


In the context of NN, where the problem is associated with calculating unknown fixed weights, a filter is used as a

parameter estimator [12], where the parameters are the unknown weights.

This paper investigates a novel filtering technique in the context of training a NN in presence of non-Gaussian noise

in the output. The paper provides three distinct contributions. First, we present a new methodology based on Optimal

Transport (OT) based filtering, for neural network training which has not been explored before. Secondly, we provide a

comparative study of our proposed technique with three other filter based training techniques: EKF, UKF, and Ensemble

Kalman filter (EnKF). In addition, we provide experimental results of this new technique for the problem of predicting

Mackey-Glass chaotic time series data.

The paper is organized as follows. First, we introduce the problem of NN training in the language of parameter

estimation using filters. In the succeeding section, we review the filters: EKF [13], UKF [12], and EnKF [14], along

with the Optimal Transport based filtering, which is the focus of this work. We then discuss the data set on which the

NN training will be performed. This section will also address filter parameter selection, which is extremely important in

this work. Finally, we will present the results comparing the four filters for NN training.

Problem Formulation

Preliminaries on neural network configuration

The concept of artificial neural network was laid forward for the first time in the 1940s [15]. Since then, different

models of neural networks [16] have been developed by various researchers. Among them, the feed-forward neural

network has three distinct layers: the first layer is the input layer, the middle layer which often contains several layer in

itself is known as the hidden layer, followed by the third layer which is the output layer. In fig.1 [17] the lowest level is

the input layer which consists of 5 input nodes. The next two layers above it are the two hidden layers, followed by

the topmost layers which is the output layers. Here output layer consists of single output node. Each of the vertex

(a) Standard Neural Net
Fig. 1 Generic neural network configuration

connecting one node to another represents weights in that path. Weights between any two consecutive layers can be

written as a matrix. We represent weights between layers k and l as W kl , where [wi j]kl denotes the weight between ith

node of layer k to the j th node of layer l. Each of the layers except the input layer has bias associated with each of the

nodes represented as Bl for layer l. Each of the nodes except those in the input layer performs the following calculation:

[z j]l = g

(

nk
∑

p=1

[zp]k[wpj]kl + [bj]l
)
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where [z j]l is the j th element of the vector zl that represents the output of l th layer and [bj]l denotes the bias associated

with the j th node of l th layer. The function g(.) associated with each of the nodes is taken to be the tanh(.) or the

hyperbolic tangent function, which is defined as:

tanh(x) =
ex − e−x

ex + e−x

Filtering Model for Training a Neural Network on a Time-series Data:

We have a time-series input-output (xk, yk) data. We assume a nonlinear mapping between them which we are

modeling using a NN. The core problem thus involves determining a nonlinear mapping:

yk = G(xk, w) (1)

where xk is the input, yk is the output, and the nonlinear map G is parameterized by the vector w. The map G is

modeled using a NN. Learning corresponds to estimating the parameters w. Typically, a training set is provided with

sample pairs consisting of known input and desired outputs, {xk, dk }. The error of the NN is defined as

ek = dk − G(xk, w).

The goal involves solving for the parameters w in order to minimize this expected squared error over a given data set

of inputs and corresponding outputs. In the absence of measurement noise in the output, back propagation algorithm

is typically used to train neural networks. We assume that the actual measurement is corrupted by a white Gaussian

noise with known covariance. We aim to use Bayesian filtering techniques to estimate the parameters by writing a new

state-space representation:

wk+1 = wk + uk (2)

yk = G(xk, wk ) + ek (3)

where the parameters wk correspond to a stationary process with identity state transition matrix, driven by process

noise uk . The output yk corresponds to a nonlinear observation on wk , where xk are the input measurements. The

measurement is corrupted by a noise ek . The process noise uk may represent our uncertainty in how the parameters

evolve, modeling errors or unknown inputs such such as maneuvers in tracking applications [18].

Consider the state-space estimation framework given in (2) and (3). Given the noisy observation yk , a recursive

estimation for wk , which is ŵk , can be expressed in the form:

ŵk+1 = ŵk +Kk (yk − ŷk ), (4)

where ŷk is the estimated output from the NN at k th time step. This recursion provides the optimal minimum

mean-squared error (MMSE) estimate for wk , assuming the prior estimate ŵk−1 and the current observation yk are

Gaussian Random Variables (GRV) in the cases of EKF, UKF, and EnKF. In the succeeding section, we discuss the four

filtering techniques that we use in this work.

Filtering Techniques

EKF:

The Extended Kalman Filter approximates the nonlinear measurement function by a first-order linearization, usually

a Taylor expansion. The key advantage of linearization lies in its efficiency. Each update requires time O(n2.4
y + n2

x )

where ny is the dimension of the measurement vector, and nx is the dimension of the state vector [19]. It is important

to note however, that the first-order approximations used by EKF are capable of introducing large errors into the true

posterior and co-variance of the transformed GRV, potentially leading to sub-optimal performance or worse, divergence

[12]. Nonetheless, dynamics in parameter estimation is strictly linear, as evident in (2). This permits a judicious use of

the EKF in training NN, despite the non-linearity of the output function, when the measurement noise co-variance is

negligible.

Consider the nonlinear state-space model presented in (2) and (3), where uk and ek are independent Gaussian

processes with means zero, and having co-variance matrices Q and R respectively. The algorithm is presented below:
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Linearize (3) using a Taylor series expansion. Define:

Ĉ
w

k =
dGk

dw

���w=ŵ−
k

Compute Ĉ
w

k recursively.

Initialize: For k = 0 set:

w+0 = E[w0]

Σ
+

w̄,0
= E[(w0 − ŵ+0 )(w0 − ŵ+0 )T ]

Iterate: For k = 1, 2, . . . compute:

Parameter Prediction:

ŵ−k = ŵ+k−1

Error covariance Prediction:

Σ
−
w̄,k = Σ

−
w̄,k−1 + Q

Output Estimate:

ŷk = G(xk, ŵ
−
k )

Kalman Gain:

Kk = Σ
−
w̄,k (Ĉ

w

k )T [Ĉ
w

k Σ
−
w̄,k (Ĉ

w

k )T + R]

Parameter Update:

ŵ+k = ŵ−k +Kk[yk − ŷk]

Error covariance Update:

Σ
+

w̄,k = (I − Kk Ĉ
w

k )Σ−
w̄,k

UKF:

Instead of analytically linearizing the dynamics and measurement model and using the Kalman filter equations,

UKF implements the unscented transform (UT) [20]. If we have a non-linear transformation y = G(x, w), where w is a

random variable with known mean w̄ and co-variance Pw , UT approximates the posterior mean and co-variance of the

random variable y. UT uses a set of carefully chosen sample points, known as sigma points. These points completely

capture the true mean and co-variance of the Gaussian random variable and when propagated through the nonlinear

system, capture the posterior mean and co-variance accurately up to the third order for any non-linearity [12]. To

capture the mean ŵa
k−1 |k−1

of the augmented state wa
k−1

:=


wk−1

uk−1


, where wa

k−1
∈ Rna and na := n + q, as well as the

augmented error co-variance Pwwa
k−1 |k−1

:=


Pww
k−1 |k−1

0n×q

0q×n Qk−1


, the sigma point matrix χk−1 |k−1 ∈ R

na×(2na+1) is chosen

as:

χk−1 |k−1 = ŵa
k−1 |k−111×(2na+1) +

√

(na + λ) ×

[
0na×1

(

Pwwa
k−1 |k−1

)1/2
−

(

Pwwa
k−1 |k−1

)1/2
]

(5)

with weights:

γ
(m)

0
,

λ

na + λ
(6)

γ
(c)

0
,

λ

na + λ
+ 1 − α2

+ β (7)

γ
(m)

i
, γ

(c)

i
, γ

(m)

i+na
, γ

(c)

i+na

1

2(na + λ)
, i = 1, . . . , na, (8)
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where (·)1/2 is the Cholesky square root, 0 < α ≤ 1, β ≥ 0, κ ≥ 0, and λ , α2(κ + na) − na > −na. We set α = 1 and

κ = 0 [21] such that λ = 0 [22] and set β = 2 [21]. Alternative schemes for choosing sigma points are given in [22].

The notation ŵk |k−1 indicates an estimate of wk at time k based on information available up to and including time k − 1.

Likewise, ŵk |k indicates an estimate of wk at time k using information available up to and including time k. The UKF

prediction equations are given by the ones above together with:

χ
w
i,k |k−1 = f (χw

i,k−1 |k−1, uk−1, χ
u
i,k−1 |k−1, k − 1), i = 0, . . . , 2na, (9)

ŵk |k−1 =

2na
∑

i=0

γ
(m)

i
χ
w
i,k |k−1, (10)

Pww
k |k−1 =

2na
∑

i=0

γ
(c)

i
[χw

i,k |k−1 − ŵk |k−1][χw
i,k |k−1 − ŵk |k−1]T , (11)

Yi,k |k−1 = h(χw
i,k−1 |k−1, k), i = 0, . . . , 2na, (12)

ŷk |k−1 =

2na
∑

i=0

γ
(m)

i
Yi,k |k−1, (13)

P
yy

k |k−1
=

2na
∑

i=0

[γ
(c)

i
[Yi,k |k−1 − ŷk |k−1][γ

(c)

i
[Yi,k |k−1 − ŷk |k−1]T + Rk (14)

P
wy

k |k−1
=

2na
∑

i=0

[[χw
i,k |k−1 − ŵk |k−1][γ

(c)

i
[Yi,k |k−1 − ŷk |k−1]T (15)

where χi is the ith column of χ,


χ
w
k−1 |k−1

χ
u
k−1 |k−1


, χk−1 |k−1, (16)

χ
w
k−1 |k−1 ∈ R

n×(2na+1), χ
u
k−1 |k−1 ∈ R

q×(2na+1) (17)

Pww
k |k−1

is the prediction error covariance, P
yy

k |k−1
is the innovation covariance, P

wy

k |k−1
is the cross covariance, and Pww

k |k

is the data-assimilation error-covariance.

The data-assimilation equations are given as:

K k = P
wy

k |k−1
(P

yy

k |k−1
)−1, (18)

ŵk |k = ŵk |k−1 +K k (yk − ŷk |k−1), (19)

Pww
k |k
= Pww

k |k−1 −K kP
yy

k |k−1
K

T
k , (20)

whereK k ∈ R
n×m is the Kalman gain matrix. Model information is used during the prediction step, while measurement

data are injected into the estimates during the data-assimilation step.

EnKF:

The Ensemble Kalman Filter (EnKF) introduced by Evensen [23] represents error statistics using an ensemble of

model states. It was designed to solve two major problems with EKF, the first being approximation issues involved

with discarding higher order states in the Taylor series expansion, and the other being the huge computational burden

associated with storage and propagation of the full error covariance matrix [14]. In EnKF, probability density functions

are represented using a large cloud of points in state space, known as an ensemble. By integrating these states forward

in time, it is possible to approximately estimate moments of the PDF at different time levels. Computational complexity

of the EnKF is lower than that of the other extensions of the Kalman filter because the ensemble size N is typically less

than n (the dimension of the state vector), thereby reducing storage costs and time spent in covariance update, which is

the bottleneck of the other filters [24]. The summary of the update and the prediction steps are provided below.

χ
+

k
is a matrix (ensemble) with N posterior samples at time k. The dynamic update is performed in the following

manner:

χ
+

k = [w1+
k w2+

k . . . w
N+
k ]

5

D
o
w

n
lo

ad
ed

 b
y
 T

E
X

A
S

 A
 &

 M
 U

N
IV

E
R

S
IT

Y
 o

n
 A

u
g
u
st

 1
8
, 
2
0
2
1
 | 

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 | 
D

O
I:

 1
0
.2

5
1
4
/6

.2
0
2
0
-1

8
6
9
 



The posterior mean from the samples is approximated as:

µ
+

k := E[w+k ] ≈
1

N
χ
+

k1N

where 1N ∈ R
N is a column vector of N ones. We define:

χ̄
+

k = µ
+

k1T

Variance from the samples is computed as:

Σ
+

xx,k = E[(w+k − µ
+

k1N )(w+k − µ
+

k1N )T ]

≈ χ
+

k Aχ+k
T

where:

A :=

[
1

N − 1

(

IN −
11

T

N

) (

IN −
11

T

N

)]

The state of each ensemble member at the next time step is computed using (2):

w−k = w+k−1 + uk−1

The Kalman gain is computed as:

K k = Σ
−
wy,k (Σ−yy,k ) + Rk−1

where Σ−
wy,k

is defined as:

Σ
−
wy,k =

1

N − 1
(χ−k − χ̄

−
k ) × (Gk (xk, χ

−
k ) − Gk (xk, χ̄

−
k ))T

and Σ−
yy,k

is defined as:

Σ
−
yy,k =

1

N − 1

{
Gk (xk, χ

−
k+1) − Gk+1(xk, χ̄

−
k )) × (Gk (xk, χ

−
k ) − Gk+1(xk, χ̄

−
k ))T

}

The measurement update therefore, is formulated as:

wi+
k = wi+

k +Kk (yk − Gk (wi−
k , xk ) + ε ik )

The covariance update is:

Σ
+

xx,k = Σ
−
xx,k − Σ

−
xy,k (Σ−yy,k + Rk )−1 × Σ−Txy,k

OT-based Filter:

The theory of Optimal Transport (OT) introduced originally by Monge [25] in 1781 essentially involves finding a

mapping between two probability density functions that minimizes a chosen cost function [26]. Filtering techniques

based on the theory of optimal transport are also sample-based, as in the EnKF and UKF. The primary difference

between these algorithms however, lies in the manner of updating priors to posteriors using observations [27].

In [28], it was demonstrated that the performance of the OT-based filtering algorithm in space situational awareness

problems was more accurate, consistent, and robust than that observed with the EnKF. The distribution agnostic behavior

of OT lends it favorability when compared to algorithms that assume system uncertainty to be in Rn.

Given the measurement model and assuming the prior distribution p(w−) for the state variable w, we can compute

its posterior distribution using Bayes’ theorem as

p(w+) ∝ g(y |w−)p(w−), (21)
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where g is the distribution of the measurement error ε , also known as the likelihood function. Our goal is to generate N

samples χ
+
= [x+

1
, x+

2
, ..., x+

N
] ∈ Rn×N from the posterior distribution, given N prior samples χ

−
= [x−

1
, x−

2
, ..., x−

N
] ∈

R
n×N , with wi ∈ R

n. In the OT framework, this is done using a transformation

w+ = φ(w−),

where φ(·) is obtained from optimization with respect to a suitably defined cost function. The optimization must also

constrain φ(·) to be measure preserving and monotone. This is an infinite dimensional problem. For computational

tractability, the map φ(·) is often parameterized in finite dimensional space.

Let the weighted samples of the posterior be χ̂
+ ∈ Rn×N , where χ̂

+
= χ

−, i.e. the sample locations are the same,

but each sample in χ̂
+ has weight given by

λi =
g(y |w−

i
)

∑N
i=1

g(y |w−
i

)
. (22)

We seek a coupling A between the two random variables χ
− and χ̂

+. But the matrix A ∈ Rn×n is not unique. A

unique matrix is determined by optimizing some specific cost function. Here, we maximize the correlation between χ
−

and χ̂
+, which is equivalent to minimization of the expected distance between w− and ŵ+, i.e.

min
A

N
∑

i=1

N
∑

j=1

Ai jD(w−i , ŵ
+

j ),

where Ai j are elements of A, and

D(w−i , ŵ
+

j ) = D(w−i , w
−
j ) = ‖w−i − w−j ‖2, (23)

We normalize all the state variables before calculating the distance D(.) between each of the samples. Normalization is

done using the diameter of the sample set.

The map A must also be measure preserving, which is enforced using the following constraints

N
∑

i=1

Ai j = 1/N,

N
∑

j=1

Ai j = λi, and Ai j ≥ 0; (24)

where λi ∝ g(y |x−
i

). Therefore, the optimal map can be obtained by solving the following linear programming problem

with problem size N2,

A∗ = argmin
A

N
∑

i=1

N
∑

j=1

Ai jD(w−i , w
+

j ) (25)

subject to :

N
∑

i=1

Ai j = 1/N,

N
∑

j=1

Ai j = λi,

Ai j ≥ 0.

We can think of (25) as a network flow problem where probability masses of 1/N are optimally transported from

sites w−
i

to sites w−
j

so that w−
j

have probability mass λ j .

Once we solve (25) and obtain A∗, we define a Markov chain on χ̂
+ (or χ−) with a left stochastic matrix P := NA∗,

such that equally weighted samples w+
i
, representing the posterior distribution, is obtained using

w+i =

N
∑

j=1

Pi jw
−
j , (26)

where Pi j are the elements of P.
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Experimental Results
Our main objective was to experimentally analyze the performance of training a neural network using an OT-based

filter by comparing it with three other filtering techniques over different kinds of measurement noise. For the first set

of experiments, we chose the measurement noise to be i.i.d. Gaussian with zero mean and 0.005 as the co-variance.

Fig.(2) shows the plots comparing all the training techniques for a Gaussian additive noise. We can observe from the

RMSE plots that both UKF and EKF obtain good accuracy in the output when compared to OT filter and EnKF filters.

We notice that the RMSE performance does not change appreciably after 13 epochs for EKF and UKF. Among the 4,

our proposed OT filter performs the worst, followed by EnKF. Since both OT and EnKF are sample based, increasing

the sample size might translate to improvement in RMSE performance. Moreover, EnKF and OT filters also require a

sizable number of epochs to perform comparably with EKF or UKF.
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Fig. 2 Training performance comparison for Gaussian additive noise

In the next set of experiments, we use non-Gaussian noise measurement noise instead of Gaussian noise. We choose

a Bimodal Gaussian noise with varying mean positions and varying individual co-variances. They are:

1) Mean: [−0.1, 0.1], Standard Deviation : [0.2, 0.2] , and Weights: [0.4, 0.6]

2) Mean: [−0.1, 0.1], Standard Deviation : [1.0, 1.0] , and Weights: [0.4, 0.6]

3) Mean: [−0.2, 0.2], Standard Deviation : [2.0, 2.0] , and Weights: [0.3, 0.7]

Fig. (3) shows the performance of OT filter compared to the others for the first set of bi-modal Gaussian distribution

parameters. For a bi-modal Gaussian noise we see OT filter and EKF performing better compared to others. UKF’s

performance is comparable to that of EKF, but we can see that OT filter visibly outperforms EKF. The training results

show the prediction of OT filter and EKF filter compared with the real output and the noise corrupted output. Note that

in presence of considerable non-Gaussian measurement noise, OT based training is capable or faithfully recovering the

true output from the trained NN.

In the next set of results for non-Gaussian measurement noise, with parameters: Mean: [−0.1, 0.1], Standard

Deviation : [1.0, 1.0], Weights: [0.4, 0.6], we see an increase in RMSE error denoting a decline in NN training in

fig.(4). This is expected, owing to the increase in the co-variance of the noise components. We notice from the RMSE

plot that EKF and OT filters are still capable of faithfully following the true outputs. Rest of the techniques have high

RMSE error. In fig.(5) we show plots comparing all the fours techniques with further increase in the component noise

co-variance. The mean position of each of the component Gaussian distribution is also moved away from each other. The

8

D
o
w

n
lo

ad
ed

 b
y
 T

E
X

A
S

 A
 &

 M
 U

N
IV

E
R

S
IT

Y
 o

n
 A

u
g
u
st

 1
8
, 
2
0
2
1
 | 

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 | 
D

O
I:

 1
0
.2

5
1
4
/6

.2
0
2
0
-1

8
6
9
 



corresponding parameters are: Mean: [−0.2, 0.2], Standard Deviation : [2.0, 2.0] , and Weights: [0.3, 0.7]. We notice

that for this set for bi-modal parameters, the EKF performance degrades considerably and starts diverging, whereas OT

filter can still faithfully recover the true output signal with RMSE error much lower than the rest of the techniques. The

EnKF filter after 17 epochs shows convergence in the samples, thus rendering zero predicted measurement co-variance.

The Kalman gain calculation in EnKF involved inverse of this measurement co-variance matrix, which is zero at the

18th epoch. This is the reason we do not have EnKF predictions from 18th epoch as shown in the RMSE plot of fig.(5).

The input and true output for the discretized Mackey-Glass equation forms a repeating pattern. If we are to show the

testing results for our trained neural network, it will be identical to the results for the training data. Hence, only training

results are shown in this work and are used to evaluate the performance of our proposed OT filter based training against

three other methodologies.
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Fig. 3 Results for bi-modal Gaussian with Mean: [−0.1, 0.1], Standard Deviation : [0.2, 0.2] , and Weights:

[0.4, 0.6]

Conclusion
In this work, an input vector of a chaotic signal of a given length is used in a neural network whose weights and

biases are trained using filtering techniques to accurately predict given output observations. The training data contains

outputs that have been corrupted with measurement noise. The filtering dynamics established how the weights and

biases needs to be updated, fusing the information on the measurement noise. We developed a novel technique based on

Optimal transport based filter to train a neural network in presence of considerable non-Gaussian noise in the output.

The output predictions and the accuracy are empirically established using the Mackey-Glass chaotic time series data.

We show that for Gaussian noise, EKF and UKF shows the best and comparable RMSE performance. EKF based

training will be a preferred choice for real time training since it is considerably faster than UKF, although UKF gives the

lowest RMSE error. Using OT filter will be an overkill in this situation, since it requires considerable computational

time compared to EKF and UKF and might need more samples and epochs to give RMSE error comparable to that of

EKF or UKF. The effectiveness of OT filter training is prominent when the measurement noise is non-Gaussian. With

increase in non-Gaussianity we see a degrading performance in EKF. OT filter performs significantly better than the

rest of the three techniques for all of the three non-Gaussian noise results presented in this paper. The OT filter based
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Fig. 4 Results for bi-modal Gaussian with Mean: [−0.1, 0.1], Standard Deviation : [1.0, 1.0] , Weights: [0.4, 0.6]

training takes large amounts of time depending on the choice of sample size and epoch number. In that respect, EKF

based training might be favored for real-time training at the cost of increase in RMSE error. However, note that OT filter

can still be used for real-time training if EKF is first used to get a good initial guess of the initial PDF, thus ensuring fast

convergence of the OT filter based training. Augmenting EKF with OT filter for improving the NN training performance

with reduction in run-time is a topic that needs further investigation.
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