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Abstract

We study a model of cheap talk with one substantive assumption: The
sender’s preferences are state independent. Our main observation is that such
a sender gains credibility by degrading self-serving information. Using this
observation, we examine the sender’s benefits from communication, assess the
value of commitment, and explicitly solve for sender-optimal equilibria in three
examples. A key result is a geometric characterization of the value of cheap talk,
described by the guasiconcave envelope of the sender’s value function. (JEL
D83, D82, M37, D86, D72)

KEYWORDS: cheap talk, belief-based approach, securability, quasiconcave

envelope, persuasion, information transmission, information design

1 Introduction

How much can an expert benefit from strategic communication with an uninformed
agent? A large literature, starting with Crawford and Sobel (1982) and |Green and
Stokey| (2007), has studied this question, focusing on the case in which the expert’s
preferences depend on the state. However, many experts have state-independent

preferences: Salespeople want to sell products with higher commissions; politicians

*Department of Economics, Columbia University, e.lipnowski@columbia.edu. Department of Economics, Univer-
sity of Chicago, dravid@Quchicago.edu. This research was supported by a grant from the National Science Foundation
(SES-1730168). We would like to thank Emir Kamenica for his invaluable comments and suggestions. We would also
like to thank Ben Brooks, Kevin Bryan, Odilon Camara, Archishman Chakraborty, David Dillenberger, Francoise
Forges, Pedro Gardete, Faruk Gul, Johannes Horner, Navin Kartik, R. Vijay Krishna, Laurent Mathevet, Stephen
Morris, Wolfgang Pesendorfer, Andrew Postlewaite, Ariel Rubinstein, Maher Said, Denis Shishkin, and Vasiliki Skreta
for insightful discussions.



want to get elected; lawyers want favorable rulings; and so on. This paper analyzes
the extent to which such experts benefit from cheap talk.

We consider a general cheap-talk model with one substantive assumption: The
sender has state-independent preferences. Thus, we start with a receiver facing a
decision problem with incomplete information. The relevant information is available
to an informed sender who cares only about the receiver’s action. Wanting to influence
this action, the sender communicates with the receiver using costless messages.

Other papers have studied cheap-talk communication between a sender and a
receiver when the former has state-independent preferences.ﬂ The most relevant is
Chakraborty and Harbaugh| (2010). Looking at a multidimensional specialization of
our model, they show the sender can always communicate some information credibly
and influence the receiver’s actions by trading off dimensions.ﬂ Chakraborty and
Harbaugh| (2010)) also observe that a need for sender indifference creates a role for
quasiconvexity and quasiconcavity. In particular, their second theorem says that, in
their environment, the sender likes (dislikes) influencing the receiver in equilibrium
whenever the sender’s utility is a quasiconvex (quasiconcave) function of the receiver’s
action.

Our main insight is that a sender with state-independent preferences gains cred-
ibility by degrading self-serving information, that is, by making messages that serve
as profitable deviations less informative. To derive this insight, we take a belief-based
approach, as is common in the literature on Communication.ﬂ Thus, we summarize
communication via its induced information policy, a distribution over receiver poste-
rior beliefs that averages to the prior. Say that a payoff s is sender beneficial if it
is larger than the sender’s no-information payoff, and securable if the sender’s lowest
ex-post payoff from some information policy is at least s. Theorem 1| shows a sender-

beneficial payoff s can be obtained in equilibrium if and only if s is securable. Thus,

!Schnakenberg| (2015)) characterizes when an expert can convince voters to implement a proposal,
and when said communication harms the voting population. Margaria and Smolin| (2018]) prove a
folk theorem for a repeated interaction in which both a sender and a receiver are long-lived. With
a long-lived sender but short-lived receivers, |Best and Quigley| (2020) show that only partitional
information can be credibly revealed, and that well-chosen mediation protocols can restore the
commitment solution for a patient sender. |Chung and Harbaugh| (2019)) test experimentally the
predictions of a recommendation game similar to our leading example.

2See Battaglini (2002) and |Chakraborty and Harbaugh| (2007) for applications of this idea in the
case of state-dependent sender preferences.

3For example, see Aumann and Maschler, (1995), |Aumann and Hart (2003), Kamenica and
Gentzkow| (2011)), |Alonso and Camaral (2016)), and [Ely| (2017).



although the information policy securing s need not itself arise in equilibrium, its
existence is sufficient for the sender to obtain a payoff of s in some equilibrium. Intu-
itively, the securing policy leads to posteriors that provide too much sender-beneficial
information to the receiver. By degrading said information posterior by posterior,
one can construct an equilibrium information policy attaining the secured value.

To illustrate our main result, consider a political think tank that advises a law-
maker. The lawmaker is contemplating whether to pass one of two possible reforms,
denoted by 1 and 2, or to maintain the status quo, denoted by 0. Evaluating each
proposal’s merits requires expertise, which the think tank possesses. Given the think
tank’s political leanings, it is known to prefer certain proposals to others. In partic-
ular, suppose the status quo is the think tank’s least preferred option and the second
reform is the think tank’s favorite option. Hence, let a € {0, 1,2} represent both the
lawmaker’s choice and the think tank’s payoff from that choice. To choose to imple-
ment a reform, the lawmaker must be sufficiently confident that the reform is good.
Suppose one reform is good and one is bad, where the state, 6 € {0, 6,}, indicates
the identity of the good reform. The lawmaker implements reform a whenever he
assigns 0, a probability strictly above %. At %, the lawmaker is indifferent between
said reform and the status quo, which the lawmaker chooses when neither reform is
sufficiently likely to be good. Both reforms are equally likely to be good under the
prior.

Suppose the think tank could reveal the state to the lawmaker; that is, the think
tank recommends that the lawmaker implement 1 when the state is #; and imple-
ment 2 when the state is 6. Because following these recommendations is incentive-
compatible for the lawmaker, the think tank’s ex-post payoff would be 1 when sending
implement 1 and 2 when sending tmplement 2. By contrast, under no information,
the think tank’s payoff is 0. Thus, revealing the state secures the think tank a payoff
of 1, which is higher than its payoff under the prior. Notice that 1 is then the highest
payoff that the think tank can secure, because no information policy always increases
the probability that the lawmaker assigns to 6. One can therefore apply Theorem
to learn two things: (i) 1 is an upper bound on the think tank’s equilibrium payoffs,
and (ii) we can achieve this bound via a message-by-message garbling of said protocol.

For (ii), consider what happens when the think tank sends the implement 2 message



according to

P {implement 2|0 = 6,} = %,

P {implement 2|0 = 65} =1,

and sends implement 1 with the complementary probabilities. As with perfect state
revelation, choosing proposal 1 is the lawmaker’s unique best response to implement
1. However, given implement 2, the lawmaker assigns a probability of % to 0. Being
indifferent, the lawmaker mixes between keeping the status quo and implementing
2 with equal probabilities. Such mixing results in indifference by the think tank,
yielding an equilibrium.

In the general model, Theorem [I| allows us to geometrically characterize the
sender’s maximal benefit from cheap talk and compare this benefit with her ben-
efit under commitmentﬁ Kamenica and Gentzkow| (2011)) characterize the sender’s
benefit under commitment in terms of her value function, that is, the highest value
the sender can obtain from the receiver’s optimal behavior given his posterior be-
liefs. Specifically, they show the sender’s maximal commitment value is equal to the
concave envelope of her value function. As we show in Theorem [2] replacing the con-
cave envelope with the quasiconcave envelope gives the sender’s maximal value under
cheap talk. Thus, the value of commitment is the difference between the concave and
quasiconcave envelopes of the sender’s value function.

Figure (1] visualizes the geometric comparison between cheap talk and commit-
ment in the aforementioned think-tank example. Because the state is binary, the
lawmaker’s belief can be summarized by the probability it assigns to the second re-
form being good (6 = 6,). Putting this probability on the horizontal axis, the figure
plots the highest value the think tank can obtain from uninformative communication,
cheap talk, and commitment. That is, the figure plots the think tank’s value func-
tion (left), along with its quasiconcave (center) and concave (right) envelopes. The
two envelopes describe how communication benefits the think tank by allowing it to
connect points on the value function’s graph. In contrast to communication with com-

mitment, which enables the think tank to connect points using any affine segment,

4Qur assumption of sender state-independent preferences is common in the literature on commu-
nication with hard evidence (e.g., (Glazer and Rubinstein) 2004} |2006; Hart et al.l [2017; Rappoport,
2020). Many such studies explore sufficient conditions for receiver- (rather than sender-) optimal
equilibria to replicate receiver (rather than sender) commitment.



only flat segments are allowed with cheap talk. The restriction to flat segments comes
from the think tank’s incentive constraints: Because the think tank’s preferences are
state independent, all equilibrium messages must yield the same payoff. As such, the
think tank can only connect points with the same payoff coordinate; that is, only flat

segments are feasible.
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Figure 1: The simple think-tank example. The dashed lines represent the highest
value the think tank can obtain from no information (left), cheap talk (center), and
commitment (right).

The geometric difference between cheap talk and commitment allows us to show
that, in finite settings, almost all priors fall into one of two categories: Either the
sender can get her first-best outcome with cheap talk, or she would strictly benefit
from commitment. One can see this categorization holds in the simple think-tank
example for almost all beliefs by using Figure[ll The figure clearly shows that unless
the second reform is never good, the concave envelope lies above the quasiconcave
envelope whenever the probability of the second reform being good is below %. When-
ever the second reform is good with probability % or above, the lawmaker is willing to
implement the think tank’s favorite reform under the prior, and so the two envelopes
must coincide with the value function.

In section [ we use our results in three specific economic settings. In a richer
version of the above think-tank example, we show a think tank’s best equilibrium
involves giving the lawmaker noisy recommendations, where the noise is calibrated to
make the lawmaker indifferent between the recommended reform and the status quo.
We also study a broker-investor relationship, in which an investor consults his broker
about an asset, and the broker earns a fee proportional to the investor’s trades. We

identify a Pareto-dominant equilibrium in which the broker tells the investor whether



his holdings should be above or below a fee-independent cutoff amount. Thus, the
lower the broker’s fee, the better off the investor, who pays less money for the same
information. Lower fees have an ambiguous effect on the broker because they reduce
her income per trade but increase equilibrium trade volume. We also conduct compar-
ative statics in market volatility. Although higher volatility cannot hurt the broker,
she strictly benefits from higher volatility only if she can effectively communicate
about it to the investor. The investor’s attitude toward higher volatility is ambiguous
because it changes both the investor’s prior uncertainty and the usefulness of the
broker’s information. Our third example is a symmetric version of the multiple-goods
seller example of (Chakraborty and Harbaugh! (2010)). Specifically, we consider a seller
who wants to maximize the probability of selling one of her many products to a buyer.
In this setting, we show the best the seller can do with cheap talk is tell the buyer
the identity of her best product. Moreover, we show being able to benefit ex ante
from providing the buyer with additional information about the best product is a
necessary and sufficient condition for the seller to benefit from commitment.

In section , we revisit (Chakraborty and Harbaugh| (2010). We point out that,
absent their specific parametric structure, (Chakraborty and Harbaughls (2010) rea-
soning shows the sender can influence the receiver’s estimate of any multidimensional
statistic of the state. Whenever this estimate coincides with the receiver’s best re-
sponse, the sender can also influence the receiver’s actions. Otherwise, Chakraborty
and Harbaugh/s (2010) reasoning delivers informative communication, which might
not influence the receiver’s actions, as long as three or more states exist.

To summarize, we contribute to the literature on cheap talk with state-independent
sender preferences in three ways. First, we identify the ability to reduce the infor-
mativeness of profitable messages as a key channel through which the sender gains
credibility. Using this channel, we obtain a complete characterization of the sender’s
payoff set. Second, we show quasiconcavity fully summarizes the sender’s ability to
benefit from communication. Third, we apply our results to generate new insights in

economic applications.

2 Cheap Talk with State-Independent Preferences

Our model is an abstract cheap-talk model with the substantive restriction that the

sender has state-independent preferences. Thus, we have two players: a sender (S,



she) and a receiver (R, he). The game begins with the realization of a random state,
0 € O, which S observes. After observing the state, S sends R a message, m € M. R
then observes m (but not #) and decides which action, a € A, to take. Whereas R’s
payoffs depend on 6, S’s payoffs do not.

We impose some technical restrictions on our model.E] Each of ©, A, and M is a
compact metrizable space containing at least two elements, and M is sufficiently rich.ﬁ
The state, 6, follows some full-support distribution pg € A©, which is known to both
players. Both players’ utility functions are continuous, where we take us : A — R to
be S’s utility and ur : A x © — R to be R’s.

We are interested in studying the game’s equilibria, by which we mean perfect
Bayesian equilibria. An equilibrium consists of three measurable maps: a strategy
o:0 — AM for S; a strategy p: M — AA for R; and a belief system 5 : M — AO
for R; such that

1. ( is obtained from g, given o, using Bayes’ ruleﬂ
2. p(m) is supported on argmaxeea [g ur (a,-) dB(-|m) for all m € M; and
3. 0 () is supported on argmax,,enr [, us(-) dp(-/m) for all # € ©.

Any triple £ = (o, p, #) induces a joint distribution, Pg, over realized states, messages,
and actionsﬁ which, in turn, induces (through 8 and p, respectively) distributions
over R’s equilibrium beliefs and chosen mixed action.

The following are a few concrete examples of our setting.

Example 1. Consider the following richer version of the think-tank example from

the introduction. Thus, S is a think tank that is advising a lawmaker (R) on whether

5Let us describe some notational conventions we adopt throughout the paper. For a compact
metrizable space Y, we let AY denote the set of all Borel probability measures over Y, endowed
with the weak* topology. Given y € Y, we let §, € AY denote a unit atom on y, §, {y} = 1. For
v € AY, we let supp~y denote the support of 7. For a set X, a transition g : X — AY’, a point
zeX, and a Borel subset Y C Y, we let g(Y|z) := g(z)(Y). For a set Z, a function h : X — Z,

and a subset X C X, we let h(X) := {h(x) T € X} Finally, “co” refers to the convex hull, and

“to” refers to the closed convex hull.

6To simplify the statements of our results, we assume M D AUAAUA®. S’s attainable payoffs
would be the same if we instead imposed either that |M| > |A| or that © is finite and |M| > |©], by
Proposition 2] I Corollary I and Caratheodory s Theorem.

"That is, [g 0 (M) dpg = Jo Jxs B( O|) do(-10) dpuo(8) for every Borel © C © and M C M.

8Specﬂ‘ically, & = (o,p,3) induces measure Pg € A(© x M x A), which assigns probability
Pe(© x M x A) = [4 [, p(A]-) do(-]0) duo(6) for every Borel © C ©, M C M, A C A.

7



to pass one of n € N reforms or to pass none; that is, the lawmaker chooses from
A=1{0,1,...,n}. A given reform i € {1,...,n} provides uncertain benefit ; € [0, 1]
to the lawmaker. From the lawmaker’s perspective, reforms are ex-ante identical:
Their benefits are distributed according to an exchangeable prior g over [0, 1], and
each entails an implementation cost of ¢. Maintaining the status quo is costless but
generates no benefits, ug (0,0) = 0. The think tank prefers higher-indexed reforms
to lower-indexed ones, and prefers some reform to no reform; that is, the think tank’s
payoffs are given by a strictly increasing function, ug : A — R, where we normalize
ug (0) = 0F] We analyze this example in section [5.1]

Example 2. R is an investor consulting a broker (S) about an asset. The broker
knows the investor’s ideal position in the asset, # € © = [0, 1], which is distributed
according to the atomless prior, 19. The investor’s pre-existing position is ag € [0, 1].
After consulting his broker, the investor chooses a new position in the asset, a € A =
[0,1]. The broker’s payoff accrues from brokerage fees proportional to the net volume
of trade; that is, ug(a) = ¢|a — ag| for some ¢ > 0. The investor wants to match the
ideal holdings level, but must pay the broker’s fees: ug(a,f) = —3(a—0)? —ug(a). In
section we find a Pareto-dominant equilibrium and conduct comparative statics

under the assumption that the investor’s existing position is correct; that is, ag =
f@ 0 dMO(9>

Example 3. A buyer (R) can take an outside option or buy one of N goods from a
seller (S). The seller knows the vector § = (64, ..., 0,), where 6; denotes the buyer’s net
value from product i. Product values are i.i.d. atomlessly distributed over [0,1]. The
seller wants to maximize the probability of a sale, but does not care which product
is sold. Hence, the seller receives a value of 1 if the buyer chooses to purchase
product ¢ € {1,...,n}, and 0 if the buyer chooses the outside option, which we
denote by 0. Only the buyer knows her value from the outside option, €, which is
distributed independently from 6 according to GG, a continuous, full-support CDF over
0,1]. |Chakraborty and Harbaugh! (2010) study this example and show the seller can
always benefit from communication. In section we use our tools to expand on

their analysis.

9This example is related to, but formally distinct from, the respective models of (Che et al.| (2013)
and |Chung and Harbaugh|(2019). The former studies a project-selection model with state-dependent
preferences for both players, and the latter tests experimentally a binary-state project-selection
model with a stochastic receiver outside option.



We analyze our model via the belief-based approach, commonly used in the com-
munication literature. This approach uses the ex-ante distribution over R’s posterior
beliefs, p € AABO, as a substitute for both S’s strategy and the equilibrium belief sys-
tem. Clearly, every belief system and strategy for S generate some such distribution
over R’s posterior belief. By Bayes’ rule, this posterior distribution averages to the
prior, po. That is, p € AAO satisfies [ pdp (1) = po. We refer to any p that averages
back to the prior as an information policy. Thus, only information policies can
originate from some ¢ and . The fundamental result underlying the belief-based
approach is that every information policy can be generated by some ¢ and ﬁ.m Let
Z(uo) denote the set of all information policies.

The belief-based approach allows us to focus on the game’s outcomes. Formally,
an outcome is a pair, (p,s) € AAO x R, representing R’s posterior distribution, p,
and S’s ex-ante payoff, s. An outcome is an equilibrium outcome if it corresponds
to an equilibrium.[:r] An equilibrium outcome is informative if R’s posterior distri-
bution is non-degenerate, p # J,,. In contrast to equilibrium, a triple (o, p, ) is a
commitment protocol if it satisfies the first two of the three equilibrium conditions
above; and (p, s) is a commitment outcome if it corresponds to some commitment
protocol. In other words, commitment outcomes do not require S’s behavior to be
incentive compatible.

Using the belief-based approach, |Aumann and Hart (2003) analyze, among other
things, the outcomes of the cheap-talk model with general S preferences over states
and actions. When S’s preferences are state independent, their characterization es-
sentially specializes to Lemma [1] below[??] which describes the game’s equilibrium
outcomes. To state the lemma, let V (1) be S’s possible continuation values from R

having u as his posterior,

V:AO =R

[b > CO Ug (argma}/uR(a, ) du) .
ac

OFor example, see Aumann and Maschler| (1995), Benoit and Dubral (2011) or [Kamenica and
Gentzkow| (2011)).

U That is, an equilibrium £ = (o, p, ) exists such that p(B) = marg,,P¢ [Bfl(B)} for every Borel
B C A®, and s = [, us d marg ,Pe.

12Because /Aumann and Hart/s (2003) setting is finite, we provide a direct independent proof of
said lemma for the sake of completeness.



By Berge’s theorem, V' is a Kakutani correspondence, and the value function,

v (-) == maxV (-), is upper semicontinuous|™|
Lemma 1. The outcome (p,s) is an equilibrium outcome if and only if:
1. p € Z(po), that is, [ p dp (u) = po, and

2. s€ mu6811pp(p) V(u).

The lemma’s conditions reflect the requirements of perfect Bayesian equilibrium.
The first condition comes from the equivalence between Bayesian updating and p
being an information policy. The second condition combines both players’ incentive-
compatibility constraints. For S, incentive compatibility requires her continuation
value to be the same from all posteriors in p’s support, meaning her ex-ante value
must be equal to her continuation value upon sending a message. For R, incentive
compatibility requires that V () contain S’s continuation value from any message
that leaves R at posterior belief u. Therefore, S’s ex-ante value must be in V' (u) for
all posteriors p in p’s support.

Our setting nests the model of Chakraborty and Harbaugh| (2010). In their model,
© = A C R" is a compact convex set with a nonempty interior, where N > 1, the
prior admits a full-support density, and argmax,ea [ ur(a,-) du = {f@ du(@)} for
every p € AO. (Chakraborty and Harbaugh's (2010) main result is that this setting
always admits an equilibrium in which S’s messages influence R’s actions. Using
Lemmal[l] one can generalize Chakraborty and Harbaughls (2010) logic to show S can
typically communicate information to R; that is, most versions of our model admit
an informative equilibrium. Because our analysis does not rely on the existence of an
informative equilibrium, we defer discussion of this result to section [6.1]

Another insight of |Chakraborty and Harbaugh| (2010) is that the reliance of equi-
librium communication on S indifference creates a role for quasiconcavity and qua-
siconvexity. In particular, they observe that a finite-support distribution can give
a quasiconcave (quasiconvex) function a constant value only if said value is lower
(higher) than the function’s value at the distribution’s mean. This observation has
many useful implications. One implication is that in |Chakraborty and Harbaugh[s

(2010) setting, S always benefits from influencing R’s action in equilibrium when ug

13That is, V is a nonempty-, compact-, and convex-valued, upper hemicontinuous correspondence,
and v(p) := maxsey () § is upper semicontinuous in € A®. Notice v is well defined (i.e., max V' (u)
exists) because V (u) is non-empty and compact.
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is strictly quasiconvex. Another implication is that babbling is S’s best (worst) equi-
librium whenever v is quasiconcave (quasiconvex) and R’s best response is unique for
all beliefs.

In what follows, we show quasiconcavity completely summarizes S’s ability to
benefit from communication. More precisely, we prove S’s maximal equilibrium payoff
is given by the quasiconcave envelope of v (Theorem . This result is based on our

main result (Theorem , presented in the next section.

3 Securability

This section presents our main result, Theorem [I,, which characterizes S’s equilibrium
payoffs. The characterization shows that as far as S’s payoffs are concerned, one can
ignore S’s incentive constraints by focusing on S’s least favorite message in any given
information policy. Thus, using the theorem, one can use non-equilibrium information
policies to reason about S’s possible equilibrium payoffs.

Let p be an information policy, and take s to be some possible S payoff. Say that
policy p secures s if p {v > s} = 1[]and that s is securable if an information policy
exists that secures s, that is, if yy € €6 {v > s}. Our main result shows securability

characterizes S’s equilibrium values.

Theorem 1 (Securability). Suppose s > U(MO)E] Then, an equilibrium inducing

sender payoff s exists if and only if s is securable.

The key observation behind Theorem [1]is that one can transform any policy p that
secures s into an equilibrium policy by degrading information. Specifically, we replace
every supported posterior p with a different posterior i/ that lies on the line segment
between 1o and p. Because p/ is between py and p, replacing p with g’ results in a
weakly less informative signal. To ensure the resulting signal is an equilibrium, we
take 1/ to be the closest posterior to 1y among the posteriors between g and p that
make providing s incentive compatible for R. Thus, this transformation replaces a
potentially incentive-incompatible posterior p with the incentive-compatible 1i/. That

i exists follows from two facts. First, s is between S’s no-information value and

Here, we use the standard notation: {v > s} = {u: v(u) > s}.

5Given our focus on S’s benefits from cheap talk, we state the theorem for high S values. For
s < min V (ug), one replaces the requirement that s is securable with the existence of some p € T (o)
such that p {min V < s} = 1.

11



her highest u payoff, v (u). Second, V' is a Kakutani correspondence, admitting an
intermediate value theorem [

The above logic also identifies a class of equilibrium information policies that
span all of S’s equilibrium payoffs above v (up). Say that p barely secures s if
{v>s}nco{p, u} = {un} holds for p-a.e. p. In words, barely securing policies are
policies that secure a payoff higher than what S can attain at any belief between any
supported posterior and the prior. The construction behind Theorem (1| transforms
every securing policy into a barely securing policy that is also an equilibrium. Because
all equilibrium values are securable, we thus have that any high equilibrium value can
be attained in an equilibrium with a barely securing policy. Moreover, because barely
securing policies are left untouched by Theorem [IJs transformation, every barely
securing policy must then be an equilibrium.

Theorem [T highlights the way incentives constrain S’s ability to extract value from
her information. Although S can always degrade self-serving information to guarantee
incentives, the same cannot be done to information that is self—harming.E] As such,
S’s highest value is determined by the best worst message she must send if she could
commit. It follows S can do no better than no information if and only if she cannot
avoid sending R messages that are worse than providing no information. That is, the
set of beliefs at which S attains a value strictly higher than no information does not
contain the prior in its closed convex hull.ﬁ

Theorem |[1| also yields a convenient formula for S’s maximal equilibrium value,

which we present in Corollary [I| below.

Corollary 1. An S-preferred equilibrium exists, giving the sender a payoff of v*(uo),

where

v* (+) := max inf v (suppp).
PeZ(:)

16Theorem s proof is related (in that both use the intermediate value theorem to construct an
equilibrium) to the proof of |(Chakraborty and Harbaugh/s (2010) Theorem 4. Their theorem says
that in|Chakraborty and Harbaugh's (2010) specialization of our model, if ug is strictly quasiconvex,
a sequence of equilibria {&£},-, exist such that & entails 2% on-path messages, and S’s value from
&y strictly increases in k. We thank an anonymous referee for making us aware of the relationship
between these two results.

1"The statement is true for S-beneficial payoffs. For S-harmful payoffs, the sender would degrade
excessively self-harming information to guarantee incentives.

BFormally, s < v (ug) for all equilibrium outcomes if and only if for every e > 0, ug ¢
o {v > v (o) + €}. [Schnakenberg| (2015) shows a similar condition characterizes an expert’s ability
to sway voters to support her favorite of two policies.
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Notice that inf v (supp p) is the highest value that p secures. Thus, Corollary
says that maximizing S’s equilibrium value is equivalent to maximizing the highest
value S can secure across all information policies. In the next section, we provide a

geometric characterization of v*.

4 Commitment’s Value in Communication

The current section uses Theorem [1] to examine the value of commitment in strategic
communication. The main result of this section is Theorem [2| which geometrically
characterizes S’s maximal equilibrium value. Take v : A©® — R and v : A©® — R
to denote the quasiconcave envelope and concave envelope of v, respectively.
That is, v (resp. ©) is the pointwise lowest quasiconcave (concave) and upper semi-
continuous function that majorizes v[’’] Because concavity implies quasiconcavity,
the quasiconcave envelope lies (weakly) below the concave envelope. Figure [2| below
illustrates the definitions of the concave and quasiconcave envelopes for an abstract

function.

Figure 2: A function with its concave (left) and quasiconcave (right) envelopes.

As described in [Aumann and Maschler (1995)P"] and Kamenica and Gentzkow
(2011)), v gives S’s payoff from her favorite commitment outcome. Theorem [2| below

shows v gives S’s maximal value under cheap talk.

“The appendix contains a proof that, for finite ©, the quasiconcave envelope is below every
quasiconcave function that majorizes v, even those that are not upper semicontinuous.
20 Also see |Aumann and Maschler| (1966).
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Theorem 2 (Quasiconcavification). S’s mazimal equilibrium value is given by v’s
quasiconcave envelope; that is,

vt = 7.
Proof of Theorem [ We begin by showing v* is a quasiconcave, upper semicontin-
uous function that majorizes v. That v* majorizes v follows from existence of an
uninformative equilibrium. For upper semicontinuity, we refer the reader to Lemma
which we prove in the appendix.

We now argue v* is quasiconcave. For this purpose, fix ¢/, ¢/ and A € (0,1),
and consider the following observations. First, if p’ € Z(¢'), and p” € Z (1”), then
A +(1—=N)p" € ZT(A'+ (1 —X)p”). Second, the support of the convex combination
of two distributions is the union of their supports. Taken together, these observations

imply the following inequality chain:

v\ 4+ (1= ") = max inf v (su
Wi A=) = max | inf o (suppp)

> max inf v (su ' U su /'
yero M (suppp ppp”)

= max min {inf v (suppp’), inf v (suppp”)}
p/GI(M/)’p//eI(NII)

= min {v* (i), v* (")},

where the last equality follows from reasoning separately for p’ and p”.

To show v* = v, it remains to show that v* lies below any upper semicontinuous
and quasiconcave f : A©® — R that majorizes v. Fixing some prior p € AO, take
p € Z(p) to be an information policy securing S’s favorite equilibrium value, v* (u).
By choice of p, we have that, for D := supp p, both inf v (D) = v* () and p € @ D.

Combined with f being upper semicontinuous, quasiconcave, and above v, we have
f(p) >inf f(co D) =inf f(coD) =1inf f(D) > inf v (D) =v" (u).

Because p and f were arbitrary, our proof is complete. O]

Theorem [2| provides a geometric comparison between communication’s value un-
der cheap talk and under commitment. With commitment, communication is only
restricted by R’s incentives and Bayes’ rule. The value function’s concave envelope

describes the maximal payoff S can attain in this manner. Replacing the value func-
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tion’s concave envelope with its quasiconcave envelope expresses the value S loses in
cheap talk due to her incentive constraints. Graphically, both envelopes allow S to
extract value from connecting points on the graph of S’s value correspondence. How-
ever, although with commitment S can connect points via any affine segment, cheap

talk restricts her to flat ones. One can see the associated value loss for the introduc-

3
» 4
whereas with commitment, her highest payoff is given by 1 + %,u.

tion’s example in Figure : For priors p € (0 ), S’s highest cheap-talk value is 1,

Corollary [2| below uses the geometric difference between cheap talk and commit-
ment to show that in a finite setting, commitment is valuable for most priors. In
particular, with finite actions and states, the following is true for all priors lying out-
side a measure zero set: Either S attains her first-best feasible payoff, or S strictly

benefits from commitment.

Corollary 2. Suppose A and © are finite. Then, for Lebesque-almost all py € AO,
either v(po) = maxv(AO) or v (po) < v (1o)-

The intuition for the corollary is geometric: Except at S’s first-best feasible payoff,
the concave envelope, v, must lie above the interior of any of the quasiconcave enve-
lope’s flat surfaces. To see why, notice any prior po in the interior of such a surface
can be expressed as a convex combination of another belief on the same surface and
a belief yielding S’s first-best feasible value. Said formally, some A € (0,1), u, and
w' exist such that v (u) = v (uo), v (1) = max v (AO), and o = A+ (1 —N) .

Because v lies below ¥, and because v is concave, we obtain

¥ (p0) < A0 () + (1= N) o (p') < Ao () + (1= A) o (') <o (po),

as required.

5 Applications

5.1 The Think Tank

This section uses our results to analyze Example [I, We characterize the think tank’s
maximal equilibrium value and find an equilibrium in a barely securing policy that
attains it. To ease notation, we assume in the main text that the probability that

two reforms yield the same benefit to the lawmaker is zero.
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In the single-reform case, neither player can do better than no information: In this
case, think-tank indifference occurs only if the lawmaker’s mixed action is constant
on path. With multiple reforms, one can analyze the example using the claim below,
made possible by Theorem

Claim 1. The following are equivalent, given k € {1,... ,n}:
1. The think tank can attain the value ug (k) in equilibrium.
2. Koy [maxie{km,n} 6’,} > c.

3. The policy, px € T (uo), that reveals the random variable

i ;= arg max 6;
& iclhony

to the lawmaker secures ug (k).

The claim says the think tank attaining a value of ug (k) in equilibrium is equiv-
alent to two other conditions. First, always choosing the status quo is ex-ante worse
for the lawmaker than always choosing the best reform from {k, ... ,n} (Part 2). Sec-
ond, telling the lawmaker nothing but the identity of the best reform from {k,...,n}
secures ug (k) (Part 3).

Claim [Is Part 2 provides a simple necessary and sufficient condition for ug(k) to
be an equilibrium value. Using this condition, we can find S’s maximal value across

all equilibria: it is given by ug (k*), where

k* := max {k e{l,...,n}: Egoy Lél}lgaxn} (91'] > c} .
That is, £* is the highest k£ for which Part 2 holds. With £* in hand, we can identify
a best equilibrium for the think tank using the claim’s Part 3. This part tells us
the think tank’s favorite equilibrium value, ug (k*), is securable by the information
policy, pi+, that reveals to the lawmaker the identity of the best reform from the set
{k*,...,n}. Thus, to find an equilibrium, we can take py~ and garble information
message by message to obtain a new policy that barely secures ug (k*). Doing so
results in a policy that has the think tank randomizing between accurately recom-
mending the lawmaker’s best reform from {k*,... n} with probability 1 — €, and

recommending a uniformly drawn reform from {k*,... ,n} with probability e. By
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choosing e appropriately, one can degrade information so as to make the lawmaker
indifferent between the suggested recommendation and the status quo. The result is

an equilibrium in which the lawmaker implements the suggested reform ¢ with prob-

ability “js(ﬁ)) and maintains the status quo with complementary probability. Thus,
all that remains is to calculate £* and e, which depend on the prior: For example, if
01,...,0, are i.i.d. uniformly distributed on [0,1] and ¢ > % then

k* = n—QC—l ,and € = 2 1—6—26_1 :
1—c n — k*

The policy pg+ also yields an easy lower bound on commitment’s value. Specifically,

the value of commitment is at least the difference between £* and the think tank’s

value function’s expectation under pg-,

/ (-) dppr —ug (K*) = nk*ﬂzus ) —us (k) ,

i=k*

which simplifies to 3 (n — k*) in the special case of ug (a) = a.

5.2 The Broker

We now revisit the setting of Example 2| under the assumption that the investor’s
initial holdings are correct given her information, that is, that ap = [ 6 duo(6). Even
without this assumption, characterizing optimal behavior by the investor is straight-
forward. For any posterior belief © € AO, simple calculus yields that the investor’s

best response is unique and given by

JOdu®)+¢ = [0du(0) —ag < —¢
a*(p) = < ag o J 0 dp(
JOdu®)—¢ [0 du(

As such, V is a single-valued correspondence, with v(p) = ¢ [| [ 6 du() — ao| — ¢]+.

The above expression demonstrates this example is a specific instance of a class

of models in which ® C R and S’s value function is a quasiconvex function of R’s

2'When ¢ < 3, the think tank can obtain its first-best outcome under no information; that is,

v (po) = us (n).
#2We let [], := max {-,0}.
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expectation of the state. The special one-dimensional structure of this class allows us
to focus on cutoff policies. Formally, p is a #*-cutoff policy if it reports whether the
state is above or below 8* € © ] The following proposition shows garblings of cutoff

policies are sufficient to attain any S equilibrium value in one-dimensional settings.

Claim 2. Suppose © C R, g is atomless, and that v (u) = vy (f@ du(@)), where

vy c0® — R is weakly quasiconvex. Then, the following are equivalent for all

s 2 v (po):
1. S can attain payoff s in equilibrium.
2. The payoff s is securable by a cutoff policy.

Moreover, an S-preferred equilibrium outcome (p,s) exists such that p is a cutoff

policy.

We now apply the claim to our specific broker example. Notice the broker’s
value function is given by v (u) = var ([ 0 du(0)), where vy (0) = ¢ |0 — ag| — ¢].,..
Because v, is a convex function, Claim [2| implies an S-preferred equilibrium exists in
which S uses a cutoff policy. Consider the median-cutoff policy, where the broker tells
the investor whether the state is above or below the median. Let 6. and 0~ denote the
investor’s expectation of the state conditional on it being below or above the median,
respectively. Because ag = [ 6 duo(f) = %<9< + %9>, one has [0s — ag| = |0~ — ao,
meaning vy (0<) = vpr(0s). Thus, the median cutoff policy is an equilibrium policy.
Moreover, vy, decreases on [0, ag] and increases on [ag, 0~], and so no alternative
cutoff policy can secure a higher value. Hence, Claim [2] tells us the median cutoff
policy yields a broker-preferred equilibrium. We can therefore calculate the broker’s

maximal equilibrium payoff,

_ 1

o (o) =0 |5 0> 0] . )
+

In the median-cutoff equilibrium, the transmitted information does not depend on

¢. This observation simplifies the task of conducting comparative statics in ¢: The

broker’s maximal equilibrium payoff is single-peaked in ¢, with the optimal ¢ being

}l (0~ — 0.). Intuitively, increasing ¢ reduces trade but increases the broker’s income

23In section in the appendix, we provide a definition of cutoff policies (and prove a version of
Claim [2) that applies for general priors. The two definitions coincide when the prior is atomless.
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per trade, with the latter effect dominating for low ¢ and the former dominating for
high ¢.

It is easy to see the broker’s maximal equilibrium payoff increases with mean-
preserving spreads of ug; that is, the more volatile the market is, the better off the
broker. However, not all volatility is equal: Mean-preserving spreads strictly increase
the broker’s payoff if and only if they increase . — .. Thus, for the broker to
strictly benefit from market volatility, she must be able to communicate about it to
the investor.

How does the investor fare in the broker’s preferred equilibrium? Simple algebra
reveals the investor’s payoff is ﬁSQ—VarQNMO (0) in any equilibrium yielding the broker
a payoff of s.@ Two consequences are immediate. First, the investor’s equilibrium
payoffs increase with the broker’s, meaning the broker’s favorite equilibrium is Pareto
dominant. Second, the investor’s payoffs in the Pareto-dominant equilibrium are

given by

Notice the investor is always better off with lower brokerage fees: Because the broker’s
information does not change with ¢, a lower ¢ means the investor pays less for the
same information. By contrast, the investor’s attitude toward higher prior volatility
(in the sense of mean-preserving spreads) is ambiguous. Intuitively, increased market
volatility both increases the investor’s risk and increases the usefulness of the bro-
ker’s recommendations. As such, higher volatility that does not change the broker’s

recommendations unambiguously hurts the investor.

5.3 The Salesperson

In this section, we return to Example[3] This example was first analyzed by |(Chakraborty
and Harbaugh (2010),@ who show it always admits an influential equilibrium, that
is, an equilibrium in which different messages lead to different action distributions
by the buyer. Chakraborty and Harbaugh (2010) also noticed that every influential
equilibrium in this setting benefits the seller due to quasiconcavity. In this section,

we find a seller-preferred equilibrium and obtain a full characterization of when the

24The reader can find said algebra in appendix
25Chakraborty and Harbaugh| (2014) study a similar example in which the buyer has product-
specific taste shocks.
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seller benefits from commitment.
Because the buyer has private information, this example does not formally fall

within our model. Our analysis, however, still applies’S| Given a belief 1 € A©, the

buyer purchases the good with probability P {¢ < max; [ 6; du(f)} = G (max; [ 6; du(

Hence, the seller’s continuation value from sending a message that gives the buyer a
posterior of pis v (u) := G (max; [ 6; du(f)). Using the continuous function v as the
seller’s value function, we can directly apply our results to this example.

Applying Theorem [2] yields an upper bound on the seller’s equilibrium values. To

obtain this bound, define the continuous function v* (u) := G (f max;e(1,..n} b; du(@)).

Being an increasing transform of an affine function, v* is quasiconcaveE] Moreover,

u is increasin nsen’s inequali u
because G is increasing, Jensen’s inequality tells us

v* (p) = G( jomax  0; dﬂ(‘))) > G (jegﬁfn}/Q du(9>> v(p).

In other words, v* is a continuous quasiconcave function that majorizes the seller’s
value function, and so lies above the value function’s quasiconcave envelope. Theorem
then implies v* (1) is above any equilibrium seller value.

We now describe an equilibrium that attains the upper bound v* (ug). Let p*
be the information policy in which the seller tells the buyer the identity of the most
valuable product.@ Assuming the buyer believes the seller, the seller’s expected value

from recommending product 7 is

G | Eoopo |0i | © € arg max 0 / max (9 duo(8) ) =" (o)
]6{7 7 ]6{17 7

where the first equality follows from product values being i.i.d. Notice all recommen-

dations yield the seller the same value, meaning p* is an equilibrium. Moreover, p*
attains the upper bound v* (y9) on the seller’s equilibrium values. In other words,

(p*, 0" (10)) is a seller-preferred equilibrium outcome.

26More generally, our results apply without change to the following model. R has a met-
ric space Z of payoff parameters such that the distribution of (6,z) € © x Z is ug ® (o for
some (y € AZ. R’s payoffs are given by ugp : A x © x Z — R that is measurable over Z
and continuous over A x ©. In this extended model, V' : A® = R takes the form V(u) =
[, cous (argmaxaea [our(a,0,2)dp(0)) d¢o(z), a Kakutani correspondence.

2TThe logic yielding quasiconcavity of #* is similar to |Chakraborty and Harbaugh/s (2010) obser-
vation that S’s utility function in this example is quasiconvex as an increasing transformation of a
convex function. We thank an anonymous referee for pointing out this connection.

*8That is, the seller reveals the identity of arg max;e
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The identified equilibrium is, in fact, Pareto dominant. To see why, notice that if
the seller’s equilibrium payoff is s, the buyer’s expected utility from the best product
is G7! (s) for any on-path message. Therefore, the buyer’s utility in equilibrium is
E [max {e, G~ (s)}]. Hence, all equilibria are Pareto-ranked, and so any seller-best
equilibrium is buyer-best as well.

When does the seller benefit from commitment? The answer depends on the rela-

tionship between G and its concave envelope, G, evaluated at ¢ :== [ max;e(1,..n} 05 dpio(0).
Claim 3. The seller benefits from commitment if and only if G (t5) > G (t5)-

To see that commitment can benefit the seller only if G (£5) > G (t%), observe
that 0" (u) = G (f max;e(1,..n} 0; d,u(@)) is a continuous and concave function that
lies everywhere above the seller’s value function. Hence, the concave envelope of the

seller’s value function, v, lies below v*. Thus, if the seller benefits from commitment,

A

G (t5) = o(po) > v (o) = G ().

Conversely, suppose G (£) > G (t). Then, by reasoning analogous to Kamenica
and Gentzkow/s (2011]) Proposition 3@ a seller with commitment power can strictly
outperform p* by providing additional information about the value of the best good.
Thus, commitment always benefits the seller when G (££) > G (£%).

Claim [3| reduces the question of whether commitment benefits the seller to com-
paring a one-dimensional function with its concave envelope. Such a comparison is
simple when G is well behaved. In particular, if G admits a decreasing, increasing,
or single-peaked density, G itself is concave, convex, or convex-concave, respectively,

and so characterizing its concave envelope is straightforward.
Claim 4. Suppose G admits a continuous density g.
1. If g is weakly decreasing, the seller does not benefit from commitment.
2. If g is nonconstant and weakly increasing, the seller benefits from commitment.

3. If g is strictly quasiconcave, the seller benefits from commitment if and only if
. &
g(t) > & 2 g(t) dt

Proposition 3 of Kamenica and Gentzkow| (2011) assumes the state space is finite, and so does
not directly apply here. However, the extension to this example is straightforward given that G is

continuous. See appendix
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The claim’s first part says the seller does not benefit from commitment when g is
decreasing, that is, when G is concave. The second part says that when G is convex
and non-affine, the seller always benefits from commitment. The third part discusses
the seller’s benefits from commitment when G is S-shaped. Specifically, it shows
commitment is valuable in this case if and only if G’s density at ¢ is strictly larger

than the average density up to tj.

6 Discussion

6.1 Effective Communication

In a seminal paper, Chakraborty and Harbaugh| (2010) show that a large special case
of our model always admits an influential equilibrium, namely, an equilibrium in
which R’s action is non-constant across S’s on-path messages. In this section, we
note their insight applies beyond their parametric setting, and implies informative
communication is possible whenever three or more states exist.

We begin with a few definitions. A statistic is a continuous function 7" from ©
into some locally convex space X'. Say T is multivariate if its range is noncollinear,
that is, the affine span of T'(0©) has dimension strictly greater than 1. Finally, given
a belief 11 € A, its associated estimate of a statistic 7" is the barycenter [T du.

The above-defined objects arise naturally in Chakraborty and Harbaugh/s (2010)
setting. There, © and A are the same convex, multidimensional Euclidean set, and
the prior admits a density. Moreover, R’s unique optimal action given belief y is his
expectation of the state; that is, R chooses a = [ T'dy, where T' = ide. (Chakraborty
and Harbaugh (2010) show an equilibrium exists in which the estimate of 7', and
therefore R’s action, changes on path. Adapting Chakraborty and Harbaugh/s (2010)
logic, Proposition [1] highlights the key feature behind their result: 7" is multivariate.

Proposition 1. For any multivariate statistic T, an equilibrium outcome (p, s) exists

such that the estimate of T is not p-almost surely constant.

Observe Proposition (1| readily delivers an informative equilibrium whenever three

or more states exist. The reason is that, in this case, the mapping 7' (0) := Jy taking

30Recall (p. 1, Phelps, 2001), the barycenter [T dpu is the unique 7 € €0 T(©) such that p(7) =
[ @ oT(0) du(8) for every continuous linear ¢ : X — R.
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each state to a degenerate belief is a multivariate statistic (taking values in the span
of A®). The proposition also yields an influential equilibrium whenever R’s best
response equals his estimate of a multivariate statistic, as is the case in |(Chakraborty
and Harbaugh's (2010) model.

Proposition [1| delivers a generalization of another of (Chakraborty and Harbaugh/s
(2010) insights: S always benefits from communication via cheap talk when v is a
strictly quasiconvex function of R’s estimate of a multivariate statistic. This conclu-
sion roughly follows from the fact that a strictly quasiconvex function can be constant
across a non-degenerate distribution only if it is strictly lower at the distribution’s

mean E]

6.2 The Equilibrium Payoff Set

Despite our focus on S’s favorite equilibrium, our approach is useful for analyzing the
entire equilibrium payoff set. To find S’s payoff set, notice that because S’s incentives
are characterized by indifference, the game’s equilibrium set of S strategies is the
same regardless of whether S’s objective is ug or —ug. Just as applying Theorem
to the original game characterizes S’s high payoffs, one can apply the theorem
to the game with S objective —ug to find S’s low equilibrium payoffs. Under this
objective, S’s value function is given by —w, where w (-) := min V (). Theorem
then implies s < w (1) is an equilibrium payoff in the original game if and only if
some p € Z(pg) exists such that p{w < s} = 1. Applying Theorem [2| then tells us
S’s lowest equilibrium payoff is given by the quasiconvex of envelope of w, which we
denote by w.@ The above reasoning gives S’s entire equilibrium payoff set: s is an S
equilibrium payoff if and only if s € [w (p0) , 0 (o))

With S’s equilibrium payoffs in hand, we can find R’s possible equilibrium payoffs
using two observations. First, one can implement any particular payoff profile in
an equilibrium in which S recommends a pair of actions to R, and R responds by
mixing only over the recommended actions. Second, if S’s equilibrium payoff is s,
S’s recommended action pair must consist of one action yielding S a payoff above s,

and one action yielding S a payoff below s. Taking s as given, we can thus reduce

3'When R may have multiple best responses to a given belief, an additional step is needed. See

appendix for details.
32More precisely, w is the highest quasiconvex and lower semicontinuous function that is every-

where below w.
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the number of action pairs that S may recommend in equilibrium. We discuss these

observations more formally in online appendix

6.3 Long and Transparent Cheap Talk

It is by now well-known that allowing multiple rounds of bilateral communication—that
is, long cheap talk—expands the set of feasible equilibrium outcomes (e.g., see Forges
(1990), Aumann and Hart| (2003), and Krishna and Morgan (2004)). Forges (1990)
characterizes the long-cheap-talk payoff set in a striking example in which certain
outcomes require infinitely many rounds of communication. Her characterization,
which uses repeated-games techniques (e.g., see |[Hart, [1985), was generalized by |Au-
mann and Hart| (2003)). Broadly, one can describe the long cheap-talk outcome set
in terms of separation by diconvex functions (Aumann and Hart| 1986, [2003). When
S’s preferences are state independent, one can obtain such a separating function for
S’s payoffs using Theorem [} One can then show that every S payoff attainable in
a Nash equilibrium with long cheap talk is also attainable in PBE of the one-shot
cheap-talk game.@ The same, however, is not true for R, who can benefit from long
cheap talk. We refer the reader to appendix for the formal details.

6.4 Optimality of Full Revelation

In this section we ask when honesty is the best policy. More precisely, we provide a
sufficient condition for full revelation to be an S favorite equilibrium. To understand
our conditions, starting with the commitment case is useful. When S can commit,
full revelation is optimal whenever v is nowhere concave, that is, when every non-
extreme prior, 1y € AO \ {dp},cq, admits two beliefs, 4/, ¢, and a A € (0,1), such
that po = A/ + (1 — A) p” and v (o) < v (i) + (1 — X) v (@) . Intuitively, whenever
v is nowhere concave, one can strictly improve on any non-full revelation policy by

appropriatelyl?’z] splitting non-extreme beliefs in the policy’s support. Hence, a non-

33 Although the formal results therein are limited to finite settings, the |Aumann and Hart| (2003
setting is conceptually richer than ours, featuring a sender who may also make payoff-relevant de-
cisions after communication concludes. For such settings, one can still show that one-shot bilateral
communication is without loss for sender payoffs given state-independent preferences over action pro-
files. The driving observation is that jointly controlled lotteries deliver a Kakutani correspondence,
to which one can then apply Theorem

34In particular, one can benefit by splitting non-extreme beliefs in a measurable way. See appendix

for details.
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full revelation policy cannot be optimal. Because an optimal policy exists, it must be
full information.

Without commitment, one can use securability to obtain that full revelation is
an S-favorite equilibrium whenever v is nowhere quasiconcave, that is, when, for
every non-extreme prior, py € AG \ {dg}ycq, two beliefs, p' and 4", and a A € (0,1)
exist, such that po = A/ + (1 — X) " and v () < min{o (&), v (")} . In fact, we
show v being nowhere quasiconcave implies full revelation barely secures S’s maximal
equilibrium value. That full information secures S’s maximal equilibrium value, v (p),
under nowhere quasiconcavity is straightforward: By correctly splitting non-extreme
beliefs, one can weakly increase the value secured by any non-full revelation policy.
Showing full revelation barely secures v (pp) requires a more subtle argument. We
refer the reader to appendix for the precise details.

We should remark that, whereas strict convexity is sufficient for nowhere concavity,
strict quasiconvexity of v is insufficient for v to be nowhere quasiconcave. Indeed,
full revelation can fail to be an equilibrium at any non-degenerate prior—even if v is
strictly quasiconvex. The reason is that a strictly quasiconvex function can exhibit
quasiconcavities on one-dimensional extreme subsets of its domain. We show such
quasiconcavity is the only possible issue, however: A strictly quasiconvex v is nowhere
quasiconcave if and only if it is nowhere quasiconcave on co {dy, d¢} for all 0, 0’.

Notice a nowhere quasiconcave v must also be nowhere concave. Therefore, when-
ever v is nowhere quasiconcave, full revelation is both an S favorite equilibrium and
S’s unique optimal commitment policy. Note S could still benefit from commitment.
The reason is that under cheap talk, R might need to break ties against S’s interests
due to S’s incentive constraints. Appendix contains such an example. The exam-
ple also demonstrates that nowhere quasiconcavity is insufficient for full information
to be S’s unique favorite equilibrium. However, both issues disappear when R’s best
response to each belief is unique. Said differently, when R’s best responses are unique,
nowhere quasiconcavity of v is sufficient for full revelation to be the unique equilib-
rium attaining S’s maximal commitment payoff. In this case, v’s quasiconcave and

concave envelopes coincide, that is, v = 0.

35To prove this result, we note the generalization of (Chakraborty and Harbaugh's (2010) ideas as
in Proposition [I|implies a strictly quasiconvex v is not quasiconcave at any non-binary belief.
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A Omitted Proofs: Main Results

A.1 Preliminaries and additional notation

We begin by noting an abuse of notation that we use throughout the appendix. For
a compact metrizable space Y, a Borel measure over it v € AY, and a y-integrable
function f:Y — R, we let f(y) = [, fdy.

We now document the (standard) notion of information ranking used throughout
the paper. This definition is motivated by the Hardy-Littlewood-Polya-Blackwell-
Stein-Sherman-Cartier Theorem (see Phelps, 2001]).
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Definition 1. Given p,p’ € AAO, say p is more (Blackwell) informative than
p if p is a mean-preserving spread of p', that is, if a measurable selector r of Z :
AO = AAO exists such that p (D) = [, 7 (D|-)dp for all Borel D C A®.

Now, we record a useful measurable selection result.

Lemma 2. If D C A®© is Borel and f : D — R is any measurable selector of V|p,
a measurable function oy 1 D — AA exists such that, for all p € D, the measure
& = ag(-|p) satisfies:

1. US(d) = f(:u);

2. e argmaxaeAA uR(Oé7 M):

3. |supp(@)| < 2.

Proof. The result follows readily from the measurable maximum theorem (Theorem
18.19 from |Aliprantis and Border, [2006). Define

A" A = A

po— argmaxup(a, ).

Notice A* is nonempty-compact-valued and weakly measurable by the measurable
maximum theorem. Applying the same theorem to ;i — argmax,eca«(,) us (a) and
= arg minge a+(,) Us (@), and noting V' = co (ug o A*), delivers measurable selectors
ay and a_ of A* such that ugoa, = maxV and ugoa_ =minV.

But the same theorem delivers measurable selectors a, and a_ of A* such that

ug o ar = maxV and ugoa_ = minV. Now, define the measurable map:
ay: D — AA
v(p)—f min V' . :
T v(u)(ﬁ)min({/t')(u) 5“—(#) + vg/,ti min VEZ; 6a+(ﬂ) : man(u) 7& f(/’b)
a—(p) : mmv(ﬂ) = f(:u)
By construction, ay is as desired. O]

Next, we prove a variant of the intermediate value theorem, which is useful for our
setting. This result is essentially proven in Lemma 2 of [de Clippel (2008). Because
the statement of that lemma is slightly weaker than we need, however, we provide a

proof here for the sake of completeness.
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Lemma 3. If F : [0,1] = R is a Kakutani correspondence with min F(0) < 0 <
max F'(1), and & = inf {x € [0,1] : max F(z) > 0}, then 0 € F(Z).

Proof. By definition of Z, some weakly decreasing {z;"} ~ C [z,1] exists that con-
verges to T such that max F'(z;}) > 0 for every n € N. Define the sequence {z, } - C
[0, Z] to be the constant 0 sequence if Z = 0 and to be any strictly increasing sequence
that converges to T otherwise. By definition of Z (and, in the case of Z = 0, because
min F'(0) < 0), it must be that min F(z;) < 0 < max F(z;").

Passing to a subsequence if necessary, we may assume (as a Kakutani correspon-
dence has compact range) {max F'(z;})} -, converges to some y € R, which would
necessarily be nonnegative. Upper hemicontinuity of F' then implies max F'(z) > 0.
An analogous argument shows min F'(z) < 0. Because F' is convex-valued, it follows

that 0 € F(z). 0

A.2 Proof for Section 2

Below is the proof of Lemma [I} which initializes our belief-based approach. For finite
states, the result can be easily proven from results in [Aumann and Hart| (2003).
Although their ideas easily generalize to infinite state spaces such as ours, we include

a direct proof here for completeness.

Proof of Lemma 1] First, take any equilibrium (o, p, ) and let (p, s) be the induced
outcome. That p € Z(1) follows directly from the Bayesian property.

Define the interim payoff, s : M — R via 5(m) := ug (p(m)). S incentive com-
patibility tells us some M* C M exists such that [y 8(M*|-) duo = 1, and for every
m € M* and m’ € M, we have §(m) > §(m’). In particular, $(m) = s(m’) for every

m,m’ € M*; that is, some §" € R exists such that sy~ = §*. But

5—// us ( )) do(m|0) dpo(6 // §" dpo(f) = §7,

so that by receiver incentive compatibility, s € V(5(:|m)) for every m € M*. By
definition of p, then, s € V(u) for p-almost every u € AO. Because V is upper
hemicontinuous, it follows that s € (,c p0m V(1)-

Now suppose (p, s) satisfies the three conditions. Define the compact set D :=
supp(p). It is well known (see Benoit and Dubra (2011)) or [Kamenica and Gentzkow

(2011)) that every p € Z(po) exhibits some S strategy o and Bayes-consistent belief
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map § : M — AO that induce distribution p over posterior beliefs.@ Without
disrupting the Bayesian property, we may without loss assume [3(m) € D for all
m € M. Now let « = a, : D — AA be as given by Lemma [2 We can then define
the receiver strategy o := « o 3, which is incentive compatible for R by definition
of a. Finally, by construction, [, ug dp(-m) = s for every m € M, so that every S
strategy is incentive-compatible. Therefore, (o, p, #) is an equilibrium that generates

outcome (p, s). O

A.3 Proofs for Section [3
A.3.1 Proof of Theorem

Below, we prove a lemma that is at the heart of Theorem (1| Tt constructs an equilib-
rium (a barely securing policy, which we then show to be compatible with equilibrium)
of S value s from an arbitrary information policy securing s. The constructed equi-
librium policy is less informative than the original policy and requires fewer messages

to implement.
Lemma 4. Let p € Z(jo) and s € R.

1. If p secures s and s > v(ug), some p* € I(ug) exists such that p* barely secures
s, p* is weakly less Blackwell-informative than p, and |supp(p*)| < |supp(p)|.

2. If p barely secures s, (p,s) is an equilibrium outcome.

Proof. If s = v(uo), both results are trivial: In this case, the uninformative policy
is the unique one that barely secures s. From this point, we focus on the case of
s > v(uo).

Toward the first point, let p € Z (o) secure s, and D := supp (p). Notice v(u) > s
for every u € D because v is upper semicontinuous. Define the semicontinuous (and

so measurable) function,

A=, :D—1[0,1]

,u»—>inf{5\€[0,1]: v((l—j\)ﬂo—i-jx/i) Zs}.

By Lemma 3] it must be that s € V([1 — A(u)]po + A(p)p) for every p € D.

36In particular, such (o, 3) exist with o(AO[#) =1 for all # € © and B(-|u) = p for all u € D.
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Notice some number € > 0 exists such that A > € uniformly. If no such e existed, a
sequence {p,}, C D would exist such that A(s,) converges to zero. But the sequence
{11 = An)] 0 + A(pon) tn, 8)},, from the graph of V' would then converge to (1,s).
Because V' is upper hemicontinuous, such convergence would contradict s > v ().
Therefore, such an € > 0 exists, and so + is a bounded function.

)
Now, define p* = p? € AAO by letting

-1
* Y . 1 1 .
p (D) T (/Ae X dp) ./AG ml[l—k(u)]qurA(u)ueD dp(u)

for every Borel D C A®©. Direct computation shows p* € Z (o), and p* barely secures
s by construction.

Lastly, we note p* has the other required properties. The map p +— [1— A(p)]po +
A(p)p is a surjection from supp(p*) to supp(p), so that [supp(p*)| < [supp(p)|. Also
by construction, p* is weakly less informative than (1 — f Ao A dp) O + ( f Ao A dp) P,
which in turn is less informative than p. This proves (1).

Toward (2), suppose p barely secures s. That is, p-a.e. phas {v > s}Nco{p, o} =
{u}. For such u, some subsequence of {v((1 —2"")u+2"ug)}.—; C minug(A), s
converges, leading to (as V is upper hemicontinuous) some element of V' (u) that is
weakly less than s. Because v(u) > s by hypothesis, and V is convex-valued, it
follows that s € V(u). But upper hemicontinuity of V' then implies s € V(u') for
each 1/ € supp(p), and Lemma (1| delivers an equilibrium that generates S value s and

information policy p. O
We now prove the securability theorem (Theorem [I)).

Proof of Theorem[1. The “only if” direction follows directly from Lemma [I} For any
equilibrium outcome (p, s), information policy p secures payoff s. The “if” direction
is a direct consequence of (both parts of) Lemma O

A.3.2 Convexity of the equilibrium payoff set, and Corollary

Given Theorem [I] all that remains for proving Corollary [I]is that an S-best equilib-

rium exists, which follows from Corollary [3| below.

Corollary 3. The set of sender equilibrium payoffs s a compact interval.
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Proof. Let IT* be the set of equilibrium S payoffs, I, := {s € II* : s > maxV(uo)},
M_o:={sell*: s<minV(up)}, and Iy := {s € II* : min V' (pp) < s < max V' (po)}-

Because V is convex-valued, Il = II* N V(yo). By considering uninformative
equilibria, we see that IIp = V(o) = [min V' (ug), max V()]

It follows immediately from Theoremthat I1, is convex. Letting s, := sup(Il,) >
v(po), a sequence {s,} =, C [v(po), s4] exists that converges to s;. Dropping to a
subsequence, if necessary, we may assume some {p,} -, C Z(uo) exists such that p,
secures s, for each n, and {p,}, converges to some p. € Z(uo). But p; secures s,
because v is upper semicontinuous, so that (by Theorem [1)) s € II;. It follows that
II, = [v(uo), s4+], a compact interval. By an identical argument, II_ is a compact
interval, say, [s_, min V (uo)] as well[""]

Therefore, II* = [s_,min V (uo)] U [min V (u), max V (ug)] U [max V(uo), s+] =
[s_, s4]. O

A.4 Proofs for Section [

A.4.1 TUpper semicontinuity of v*

We prove here that v* is upper semicontinuous, a fact that the main-text proof of

Theorem [2] takes as given.
Lemma 5. v* is upper semicontinuous.

Proof. Let v* : AAO — R be given by 9*(p) := inf v (suppp), so that v*(u) :=

mIa(Lx)T)*(p) for every u € AO. The correspondence supp : AAO = AO is lower
peLl(p

hemicontinuous (Theorem 17.14, |Aliprantis and Border, 2006). Because v is upper
semicontinuous, it follows (Lemma 17.29, |Aliprantis and Border, [2006) that v* is
upper semicontinuous. Next, the correspondence Z : A© = AAO is upper hemicon-
tinuous because the barycenter map (p — [,op dp(p)) is continuous (Proposition
1.1, [Phelps|, 2001). Upper semicontinuity of v* follows (Lemma 17.30, |Aliprantis and
Border, [2006)). O

3TNotice the only property of V used in the proofs—that it is a Kakutani correspondence — is
also true of —V.
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A.4.2 Quasiconcave envelope with finite states

The purpose of this section is to prove Corollary [4] below. The corollary says that,
with finite states, v is the lowest quasiconcave function majorizing v. In other words,
the “upper semincontinuous” qualifier in the definition of the quasiconcave envelope

is necessary only when the state is infinite.

Corollary 4. Suppose © is finite. Then, v lies below every quasiconcave function

majorizing v.

Proof. Take any quasiconcave f : A© — R majorizing v. We show f > v*. The result
then follows from v* = ¥ (Theorem [2). Fix some prior p € A© and let p € T ()
be an information policy securing S’s favorite equilibrium value, v* (). Because © is
finite, Carathéodory’s Theorem delivers a finite subset D C supp p whose convex hull
includes the prior. Combined with f being a quasiconcave function majorizing v, we
have that

v* (1) = inf v (suppp) < min v (D) < min f (D) < f ().
as required. N

A.4.3 Corollary Commitment is usually valuable

We now prove Corollary [2, for which it suffices to show that Lebesgue-almost every

_ 4FB

prior p has either v(uo) = max v(AO) or 0(ug) > v(io).

Proof. First, observe
7 (AO) =v" (AO) Cclv(AB)] Ccllus (A)] =us (A),

which is finite. Next, that v is quasiconcave and implies {v > s} is convex for every
s € ug(A). Let

D:=(a0)\ |J o{v=>s}

s€ug(A)

be the set of full-support beliefs that are not on the boundary of any v-upper contour
set. Being the boundary of a bounded convex set in a (|©|—1)-dimensional space, the

set 0{v > s} is a manifold of dimension strictly lower than |©|—1 for each s € ug(A),
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and so has zero Lebesgue measure. Because (A©)° has full Lebesgue measure, the
finite union A® \ D is Lebesgue-null as well |

Suppose p € D, and fix some belief 1 € A© such that some action in ug'(s*P)
is a best response for R to belief p. By definition of D, sufficiently small € € (0, 1]

will have ey < po and © (“O 6“) > 0(p). But ¥ being concave and lying above ©

B(p0) 2 (1— €0 (M=) + et(1) 2 (1 - )o(po) + es™

Thus, the proof is complete: Either v(pg) < 9(pg) or v(pg) = s*B. O

B Omitted Proofs: Applications

B.1 Proofs for Section [5.1: The Think Tank
In this example, A = {0,...,n}, © = [0, 1]™, uo is exchangeable, ug is increasing with
us(0) = 0, and

b;—c a=ie{l,...,n}

0 :a=0.

ugr(a,d) =

We now invest in some notation. For § € © and k € {1,...,n}, let 8(1)
finite M C M let U(M ) e A(M) C AM be the uniform measure over M. Given
ke{l,...,n}, let

0,: 0 — A{k,...,n} CAM

0 — L{(arg max 0)

ie{k,....,n}

be the S strategy that reports the best reform from among those the think tank
prefers to k; let 8, : M — AO be some belief map such that o, and Sy are together
Bayes consistent; and let p, € I(/LQ) be the associated information policy. For any
measurable f : © — [0 1], let ng = [ f dpo; and for k € {1,...,n} and i €
{k,....n}, et EFF(0) = [ f dBi(] Flnally, forany k € {1,...,n}, let e Eo6")

3By the same argument, AO \ D is also nowhere dense.
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B.1.1 Claim 1 Ranking the best reforms

Toward the proof of Claim [I], we first show the following.

Claim. Fix k € {1,...,n} and i € {k,...,n}. Then, i € argmax,eca ur(a, Bx(i)) if
and only if @k > c.

Proof. For a given i € {k,...,n}, exchangeability of o implies the following four
facts:

(1) Eob; = Eob; = EFO; for j € {1,..., k—1}.

(2) Eof; € co {EXG;, EXG;} for j € {k,...,n}\ {i}.

(3) EFO; > Eqob; .

(4) E+0, = 0",

The first three facts collectively tell us EFg; > EF0; for j € {1,...,n} \ {i}. As
an implication, i € arg max,c4 ur(a, Bx(i)) if and only if EF9; > c. The fourth fact

completes the proof of the claim. n

Proof of Claim [l Now, we prove the three-way equivalence of Claim [I} First, that
Part 2 implies Part 3 follows from the above claim. Next, that Part 3 implies Part 1
follows directly from Theorem [1L Now, to show Part 1 implies Part 2, consider any
equilibrium yielding S value ug(k). In this equilibrium, every on-path message yields
value ug(k) to S, implying some reform from {k,...,n} is incentive compatible for
R. That is, R has an optimal strategy in which his gross benefit is one of {6;}}_,
almost surely. But R’s ex-ante payoff is no greater than the prior expectation of
MaxX;c{k,.n} ¢i —c. This expectation is then nonnegative by R’s incentives: He does

'''''

not want to deviate to the status quo ex ante. Thus, Part 1 implies Part 2, completing
the proof of Claim [I] O
B.1.2 Construction of an S-best equilibrium

Finally, Corollary (1| tells us the sender’s best equilibrium value lies in {0,...,n}, so
that the S-optimal equilibrium payoff is ug(k*), where

>
vV
O

max<kec{l,...,n :ék>c
{ {7 ) } - }
0

k* =

N
o
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As described in section we can use the constructive proof of Theorem [I] to
explicitly derive the modification o*f pr that supports payoff ug(k*) as an equilibrium

k
payoff when k* > 0. Let € := ;k*—’c and consider the truth-or-noise signal o* :=

(1—€)op +eld {k*,...,n}. That is_,eamong the proposals that the think tank weakly
prefers to k*, it either reports the best (with probability 1 — €, independent of the
state) or a random one. Following a recommendation i € {k,...,n}, the lawmaker
is indifferent between reform ¢ and no reform at all. He responds with p(i|i) = 72?_4;(?:7,))
and p(0]7) = 1 — p(ili). The proof of Lemma [ shows such play is in fact equilibrium

play.

B.2 Proofs for Section 5.2 The Broker

B.2.1 The one-dimensional model

In this section, we look at a one-dimensional version of our model, which generalizes
Example [2| analyzed in section 5.2l Our task is to prove a generalization of Claim
that applies for all priors (including those exhibiting atoms).

Suppose © C R and that some vy, : co©® — R exists such that v = vy; o F/, where
E . A® — coO maps each belief to its associated expectation of the state. This
setting, which we call the one-dimensional model, was studied in |(Gentzkow and
Kamenica| (2016) and Dworczak and Martini (2019)) under sender commitment power.
We assume without loss that co® = [0, 1], and denote the prior mean by 6y = Fp.

An important concept to simplify analysis of the one-dimensional model is the
notion of a cutoff policy. Given ¢ € [0,1], the g-quantile-cutoff policy is the
(necessarily unique) information policy p? € Z(j) of the form p? = ¢d,¢ + (1 — q)éui,
for p?,pd € AO© with max supp(pl) < min supp(pd); and let 2 := Eu? and
04 := Epl. Say p € I(uo) is a cutoff policy if it is the g-quantile-cutoff policy for
some ¢ € [0,1]. The following alternative characterization of cutoff policies, which is

immediate, is useful for analyzing the one-dimensional model.

Fact 1. For q € [0,1], the belief u® (u%) is the unique solution to the program

mingene: gu<p Bt (MaXuene: (1-qu<p E1)-

The g-quantile-cutoff policy reports whether the state is in the bottom ¢ quantiles

or the top 1 — ¢ quantiles, as measured according to the prior. More concretely, S
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simply reports whether the state is above or below some well-calibrated Cutoff.@ As
the following claim shows, securability enables us to use cutoff policies to analyze

many one-dimensional applications of interest, including the broker example.

Claim 5. Suppose © C R and vy : co©® — R is a weakly quasiconver function such

that v = vy o E. Then, the following are equivalent for all s > v (up):
(i) S can attain a payoff s in equilibrium.
(1) The payoff s is securable by a cutoff policy.

Moreover, an S-preferred equilibrium outcome (p,s) exists such that p is a cutoff

policy.

Proof. Because vy, is quasiconvex, vy, is either nonincreasing on [0, 6] or nonde-
creasing on [0y, 1]. Suppose the latter holds without loss. Because uninformative
communication is a cutoff policy with cutoff quantile 0 or 1, the result is immediate
if s = v(po), so we may assume s > v(pyg).

That (ii) implies (i) follows directly from Theorem [l Now we suppose (i) holds
and show (ii) does as well. The nonempty (because s is securable) compact sets
Op := {0 €[0,00) : vpm(0) > s} and O := {0 € [0y, 1] : v (0) > s} both exclude
0y because s > v(ug). Let 0, := max©p and g := minOg. By Theorem [1| and
Lemma [4] a Bayes-plausible information policy p exists that barely secures s, which
then implies p o B~ {0;,0g} = 1. That is, some ¢ € (0,1), p, € A[E~(0L)],
pr € A[E71(0R)] exist such that p = gpr + (1 —¢)pr. But Factimplies 6% < 6, and
93 > 6n. Because oL < 0, < 6y = 01, the intermediate value theorem (and Berge’s
theorem, which tells us from Fact [1] that 8% is continuous) delivers some g5 € [g, 1)
such that 6% = 0. Similarly, some ¢; € (0, ¢] exists such that 01 = 0r. Now, because
67 =0y, 07 > Or, and vyr|jg,,1) is nondecreasing, it follows that p® secures s.

To prove the “moreover” part, we specialize to the case in which s = v(uo). Let
Q=[q,¢, Qs ={¢ge@Q: vy(0l)=s}, and Q- :=={¢e€ Q: vy (L) =s}. That
no value strictly above s is securable implies () = )+ U ()_. Therefore, the union of
the closures has the same property: Q+ UQ_ = Q. Because Q is connected (because

vy is monotone on each side of §), some ¢ € Q+ N Q_ must then exist. That V

39This description is correct as stated in the case in which pg is atomless; if the cutoff is itself a
state with positive prior probability, S’s message may need to be random conditional on the cutoff
state itself occuring.
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is upper hemicontinuous (together with Lemma (1)) then implies the g-cutoff policy,

paired with payoff s, is an equilibrium outcome. O

Although not directly relevant to the broker example, we briefly note one can apply
Claim [5 to simplify the one-dimensional model even when v,; is not quasiconvex. We
do so in Corollary [5] below.

Corollary 5. Suppose © C R and Vs : co© = R s such that V = Vy o E. Then, for
any equilibrium sender payoff s, an equilibrium outcome of the form (p, s) exists, such

that p is a garbling of a cutoff policy (with at most two supported posterior beliefs).

Proof. We have nothing to show for s € V(o). We now focus on the case of s > v(uyp),
the alternative case being symmetric.

Define the correspondence Vy; : [0,1] = R by letting V() := Vi (co {6, 6,})
for every 6 € [0,1]. Appealing to Lemma , Vo is a Kakutani correspondence, so
that V:= V0 E: A® = R is as well. We can therefore apply the mathematical
results of Claim , letting ¥; := max Vur (which is quasiconvex and minimized at ;)
replace vy to find a cutoff ¢ € [0, 1] such that 0,,(02),0p(6%) > s. But, by definition
of V7, some two-message garbling p’ of p¢ exists that secures s in the original game,
that is, has p’ {v > s} = 1. Finally, Lemma (4| delivers a further two-message garbling

p of p’ such that (p, s) is an equilibrium outcome. O
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B.2.2 The investor’s payoff (equation (L))

Suppose (p, s) is an equilibrium outcome of the broker example (Example [2), and let

r be R’s associated payoff. Then,
T+ Vo, (0)
-/ { [~ 2000+ ) dpo = 3 [ Lo 2079+ 67] us(a*(u))} dp(s)
— {40 = o) aml0) = au(0) + 6700 — a B 4 [ - (] — s api
=0+ [ la"(n) = o] {Bu— lao +a" ()]} o)
— [ 10" ) = al (B~ ") +

— [ {0 ()~ ool (B~ @’ ()] + o)~ aal*} dpli) s

:/{H%(g)?} dp(u) — s

_ 12
= oS

[a* (1) — ao]} dp(p) —s

N =

where the second to last equality follows from separately analyzing the case a* (1) = ag

and the complementary case.

B.3 Proofs for Section 5.3; The Salesperson

We begin by providing an alternative version of Kamenica and Gentzkow’s (2011)
Proposition 6 (which generalizes their Proposition 3). Their proposition shows an
S-beneficial equilibrium exists whenever S’s value function is a transformation of
R’s estimate of a finite-dimensional statistic, said transformation disagrees with its
concave envelope, and the state is finite. We show that with sufficient continuity, the

same conclusion holds when the state is infinite.

Lemma 6. Suppose some N € N admits continuous T : © — RY and continuous
G : coT(0) — R such that v(p) = G([ T dp) for all beliefs p € AO. If the concave
envelope G of G satisfies G([ T duo) > G([ T dpo), then (po) > v(o)-

Proof. Let X :=coT(©) and zo := [ T po, which is in the relative interior of X. By
Carathéodory’s theorem, that G(zo) > G(xo) means some p € AX exists with affinely
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independent support {z',...,2%} such that [z dp(z) = 2o and [ G dp > v(po). As
G is continuous, we may assume without loss that {z',..,2"} has X in its affine
hull. For sufficiently small convex neighborhood Y = Hszl Yy of (21, ..., 2%) in XX,
every J = (y*,...,y%) € Y has y',...,y¥ affinely independent with z in their convex
hull, and so admits a unique p; € A{y',...,y™} such that [z dp; = zo. Observe
Yy — Dy is continuous because y — f)g(yk) is an affine function of its finite-dimensional
argument for each £ € {1,..., K'}. Moreover, making Y smaller if necessary, we may
assume [ G dp; > v(po) for every i € Y, because G is continuous.

Observe now that D := Hszl {,uk €eAO: [T du, e Yk} is a nonempty open sub-
set of (A®)* such that every ji € D admits some p; € A {,uk}le with [ ([T dp) dpa(p) =
zo and [v dpg > v(po). Indeed, D is open because Y is and T is continuous; D is
nonempty because Y C XX is, and because every x € X admits a u € AO with
x = [T du; and pz can be taken to be Zleﬁ(fT 7 gy (S T dpire) O

Finally, Lemma 2 of |Lipnowski and Mathevet| (2018) says that the set of all u €
AO such that éu < po for some € > 0 is dense. Therefore, D being open and
nonempty delivers i € D and € > 0 such that eszzl e < po. Then, defining
p* = 7= [po — € [ p dpa(p)] and p* = (1 — €)d,« + ep* € L(o), see that [v dp* —
v(po) = € [f v dpz — v(po)] > 0. O

With this lemma in hand, we readily complete the proof of Claim

Proof. In the main text, we demonstrated that G(t3) > G(t) is necessary for com-
mitment to strictly benefit the seller. To see it is sufficient, apply Lemma [6] with
N = 1: The seller gets a value strictly higher than v(u) = G(t§) by telling the buyer
which product is best and by further revealing some (well-chosen) information about
the value of the best product. O

Now, en route to Claim [4] we prove the following slightly more general result about

when commitment is valuable for a CDF G admitting a single-peaked continuous

40Indeed, observe K must lie in {1,..., N + 1}, so let p be chosen to make K as large as
possible. Assume for a contradiction that z%+! € X is outside the affine hull of {xl, ,:CK}
As 1z is relatively interior and xzo — 2"t is a convex combination of {2’ —z®*'}" . some

i € {l,...,K} has 2" + ¢(2* — 25*1) € X for sufficiently small ¢ > 0. Then, consider
D =P +f)(xl) [%_"_e(gxi_;re(xi_mKﬁ»l) + %_"_G(szorl - 51,@} € AX. This measure has fl‘ df)g(:c) = X

by construction and, converging to p as € > 0, has [ G dp, > v(uo) when e is sufficiently small,
contradicting the maximality of K.
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density g. For this purpose, let
©Ya - [O, 1] — R

o G0~ 610 t9(0) = [ Tagfh)

where the equality follows from integration by parts.

Lemma 7. Suppose G admits a continuous, weakly quasiconcave density g. Let ty =
min [arg maxe(o1) g(t)]. Then, G(ty) = G(t) if and only if t& >ty and pa(ty) > 0.

Proof. First, we show g (t5) > 0 is necessary for no commitment gap to exist. To
that end, suppose ¢ (t5) < 0. Recall that full support of py implies ¢ € (0,1). Then,
letting € € (0,1 — ¢j], we have

G G) - G| = B [HRG(G + ) + 252G0) - G(to)]

G5 +¢€) — G(t)

€

:té

- [G(t5) = G(0)],

which tends to —gg(th) > 0, as € — 0. Therefore, t% [G(tz‘)) - G(ta)} > 0 when
¢ > 0 is sufficiently small, so that G(¢3) > G(t).

Now, we verify that ¢; > ¢, is necessary for no commitment gap to exist. Suppose
t; < ty. Then glj4,, is continuous, weakly increasing, and nonconstant. Therefore,

G045, is weakly convex and not affine, implying
~ % tag—t* $* %
G(ty) = #12G(0) + 2 G(tm) > G(L;).

Conversely, suppose t§ > ty and @g(t5) > 0. Below we construct a continuous
concave function, G*, that majorizes G and agrees with it at ¢j. It follows G* (¢}) >
G () > G (tg) = G* (t%), that is, there is no commitment gap.

Toward finding such a G*, observe first ¢ decreases on [0,ty] (because g|j4,,]
is increasing) and ¢g(0) = 0. Therefore, pa(ty) < 0 < @q(ts). Because pg is

continuous, the intermediate value theorem delivers a t. € [ty, t5] with ¢g(t.) = 0.
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We now use t, to construct G*. To do so, note

G (t.) = G(0) + /Ot* g(t) dt = G (0) +tug (t.) — pa(ts) = G(0) + tug (t.)

meaning

G(0) +tg(te) : t<t,
G(t) >t

is well-defined and continuously differentiable. We now claim G* satisfies the desired
properties. Observe first G* (t) = G (t), because t§ > t.. Second, because t, > ty, g
is decreasing on [t., 1], meaning G* has a decreasing derivative, that is, G* is concave.
Thus, it remains to show G* majorizes G. Because G* (t) = G (t) for all t > ¢, by
construction, it remains to show G* (t) > G (¢) for all t < t.. For t € [ty t.), observe

9litar,tz) is decreasing, and so

6 (0~ G (1) =[G"(0) - G0] - 6" (t) - Gt = [ g ()~ )] dE 2 0.

For t € [0,tyr), observe G*(0) = G (0), G* (tp) > G (ta), G is convex, and G* is

concave. Therefore,

t tay — 1
G* (t) > —G (ta) + 2
ty M

G(0)> G ().

The proof is now complete. ]
From this, we can prove Claim 4] easily.

Proof of Claim [ First, suppose g is weakly decreasing. Then, t§ > 0 = t); and
G(t;) — G(0) = f(f‘*) g(t) dt > tig(t}), and Lemmaapplies.

Second, suppose g is nonconstant and increasing. If ¢ < ¢y, then G(t5) > G(t*)
by Lemma . If t§ > tar, then g(tf) > g(tar) > g(0), implying gljo.z) is continuous,
nonconstant, and increasing. So glo is below g(t7) everywhere, and strictly below
it for some nondegenerate interval. Therefore, t5g(t5) > fota g(t) dt = G(t§) — G(0),
and Lemma [7] applies.
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Third, suppose g is strictly quasiconcave. For any t € (0,%y], the function g
is continuous and strictly increasing on [0,7]. This tells us ¢ is nonconstant and
decreasing on [0,1], implying pg(t) < ¢q(0) = 0. Therefore, if pg(t;) > 0, then
ts # t. Because t € (0,ty] was arbitrary, we now know that if pg(t5) > 0, then
t5 >ty Thus, by Lemma (7] a commitment gap exists if and only if

0> g6 (£) = G (t5) — G (0) — t3g (tf) = / " () di—t5g (1),

The claim follows. O
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C Supplement to Cheap Talk with Transparent Mo-

tives

In this online appendix, we elaborate on the results mentioned in section [6] of “Cheap

Talk with Transparent Motives” and discuss some additional relevant results.

C.1 Proof of Proposition [1} Effective Communication

We now operationalize (Chakraborty and Harbaughs (2010)) insight of using fixed-
point reasoning to show effective communication is possible, proving Proposition
We begin by representing the prior as an average of three posterior beliefs, py, po,
and p3, such that the three induced estimates of the statistic are noncollinear; one
can always find such beliefs because the statistic is itself multivariate. Next, we
find a circle of beliefs around the prior within the convex hull of {1, po, u3}. By
construction, each belief on said circle yields a different estimate of the statistic. We
then document a generalization of the one-dimensional Borsuk-Ulam theorem, which
yields an antipodal pair of beliefs © and p’ on the circle such that V() NV (y') is
nonempty. Therefore, we can split the prior across pu and p’ to obtain an equilibrium
information policy.

In what follows, define the circle S = {(z,y) € R*: 2? +4? =1}, and let T
denote the estimate [T du of statistic 7" for any belief y € AO.

Lemma 8. Let T' be a multivariate statistic. Then, a continuous ¢ : S — AO exists

such that every z € S has:
1. 50(2) + 50(=2) = po ;
2. T(p(z)) #T(p(2)) for every z € S\ {z};
3. 2¢(z) — po € AO.

Proof. By assumption, 7' (©) is noncollinear, and so T'uo ¢ co {101,765} for some dis-
tinct 0y, 05 € O©. Because p has full support, both 1o(N1) > 0 and po(N2) > 0 for any
open neighborhoods N of #; and N, of ;. We can then define the conditional distri-

bution p; (+) = MO}ESV]O) ) for i € {1,2}. Letting Ny, Ny be sufficiently small neighbor-
hoods, we may assume N1NNy = 0, Tpg ¢ co{Tpy, Tz} and g (N7 U Ny) < 1. There-

— #o((O\WN1UNs))

T ro(MON.) » We know that i € co {11, pt2, 3}, that pg is not

fore, letting ps (-) :

1



in the convex hull any two of {1, ji2, 3}, and that the three points {Tuy, Tz, T s}
are affinely independent. So gy = Zle Aipti for some puq, o, i3 € AO and Ay, Ao, A3 €
(0,1). Therefore, letting € := 3 min {A;, Ay, A3}, define the map

p:S— A6
(z,y) = (M +ex)pn + (Mo + ey)po + [As — e(x + 1) s

Affine independence of Ty, T o, T'us ensure Toyp is injective, and the other desiderata

for ¢ are obviously satisfied. ]
Next, we document a generalization of the one-dimensional Borsuk-Ulam theorem.

Lemma 9. Suppose f : S — R is upper semicontinuous, and every z € S has
max {f(z), f(—z)} > 0. Then, some z € S exists such that min{f(2), f(—z)} > 0.

Proof. Define f : S — R by letting f(z) := f(—z). By hypothesis, both f and f
are upper semicontinuous and {f < 0} C {f > 0}. Assume for a contradiction that
the lemma fails, so that {f > O} C {f < 0}. Because {}" < 0} U {}’ > 0} = S and
{f>0}n{f <0} =0, these containments in fact imply {f < 0} = {f >0} and
{f > 0} = {f <0}. But (given the definition of f) the two sets would both be

empty if either were, and so would fail to cover S. Therefore, the set {f > 0} is a

nonempty clopen proper subset of the connected space S, a contradiction. O

We now complete the proof of the generalization of |Chakraborty and Harbaugh[s
(2010) Theorem 1.

Proof of Proposition [l First, let ¢ : S — R be as delivered by Lemma [§] Next,

define the function

f:S—=R
z — max V(p(z)) — min V(p(—=2)).

Two properties of f are immediate. First, f is upper semicontinuous because V'
is upper hemicontinuous. Second, any z € S satisfies f(z) + f(—z) > 0 because
max V' > min V. Therefore, Lemma [J] delivers z € S with f(z), f(—z) > 0. That
is, max V' (p(z)) > min V(p(—=2)) and max V(¢(—=2)) > min V' (p(z)). Said differently



(recall V' is convex-valued), V(¢(2)) NV (p(—2)) # (). Lemma [1] then guarantees the
existence of an equilibrium that generates information policy p = %dp(z) + %5¢(_Z). In

particular, Ty is not p(u)-a.s. constant. ]

Just as Proposition |1| generalizes (Chakraborty and Harbaugh's (2010) Theorem

1, the following result generalizes their Theorem 2.

Corollary 6. Let T be any statistic, and suppose 4 : c0T(0) — R is a strictly
quasiconvez function such that v(u) = w(Tw) for every p € AO. If T is multivariate,

an S-beneficial equilibrium exists.

Before proving this result, we note the result follows immediately from Propo-
sition [1| under the additional hypothesis that R has a unique best response to ev-
ery belief—as assumed in Chakraborty and Harbaugh (2010). Indeed, following
Chakraborty and Harbaugh's (2010) argument, strict quasiconvexity of & would imply
the binary-message equilibrium constructed above is S-beneficial. The below proof

for the general case is similar in spirit, although one additional step is needed.

Proof of Corollary[fl. Again, let ¢ : S — R be as delivered by Lemma [8] Now, define
fi=vop—uv(u) : S — R, which is upper semicontinuous because v is. Moreover,
for any z € S, the distinct estimates T'p(z) and Tp(—z) have T as their midpoint,
and so max {f (z), f (—2)} > 0 by quasiconvexity of @. Applying Lemmal[Jto f then
delivers a z € S such that vo ¢(z),v o0 p(—2z) > v(uo).
By Lemma [§| Part 3, both p := 2¢ (2) — po and g/ := 2¢ (—z) — p1o are in AO. Be-
1

cause T'p (z) = §Tu+%Tu0, strict quasiconvexity of @ delivers the following inequality

chain,

v (o) Svop(z) =u(Te(2)) <max{u(Tu),u(Tuo)}t = max{v(u),v(po)}-

It follows v () > v (uo). By the same argument, v (i) > v (uo). Thus, the informa-
tion policy p = 16, + 16, secures min {v (1) , v (')} > v (110). The result then follows
from Theorem [Il O

C.2 The Equilibrium Payoff Set

In this subsection, we briefly comment on how our tools, and the belief-based approach

more broadly, can generate a more complete picture of the world of cheap talk with



state-independent S preferences. As will be clear, the results outlined herein are all

straightforward to derive given earlier results in the paper.

C.2.1 Other sender payoffs

Following the recent literature on communication with S commitment, our focus has
largely been on high equilibrium S values, that is, those providing payoffs at least
as high as those attainable under uninformative communication. However, the tools
developed in our paper work equally well to characterize bad sender payoffs. In-
deed, the proof of Lemma [1| used no special features of V' other than it being a
Kakutani correspondence, which —V is as well. Therefore, our game has the same
equilibrium distributions over A x © as the game with S objective —ug. To deliver the
mirror-image versions of our main results, define the value function from S-adversarial
tiebreaking, w := min V' : A® — R.

Theorem [l| implies a sender payoff s < w(ug) is an equilibrium payoff if and only
if some p € Z(up) exists such that p{w < s} = 1. Combining this observation with
the original statement of the securability theorem tells us s € R is an equilibrium S
payoff if and only if py,p_ € Z(po) exist such that py {v > s} =p_{w <s} =1. An
easy consequence is that the equilibrium S payoff set is convex, which we document in
Corollary [3] Corollary [I] has a mirror image as well, telling us the set of S equilibrium
payoffs is exactly

min sup w (suppp), max inf v (suppp)| .
pEL (o) PEL (ko)

Note convexity of the set of attainable S payoffs is special to the case in which S’s
payoffs are state independent; indeed, the leading example of (Crawford and Sobel
(1982) does not share this feature.

The mirrored counterpart of our geometric Theorem [2|is that the lowest S pay-
off attainable in equilibrium is w(ug), where w is the quasiconvex envelope of w,
that is, the pointwise highest quasiconvex and lower semicontinuous function that

minorizes w. Therefore, we can geometrically characterize S’s equilibrium payoff set

as [w (po) , 0 (po)]-



C.2.2 Receiver payoffs

Our most powerful tools (the securability theorem and its descendants) pertain to S
payoffs. However, the belief-based approach (i.e., Lemma [I) can be used to describe
R payoffs as well. Indeed, let v : A©® — R be R’s value function, given by vg(u) :=
maXgeA f@ ugr(a,-) du. It follows from R’s interim rationality that any equilibrium
that generates outcome (p, s) will deliver a payoff of r = fA@ vr dp to R.

Given equilibrium S payoff s, we can then more explicitly derive the set of equi-

librium R payoffs compatible with an equilibrium in which S gets payoff s. Let
By :={w <s<wv}= {u € A©: Jaj,a_ € argmazc/ ug(a,-) du s.t. ug(a_) < s < us(a+)} :
ac [e)

Then, (s,7) is an equilibrium payoff profile if and only if r = [, vg dp for some
p € I(up) N A(Bs). The best such R payoff (given s) is given by @(po), where

vy 1 By — Ris the restriction of vp and vj : ©0Bs — R is the concave envelope of v5,.

C.2.3 Implementing equilibrium payoffs

In addition to their role in proving Theorem [I} barely securing policies generate a
straightforward way of implementing any equilibrium S payoff.[ir] If S could commit,
we could apply the revelation principldz_zl to implement any S commitment payoff with
a commitment protocol in which S makes a pure action recommendation to R, and
R always complies. Using barely securing policies, we can show a similar result holds
with cheap talk, with one important caveat: R must be allowed to mix. To state this

result, for any S strategy o, define M, as the set of messages in o’s support[™]
Proposition 2. Fiz some S payoff s. Then, the following are equivalent:

1. s 1s generated by an equilibrium.

2. s is generated by an equilibrium with M, C AA and p (o) = a Va € M,.

3. s is generated by an equilibrium with M, C A and p (ala) > 0 Va € M,.

“1For S payoffs s < min V (ug), we use the mirror image of barely securing policies, that is,
information policies p such that {min V (-) < s} Nco{y, uo} = {i} holds for p-a.e. p.

42Gee, for example, Myerson| (1986), Kamenica and Gentzkow]| (2011), and Bergemann and Morris
(2016).

“3That is, let M, = Ugecosuppo (+|6).



The proposition suggests two ways in which one can implement a payoff of s via
incentive-compatible recommendations. The first way has S giving R a mized action
recommendation that R always follows. The second way has S giving R a pure action
recommendation that R sometimes follows. Both ways can result in R mixing.

That 1 implies 2 follows from standard revelation principle logic. To prove 1
implies 3% we start with a minimally informative information policy that secures
s. Because p is minimally informative, it must barely secure s, meaning (p, s) is an
equilibrium. Let & be part 2’s implementation of (p,s), and take a(u) to be some
S-preferred action among all those that R plays in £ at belief . By minimality of
p, a(-) must be p-essentially one-to-one, because pooling any posteriors that induce
the same a (-) value would yield an even less informative policy that secures s. Thus,
a () takes distinct beliefs to distinct (on-path) actions: R can infer p from a (p). One
can then conclude the proof by having S recommend a(u) and R respond to a(u) as
he would have responded to p under €.

The formal proof is below.

Proof of Proposition [ Because (2) and (3) each immediately imply (1), we show the
converses.

Suppose s is an equilibrium S payoff. Now take some p € Z (o) Blackwell-minimal
among all policies securing payoff s, and let D := supp(p) C A@E] Lemma guaran-
tees (p, s) is an equilibrium outcome, say, witnessed by equilibrium & = (o1, p1, f1).
Letting o = o : D — AA be as delivered by Lemma 2] we may assume p;(-|m) =
a(-|f(m)). In particular, p; specifies finite-support play for every message.

Let M := marg,,Pe, and X := supp [Mop '] C AA, and fix arbitrary (&, f1) €
supp [M o (py, 81)~]; in particular, & € X. By continuity of up and receiver incentive
compatibility, & € argmaxaeas ur(a ® f1). Defining p : M — AA (vesp. ' : M —
AO) to agree with p; (1) on path and take value & (1) off path, an equilibrium

44The equivalence between 1 and 3 echoes an important result of Bester and Strausz (2001), who
study a mechanism-design setting with one agent, finitely many types, and partial commitment by
the principal. Applying a graph-theoretic argument, they show one can restrict attention to direct
mechanisms in which the agent reports truthfully with positive probability. Although the proof
techniques are quite different, a common lesson emerges. Agent mixing helps circumvent limited
commitment by the principal: in Bester and Strausz/s (2001) setting, by limiting the principal’s
information, and in ours, by limiting her control.

45Some policy secures s if s is an equilibrium payoff. The set of such policies is closed (and
so compact) because v is upper semicontinuous. Therefore, because the Blackwell order is closed-
continuous, a Blackwell-minimal such policy exists.



E = (o1, p, ') exists such that Per = Pg, and p'(-|m) € X for every m € M.
Now define

09 . 0 — AX - AM
0 > (1)o7
P2 - M — X QAA

m :meX
m
a T megX
522M — AO
E oM {B(m)‘p(m)} :meX
m
[ :m ¢ X.

By construction, (o, p2, B2) is an equilibrium that generates outcome (p, s) % proving
(1) implies (2).

Now define the (A- and D-valued, respectively) random variables a, u on (D, p)
by letting a(u) 1= arg maxgcsuppa(y) ts (@) and p(p) := p for p € D. Next define
the conditional expectation f := E,[u|a] : D — D, which is defined only up to a.e.-p
equivalence. By construction, the distribution of p is a mean-preserving spread of the
distribution of f. That is, p is weakly more informative than p o f~!. By hypothesis,
a(u) is incentive compatible for R at every p € D. But D = supp(p o '), which
implies p o f~! secures s. But minimality of p implies po f~' = p. So f = E,[pa]
and p have the same distribution, which implies f = p a.s.-p. By definition, f is
a-measurable, so that Doob-Dynkin delivers some measurable b : A — D such that
f=Dboa.

Summing up, we have some measurable b : A — D such that boa =,._, pu. Now

46Tt generates (P, s) for some garbling p of p. Minimality of p then implies p = p.



define

03:0 — AACAM
0 — 0y(-|0) o (aoBy)?
ps: M — X CAA
a(b(m)) : meA

m +—
a :m¢ A
BgiM — AO
b(m) : meA
m
f :mé A

By construction, (o3, p3, 83) is an equilibrium that generates outcome (p, s), prov-
ing (1) implies (3). O

Proposition |2 shows some forms of communication are without loss as far as S
payoffs are concerned. First, any S equilibrium payoff is attainable in an equilibrium
in which S recommends mixed actions that are (on path) followed exactly. This
equivalence extends to equilibrium payoff pairs, with the same argument: Pooling
messages that lead to the same R behavior relaxes incentive constraints and generates
the same joint distribution over actions and states, preserving payoffs. Second, any S
equilibrium payoff is attainable in an equilibrium in which S recommends pure actions
that are followed with positive probability. Whether this result holds in general for
payoff pairs is an open question. It is easy to see why, at least, our argument does
not go through as stated. The proof begins by considering an information policy that
gives no “extraneous” information to R, subject to securing the relevant S value. But
taking information away from R in this way can result in a payoff loss.

Still, we can leverage Lemma [I| to show a result of a similar spirit: To implement
an equilibrium payoff profile, it is sufficient for R to only use binary mixed actions,

the support of which is S’s message.
Proposition 3. Fiz some payoff profile (s,r). Then, the following are equivalent:
1. (s,r) is generated by an equilibrium.

2. (s,r) is generated by an equilibrium with M, C AA and p(a) = a Va € M,.



3. (s,r) is generated by an equilibrium with M, C {%5(1 + %5(1/ Da,a € A} and
supplp (a)] = supp(a) Yo € M,,.

We can interpret 3 as describing equilibria in which S tells R, “Play a or a,” for
some pair of actions, but does not suggest mixing probabilities.

To see the equivalence between 1 and 3, Lemma [2 from the appendix can be used
to show equilibrium payoff profile (s,r) can be implemented with an equilibrium in
which R only ever uses pure actions or binary-support mixtures, with the latter only
being used when S is not indifferent between the two supported actions. Without loss,
say such equilibrium is as in 2, with S suggesting an incentive-compatible mixture
to R. But S rationality implies no two on-path recommendations can have the same
support, because then S would have an incentive to deviate to the one putting a
higher probability on the preferred action. Therefore, the same behavior could be
induced by having every message replaced with a uniform distribution over its (at
most binary) support, and the result follows.

With finitely many actions, Proposition |3| yields an a priori upper bound on the
number of distinct messages required in equilibrium, similar to Proposition [2 Still,
the upper bound of Proposition [2]is significantly smaller: Whereas Proposition [2] says
no more than n := | A| messages are required to span the set of equilibrium S values,

Proposition |3 guarantees any equilibrium payoff pair can be attained with at most
n(n—1)

5 messages.

C.3 Long Cheap Talk

Let us define the long-cheap-talk game. In addition to the objects in our model
section, R has some message space M, which we assume is compact metrizable. Let
Heoo = Lo (M x M), Hoo := (M x M)N, and Q := H,, x A x ©. In a long-cheap-
talk game, S first sees the state 6 € ©. Then, at each time ¢ € Z,, players send
simultaneous messages: S sends m; € M and R sends r, € M. Finally, after seeing
the sequence of messages, R chooses an action a € A. Formally, a (behavior) strategy
for S is a measurable function o : © X H_, — AM, and a strategy for R is a pair of
measurable functions (7, p), where ¢ : Hooo — AM and p: Hoo — AA. These maps
induce (together with the prior 1) a unique distribution, P,z , € AQ, which induces

payoff ug(marg P,z ,) and ur(marg,,oPs s ,) for S and R, respectively.



C.3.1 Extra rounds cannot help the sender

Below, we use our Theorem [I| to show that any S payoff attainable under long cheap

talk is also attainable under one-shot communication*"]

Proposition 4. Every sender payoff attainable in a Nash equilibrium of the long-
cheap-talk game is also attainable in a perfect Bayesian equilibrium of the one-shot

cheap-talk game.

To prove the proposition, fix a payoff s* that S cannot attain in the one shot
game, and use our securability theorem to construct a continuous biconvex function on
AO xR that is strictly positive at (o, s*) and zero on V’s graph. Mimicking appendix
A.3 of Aumann and Hart| (2003), we then take an arbitrary equilibrium of the long-
cheap-talk game, and construct a bimartingale {p,,s;},, that is, a martingale over
the graph of V such that only one coordinate ever moves at a time[®] The bimartingale
converges to a measure over V’s graph and has a time-zero value of (p, o) = (10, S0),
where sq is S’s payoff in said equilibrium. We then follow the easy direction of|[Aumann
and Hart/s (1986) characterization of the bi-span of a set, noting the expectations of
continuous biconvex functions of a bimartingale grow over time, and so the function
constructed at the beginning of the proof assigns (uo, so) a weakly negative value. It
follows that (po, so) # (o, s*). Because the chosen long-cheap-talk equilibrium was
arbitrary, no such equilibrium can yield S a payoff of s*.

Other than our construction of a biconvex function, the proof follows the logic
presented in Aumann and Hart| (2003) and Aumann and Hart| (1986). Because both
papers assume a finite state space, the results of Aumann and Hart| (1986]) and |Au-
mann and Hart| (2003) do not apply directly. We therefore provide a self-contained

proof below.

Proof of Proposition[f Take any s, € R that is not an equilibrium payoff for prior
o in the one-shot cheap-talk game. In particular, s, ¢ V(). Focus on the case of

$. > v*(p), the mirror-image case being analogous. Fix some payoff s € (v*(uo), S«)-

47To ease notational overhead, we employ Nash equilibrium as our solution concept in studying
long cheap talk, and so have no need to define a belief map for the receiver. We therefore obtain a
stronger result, because any perfect Bayesian equilibrium is also Bayes Nash.

48 Although the bimartingale we construct is related to the stochastic process of pairs of R beliefs
and S payoffs, the two processes are not the same: Each round of communication corresponds to
two periods under the bimartingale. [Aumann and Hart| (2003) use the same construction.
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Letting B be the closed convex hull of v™![s’, 00), Theorem [1| tells us po ¢ B. Hahn-
Banach then gives an affine continuous ¢ : A® — R such that ¢(uy) > max p(B).
Now define the function[™]

F:AOxR — R,
(1,8) = [p(p) — maxp(B)];[s — &4

Observe that F' is biconvex and continuous. Moreover, F'(u,s) = 0 whenever s €
V (u): either s < s’ because u ¢ B, or p € B and so ¢ (1) < max g (B).

Now consider any Nash equilibrium (o, (G, p)) of the long-cheap-talk game. Let
us define several random variables on the Borel probability space (2, P, 5 ,). For w =
((my, my)2y, a,0) € Q, let B(w) := 6 and a(w) := a; and, for t € Z,, let my(w) := my
and mygy1(w) = my. From these, we define a filtration ()., with index set
K =7 U{oco} by letting each Fj be the sigma-algebra generated by {mu},.;. ;.-
Finally, for each k € K, define the (A©-valued and R-valued, respectively) random
variables p; := E [0g|Fk] and s;, := E [ug(a)|Fk]; and let P, € A(A© x R) denote the
distribution of (p;,s;). Note that, by construction, P has a distribution J(,, s,) for
some sy € R. Our task is to show sy # s,.

In what follows, take any statements about the stochastic processes (p)rex
and (sg)rerx to hold P,; ,-almost surely. By construction, po,, o = py,, for ev-
ery t € Z,, and both (p;)rex and (sg)rex are martingales. By S rationality,
Sot = E[Sori1|Farr1] = sopq for every t € Z,. Because F' is biconvex and contin-
wous, [F dPy < [F dP, < ---. In particular, [ F dP, > [ F dPy = F(uo,50)
for every £ € Z,. By the martingale convergence theorem, s; converges to S..
By the same, every continuous g : ©® — R has f@g dp;, converging to feg dee;
so u, converges (weak*) to p.. But P, converges (weak*) to P,. Therefore,
[ F dPyx = limy o [ F dPy > F(po, S0). By R rationality, s € V(py), imply-
ing F(fto,S00) = 0, so that [ F dP, = 0 too. Therefore, F(uo, so) < 0 < F(po, sx).

So sg # sS4, as required. O

C.3.2 Extra rounds can help the receiver

Unlike S, R may benefit from long cheap talk when S’s preferences are state indepen-

dent. To see this, consider the following example, which we describe informally. Let

*Recall that [-], := max{-,0}.
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© ={0,1}; uo(1) = 53 A= {0,b,t,7}; ug(b) =0, us(f) =1, us(t) = ug(r) = 2; and
ur(a,0) = —(z, — 0)%, where 2, =0, 2, = 1, and 2, = 2z = % The associated value
correspondence V' and prior belief yy are depicted in Figure 3| below.

Because every € AO with (1) < po(1) has V(p) = {1}, Lemma [1] immediately
implies every equilibrium outcome (p, s) of the one-shot cheap-talk game has s = 1
and p {u cou(l) < %} = 1. In particular, every equilibrium of the long-cheap-talk

game generates a “mean outcome” of yy, as depicted in the figure.

21V T,
1 non| ;‘\.yl
S %

.2 }#

1

Figure 3: S’s value correspondence in an example where R strictly benefits from long
cheap talk.

Given the above observations, an equilibrium exists with one round of commu-
nication with R beliefs supported on {0, %}, and every other one-shot equilibrium
generates less information (in a Blackwell sense) for R; we can depict this equilibrium
as generating support {1, y; } in the figure. But now, with a jointly controlled lottery,
this y; can be split in the next round to {xs, yg}.m Finally, S can provide additional
information in the next round to split ys into {x3,y3}. Because action t is optimal
for R at belief 2 (i.e., that associated with y») but not at belief 1 (i.e., that associated
with y3), this additional information is instrumental to R. Therefore, our equilibrium
is strictly better for R than any one-round equilibrium.

Thus, although additional rounds of communication do not change S’s equilibrium

S0Informally, following |/Aumann and Hart| (2003), each player could toss a fair coin (independent
of the state for S) and announce its outcome. Then, the players move to x5 if the coins come up the
same, and ys otherwise. Such jointly controlled randomization could be done simultaneously with
the information that S initially conveys, so that our three-round example can be converted into a
slightly more complicated two-round example.
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payoff set, the static and long-cheap-talk models are economically distinct, even under

state-independent S preferences.

C.4 Optimality of Full Revelation

This section presents formal results discussed in section[6.4] This section’s main result
is Proposition [5| which shows two things when v is nowhere quasiconcave: First, full
revelation is an S-favorite equilibrium; and second, every S-favorite equilibrium entails
full revelation if the state is binary or R’s best response is unique for every belief.
We also demonstrate, via an example, that nowhere quasiconcavity is insufficient for
full revelation to be uniquely S-optimal. The example also illustrates S-unfavorable
tie breaking can create a benefit from commitment even when full revelation is both
S’s favorite equilibrium and S’s favorite commitment policy. We conclude the section
by discussing conditions under which v is nowhere quasiconcave. In particular, we
show a strictly quasiconvex v is nowhere quasiconcave if and only if it is nowhere
quasiconcave on each of the simplex’s one-dimensional extreme subsets (Corollary .

The next few lemmas serve as preliminary steps toward Proposition )| Lemma
provides a way of constructing a measurable correspondence. Using this lemma,
we show every non-full revelation commitment policy can be improved upon when
v is nowhere concave, by splitting non-extreme beliefs. Similarly, one can split such
beliefs to weakly increase a policy’s secured value whenever v is nowhere quasiconcave
(Lemma . An immediate consequence is that under nowhere quasiconcavity, full
revelation secures S’s highest equilibrium value (Lemma . Nowhere quasiconcavity
also implies S can do better than no information at every non-extreme belief (Lemma
. We then combine these lemmas with the observation that the payoff secured
by full revelation depends only on the prior’s support to show full revelation barely
secures S’s highest equilibrium payoff.

We now proceed with proving Lemma This lemma is based on Aliprantis and
Border's (2006) discussion concerning measurability of correspondences. All measur-

ability statements are made with respect to the appropriate Borel o-algebras.

Lemma 10. Let X and Y be compact metrizable spaces, = : X — R upper semicon-
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tinuous, and Y :' Y — R measurable. Then,

r:y = X
y = ETT(y),00),

15 weakly measurable.

Proof. Recall that a nonempty-compact-valued correspondence into X is weakly mea-
surable if and only if it is measurable when viewed as a K x-valued function (Theorem
18.10 from |Aliprantis and Border, 2006).@ We now proceed with proving the lemma.

To begin, let z = max = (X), and observe that

is nonempty-compact-valued because = is upper semicontinuous. We claim below that
= is weakly measurable. It follows that y — A oY (y) is a measurable function from
Y into Kx, and so is weakly measurable when viewed as a correspondence. Noting
I' = A oY completes the proof.

We now argue = is weakly measurable. To do so, consider any open G C X. The

lower inverse image of G under A is

{z<z:A(2)NG # 2}
={z<z:{E>2}NG +# o}
{2<z:2(G) Z (—00,2)},

which is an interval. O

When v is nowhere (quasi)concave, Lemma[L0]gives a splitting of each non-extreme

belief that increases v’s expected (secured) value. We present this result below.

Lemma 11. Suppose v is nowhere (quasi)concave. Then, a measurable selector r of
T : AO® = AAO ezists such that [v dr (p) > v () (inf v (suppr (1)) > v (n)) for all

1€ AO\{dp}pco-

51K denotes all nonempty compact subsets of X, equipped with the Hausdorff metric.
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Proof. Observe that v () (v(-)) is upper semicontinuous and therefore measurable.
Moreover, p — [v dp (p — inf v (suppp)) is an upper semicontinous function from
AA® to R. Therefore, Lemma (10| implies p — {p € AAO: fv dp >0 (u)} (1 +—
{p € AAO :inf v (suppp) > v (n)}) is weakly measurable. Noting Z is also weakly

measurable (by upper hemicontinuity) implies

wmZn{pesae: [uapzo0)

(=T ()N {p € AAO :inf v (suppp) > v (1)})

is weakly measurable. Because the latter correspondence is nonempty-valued, it ad-
mits a measurable selector, r, by the Kuratowski and Ryll-Nardzewski selection the-
orem (Theorem 18.13 from |Aliprantis and Border, 2006). The result follows from
noting 0 () > v (i) (v(p) > v (p)) holds for all p € AO\ {dp}yce Whenever v is
nowhere (quasi)concave (appealing to Corollary [I). O

Lemma (11| above immediately implies full revelation is S’s uniquely optimal com-
mitment protocol whenever v is nowhere concave. The reason is that any other
information policy can be strictly improved upon via the splitting generated by the
lemma. Lemma (11} also implies that when v is nowhere quasiconcave, full revelation

secures S’s maximal equilibrium. We prove the latter result in the lemma below.

Lemma 12. If v is nowhere quasiconcave, v(p1) = infoesupp(u) v(09) for all p € AO;

that is, full information secures S’s maximal equilibrium value.

Proof. Fix p € AO. A unique p" € Z(u) exists with p* {p},ce = 1; clearly, p™ has

support {dg .- By Corollary (1} we know v(u) is the highest securable value at

Y oesupp
prior g. Thus, letting P := {p € Z(p1) : p secures v(p)}, our aim is to show p € P.
Corollary [1] tells us P is nonempty, and upper semicontinuity of v implies P is closed.
The mean-preserving spread order being closed-continuous, P contains some maximal
element, p, with respect to this order. Letting r be as delivered by Lemma [11] the
policy [r dp belongs to P as Well. But maximality of p requires that p = [ dp,

implying p = p*. O

The next lemma establishes that under nowhere quasiconcavity, S can always

benefit from cheap talk.

»2Here, [r dp € Z(u) is given by [[r dp| (D) := [ r(D|) dp for Borel D C AO.
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Lemma 13. If v is nowhere quasiconcave, v(p) > v(p) for all p € AO\ {0g}pcq-

Proof. Fix any p € AO\ {dp}yco- By hypothesis, i/, " € A© and A € (0,1) exist
such that g = A/ + (1= A)p” and v(p) < v(p'),v(n”). Therefore, p = A +
(1 —X) 4, € I (u)secures a value strictly above v (1), and so o(p) > v(p) by Theorem
{1l O

We now prove our main result regarding nowhere quasiconcavity.
Proposition 5. Suppose v is nowhere quasiconcave. Then,

1. Some S-preferred equilibrium entails full information.

2. If © is binary, or if R has a unique best response to every belief, every S-preferred

equilibrium entails full information.

Proof. We begin by showing full revelation barely secures v (pg). Fix some 6 €
supp po. Consider any p € co{dg, o} \ {0s}. We argue v(uo) > v(p), and so
v [0 (o) , 00) M co{ds, o} = {0}, as required. Because the support of p and g is
the same, full revelation secures the same value for both beliefs. Therefore, Lemma
and Lemma, [13] yield

0 () < 0 () = inf 5up v ({60 Fgequpppy ) = 7 (1)

In other words, full revelation barely secures v (yo). The securability theorem (more
precisely, Lemma [4)) then delivers the first point.

To show the second part, we claim below () < v(uo) for each p € AO\ {dp}yce-
Lemma [13] then implies v(p) < v(p) < 9(po) for all p € AO\ {dp}yeo. As such,
p € Z (o) secures v (po) only if suppp C {dg},cq, that is, p provides full information.
To conclude the proof, we note (p, v (o)) is an equilibrium outcome only if p secures
U (o), meaning no p other than full revelation can yield S a payoff of © (o).

All that remains is to show v(u) < 0(p) for all € AO\ {dp}yee. When [O] = 2,
this inequality holds with equality by Lemma If R’s best response is unique, v is
continuous, and so every f € © has

v (6p) = T}I_EEOU (=289 + o) < nh_{go@ (=289 + 210) =¥ (o) ,
where the last equality follows from Lemma[12] The same lemma then implies o (1) =
inf v ({59}9€SHPW> < 0 (o), as required. O
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We now provide an example that witnesses two properties. First, it shows nowhere
quasiconcavity alone is insufficient for uniqueness of full revelation as an S-favorite
equilibrium. Second, it is possible for S to benefit from commitment despite full

revelation being best for S both with and without commitment.

Example 4. Let © := {—1,0,1}, A:={0,1} xAO, pu* := %5_1+%51, Lo = %&H—%,uﬁ
and H : A© — R, a continuous and strictly concave function with H(dy) = 0 V6 € ©.

Let players utilities ug : A — R and ug : A x © — R be given by

and )

un((w, 1), 0) = = > [0) = 15| — (1 - 6%).

bco

Observe (z, 1) is a best response to R belief p if and only if g = p and xu(0) = 0.
Therefore, the value function is given by v(u) = H(1*)1,0)=0 — H(1). By construc-
tion, this function is strictly quasiconvex because —H is. Appealing to Corollary
(see below), the value function is then nowhere quasiconcave, and so full information
is an S-preferred equilibrium, yielding S payoff min { H (x*),0} = 0.

Observe that, in an S-preferred equilibrium, R breaks indifferences against S when
the state is nonzero. Therefore, S gets a payoff strictly lower than her commitment
value of %H (1*). Moreover, full information is not the only S-preferred equilibrium
information policy, because Lemma [1] implies (305, + 30,+, 0) is an equilibrium out-

come.

We conclude this section with sufficient conditions for v to be nowhere quasicon-
cave. In particular, we show a strictly quasiconvex v is nowhere quasiconcave if and

only if it is nowhere quasiconcave on every one-dimensional extreme subset of A©.
Corollary 7. Let v be strictly quasiconvex. The following are equivalent:

(i) v is nowhere quasiconcave.

(ii) v|ago,0y @5 nowhere quasiconcave for every 0,0 € ©.

Proof. Clearly, (i) implies (ii). That (ii) implies (i) follows from applying Corollary [f]
with 7' (6) := dy. Indeed, for any prior u € AO with |supp p| > 3, Corollary [fs proof
delivers a pair of beliefs ¢/, " with p as their midpoint such that v(u) < v(p'), v(u").
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Therefore, the definition of nowhere quasiconcavity need only be verified at binary-

support beliefs whenever v is strictly quasiconvex. O
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