Proposition 6 (which generalizes their Proposition 3). Their proposition shows an

S-bene�cial equilibrium exists whenever S's value function is a transformation of

R's estimate of a �nite-dimensional statistic, said transformation disagrees with its

concave envelope, and the state is �nite. We show that with su�cient continuity, the

same conclusion holds when the state is in�nite.

Lemma 6. Suppose some N ∈ N admits continuous T : Θ → RN and continuous

G : coT (Θ) → R such that v(µ) = G(
�
T dµ) for all beliefs µ ∈ ∆Θ. If the concave

envelope Ĝ of G satis�es Ĝ(
�
T dµ0) > G(

�
T dµ0), then v̂(µ0) > v(µ0).

Proof. Let X := coT (Θ) and x0 :=
�
T µ0, which is in the relative interior of X. By

Carathéodory's theorem, that Ĝ(x0) > G(x0)means some p̃ ∈ ∆X exists with a�nely
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independent support
{︁
x1, ..., xK

}︁
such that

�
x dp̃(x) = x0 and

�
G dp̃ > v(µ0). As

G is continuous, we may assume without loss that
{︁
x1, ..., xK

}︁
has X in its a�ne

hull.40 For su�ciently small convex neighborhood Y =
∏︁K

k=1 Yk of (x
1, ..., xK) in XK ,

every y⃗ = (y1, ..., yK) ∈ Y has y1, ..., yK a�nely independent with x0 in their convex

hull, and so admits a unique p̃y⃗ ∈ ∆
{︁
y1, ..., yK

}︁
such that

�
x dp̃y⃗ = x0. Observe

y⃗ ↦→ p̃y⃗ is continuous because y⃗ ↦→ p̃y⃗(y
k) is an a�ne function of its �nite-dimensional

argument for each k ∈ {1, ..., K}. Moreover, making Y smaller if necessary, we may

assume
�
G dp̃y⃗ > v(µ0) for every y⃗ ∈ Y , because G is continuous.

Observe now thatD :=
∏︁K

k=1

{︁
µk ∈ ∆Θ :

�
T dµk ∈ Yk

}︁
is a nonempty open sub-

set of (∆Θ)K such that every µ⃗ ∈ D admits some pµ⃗ ∈ ∆ {µk}Kk=1 with
� (︁�

T dµ
)︁
dpµ⃗(µ) =

x0 and
�
v dpµ⃗ > v(µ0). Indeed, D is open because Y is and T is continuous; D is

nonempty because Y ⊆ XK is, and because every x ∈ X admits a µ ∈ ∆Θ with

x =
�
T dµ; and pµ⃗ can be taken to be

∑︁K
k=1 p̃(

�
T dµ1,...,

�
T dµK)

(︁�
T dµk

)︁
δµk

.

Finally, Lemma 2 of Lipnowski and Mathevet (2018) says that the set of all µ ∈
∆Θ such that ϵ̃µ ≤ µ0 for some ϵ̃ > 0 is dense. Therefore, D being open and

nonempty delivers µ⃗ ∈ D and ϵ > 0 such that ϵ
∑︁K

k=1 µk ≤ µ0. Then, de�ning

µ∗ := 1
1−ϵ

[︁
µ0 − ϵ

�
µ dpµ⃗(µ)

]︁
and p∗ := (1 − ϵ)δµ∗ + ϵp∗ ∈ I(µ0), see that

�
v dp∗ −

v(µ0) = ϵ
[︁�

v dpµ⃗ − v(µ0)
]︁
> 0.

With this lemma in hand, we readily complete the proof of Claim 3.

Proof. In the main text, we demonstrated that Ĝ(t∗0) > G(t∗0) is necessary for com-

mitment to strictly bene�t the seller. To see it is su�cient, apply Lemma 6 with

N = 1: The seller gets a value strictly higher than v̄(µ0) = G(t∗0) by telling the buyer

which product is best and by further revealing some (well-chosen) information about

the value of the best product.

Now, en route to Claim 4, we prove the following slightly more general result about

when commitment is valuable for a CDF G admitting a single-peaked continuous

40Indeed, observe K must lie in {1, . . . , N + 1}, so let p̃ be chosen to make K as large as
possible. Assume for a contradiction that xK+1 ∈ X is outside the a�ne hull of

{︁
x1, ..., xK

}︁
.

As x0 is relatively interior and x0 − xK+1 is a convex combination of
{︁
xi − xK+1

}︁K

i=1
, some

i ∈ {1, . . . ,K} has xi + ϵ(xi − xK+1) ∈ X for su�ciently small ϵ > 0. Then, consider

p̃ϵ := p̃ + p̃(xi)
[︂

1
1+ϵδxi+ϵ(xi−xK+1) +

ϵ
1+ϵδxK+1 − δxi

]︂
∈ ∆X. This measure has

�
x dp̃ϵ(x) = x0

by construction and, converging to p̃ as ϵ > 0, has
�
G dp̃ϵ > v(µ0) when ϵ is su�ciently small,

contradicting the maximality of K.
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density g. For this purpose, let

φG : [0, 1] → R

t ↦→ G(t)−G(0)− tg(t) = −
� t

0

t̃ dg(t̃),

where the equality follows from integration by parts.

Lemma 7. Suppose G admits a continuous, weakly quasiconcave density g. Let tM :=

min
[︁
argmaxt∈[0,1] g(t)

]︁
. Then, Ĝ(t∗0) = G(t∗0) if and only if t∗0 ≥ tM and φG(t

∗
0) ≥ 0.

Proof. First, we show φG(t
∗
0) ≥ 0 is necessary for no commitment gap to exist. To

that end, suppose φG(t
∗
0) < 0. Recall that full support of µ0 implies t∗0 ∈ (0, 1). Then,

letting ϵ ∈ (0, 1− t∗0], we have

t∗0+ϵ

ϵ

[︂
Ĝ(t∗0)−G(t∗0)

]︂
≥ t∗0+ϵ

ϵ

[︂
t∗0

t∗0+ϵ
G(t∗0 + ϵ) + ϵ

t∗0+ϵ
G(0)−G(t∗0)

]︂
= t∗0

G(t∗0 + ϵ)−G(t∗0)

ϵ
− [G(t∗0)−G(0)] ,

which tends to −φG(t
∗
0) > 0, as ϵ → 0. Therefore,

t∗0+ϵ

ϵ

[︂
Ĝ(t∗0)−G(t∗0)

]︂
> 0 when

ϵ > 0 is su�ciently small, so that Ĝ(t∗0) > G(t∗0).

Now, we verify that t∗0 ≥ tM is necessary for no commitment gap to exist. Suppose

t∗0 < tM . Then g|[0,tM ] is continuous, weakly increasing, and nonconstant. Therefore,

G|[0,tM ] is weakly convex and not a�ne, implying

Ĝ(t∗0) ≥
tM−t∗0
tM

G(0) +
t∗0
tM

G(tM) > G(t∗
0
).

Conversely, suppose t∗0 ≥ tM and φG(t
∗
0) ≥ 0. Below we construct a continuous

concave function, G∗, that majorizes G and agrees with it at t∗0. It follows G
∗ (t∗0) ≥

Ĝ (t∗0) ≥ G (t∗0) = G∗ (t∗0), that is, there is no commitment gap.

Toward �nding such a G∗, observe �rst φG decreases on [0, tM ] (because g|[0,tM ]

is increasing) and φG(0) = 0. Therefore, φG(tM) ≤ 0 ≤ φG(t
∗
0). Because φG is

continuous, the intermediate value theorem delivers a t∗ ∈ [tM , t∗0] with φG(t∗) = 0.
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We now use t∗ to construct G∗. To do so, note

G (t∗) = G (0) +

� t∗

0

g (t) dt = G (0) + t∗g (t∗)− φG(t∗) = G (0) + t∗g (t∗) ,

meaning

G∗ : [0, 1] → R

t →

⎧⎨⎩G(0) + tg(t∗) : t ≤ t∗

G(t) : t ≥ t∗

is well-de�ned and continuously di�erentiable. We now claim G∗ satis�es the desired

properties. Observe �rst G∗ (t∗0) = G (t∗0), because t
∗
0 ≥ t∗. Second, because t∗ ≥ tM , g

is decreasing on [t∗, 1], meaning G∗ has a decreasing derivative, that is, G∗ is concave.

Thus, it remains to show G∗ majorizes G. Because G∗ (t) = G (t) for all t ≥ t∗ by

construction, it remains to show G∗ (t) ≥ G (t) for all t < t∗. For t ∈ [tM , t∗), observe

g|[tM ,t∗0]
is decreasing, and so

G∗ (t)−G (t) = [G∗ (t)−G (t)]− [G∗ (t∗)−G (t∗)] =

� t∗

t

[︁
g
(︁
t̃
)︁
− g (t∗)

]︁
dt̃ ≥ 0.

For t ∈ [0, tM), observe G∗ (0) = G (0), G∗ (tM) ≥ G (tM), G is convex, and G∗ is

concave. Therefore,

G∗ (t) ≥ t

tM
G (tM) +

tM − t

tM
G (0) ≥ G (t) .

The proof is now complete.

From this, we can prove Claim 4 easily.

Proof of Claim 4. First, suppose g is weakly decreasing. Then, t∗0 ≥ 0 = tM and

G(t∗0)−G(0) =
� t∗0
0

g(t) dt ≥ t∗0g(t
∗
0), and Lemma 7 applies.

Second, suppose g is nonconstant and increasing. If t∗0 < tM , then Ĝ(t∗0) > G(t∗)

by Lemma 7. If t∗0 ≥ tM , then g(t∗0) ≥ g(tM) > g(0), implying g|[0,t∗0] is continuous,
nonconstant, and increasing. So g|[0,t∗0] is below g(t∗0) everywhere, and strictly below

it for some nondegenerate interval. Therefore, t∗0g(t
∗
0) >

� t∗0
0

g(t) dt = G(t∗0) − G(0),

and Lemma 7 applies.
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Third, suppose g is strictly quasiconcave. For any t̃ ∈ (0, tM ], the function g

is continuous and strictly increasing on [0, t̃]. This tells us φG is nonconstant and

decreasing on [0, t̃], implying φG(t̃) < φG(0) = 0. Therefore, if φG(t
∗
0) ≥ 0, then

t∗0 ̸= t̃. Because t̃ ∈ (0, tM ] was arbitrary, we now know that if φG(t
∗
0) ≥ 0, then

t∗0 ≥ tM . Thus, by Lemma 7, a commitment gap exists if and only if

0 > φG (t∗0) = G (t∗0)−G (0)− t∗0g (t
∗
0) =

� t∗0

0

g (t) dt− t∗0g (t
∗
0) .

The claim follows.
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C Supplement to Cheap Talk with Transparent Mo-

tives

In this online appendix, we elaborate on the results mentioned in section 6 of �Cheap

Talk with Transparent Motives� and discuss some additional relevant results.

C.1 Proof of Proposition 1: E�ective Communication

We now operationalize Chakraborty and Harbaugh's (2010) insight of using �xed-

point reasoning to show e�ective communication is possible, proving Proposition 1.

We begin by representing the prior as an average of three posterior beliefs, µ1, µ2,

and µ3, such that the three induced estimates of the statistic are noncollinear; one

can always �nd such beliefs because the statistic is itself multivariate. Next, we

�nd a circle of beliefs around the prior within the convex hull of {µ1, µ2, µ3}. By

construction, each belief on said circle yields a di�erent estimate of the statistic. We

then document a generalization of the one-dimensional Borsuk-Ulam theorem, which

yields an antipodal pair of beliefs µ and µ′ on the circle such that V (µ) ∩ V (µ′) is

nonempty. Therefore, we can split the prior across µ and µ′ to obtain an equilibrium

information policy.

In what follows, de�ne the circle S = {(x, y) ∈ R2 : x2 + y2 = 1}, and let Tµ

denote the estimate
�
T dµ of statistic T for any belief µ ∈ ∆Θ.

Lemma 8. Let T be a multivariate statistic. Then, a continuous φ : S → ∆Θ exists

such that every z ∈ S has:

1. 1
2
φ(z) + 1

2
φ(−z) = µ0 ;

2. T (φ(z)) ̸= T (φ(ẑ)) for every ẑ ∈ S \ {z};

3. 2φ(z)− µ0 ∈ ∆Θ.

Proof. By assumption, T (Θ) is noncollinear, and so Tµ0 /∈ co {Tθ1, T θ2} for some dis-

tinct θ1, θ2 ∈ Θ. Because µ0 has full support, both µ0(N1) > 0 and µ0(N2) > 0 for any

open neighborhoods N1 of θ1 and N2 of θ2. We can then de�ne the conditional distri-

bution µi (·) := µ0(Ni∩(·))
µ0(Ni)

for i ∈ {1, 2}. Letting N1, N2 be su�ciently small neighbor-

hoods, we may assumeN1∩N2 = ∅, Tµ0 /∈ co {Tµ1, Tµ2} and µ (N1 ∪N2) < 1. There-

fore, letting µ3 (·) := µ0((·)\(N1∪N2))
1−µ0(N1∪N2)

, we know that µ0 ∈ co {µ1, µ2, µ3}, that µ0 is not
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in the convex hull any two of {µ1, µ2, µ3}, and that the three points {Tµ1, Tµ2, Tµ3}
are a�nely independent. So µ0 =

∑︁3
i=1 λiµi for some µ1, µ2, µ3 ∈ ∆Θ and λ1, λ2, λ3 ∈

(0, 1). Therefore, letting ϵ := 1
2
min {λ1, λ2, λ3}, de�ne the map

φ : S → ∆Θ

(x, y) ↦→ (λ1 + ϵx)µ1 + (λ2 + ϵy)µ2 + [λ3 − ϵ(x+ y)]µ3.

A�ne independence of Tµ1, Tµ2, Tµ3 ensure T ◦φ is injective, and the other desiderata

for φ are obviously satis�ed.

Next, we document a generalization of the one-dimensional Borsuk-Ulam theorem.

Lemma 9. Suppose f : S → R is upper semicontinuous, and every z ∈ S has

max {f(z), f(−z)} ≥ 0. Then, some z ∈ S exists such that min {f(z), f(−z)} ≥ 0.

Proof. De�ne f̃ : S → R by letting f̃(z) := f(−z). By hypothesis, both f and f̃

are upper semicontinuous and
{︂
f̃ < 0

}︂
⊆ {f ≥ 0}. Assume for a contradiction that

the lemma fails, so that
{︂
f̃ ≥ 0

}︂
⊆ {f < 0}. Because

{︂
f̃ < 0

}︂
∪
{︂
f̃ ≥ 0

}︂
= S and

{f ≥ 0} ∩ {f < 0} = ∅, these containments in fact imply
{︂
f̃ < 0

}︂
= {f ≥ 0} and{︂

f̃ ≥ 0
}︂

= {f < 0}. But (given the de�nition of f̃) the two sets would both be

empty if either were, and so would fail to cover S. Therefore, the set {f ≥ 0} is a

nonempty clopen proper subset of the connected space S, a contradiction.

We now complete the proof of the generalization of Chakraborty and Harbaugh's

(2010) Theorem 1.

Proof of Proposition 1. First, let φ : S → R be as delivered by Lemma 8. Next,

de�ne the function

f : S → R

z ↦→ maxV (φ(z))−minV (φ(−z)).

Two properties of f are immediate. First, f is upper semicontinuous because V

is upper hemicontinuous. Second, any z ∈ S satis�es f(z) + f(−z) ≥ 0 because

maxV ≥ minV . Therefore, Lemma 9 delivers z ∈ S with f(z), f(−z) ≥ 0. That

is, maxV (φ(z)) ≥ minV (φ(−z)) and maxV (φ(−z)) ≥ minV (φ(z)). Said di�erently
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(recall V is convex-valued), V (φ(z)) ∩ V (φ(−z)) ̸= ∅. Lemma 1 then guarantees the

existence of an equilibrium that generates information policy p = 1
2
δφ(z) +

1
2
δφ(−z). In

particular, Tµ is not p(µ)-a.s. constant.

Just as Proposition 1 generalizes Chakraborty and Harbaugh's (2010) Theorem

1, the following result generalizes their Theorem 2.

Corollary 6. Let T be any statistic, and suppose ũ : coT (Θ) → R is a strictly

quasiconvex function such that v(µ) = ũ(Tµ) for every µ ∈ ∆Θ. If T is multivariate,

an S-bene�cial equilibrium exists.

Before proving this result, we note the result follows immediately from Propo-

sition 1 under the additional hypothesis that R has a unique best response to ev-

ery belief�as assumed in Chakraborty and Harbaugh (2010). Indeed, following

Chakraborty and Harbaugh's (2010) argument, strict quasiconvexity of ũ would imply

the binary-message equilibrium constructed above is S-bene�cial. The below proof

for the general case is similar in spirit, although one additional step is needed.

Proof of Corollary 6. Again, let φ : S → R be as delivered by Lemma 8. Now, de�ne

f := v ◦ φ − v(µ0) : S → R, which is upper semicontinuous because v is. Moreover,

for any z ∈ S, the distinct estimates Tφ(z) and Tφ(−z) have Tµ0 as their midpoint,

and so max {f (z) , f (−z)} ≥ 0 by quasiconvexity of ũ. Applying Lemma 9 to f then

delivers a z ∈ S such that v ◦ φ(z), v ◦ φ(−z) ≥ v(µ0).

By Lemma 8 Part 3, both µ := 2φ (z)−µ0 and µ′ := 2φ (−z)−µ0 are in ∆Θ. Be-

cause Tφ (z) = 1
2
Tµ+ 1

2
Tµ0, strict quasiconvexity of ũ delivers the following inequality

chain,

v (µ0) ≤ v ◦ φ (z) = ũ (Tφ (z)) < max {ũ (Tµ) , ũ (Tµ0)} = max {v (µ) , v (µ0)} .

It follows v (µ) > v (µ0). By the same argument, v (µ′) > v (µ0). Thus, the informa-

tion policy p = 1
2
δµ+

1
2
δµ′ secures min {v (µ) , v (µ′)} > v (µ0). The result then follows

from Theorem 1.

C.2 The Equilibrium Payo� Set

In this subsection, we brie�y comment on how our tools, and the belief-based approach

more broadly, can generate a more complete picture of the world of cheap talk with
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state-independent S preferences. As will be clear, the results outlined herein are all

straightforward to derive given earlier results in the paper.

C.2.1 Other sender payo�s

Following the recent literature on communication with S commitment, our focus has

largely been on high equilibrium S values, that is, those providing payo�s at least

as high as those attainable under uninformative communication. However, the tools

developed in our paper work equally well to characterize bad sender payo�s. In-

deed, the proof of Lemma 1 used no special features of V other than it being a

Kakutani correspondence, which −V is as well. Therefore, our game has the same

equilibrium distributions over A×Θ as the game with S objective −uS. To deliver the

mirror-image versions of our main results, de�ne the value function from S-adversarial

tiebreaking, w := minV : ∆Θ → R.
Theorem 1 implies a sender payo� s ≤ w(µ0) is an equilibrium payo� if and only

if some p ∈ I(µ0) exists such that p {w ≤ s} = 1. Combining this observation with

the original statement of the securability theorem tells us s ∈ R is an equilibrium S

payo� if and only if p+, p− ∈ I(µ0) exist such that p+ {v ≥ s} = p− {w ≤ s} = 1. An

easy consequence is that the equilibrium S payo� set is convex, which we document in

Corollary 3. Corollary 1 has a mirror image as well, telling us the set of S equilibrium

payo�s is exactly [︃
min

p∈I(µ0)
sup w (supp p) , max

p∈I(µ0)
inf v (supp p)

]︃
.

Note convexity of the set of attainable S payo�s is special to the case in which S's

payo�s are state independent; indeed, the leading example of Crawford and Sobel

(1982) does not share this feature.

The mirrored counterpart of our geometric Theorem 2 is that the lowest S pay-

o� attainable in equilibrium is w(µ0), where w is the quasiconvex envelope of w,

that is, the pointwise highest quasiconvex and lower semicontinuous function that

minorizes w. Therefore, we can geometrically characterize S's equilibrium payo� set

as [w (µ0) , v̄ (µ0)].
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C.2.2 Receiver payo�s

Our most powerful tools (the securability theorem and its descendants) pertain to S

payo�s. However, the belief-based approach (i.e., Lemma 1) can be used to describe

R payo�s as well. Indeed, let vR : ∆Θ → R be R's value function, given by vR(µ) :=

maxa∈A
�
Θ
uR(a, ·) dµ. It follows from R's interim rationality that any equilibrium

that generates outcome (p, s) will deliver a payo� of r =
�
∆Θ

vR dp to R.

Given equilibrium S payo� s, we can then more explicitly derive the set of equi-

librium R payo�s compatible with an equilibrium in which S gets payo� s. Let

Bs := {w ≤ s ≤ v} =

{︃
µ ∈ ∆Θ : ∃a+, a− ∈ argmax

a∈A

�
Θ

uR(a, ·) dµ s.t. uS(a−) ≤ s ≤ uS(a+)

}︃
.

Then, (s, r) is an equilibrium payo� pro�le if and only if r =
�
∆Θ

vR dp for some

p ∈ I(µ0) ∩ ∆(Bs). The best such R payo� (given s) is given by ˆ︂vsR(µ0), where

vsR : Bs → R is the restriction of vR and ˆ︂vsR : coBs → R is the concave envelope of vsR.

C.2.3 Implementing equilibrium payo�s

In addition to their role in proving Theorem 1, barely securing policies generate a

straightforward way of implementing any equilibrium S payo�.41 If S could commit,

we could apply the revelation principle42 to implement any S commitment payo� with

a commitment protocol in which S makes a pure action recommendation to R, and

R always complies. Using barely securing policies, we can show a similar result holds

with cheap talk, with one important caveat: R must be allowed to mix. To state this

result, for any S strategy σ, de�ne Mσ as the set of messages in σ's support.43

Proposition 2. Fix some S payo� s. Then, the following are equivalent:

1. s is generated by an equilibrium.

2. s is generated by an equilibrium with Mσ ⊆ ∆A and ρ (α) = α ∀α ∈ Mσ.

3. s is generated by an equilibrium with Mσ ⊆ A and ρ (a|a) > 0 ∀a ∈ Mσ.

41For S payo�s s ≤ min V (µ0), we use the mirror image of barely securing policies, that is,
information policies p such that {min V (·) ≤ s} ∩ co {µ, µ0} = {µ} holds for p-a.e. µ.

42See, for example, Myerson (1986), Kamenica and Gentzkow (2011), and Bergemann and Morris
(2016).

43That is, let Mσ = ∪θ∈Θsuppσ (·|θ).
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The proposition suggests two ways in which one can implement a payo� of s via

incentive-compatible recommendations. The �rst way has S giving R a mixed action

recommendation that R always follows. The second way has S giving R a pure action

recommendation that R sometimes follows. Both ways can result in R mixing.

That 1 implies 2 follows from standard revelation principle logic. To prove 1

implies 3,44 we start with a minimally informative information policy that secures

s. Because p is minimally informative, it must barely secure s, meaning (p, s) is an

equilibrium. Let E be part 2's implementation of (p, s), and take a (µ) to be some

S-preferred action among all those that R plays in E at belief µ. By minimality of

p, a (·) must be p-essentially one-to-one, because pooling any posteriors that induce

the same a (·) value would yield an even less informative policy that secures s. Thus,

a (·) takes distinct beliefs to distinct (on-path) actions: R can infer µ from a (µ). One

can then conclude the proof by having S recommend a(µ) and R respond to a(µ) as

he would have responded to µ under E .
The formal proof is below.

Proof of Proposition 2. Because (2) and (3) each immediately imply (1), we show the

converses.

Suppose s is an equilibrium S payo�. Now take some p ∈ I(µ0) Blackwell-minimal

among all policies securing payo� s, and let D := supp(p) ⊆ ∆Θ.45 Lemma 4 guaran-

tees (p, s) is an equilibrium outcome, say, witnessed by equilibrium E1 = (σ1, ρ1, β1).

Letting α = αs : D → ∆A be as delivered by Lemma 2, we may assume ρ1(·|m) =

α(·|β(m)). In particular, ρ1 speci�es �nite-support play for every message.

Let M := margMPE1 and X := supp
[︁
M ◦ ρ̂−1

]︁
⊆ ∆A, and �x arbitrary (α̂, µ̂) ∈

supp [M ◦ (ρ1, β1)
−1]; in particular, α̂ ∈ X. By continuity of uR and receiver incentive

compatibility, α̂ ∈ argmaxα∈∆A uR(α ⊗ µ̂). De�ning ρ′ : M → ∆A (resp. β′ : M →
∆Θ) to agree with ρ1 (β1) on path and take value α̂ (µ̂) o� path, an equilibrium

44The equivalence between 1 and 3 echoes an important result of Bester and Strausz (2001), who
study a mechanism-design setting with one agent, �nitely many types, and partial commitment by
the principal. Applying a graph-theoretic argument, they show one can restrict attention to direct
mechanisms in which the agent reports truthfully with positive probability. Although the proof
techniques are quite di�erent, a common lesson emerges. Agent mixing helps circumvent limited
commitment by the principal: in Bester and Strausz's (2001) setting, by limiting the principal's
information, and in ours, by limiting her control.

45Some policy secures s if s is an equilibrium payo�. The set of such policies is closed (and
so compact) because v is upper semicontinuous. Therefore, because the Blackwell order is closed-
continuous, a Blackwell-minimal such policy exists.
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E ′ = (σ1, ρ
′, β′) exists such that PE ′ = PE1 and ρ′(·|m) ∈ X for every m ∈ M .

Now de�ne

σ2 : Θ → ∆X ⊆ ∆M

θ ↦→ σ1(·|θ) ◦ ρ′−1

ρ2 : M → X ⊆ ∆A

m ↦→

⎧⎨⎩m : m ∈ X

α̂ : m /∈ X

β2 : M → ∆Θ

m ↦→

⎧⎪⎨⎪⎩Em∼M

[︃
β(m)

⃓⃓⃓⃓
ρ(m)

]︃
: m ∈ X

µ̂ : m /∈ X.

By construction, (σ2, ρ2, β2) is an equilibrium that generates outcome (p, s),46 proving

(1) implies (2).

Now de�ne the (A- and D-valued, respectively) random variables a,µ on ⟨D, p⟩
by letting a(µ) := argmaxa∈suppα(µ) uS (a) and µ(µ) := µ for µ ∈ D. Next de�ne

the conditional expectation f := Ep[µ|a] : D → D, which is de�ned only up to a.e.-p

equivalence. By construction, the distribution of µ is a mean-preserving spread of the

distribution of f . That is, p is weakly more informative than p ◦ f−1. By hypothesis,

a(µ) is incentive compatible for R at every µ ∈ D. But D = supp(p ◦ f−1), which

implies p ◦ f−1 secures s. But minimality of p implies p ◦ f−1 = p. So f = Ep[µ|a]
and µ have the same distribution, which implies f = µ a.s.-p. By de�nition, f is

a-measurable, so that Doob-Dynkin delivers some measurable b : A → D such that

f = b ◦ a.
Summing up, we have some measurable b : A → D such that b◦a =a.e.−p µ. Now

46It generates (p̃, s) for some garbling p̃ of p. Minimality of p then implies p̃ = p.
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de�ne

σ3 : Θ → ∆A ⊆ ∆M

θ ↦→ σ2(·|θ) ◦ (a ◦ β2)
−1

ρ3 : M → X ⊆ ∆A

m ↦→

⎧⎨⎩α(b(m)) : m ∈ A

α̂ : m /∈ A

β3 : M → ∆Θ

m ↦→

⎧⎨⎩b(m) : m ∈ A

µ̂ : m /∈ A.

By construction, (σ3, ρ3, β3) is an equilibrium that generates outcome (p, s), prov-

ing (1) implies (3).

Proposition 2 shows some forms of communication are without loss as far as S

payo�s are concerned. First, any S equilibrium payo� is attainable in an equilibrium

in which S recommends mixed actions that are (on path) followed exactly. This

equivalence extends to equilibrium payo� pairs, with the same argument: Pooling

messages that lead to the same R behavior relaxes incentive constraints and generates

the same joint distribution over actions and states, preserving payo�s. Second, any S

equilibrium payo� is attainable in an equilibrium in which S recommends pure actions

that are followed with positive probability. Whether this result holds in general for

payo� pairs is an open question. It is easy to see why, at least, our argument does

not go through as stated. The proof begins by considering an information policy that

gives no �extraneous� information to R, subject to securing the relevant S value. But

taking information away from R in this way can result in a payo� loss.

Still, we can leverage Lemma 1 to show a result of a similar spirit: To implement

an equilibrium payo� pro�le, it is su�cient for R to only use binary mixed actions,

the support of which is S's message.

Proposition 3. Fix some payo� pro�le (s, r). Then, the following are equivalent:

1. (s, r) is generated by an equilibrium.

2. (s, r) is generated by an equilibrium with Mσ ⊆ ∆A and ρ (α) = α ∀α ∈ Mσ.
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3. (s, r) is generated by an equilibrium with Mσ ⊆
{︁

1
2
δa +

1
2
δa′ : a, â ∈ A

}︁
and

supp[ρ (α)] = supp(α) ∀α ∈ Mσ.

We can interpret 3 as describing equilibria in which S tells R, �Play a or â,� for

some pair of actions, but does not suggest mixing probabilities.

To see the equivalence between 1 and 3, Lemma 2 from the appendix can be used

to show equilibrium payo� pro�le (s, r) can be implemented with an equilibrium in

which R only ever uses pure actions or binary-support mixtures, with the latter only

being used when S is not indi�erent between the two supported actions. Without loss,

say such equilibrium is as in 2, with S suggesting an incentive-compatible mixture

to R. But S rationality implies no two on-path recommendations can have the same

support, because then S would have an incentive to deviate to the one putting a

higher probability on the preferred action. Therefore, the same behavior could be

induced by having every message replaced with a uniform distribution over its (at

most binary) support, and the result follows.

With �nitely many actions, Proposition 3 yields an a priori upper bound on the

number of distinct messages required in equilibrium, similar to Proposition 2. Still,

the upper bound of Proposition 2 is signi�cantly smaller: Whereas Proposition 2 says

no more than n := |A| messages are required to span the set of equilibrium S values,

Proposition 3 guarantees any equilibrium payo� pair can be attained with at most
n(n−1)

2
messages.

C.3 Long Cheap Talk

Let us de�ne the long-cheap-talk game. In addition to the objects in our model

section, R has some message space M̃ , which we assume is compact metrizable. Let

H<∞ :=
⨆︁∞

t=0(M × M̃)t, H∞ := (M × M̃)N, and Ω := H∞ ×A×Θ. In a long-cheap-

talk game, S �rst sees the state θ ∈ Θ. Then, at each time t ∈ Z+, players send

simultaneous messages: S sends mt ∈ M and R sends m̃t ∈ M̃ . Finally, after seeing

the sequence of messages, R chooses an action a ∈ A. Formally, a (behavior) strategy

for S is a measurable function σ : Θ×H<∞ → ∆M , and a strategy for R is a pair of

measurable functions (σ̃, ρ), where σ̃ : H<∞ → ∆M̃ and ρ : H∞ → ∆A. These maps

induce (together with the prior µ0) a unique distribution, Pσ,σ̃,ρ ∈ ∆Ω, which induces

payo� uS(margAPσ,σ̃,ρ) and uR(margA×ΘPσ,σ̃,ρ) for S and R, respectively.
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C.3.1 Extra rounds cannot help the sender

Below, we use our Theorem 1 to show that any S payo� attainable under long cheap

talk is also attainable under one-shot communication.47

Proposition 4. Every sender payo� attainable in a Nash equilibrium of the long-

cheap-talk game is also attainable in a perfect Bayesian equilibrium of the one-shot

cheap-talk game.

To prove the proposition, �x a payo� s∗ that S cannot attain in the one shot

game, and use our securability theorem to construct a continuous biconvex function on

∆Θ×R that is strictly positive at (µ0, s
∗) and zero on V 's graph. Mimicking appendix

A.3 of Aumann and Hart (2003), we then take an arbitrary equilibrium of the long-

cheap-talk game, and construct a bimartingale {µk, sk}k, that is, a martingale over

the graph of V such that only one coordinate ever moves at a time.48 The bimartingale

converges to a measure over V 's graph and has a time-zero value of (µ0, s0) = (µ0, s0),

where s0 is S's payo� in said equilibrium. We then follow the easy direction of Aumann

and Hart's (1986) characterization of the bi-span of a set, noting the expectations of

continuous biconvex functions of a bimartingale grow over time, and so the function

constructed at the beginning of the proof assigns (µ0, s0) a weakly negative value. It

follows that (µ0, s0) ̸= (µ0, s
∗). Because the chosen long-cheap-talk equilibrium was

arbitrary, no such equilibrium can yield S a payo� of s∗.

Other than our construction of a biconvex function, the proof follows the logic

presented in Aumann and Hart (2003) and Aumann and Hart (1986). Because both

papers assume a �nite state space, the results of Aumann and Hart (1986) and Au-

mann and Hart (2003) do not apply directly. We therefore provide a self-contained

proof below.

Proof of Proposition 4. Take any s∗ ∈ R that is not an equilibrium payo� for prior

µ0 in the one-shot cheap-talk game. In particular, s∗ /∈ V (µ0). Focus on the case of

s∗ > v∗(µ0), the mirror-image case being analogous. Fix some payo� s′ ∈ (v∗(µ0), s∗).

47To ease notational overhead, we employ Nash equilibrium as our solution concept in studying
long cheap talk, and so have no need to de�ne a belief map for the receiver. We therefore obtain a
stronger result, because any perfect Bayesian equilibrium is also Bayes Nash.

48Although the bimartingale we construct is related to the stochastic process of pairs of R beliefs
and S payo�s, the two processes are not the same: Each round of communication corresponds to
two periods under the bimartingale. Aumann and Hart (2003) use the same construction.
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Letting B be the closed convex hull of v−1[s′,∞), Theorem 1 tells us µ0 /∈ B. Hahn-

Banach then gives an a�ne continuous φ : ∆Θ → R such that φ(µ0) > maxφ(B).

Now de�ne the function49

F : ∆Θ× R → R+

(µ, s) ↦→ [φ(µ)−maxφ(B)]+[s− s′]+.

Observe that F is biconvex and continuous. Moreover, F (µ, s) = 0 whenever s ∈
V (µ): either s < s′ because µ /∈ B, or µ ∈ B and so φ (µ) ≤ maxφ (B).

Now consider any Nash equilibrium (σ, (σ̃, ρ)) of the long-cheap-talk game. Let

us de�ne several random variables on the Borel probability space ⟨Ω,Pσ,σ̃,ρ⟩. For ω =

((mt,mt˜ )∞t=0, a, θ) ∈ Ω, let θ(ω) := θ and a(ω) := a; and, for t ∈ Z+, let m2t(ω) := mt

and m2t+1(ω) := m̃t. From these, we de�ne a �ltration (Fk)k∈K with index set

K = Z+ ∪ {∞} by letting each Fk be the sigma-algebra generated by {mℓ}ℓ∈Z+, ℓ<k .

Finally, for each k ∈ K, de�ne the (∆Θ-valued and R-valued, respectively) random
variables µk := E [δθ|Fk] and sk := E [uS(a)|Fk]; and let Pk ∈ ∆(∆Θ×R) denote the
distribution of (µk, sk). Note that, by construction, P0 has a distribution δ(µ0,s0) for

some s0 ∈ R. Our task is to show s0 ̸= s∗.

In what follows, take any statements about the stochastic processes (µk)k∈K

and (sk)k∈K to hold Pσ,σ̃,ρ-almost surely. By construction, µ2t+2 = µ2t+1 for ev-

ery t ∈ Z+, and both (µk)k∈K and (sk)k∈K are martingales. By S rationality,

s2t = E [s2t+1|F2t+1] = s2t+1 for every t ∈ Z+. Because F is biconvex and contin-

uous,
�
F dP0 ≤

�
F dP1 ≤ · · · . In particular,

�
F dPk ≥

�
F dP0 = F (µ0, s0)

for every k ∈ Z+. By the martingale convergence theorem, sk converges to s∞.

By the same, every continuous g : Θ → R has
�
Θ
g dµk converging to

�
Θ
g dµ∞;

so µk converges (weak*) to µ∞. But Pk converges (weak*) to P∞. Therefore,�
F dP∞ = limk→∞

�
F dPk ≥ F (µ0, s0). By R rationality, s∞ ∈ V (µ∞), imply-

ing F (µ∞, s∞) = 0, so that
�
F dP∞ = 0 too. Therefore, F (µ0, s0) ≤ 0 < F (µ0, s∗).

So s0 ̸= s∗, as required.

C.3.2 Extra rounds can help the receiver

Unlike S, R may bene�t from long cheap talk when S's preferences are state indepen-

dent. To see this, consider the following example, which we describe informally. Let

49Recall that [·]+ := max {·, 0}.
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Θ = {0, 1}; µ0(1) =
1
8
; A = {ℓ, b, t, r}; uS(b) = 0, uS(ℓ) = 1, uS(t) = uS(r) = 2; and

uR(a, θ) = −(za − θ)2, where zℓ = 0, zr = 1, and zb = zt =
1
2
. The associated value

correspondence V and prior belief µ0 are depicted in Figure 3 below.

Because every µ ∈ ∆Θ with µ(1) ≤ µ0(1) has V (µ) = {1}, Lemma 1 immediately

implies every equilibrium outcome (p, s) of the one-shot cheap-talk game has s = 1

and p
{︁
µ : µ(1) ≤ 3

4

}︁
= 1. In particular, every equilibrium of the long-cheap-talk

game generates a �mean outcome� of y0, as depicted in the �gure.

1

1

2

y0x1
y1

y2

x2

x3 y3

µ

V

Figure 3: S's value correspondence in an example where R strictly bene�ts from long
cheap talk.

Given the above observations, an equilibrium exists with one round of commu-

nication with R beliefs supported on
{︁
0, 3

4

}︁
, and every other one-shot equilibrium

generates less information (in a Blackwell sense) for R; we can depict this equilibrium

as generating support {x1, y1} in the �gure. But now, with a jointly controlled lottery,
this y1 can be split in the next round to {x2, y2}.50 Finally, S can provide additional

information in the next round to split y2 into {x3, y3}. Because action t is optimal

for R at belief 3
4
(i.e., that associated with y2) but not at belief 1 (i.e., that associated

with y3), this additional information is instrumental to R. Therefore, our equilibrium

is strictly better for R than any one-round equilibrium.

Thus, although additional rounds of communication do not change S's equilibrium

50Informally, following Aumann and Hart (2003), each player could toss a fair coin (independent
of the state for S) and announce its outcome. Then, the players move to x2 if the coins come up the
same, and y2 otherwise. Such jointly controlled randomization could be done simultaneously with
the information that S initially conveys, so that our three-round example can be converted into a
slightly more complicated two-round example.
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payo� set, the static and long-cheap-talk models are economically distinct, even under

state-independent S preferences.

C.4 Optimality of Full Revelation

This section presents formal results discussed in section 6.4. This section's main result

is Proposition 5, which shows two things when v is nowhere quasiconcave: First, full

revelation is an S-favorite equilibrium; and second, every S-favorite equilibrium entails

full revelation if the state is binary or R's best response is unique for every belief.

We also demonstrate, via an example, that nowhere quasiconcavity is insu�cient for

full revelation to be uniquely S-optimal. The example also illustrates S-unfavorable

tie breaking can create a bene�t from commitment even when full revelation is both

S's favorite equilibrium and S's favorite commitment policy. We conclude the section

by discussing conditions under which v is nowhere quasiconcave. In particular, we

show a strictly quasiconvex v is nowhere quasiconcave if and only if it is nowhere

quasiconcave on each of the simplex's one-dimensional extreme subsets (Corollary 7).

The next few lemmas serve as preliminary steps toward Proposition 5. Lemma

10 provides a way of constructing a measurable correspondence. Using this lemma,

we show every non-full revelation commitment policy can be improved upon when

v is nowhere concave, by splitting non-extreme beliefs. Similarly, one can split such

beliefs to weakly increase a policy's secured value whenever v is nowhere quasiconcave

(Lemma 11). An immediate consequence is that under nowhere quasiconcavity, full

revelation secures S's highest equilibrium value (Lemma 12). Nowhere quasiconcavity

also implies S can do better than no information at every non-extreme belief (Lemma

13). We then combine these lemmas with the observation that the payo� secured

by full revelation depends only on the prior's support to show full revelation barely

secures S's highest equilibrium payo�.

We now proceed with proving Lemma 10. This lemma is based on Aliprantis and

Border's (2006) discussion concerning measurability of correspondences. All measur-

ability statements are made with respect to the appropriate Borel σ-algebras.

Lemma 10. Let X and Y be compact metrizable spaces, Ξ : X → R upper semicon-

13



tinuous, and Υ : Y → R measurable. Then,

Γ : Y ⇒ X

y ↦→ Ξ−1[Υ (y) ,∞),

is weakly measurable.

Proof. Recall that a nonempty-compact-valued correspondence into X is weakly mea-

surable if and only if it is measurable when viewed as a KX-valued function (Theorem

18.10 from Aliprantis and Border, 2006).51 We now proceed with proving the lemma.

To begin, let z̄ = max Ξ (X), and observe that

Λ : (−∞, z̄] ⇒ X

z ↦→ Ξ−1[z,∞) = {Ξ ≥ z} ,

is nonempty-compact-valued because Ξ is upper semicontinuous. We claim below that

Ξ is weakly measurable. It follows that y ↦→ Λ ◦Υ(y) is a measurable function from

Y into KX , and so is weakly measurable when viewed as a correspondence. Noting

Γ = Λ ◦Υ completes the proof.

We now argue Ξ is weakly measurable. To do so, consider any open G ⊆ X. The

lower inverse image of G under Λ is

Λl (G) = {z ≤ z̄ : Λ (z) ∩G ̸= ∅}

= {z ≤ z̄ : {Ξ ≥ z} ∩G ̸= ∅}

= {z ≤ z̄ : Ξ (G) ̸⊆ (−∞, z)} ,

which is an interval.

When v is nowhere (quasi)concave, Lemma 10 gives a splitting of each non-extreme

belief that increases v's expected (secured) value. We present this result below.

Lemma 11. Suppose v is nowhere (quasi)concave. Then, a measurable selector r of

I : ∆Θ ⇒ ∆∆Θ exists such that
�
v dr (µ) > v (µ) (inf v (supp r (µ)) > v (µ)) for all

µ ∈ ∆Θ\ {δθ}θ∈Θ.
51KX denotes all nonempty compact subsets of X, equipped with the Hausdor� metric.
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Proof. Observe that v̂ (·) (v̄ (·)) is upper semicontinuous and therefore measurable.

Moreover, p ↦→
�
v dp (p ↦→ inf v (supp p)) is an upper semicontinous function from

∆∆Θ to R. Therefore, Lemma 10 implies µ ↦→
{︁
p ∈ ∆∆Θ :

�
v dp ≥ v̂ (µ)

}︁
(µ ↦→

{p ∈ ∆∆Θ : inf v (supp p) ≥ v̄ (µ)}) is weakly measurable. Noting I is also weakly

measurable (by upper hemicontinuity) implies

µ ↦→ I (µ) ∩
{︃
p ∈ ∆∆Θ :

�
v dp ≥ v̂ (µ)

}︃
(µ ↦→ I (µ) ∩ {p ∈ ∆∆Θ : inf v (supp p) ≥ v̄ (µ)})

is weakly measurable. Because the latter correspondence is nonempty-valued, it ad-

mits a measurable selector, r, by the Kuratowski and Ryll-Nardzewski selection the-

orem (Theorem 18.13 from Aliprantis and Border, 2006). The result follows from

noting v̂ (µ) > v (µ) (v̄ (µ) > v (µ)) holds for all µ ∈ ∆Θ\ {δθ}θ∈Θ whenever v is

nowhere (quasi)concave (appealing to Corollary 1).

Lemma 11 above immediately implies full revelation is S's uniquely optimal com-

mitment protocol whenever v is nowhere concave. The reason is that any other

information policy can be strictly improved upon via the splitting generated by the

lemma. Lemma 11 also implies that when v is nowhere quasiconcave, full revelation

secures S's maximal equilibrium. We prove the latter result in the lemma below.

Lemma 12. If v is nowhere quasiconcave, v̄(µ) = infθ∈supp(µ) v(δθ) for all µ ∈ ∆Θ;

that is, full information secures S's maximal equilibrium value.

Proof. Fix µ ∈ ∆Θ. A unique pF ∈ I(µ) exists with pF {δθ}θ∈Θ = 1; clearly, pF has

support {δθ}θ∈supp(µ). By Corollary 1, we know v̄(µ) is the highest securable value at

prior µ. Thus, letting P := {p ∈ I(µ) : p secures v̄(µ)}, our aim is to show pF ∈ P .
Corollary 1 tells us P is nonempty, and upper semicontinuity of v implies P is closed.

The mean-preserving spread order being closed-continuous, P contains some maximal

element, p, with respect to this order. Letting r be as delivered by Lemma 11, the

policy
�
r dp belongs to P as well.52 But maximality of p requires that p =

�
r dp,

implying p = pF .

The next lemma establishes that under nowhere quasiconcavity, S can always

bene�t from cheap talk.

52Here,
�
r dp ∈ I(µ) is given by

[︁�
r dp

]︁
(D) :=

�
r(D|·) dp for Borel D ⊆ ∆Θ.

15



Lemma 13. If v is nowhere quasiconcave, v̄(µ) > v(µ) for all µ ∈ ∆Θ\ {δθ}θ∈Θ.

Proof. Fix any µ ∈ ∆Θ\ {δθ}θ∈Θ. By hypothesis, µ′, µ′′ ∈ ∆Θ and λ ∈ (0, 1) exist

such that µ = λµ′ + (1− λ)µ′′ and v(µ) < v(µ′), v(µ′′). Therefore, p = λδµ′ +

(1− λ) δµ′′ ∈ I (µ) secures a value strictly above v (µ), and so v̄(µ) > v(µ) by Theorem

1.

We now prove our main result regarding nowhere quasiconcavity.

Proposition 5. Suppose v is nowhere quasiconcave. Then,

1. Some S-preferred equilibrium entails full information.

2. If Θ is binary, or if R has a unique best response to every belief, every S-preferred

equilibrium entails full information.

Proof. We begin by showing full revelation barely secures v̄ (µ0). Fix some θ ∈
suppµ0. Consider any µ ∈ co {δθ, µ0} \ {δθ}. We argue v̄ (µ0) > v (µ), and so

v−1 [v̄ (µ0) ,∞) ∩ co {δθ, µ0} = {δθ}, as required. Because the support of µ and µ0 is

the same, full revelation secures the same value for both beliefs. Therefore, Lemma

12 and Lemma 13 yield

v (µ) < v̄ (µ) = inf sup v
(︂
{δθ}θ∈suppµ0

)︂
= v̄ (µ0) .

In other words, full revelation barely secures v̄ (µ0). The securability theorem (more

precisely, Lemma 4) then delivers the �rst point.

To show the second part, we claim below v̄(µ) ≤ v̄(µ0) for each µ ∈ ∆Θ\ {δθ}θ∈Θ.
Lemma 13 then implies v(µ) < v̄(µ) ≤ v̄(µ0) for all µ ∈ ∆Θ\ {δθ}θ∈Θ. As such,

p ∈ I (µ0) secures v̄ (µ0) only if supp p ⊆ {δθ}θ∈Θ, that is, p provides full information.

To conclude the proof, we note (p, v̄ (µ0)) is an equilibrium outcome only if p secures

v̄ (µ0), meaning no p other than full revelation can yield S a payo� of v̄ (µ0).

All that remains is to show v̄(µ) ≤ v̄(µ0) for all µ ∈ ∆Θ\ {δθ}θ∈Θ. When |Θ| = 2,

this inequality holds with equality by Lemma 12. If R's best response is unique, v is

continuous, and so every θ ∈ Θ has

v (δθ) = lim
n→∞

v
(︁
n−1
n
δθ +

1
n
µ0

)︁
≤ lim

n→∞
v̄
(︁
n−1
n
δθ +

1
n
µ0

)︁
= v̄ (µ0) ,

where the last equality follows from Lemma 12. The same lemma then implies v̄ (µ) =

inf v
(︂
{δθ}θ∈suppµ

)︂
≤ v̄ (µ0), as required.
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We now provide an example that witnesses two properties. First, it shows nowhere

quasiconcavity alone is insu�cient for uniqueness of full revelation as an S-favorite

equilibrium. Second, it is possible for S to bene�t from commitment despite full

revelation being best for S both with and without commitment.

Example 4. Let Θ := {−1, 0, 1}, A := {0, 1}×∆Θ, µ∗ := 1
2
δ−1+

1
2
δ1, µ0 :=

1
2
δ0+

1
2
µ∗,

and H : ∆Θ → R+ a continuous and strictly concave function with H(δθ) = 0 ∀θ ∈ Θ.

Let players utilities uS : A → R and uR : A×Θ → R be given by

uS((x, µ̂)) := xH(µ∗)−H(µ̂)

and

uR((x, µ̂), θ) := −
∑︂
θ̃∈Θ

[︂
µ̂(θ̃)− 1θ̃=θ

]︂2
− x(1− θ2).

Observe (x, µ̂) is a best response to R belief µ if and only if µ̂ = µ and xµ(0) = 0.

Therefore, the value function is given by v(µ) = H(µ∗)1µ(0)=0 −H(µ). By construc-

tion, this function is strictly quasiconvex because −H is. Appealing to Corollary 7

(see below), the value function is then nowhere quasiconcave, and so full information

is an S-preferred equilibrium, yielding S payo� min {H(µ∗), 0} = 0.

Observe that, in an S-preferred equilibrium, R breaks indi�erences against S when

the state is nonzero. Therefore, S gets a payo� strictly lower than her commitment

value of 1
2
H(µ∗). Moreover, full information is not the only S-preferred equilibrium

information policy, because Lemma 1 implies (1
2
δδ0 +

1
2
δµ∗ , 0) is an equilibrium out-

come.

We conclude this section with su�cient conditions for v to be nowhere quasicon-

cave. In particular, we show a strictly quasiconvex v is nowhere quasiconcave if and

only if it is nowhere quasiconcave on every one-dimensional extreme subset of ∆Θ.

Corollary 7. Let v be strictly quasiconvex. The following are equivalent:

(i) v is nowhere quasiconcave.

(ii) v|∆{θ,θ′} is nowhere quasiconcave for every θ, θ′ ∈ Θ.

Proof. Clearly, (i) implies (ii). That (ii) implies (i) follows from applying Corollary 6

with T (θ) := δθ. Indeed, for any prior µ ∈ ∆Θ with |suppµ| ≥ 3, Corollary 6's proof

delivers a pair of beliefs µ′, µ′′ with µ as their midpoint such that v(µ) < v(µ′), v(µ′′).
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Therefore, the de�nition of nowhere quasiconcavity need only be veri�ed at binary-

support beliefs whenever v is strictly quasiconvex.
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