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A B S T R A C T   

In recent years, the number of floods following unprecedented rainfall events have increased in Iran during early 
spring (March 21st to April 20th, referred to in Iran as the month of “Farvadin”). While numerous studies have 
addressed changes in climate extremes and precipitation trends at different temporal scales from daily to annual 
across the country, analyses of short-duration and heavy precipitation, especially during recent years, are rarely 
considered. Furthermore, most studies investigate the variations in extremes and total precipitation using a 
limited number of synoptic weather stations across Iran. This study assesses the variations in heavy precipitation 
(precipitation with intensities greater than or equal to 3 mm/3 h) at 0.04◦ spatial and 3-hourly temporal reso
lution during the month of Farvardin. In addition, the effect of atmospheric river conditions over Iran and their 
possible link to intensifying heavy precipitation is explored. For this purpose, the CONNected-objECT (CON
NECT) algorithm is applied on a precipitation dataset, Precipitation Estimation from Remotely Sensed Infor
mation Using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS), and an Integrated Water 
Vapor Transport (IVT) dataset from the NASA Modern-Era Retrospective Analysis for Research and Applications 
Version-2 (MERRA-2). The results suggest that the increase in the number of floods in recent years is related to 
the increase in the intensity and volume of heavy precipitation events, although the frequency and duration of 
heavy precipitation events have not changed significantly. Furthermore, the results show that atmospheric river 
conditions over the country are present during the same window as each year’s most extreme events. It is found 
that 8 out of 13 of the largest ARs over Iran come from moisture plumes with pathways over the African and Red 
Sea.   

1. Introduction 

Over the 2018–2020 period, Iran experienced several unprecedented 
precipitation events that caused devastating floods across the country 
during the first month of spring (referred to as the month of “Farvardin”, 
spanning from March 21st to April 20th). During Farvardin 2019, Iran 
was hit by three major waves of extreme precipitation events, which led 
to flooding in 26 of Iran’s 31 provinces. According to the International 

Disaster database (www.emdat.be), these widespread major floods 
caused $3.5 billion (2019 USD) in economic damages and more than 78 
fatalities (Aminyavari et al., 2019; Asanjan et al., 2019). Inundations 
and landslides also damaged 8,700 miles (one-third) of Iran’s roads and 
completely destroyed more than 700 bridges (Bozorgmehr, 2019). 
Heavy rainfall during Farvardin 2020 caused damage to large areas in 
18 provinces of the country. More than 11 people lost their lives and the 
total economic damages were in excess of $2.2 billion (United Nations 
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Office for the Coordination of Humanitarian Affairs, https://www.un 
ocha.org/). 

Due to these recent catastrophic flooding events, there is a need to 
better understand the variability in precipitation intensity, frequency, 
and mechanisms of precipitation in early spring over Iran. There are 
several studies that have investigated the spatial and temporal varia
tions of precipitation over Iran at different temporal scales using a 
synoptic gauge dataset with different data record lengths (Boroujerdy, 
2008; Feizi et al., 2014; Javari, 2016; Kousari et al., 2011; Najafi and 
Moazami, 2016; Raziei et al., 2014; Shirvani, 2017; Some’e et al., 2012; 
Tabari et al., 2011; Zarenistanak et al., 2014). For example, Modarres 
et al. (2007) studied the precipitation variability over Iran by analyzing 
annual precipitation data collected from 20 gauge stations for the period 
from 1955 to 2000. Of those 20 stations, 18 showed no statistically 
significant trends in precipitation. Tabari et al. (2011) conducted a study 
to investigate the variations in annual and seasonal precipitation using 
61 synoptic stations for the period from 1966 to 2005. Their results 
indicated that the amount of annual precipitation decreased signifi
cantly over time at about 60% of the stations. Similarly, they showed 
that trends for the spring and winter precipitation were mostly negative 
during the study period. Soltani et al. (2012) applied the Mann-Kendall 
test to the annual and monthly rainfall time series of 33 synoptic stages 
for the period from 1951 to 2005. By analyzing the annual precipitation, 
they concluded that there was no significant climate change overall in 
Iran, specifically in March rainfall, while significant negative trends 
were noticed at 29 stations in April. More recently, an investigation by 
Zarei and Masoudi (2019) of precipitation variations based on 40 sta
tions during the time period from 1967 to 2014 revealed that about 30% 
of the stations showed significant decreases in annual precipitation. 

Although the spatiotemporal variability of precipitation over Iran is 
investigated by these studies, there are still some notable gaps: First, 
these studies analyze a limited number of synoptic weather stations, 
making it difficult to understand precipitation variation at high spatial 
resolution over the whole country. Furthermore, urbanization over 
recent decades may have affected the station data trends. Second, the 
synoptic gauge precipitation network provides precipitation observa
tions at a daily time scale. This temporal resolution limits the focus of 
the studies to the total amount of precipitation at daily to annual scales. 
Therefore, the variations in heavy precipitation at sub-daily scales (e.g. 
hourly, 3-hourly) were not explored. Third, the temporal extent of these 
studies spans to the year 2013, meaning the unprecedented rainfall 
events during Farvardin over the 2018–2020 period have not been 
examined. 

The inadequate and sparse networks of rain gauge stations across 
Iran increase the uncertainties in previous study findings. Additionally, 
the daily temporal resolution of rain gauge networks undermines their 
applicability to capture the variations in short-duration heavy precipi
tation events (Maggioni et al., 2016; Mosaffa et al., 2020a, 2020b, 
2020c; Yang et al., 2005). Satellite-based precipitation estimates are a 
promising alternative to ground-based rain measurements, offering 
global precipitation estimates with high spatial and temporal resolution, 
especially over sparsely gauged regions (Sadeghi et al., 2020, 2021). 

Precipitation Estimation from Remotely Sensed Information Using 
Artificial Neural Networks-Cloud Classification System (PERSIANN- 
CCS), which provides near-real time precipitation estimates at 0.04◦

spatial resolution an0d hourly temporal resolution, is an attractive 
candidate for short-duration extreme precipitation analysis (Hong et al., 
2004). Many studies have evaluated the estimation performance of 
PERSIANN-CCS at global to local scales (Beck et al., 2019; Bitew and 
Gebremichael, 2010; Conti et al., 2014; Hirpa et al., 2010; Hong et al., 
2007; Hsu et al., 1997; Katiraie-Boroujerdy et al., 2020; Romilly and 
Gebremichael, 2011; Asanjan, et al., 2019; Salmani-Dehaghi and 
Samani, 2019). Over Iran, Mosaffa et al. (2020a), Mosaffa et al. (2020b) 
and Mosaffa et al. (2020c) evaluated the near-real time precipitation 
estimation products, including PERSIANN-CCS and Tropical Rainfall 
Measuring Mission real-time (TRMM 3B42-RT), comparing these 

products against 28 rain gauge observations for the period from 2003 to 
2014. Their results showed that PERSIANN-CCS performed better in 
terms of both rainfall detection and estimation compared to TRMM 
3B42-RT. Katiraie-Boroujerdy et al. (2020) evaluated PERSIANN-CCS 
against 1,130 rain gauge stations over Iran for the period from 
December 2008 to November 2018 and showed that PERSIANN-CCS 
estimates are consistent with gauge observations. In this study, we 
leverage the high-spatiotemporal resolution PERSIANN-CCS dataset to 
investigate the variation of short-term heavy precipitation in the month 
of Farvardin over the last two decades (2003–2020). This study high
lights the application of near-global PERSIANN-CCS estimates for 
exploring precipitation variation over countries where the number of 
rain gauges is limited, like Iran. 

Iranian agriculture is highly dependent on precipitation in spring, 
especially that in the month of Farvardin, the first spring month in the 
Iranian calendar. According to PERSIANN-CCS measurements, approx
imately a quarter of the annual precipitation in Iran occurs during 
Farvardin. The consequences of climate change on the intensification of 
the hydrologic cycle, including floods and droughts, caused many heavy 
precipitation events in recent years. For example, according to Iranian 
agriculture ministry’s crisis management department, flooding in mul
tiple Iran provinces during Farvardin 2019 caused nearly $3 billion to 
the agriculture sector (https://www.tehrantimes.com/news/434705/). 
Among those provinces, early spring floods caused financial damages 
amounting to approximately $714 million to 200,000 ha of Khuzestan 
farming lands alone. 

In this study, we use PERSIANN-CCS estimates to address the gaps in 
the previous studies for investigating heavy precipitation events during 
the month of Farvardin over Iran. First, the high spatial resolution of the 
PERSIANN-CCS estimates enables us to investigate the variations in 
precipitation at 0.04◦ spatial resolution. Second, the hourly temporal 
resolution of the PERSIANN-CCS estimates provides us the opportunity 
to explore the variations in short-duration extreme precipitation. For 
this purpose, this study utilizes the CONNected objECT (CONNECT) 
algorithm run on the PERSIANN-CCS estimates, which is an object- 
oriented tracking algorithm, to investigate the spatiotemporal varia
tions in short-term heavy precipitation during the month of Farvardin 
over Iran using the PERSIANN-CCS dataset as input. In this study, we 
consider 3 mm/3 h as the threshold precipitation rate to determine 
heavy precipitation. This study highlights the application of the CON
NECT algorithm along with PERSIANN-CCS dataset for analyzing nat
ural hazards associated with AR events, such as floods over different 
regions of the globe. 

To further explore the spatiotemporal variations of heavy precipi
tation events during Farvardin, we examine the presence of atmospheric 
rivers (ARs) over the country and during periods of extreme precipita
tion. The spatial distribution of precipitation over Iran is mostly affected 
by the interaction of large-scale atmospheric circulation types and the 
Zagros and Alborz Ranges. Some particular meteorological conditions, 
such as the position of mid-tropospheric ridges, troughs, and the jet 
stream, along with ARs that bring moisture from faraway water bodies, 
are pushed upward by orography and produce precipitation over Iran in 
early spring (Alijani, 2002; Azizi et al., 2013; Vaghefi et al., 2019). The 
effective synoptic conditions for spring precipitation in Iran are mainly 
driven by the interconnection and positioning of the Mediterranean low 
pressures, the Siberian high pressure, the Red sea, and the Arabian low- 
tropospheric anticyclones (Alijani and Harman, 1985; Darand and 
Daneshvar, 2014; Nazaripour and Daneshvar, 2014). 

Thus far, there has been minimal insight into how ARs contribute to 
heavy precipitation that occurs during the early spring across the 
country. Recently, Dezfuli (2019) investigated the mechanisms of ARs 
over the Middle East by examining the unprecedented precipitation 
event that occurred during March 24–25, 2019. Their results indicated 
that the strong, nearly 9000-km-long AR Dena that was propagated from 
the Atlantic Ocean and was fed by additional moisture from surrounding 
bodies of water along its pathway was responsible for this 
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unprecedented precipitation. In this study we leverage the CONNECT 
algorithm to further examine the presence and therefore implied influ
ence of ARs during the most extreme precipitation events that have 
occurred during the month of Farvardin during the last two decades. 

The detailed goals of this study are:  

1- Investigate the temporal variations in heavy precipitation events that 
occurred in the month of Farvardin from 2003 to 2020 using 
PERSIANN-CCS estimates. 

2- Explore AR conditions over Iran, especially during heavy precipita
tion events that occurred during the last two decades.  

3- Explore the applications of the CONNECT with PERSIANN-CCS for 
tracking short-term precipitation events.  

4- Investigate the performance of PERSIANN-CCS for the precipitation 
events behind Iran’s major floods in 2019. 

The rest of this paper is organized as follows. In the next section, we 
describe the datasets (precipitation and Integrated Water Vapor Trans
port, hereafter “IVT”) which are used in this study. In Section 3, we 
briefly describe the CONNECT algorithm and the methodology used to 
analyze the variations in heavy precipitation during Farvardin. Results 
are presented in Section 4. We summarize the major findings of this 
study and conclude this paper in Section 5. 

2. Study area & data 

2.1. Study area 

Iran is in a semi-arid and arid subtropical region of southwest Asia at 
longitude 25–40◦N and latitude 44–65◦E. The country is bounded by the 
Caspian Sea on the north and the Persian Gulf and Gulf of Oman in the 
south (Fig. 1). The study area covers the extent of Iran’s borders, 
measuring at about 1.6 million km2. Iran is characterized by complex 
topography: most of the central and southeastern parts of Iran are 
covered by barren/arid areas (Dashte-e Kavir and Dashte-e Lut) and 
western and northern regions are covered by Zagros and Alborz main 
mountain ranges. Iran is the scene of various meteorological and 
climatological mechanisms (mostly induced by the subtropical high- 
pressure regimes) resulting in uneven spatial and temporal distribu
tion of precipitation across the country. The southern part of Iran is 
affected by the anticyclonic circulation over the Arabian Sea (Raziei 
et al., 2012), the El Niño-Southern Oscillation (ENSO) (Nazemosadat 
and Ghasemi, 2004; Saghafian et al., 2017), and the Monsoon phe
nomenon (Yadav, 2016; Zarrin et al., 2010) while mountainous regions 
in western Iran block moisture-loaded ARs from the tropical Atlantic 
Ocean and Europe driven by the Black Sea and Mediterranean cyclones 

(Azizi et al., 2013; Vaghefi et al., 2019) 
In our study, to identify the spatial and temporal variations of heavy 

precipitation events during the month of Farvardin and examine the 
effect of ARs on these variations, we consider a large spatial domain 
from 10◦W to 70◦E and from 0◦ to 50◦N, including some parts of North 
Atlantic Ocean, Europe, Middle East, and North Africa (Fig. 1). 

2.2. Data sets  

• PERSIANN-CCS 

PERSIANN-CCS is a satellite-based operational product that consists 
of hourly rainfall estimates at 0.04◦ × 0.04◦ (approximately 4 km) 
spatial resolution (Hong et al., 2004). It uses infrared (IR) imagery from 
geostationary satellites and extracts the cloud features such as temper
ature, geometry, and texture to estimate rainfall using a data-driven 
model. PERSIANN-CCS is a useful tool for monitoring and analyzing 
heavy precipitation events in near-real-time at a quasi-global scale 
(60◦N to 60◦S). This dataset is available as an operational climate data 
record via the CHRS Data Portal (http://chrsdata.eng.uci.edu/, Nguyen 
et al., 2019).  

• PERSIANN-CDR 

PERSIANN-Climate Data Record (CDR), like PERSIANN-CCS, is a 
rainfall product that is a quasi-global and satellite-based. PERSIANN- 
CDR differs from PERSIANN-CCS by its intention: while PERSIANN-CCS 
is primarily for real-time measurements, PERSIANN-CDR’s long dura
tion (1983-present) makes it most useful for climate-scale studies 
(Ashouri et al., 2015; Sadeghi, 2018; Sadeghi et al., 2019a, 2019b). As 
accuracy is a primary motivation for the development of PERSIANN- 
CDR data, daily passive microwave data and monthly GPCP v2.3 rain 
gauge values are used for bias correction. PERSIANN-CDR’s focus on 
accuracy means it’s not available at scales as fine as PERSIANN- 
CCS—PERSIANN-CDR’s spatiotemporal resolution is limited to daily 
and 0.25◦ × 0.25◦ pixels. In this study, PERSIANN-CDR is used to 
investigate the climatology of AR-associated rainfall during Farvardin. 
Like PERSIANN-CCS, PERSIANN-CDR is available from the CHRS Data 
Portal (see above.)  

• Integrated Water Vapor Transport from MERRA-2 

Integrated water Vapor Transport (IVT) is the amount of atmospheric 
moisture integrated across all levels of the atmosphere, calculated from 
the following formula: 

Fig. 1. a) The study area (green) and surrounding regions b) Selected provinces including Ilam (Ilm), Fars (Frs), Kermanshah (Krs), and Lorestan (Lor) and location of 
the five heaviest events in Farvardin in terms of volume (2003, 2012, 2017, 2018, and 2019) that are discussed in Figs. 7 and 8. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 
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IVT =
1
g

∫ P200

Psurf

qVdp  

where p is pressure (hPa), p_200 is pressure at 200 hPa, assumed to be 
the top of the atmosphere, p_surf is the geopotential height at the Earth’s 
surface (1000 hPa), q is specific humidity at pressure height p, Vis the 
wind velocity (m/s) at p, and g is gravitational acceleration. IVT was 
calculated from the wind and pressure values retrieved from the Na
tional Aeronautical and Space Agency’s (NASA) Modern-Era Retro
spective Analysis for Research and Applications-version 2 (MERRA-2) 
data (Gelaro et al., 2017).  

• Gauge dataset 

To evaluate PERSIANN-CCS’s accuracy during Farvardin 2019, the 
PERSIANN-CCS estimates are compared with ground-based gauge ob
servations from 70 synoptic meteorological stations from the Iran 
Meteorological Organization at the daily scale. These evaluations are 
performed over 4 provinces (Fars, Lorestan, Kermanshah, and Ilam) 
which were affected the most by the heavy precipitation events during 
Farvardin 2019. The comparison is conducted against PERSIANN-CCS 
pixels that contained at least one meteorological ground-based 
observation. 

3. Methodology 

3.1. CONNECT 

The CONNected-objECT (CONNECT) algorithm is a big data algo
rithm that uses connectivity (overlap) to segment, group, and track 
elevated or anomalous data signatures in large volumes of data. It was 
developed to study hydroclimate extremes, including, but not limited to, 
ARs (Shearer et al., 2020), tropical and extratropical cyclones (Shearer 
et al., 2021), droughts, and more. The algorithm’s architecture is 
designed with object-oriented analysis in mind, where “objects” are 
identified items, events, etc. that can be represented by attributes and 
statistics and object-oriented analysis is the study of populations of 
“objects” from their attributes and statistics (Fig. 2). Object-oriented 
analysis has noteworthy benefits for hydroclimate studies: events are 
discretely counted and recorded, meaning they can be examined indi
vidually, or their population considered statistically, from techniques as 
simple as calculating averages and percentiles to distribution building 

and cluster analysis. 
CONNECT uses three-dimensional (x,y-spatial and temporal) voxels 

of a target variable (e.g. rainfall) to construct objects where voxels with 
intensities above a user-defined threshold are contiguous over space and 
time, performed using a flood filling algorithm. As grouping voxels 
across the time axis captures the evolution of an object from genesis to 
terminus, CONNECT performs well as a tracking algorithm, meaning 
objects segmented by CONNECT are the lifecycles of weather phenom
ena. CONNECT auto-calculates object characteristics, such as spatio
temporal properties like volume, speed, duration, etc. and outputs it into 
a table for statistical/object-oriented analysis. 

For this study, 3-hourly precipitation data from PERSIANN-CCS 
during the month of Farvardin every year from 2003 to 2020 was 
used as input to CONNECT. As our interest for this study lies entirely 
within the boundaries of Iran, precipitation fields are clipped to the 
country’s borders. To capture longer-duration heavy events over the 
region, CONNECT was set up to only consider rainfall totals equal to or 
greater than 3 mm/3 h and to filter objects with durations shorter than 
twelve hours. Selecting the threshold parameter for CONNECT is largely 
based on balancing between over-segmenting and under-segmenting. 
Over-segmented rainfall disrupts the tracking functionality of CON
NECT: smaller objects moving at faster speeds will not overlap during 
subsequent timesteps and will not be considered as the same object. At 
the same time, under-segmented rainfall will track multiple events as a 
singular “conglomerate” event. As an example, consider rainfall systems 
in the intertropical convergence zone. At very low thresholds, CONNECT 
will not differentiate between the light rainfall that constantly occurs in 
the region and the periodic heavy rainfall from transient mesoscale 
convective systems that also frequently form and dissipate over the 
course of a day. If a researcher’s goal is to study the lifecycles of the 
latter phenomena, a higher rainfall threshold rate is required for suitable 
results. We note similarities between the geography of Iran and Cali
fornia (further explained in the subsequent section) and therefore elect 
to use the 1 mm/hour (here, 3 mm/3-hour) threshold used in Sellars 
et al. (2015). At this value, rainfall is a less than half of the Glossary of 
Meteorology’s definition of moderate rainfall (2.5 mm/hour), but well 
above the rainfall rates of a drizzle (0.3 mm/hour), meaning rainfall 
rates captured are impactful but not necessarily extreme. A higher 
threshold is undesirable as it omits important data and serves to un
derestimate storm total volume calculations. 

Fig. 2. An object (“hydroclimate extreme”) described by its characteristics (“total volume of rainfall”, “duration”, etc.)  
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3.2. Defining the thresholds for detecting AR over Iran. 

An AR is a narrow, transient atmospheric pathway that transports a 
large amount of water vapor from distant water bodies. In dry countries 
like Iran, which is located in subtropical latitudes, ARs originating from 
water bodies located west of the country can be a significant source of 
precipitation. Furthermore, Guan and Waliser (2015) showed that ARs 
are contribute to orographic rainfall occurrences and can cause extreme 
precipitation events and flooding in Iran. Therefore, for hydrological 
purposes it would be useful to study extreme precipitation events 

and ARs particularly in mountainous region of Iran (e.g, Zagros 
Range). To investigate whether the most extreme CCS-CONNECT objects 
over Iran were related to AR activity, we utilized the methodology from 
Rutz et al. (2014, hereby referred to as “Rutz”). Rutz defines an AR as a 
region of IVT greater than 250 kgm−1 s−1that extends to a length greater 
than or equal to 2,000 km. The Rutz methodology is referred to as a 
“permissive” methodology (as opposed to a “restrictive” method), which 
means its requirements are laxer and generally tend to classify anoma
lous IVT regions as ARs more often than other methodologies. This 
methodology was selected because Iran has notable analogs to Califor
nia, where the methodology was developed, including its northwest- 
southeast trending Zagros Mountain range with peaks up to 4,400 m, 

which has the same orientation and prominence as the Sierra Nevada 
Range, along with its location in the lower mid-latitudes. However, we 
acknowledge that Iran’s position east of the dry Saharan Desert is in 
stark contrast to California’s proximity west of the Pacific Ocean, a 
water body source which feeds Pacific ARs with their moisture, though a 
notable analog exists in the Red and Mediterranean Seas, along with the 
Persian Gulf (Dezfuli, 2019). Furthermore, ARs over Iran have yet to be 
analyzed using an precipitation-linked IVT threshold which can be uti
lized in global studies, like that used in Rutz et al., (2014); the 85th 
percentile of IVT over Iran and the surrounding region was used as a 
threshold in Dezfuli (2019) and Esfandiari and Lashkari (2020), the 
values of which would be far too low of a threshold to be useful over 
North America, Europe, etc. It is important to note that we do not argue 
that using a regionally derived IVT threshold makes the ARs in these 
studies less deserving of the AR label. However, by proving that ARs 
exist at IVT levels that can be utilized globally and is tied to precipita
tion, we prove that Iran is a region where ARs of noteworthy strength 
frequently occur, at least in the month of Farvardin, making it compa
rable to the North American west coast, Europe, Chile, and other regions 
of the world. 

To robustly investigate the influence ARs have in the region during 
Farvardin, the climatology of ARs and AR precipitation over Iran during 

Fig. 3. Climatology of ARs over Iran during Farvardin, using 1990–2019 baseline period. a) The correlation of 24-hr (00z-00z) IVT averages to 24-hr precipitation 
accumulations from PERSIANN-CDR. b) Frequency of AR conditions. c) Fraction of precipitation. 
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the month of Farvardin is investigated using the Rutz methodology and 
the multi-decade PERSIANN-CDR precipitation dataset over 1990–2019. 
The 30-year duration was chosen in compliance with the standards of 
the World Meteorological Organization (WMO). Fig. 3 explores three 
metrics that seek to investigate how ARs impact Iran during Farvardin, 
specifically regarding frequency and its link to precipitation. In the 
Zagros mountains, precipitation and IVT are correlated to values as high 
as 55%, including the greater Tehran metropolis. Moreover, moderate 
correlations of 35%–45% exist across the entirely of north and central 
Iran. AR frequencies are greatest along the coast of the Persian Gulf and 
the Gulf of Oman up to the foot of the Zagros Mountains, where they 
occur on average 7–10% of the month, or up to 3 days a month. Thus, 
two similarities between the climatology of Iran and California are 
observed: the high correlation between IVT and rainfall, especially in 
topographically complex regions (Rutz et al., 2014) and the high fre
quency of elevated IVT fluxes that perpendicularly strike a prominent 
mountain range. In addition, the fraction of AR rainfall is over 50% in 
the southern part of the country. Owing to these similarities, it can 
established that 1) atmospheric rivers at IVT fluxes required by the Rutz 
methodology (impact-linked) are non-insignificant players in Iran’s 

Farvardin hydroclimate, meaning 2) The Rutz methodology and others 
that aren’t linked to climatological averages, like what is done in Defuzli 
(2019), are appropriate to use in the region for AR-related studies. In 
this study, we investigate the contribution of ARs on heavy precipitation 
using IVT and gauge information. 

Despite the breadth of analysis done in this study regarding ARs over 
Iran and their perceived link to heavy precipitation events, it is vital to 
note that establishing a concrete link between ARs and heavy precipi
tation requires numerical modeling simulation as described by Davolio 
et al. (2020) and such research should be conducted before solid con
clusions can be made. Such numerical simulations are outside the scope 
of this study. 

3.3. Performance measurements 

Categorical evaluation statistics including Probability of Detection 
(POD), False Alarm Ratio (FAR), Critical Success Index (CSI) are utilized 
to evaluate the performance of the PERSIANN-CCS dataset for detecting 
rain/no rain pixels. Continuous indices including Pearson’s correlation 
coefficient (CC), Root Mean Square Error (RMSE) and Bias (BIAS; BIAS 

Fig. 4. Accumulated precipitation estimates for the month of Farvardin over Iran from 2003 to 2020 using PERSIANN-CCS estimates.  
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= estimation-observation) are used to assess the accuracy performance 
of PERSIANN-CCS in estimating the rainfall intensity. A value of 1 mm/ 
day is utilized as a rain/no rain threshold in both PERSIANN-CCS esti
mates and ground-based gauge observations. 

4. Results and discussion 

Fig. 4 displays the spatial map of the accumulated precipitation for 
the month of Farvardin during the period from 2003 to 2020 using 
PERSIANN-CCS data. The mean monthly precipitation during Farvardin 
for this period was 86 mm. For the most recent years, the average pre
cipitation was 107 mm (in 2018), 178 mm (in 2019), and 100 mm (in 
2020), all of which were higher than the baseline mean precipitation 
from 2003 to 2020. Furthermore, the year 2019, when Iran experienced 

many floods, was the wettest year in the last two decades. In addition, 
Fig. 4 reveals that the spatial pattern of accumulated precipitation varies 
among different years. The greatest concentration of rainfall occurred 
over northeastern Iran in 2003 while southwestern Iran experienced the 
bulk of precipitation in 2019. 

4.1. Evaluation of PERSIANN-CCS for 2019 

As discussed in the introduction, Katiraie-Boroujerdy et al. (2020), 
Mosaffa et al. (2020a), Mosaffa et al. (2020b) and Mosaffa et al. (2020c) 
evaluated the performance of the daily PERSIANN-CCS estimates over 
Iran for the period prior to 2018. The intention of this study is not to 
evaluate the capability of PERSIANN-CCS for precipitation estimation, 
but rather evaluate rainfall totals during Farvardin 2019 against ground- 

Fig. 5. Spatial distribution of different statistical evaluation metric over the four selected provinces.  

Fig. 6. Temporal variations of heavy precipitation events during the period 2003–2020 using PERSIANN-CCS estimates.  
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based observations for the provinces that experienced floods. Table 2 
presents spatial averages of categorical and continuous evaluation 
metrics over four selected provinces: Fars, Ilam, Kermanshah, and 
Lorestan. These are among the provinces that reported the greatest 
flooding damages during the Farvardin 2019 floods. In terms of cate
gorical statistics, POD and FAR values are 0.78 and 0.28 over these 
provinces, respectively. PERSIANN-CCS with 0.65 (0.53) has the best 
(worst) performance in terms of CSI over Kermanshah (Ilam) province. 
According to continuous statistical metrics, the correction coefficient 
(CC) is approximately 0.55 in the selected provinces and the highest CC 
values appear over the Ilam province with the value of 0.75. Also, RMSE 
ranges from 16.55 to 23.14 mm/day. In terms of bias, PERSIANN-CCS 
mainly overestimates (BIAS > 0) precipitation intensity. When 
comparing our results to those of previous studies which evaluated 
different satellite precipitation products over Iran (Alijanian et al., 2017; 
Mahbod et al., 2019; Moazami et al., 2013; Mosaffa et al., 2020b, 
2020c), it must be pointed out that PERSIANN-CCS performs better than 
other near-real time products during Farvardin 2019. 

Fig. 5 presents the spatial distribution of POD, FAR, CSI, CC, RMSE, 
and BIAS over the four selected provinces. This figure shows that POD 
values in all stations is above 0.75 except a station in the north of Fars 
province and a couple of stations in the middle of western provinces 
which have POD about 0.6. Western provinces including Kermanshah, 
Ilam, and Lorestan have lower FAR than the Fars province in the south of 
Iran. Except for a few stations with CSI below 0.5, mostly found in the 
Fars province, other stations have CSI greater than 0.5. The spatial 
distribution of CC indicates that the PERSIANN-CCS algorithm has 
better performance over the western provinces than over Fars. Accord
ing to Fig. 5, CC in regions that experienced heavier precipitation is 
higher than in the other regions. Stations in the Lorestan province have 
the highest RMSE compared with other stations. On the contrary, sta
tions in the south of Fars and Kermanshah provinces have the lowest 
RMSE. Although precipitation is overestimated (BIAS > 0) in most of the 
stations, results of BIAS in the north of the Kermanshah province and a 
couple of stations in the east of the Lorestan province shows an under
estimation of precipitation. Comparing with the conducted evaluation 
studies for near-real time precipitation over Iran, PERSIANN-CCS has 
the potential to be used as a candidate for short-term duration precipi
tation studies. 

4.2. Temporal variations of heavy precipitation events during the period 
2003–2020 using PERSIANN-CCS estimates 

To quantify how the number of floods has been increasing during the 
last three years, we plot the frequency, intensity, duration, and volume 
of precipitation for the period 2003–2020 over the study area (Fig. 6). 
For this purpose, we apply the CONNECT algorithm with a 3 mm/3-hour 
threshold on the PERSIANN-CCS estimates for the period 2003–2020 for 
the month of Farvardin across Iran. The frequency (Fig. 6a) of heavy 
precipitation events—events with more than 3 mm/3-hour rain
fall—does not show a significant change across the country during the 
month of Farvardin. The average number of intense events is 97; how
ever, the highest number is 151 events occurring in 2019. The variations 
in intensity of heavy precipitation events (Fig. 6b) demonstrate that the 
average magnitude of heavy rainfall has increased during the last three 
years. The average intensity of heavy precipitation events is 15.7 mm/3- 
hour for the whole period compared with 55.3 mm/3-hour in 2018, 
79.0 mm/3-hour in 2019, and 30.1 mm/3-hour in 2020. These results 
are consistent with the increase in the number of floods reported across 
Iran during the last three years. The average duration of heavy precip
itation (Fig. 6c) was 14.2 h during the last two decades, while peaking to 
23.8 h in 2019. The average volume of heavy precipitation (Fig. 6d) 
during the month of Farvardin for the whole study period is 0.7 km3/ 
event, while an average of 0.97 km3/event was recorded over the last 
three years of the study. The total volume of heavy precipitation per year 
(Fig. 6e) was 77 km3 on average, compared with an average of 132 km3 

of precipitation occurring during the last three years. Most notably, the 
total precipitation volume was 191 km3 in 2019. Overall, we can 
conclude that the increase in intensity, average volume per event, and 
total volume of heavy precipitation are the main reasons for the in
creases in the number of floods during the last three years over Iran. 

4.3. Investigating atmospheric river presence during heavy precipitation 
events from 2003 to 2020 

The Rutz et al. (2014) methodology was used to determine whether 
there was AR activity during the most extreme Farvardin rainfall events 
every year during 2003–2020, including extra significant events in 2019 
and 2020. As Rutz is considered a permissive methodology, which 

Fig. 7. AR presence during the most severe heavy precipitation events during 2003–2020: a) 2003 b) 2012 c) 2017 d) 2018 e) 2019.  
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implies an enhanced possibility of non-AR IVT features being classified 
as ARs, we further checked to see if AR activities existed over any area in 
Iran for at least 24 h, thereby ensuring that an event satisfies the re
quirements of an “AR-1”, the weakest category for an AR from the scale 
introduced by Ralph et al. (2019). 

Over the study period, it was observed that AR conditions existed 

during every year’s most extreme events, along with the two extra 
extreme events in 2019 and 2020. Among them, only three years (2010, 
2011, and 2013) had AR conditions for less than 24 h, with the shortest 
(2011) that lasted for 9 h. Furthermore, some events, such as the 
extreme rainfall event of 2004, could be traced back to multiple AR 
events affecting different regions of Iran. 

Dezfuli (2019) observed that the sources of moisture for ARs that 
impact Iran come from the surrounding bodies of water, including the 
Mediterranean Sea, the Caspian Sea, the Persian Gulf, the Red Sea, and 
the Atlantic Ocean. From our analysis, we identify that the sources of 
moisture for ARs in the region are from the Atlantic Ocean via a northern 
Africa pathway and from the Red Sea via the Red Sea Strait (Bab-el- 
Mandeb). These pathways are also recognized in Esfandiari and Lashkari 
(2020). In Fig. 7, we showcase the three most observed AR lifecycles in 
the region: 1) those that propagate from the Atlantic Ocean over 
northern Africa without significant influence from the Red Sea (Fig. 7c, 
d) driven by the Saharan anticyclone (Shay-El et al., 1999), 2) those with 
moisture chiefly coming from the Red Sea (Fig. 7b) via the Red Sea Strait 
driven by a moisture transport at the 850 hPa level following a favorable 
position of the Arabian cyclone and mid-tropospheric troughs (Raziei 
et al., 2012) and 3) those which are created by merging bodies of 
moisture from both the Red Sea and the Atlantic Ocean (Fig. 7a, e), 
though the timing between ARs can vary between being simultaneous 
(Red Sea and African moisture at the same time; 2003 and 2019) and 
being subsequent (one source of moisture followed by other). Of these 
two different timings, it is the former that produces the events of greater 
volume, with the precipitation events of 2003 and 2019 being 4th and 
1st heaviest by rainfall volume. 

Table 1 showcases each AR with its pathway, determined by exam
ining IVT objects at the 200 and 250 kg m−1 s−1 levels. Of the AR 
examined, three were found to come from moisture via the African 
pathway, seven from the Red Sea Strait, ten from both sources, and two 
from other sources (Gulf of Aden and Arabian Sea). This means that out 
of the 22 observed ARs, 17 were reliant on moisture fluxes from the Gulf 
of Aden while 13 could be linked to moisture transport over the African 
continent. Furthermore, each AR was ranked by the amount of precip
itation it produced over Iran as calculated by CONNECT. The three 
highest ranking ARs all come from the three different AR classes, each 
occurring within the 2018–2019 period. Afterwards, ARs with moisture 
from both sources make up 7 out of 10 of the ARs ranked 4th to 13th, yet 
only 3 out of 9 of the ARs ranked 14th onwards are from both sources. In 
summary, ARs with moisture from both the African and Red Sea sources 
are the most frequently observed ARs that coincide with heavy precip
itation over Iran. 

Fig. 8 shows the accumulated amount of precipitation occurring 
during the events shown in Fig. 7. The most extreme event that occurred 
in Farvardin 2003, which was ranked the 4th greatest event by volume 
and propagated from the Red Sea and the Atlantic Ocean, mainly 
occurred in northeastern Iran. On the other hand, the heavy precipita
tion that occurred in Farvardin 2019 that involved the most extreme 
events in terms of volume during the last two decades and had similar 
pathway to that from 2003 mainly occurred over Southwestern Iran. 
This figure shows precipitation from the most extreme events in 2003, 
2012, 2017, 2018, and 2019 and highlights that extreme events in recent 
Farvardins (2018 and 2019) are heavier than those of the past. 

5. Conclusion 

Spring precipitation, especially during the month of Farvardin, is 
important for Iranian agriculture. Over the past few years, an increase in 
the number of floods occurring after unprecedented rainfall events 
during the month of Farvardin have affected millions of people across 
Iran, caused the loss of life, damaged infrastructure, and engendered 
substantial economic losses in Iran’s agriculture sector. The apparent 
increase in the number of floods during the last three years (2018–2020) 
led us to investigate the variations in different aspects of heavy 

Table 1 
Statistical evaluation of daily PERSIANN-CCS over selected provinces.   

Average on 
selected 
Province 

Fars 
Province 

Ilam 
Province 

Kermanshah 
Province 

Lorestan 
Province 

POD  0.78  0.83  0.71  0.76  0.79 
FAR  0.28  0.37  0.32  0.18  0.21 
CSI  0.60  0.55  0.53  0.65  0.64 
CC  0.62  0.48  0.75  0.47  0.69 
RMSE 

(mm/ 
day)  

19.97  20.10  21.95  16.55  23.14 

BIAS 
(mm/ 
day)  

3.44  6.38  6.31  0.96  1.37  

Table 2 
The heaviest precipitation events during 2003–2020 and the presence of ARs 
bringing moisture over north Africa (“Af”) or the Red Sea (“RS”) during the 
event period.  

Date AR? >24 
Hours 

Pathway Rainfall Volume 
(km3) 

Rank 

22 March–26 
March 2003 

Yes Yes Af & RS  34.22 4 

April 1–April 6, 
2004 

Yes Yes Af & RS  12.49 13 

April 13–April 19, 
2005 

Yes Yes RS  12.33 14 

27 March–31 
March 2006 

Yes Yes RS  11.71 15 

24 March–27 
March 2007 

Yes Yes Af & RS  17.09 10 

April 6–April 10, 
2008 

Yes Yes Af & RS  11.25 16 

29 March–2 April 
2009 

Yes Yes Gulf of 
Aden  

9.48 20 

26 March–29 
March 2010 

Yes No RS  9.87 17 

3 April–8 April 
2011 

Yes No Af & RS  18.71 8 

26 March–31 
March 2012 

Yes Yes RS  13.48 11 

4 April–8 April 
2013 

Yes No Arabian 
Sea  

22.53 7 

1 April–4 April 
2014 

Yes Yes Af & RS  9.07 21 

28 March–1 April 
2015 

Yes Yes Af & RS  9.51 19 

11 April–15 April 
2016 

Yes Yes Af & RS  12.91 12 

23 March–28 
March 2016 

Yes Yes Af & RS  17.94 9 

12 April–16 April 
2017 

Yes Yes Af  26.57 6 

21 March–26 
March 2018 

Yes Yes Af  54.29 2 

22 March–27 
March 2019 

Yes Yes Af & RS  78.99 1 

31 March–6 April 
2019 

Yes Yes RS  44.94 3 

20 March–25 
March 2020 

Yes Yes Af  8.17 22 

27 March–1 April 
2020 

Yes Yes RS  9.84 18 

11 April–18 April 
2020 

Yes Yes RS  29.92 5  
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precipitation events like intensity and frequency, as well as their asso
ciated mechanisms during the month of Farvardin. To our knowledge, 
there is no study which explores the precipitation variations and 
mechanisms during this month. 

The previous studies over Iran mainly focused on analyzing heavy 
precipitation at daily scales over the whole year. However, there is a 
need to assess the flood-causing short-duration heavy precipitation that 
occurs in early spring. In addition, using a limited number of synoptic 
gauge observations has hindered the ability to explore the variations in 
precipitation at a high spatial resolution. In this study, we applied the 
CONNECT algorithm with a 3 mm/3-hour threshold on the PERSIANN- 
CCS estimates at 0.04◦ spatial resolution to explore the variations in 
frequency, intensity, duration, and volume of heavy precipitation during 
Farvardin for the period from 2003 to 2020. The results indicated that 
increases in intensity and volume of heavy precipitation are the main 
reasons for the rising number of floods during Farvardin over the years 
2018–2020. However, a significant increase in frequency and duration 
of heavy precipitation are not observed. The results also show that the 
frequency, intensity, duration, and volume of heavy precipitation was 
the highest in 2019 during the last two decades based on the PERSIANN- 
CCS estimates. This is also supported by the International Emergency 
Events database (https://www.emdat.be/) which ranked the floods in 
Farvardin 2019 as the costliest economic loss in Iranian history during 
the last two decades. Spatial analyses revealed that heavy precipitation 
events occurred over almost the entire country in Farvardin during the 
period 2003–2020 with the heaviest volume of rainfall hitting south
western Iran in 2019 and the second highest volume in northeastern Iran 
in 2018. In addition, we observe that the spatiotemporal distribution of 
heavy precipitation events extracted by the CONNECT algorithm are 
consistent with extreme events occurred over Iran. 

Investigating the presence of AR conditions on heavy precipitation 
events that occurred during the month of Farvardin revealed that ARs 
exist during every year’s most extreme events. In addition, we classify 
the AR pathways that occurred in the country during Farvardin into 
three main categories. 1) ARs that propagated from the Atlantic Ocean 
via North Africa driven by the Saharan anticyclone, 2) ARs that propa
gated from the Red Sea via the Red Sea Strait and are influenced by the 
Arabian cyclone and mid-tropospheric troughs, 3) ARs created by 
merging bodies of moisture from both the Atlantic Ocean and the Red 
Sea. Our further investigations revealed that 8 out of 13 of the largest 
ARs over Iran come from moisture plumes with pathways over the Af
rican continent and the Red Sea. 

Although this study mainly explored the variations of short-term 
precipitation over Iran for a specific month, the same procedure can 

be followed for other regions. This study highlighted that the high 
spatial (0.04◦) and temporal (3-hourly) resolution of PERSIANN-CCS at 
a global scale is an attractive feature for analyzing precipitation varia
tions, especially over the countries with limited rain gauge observations. 
In addition, the CONNECT algorithm, which is an object-oriented 
tracking algorithm, can be used for the investigation of natural haz
ards associated with AR events such as floods and mudslides over 
different regions. 
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