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Abstract— We present a framework which incorporates three
aspects of the estimation problem, namely, sparse sensor con-
figuration, optimal precision, and robustness in the presence
of model uncertainty. The problem is formulated in the H∞

optimal observer design framework. We consider two types
of uncertainties in the system, i.e. structured affine and un-
structured uncertainties. The objective is to design an observer
with a given H∞ performance index with minimal number of
sensors and minimal precision values, while guaranteeing the
performance for all admissible uncertainties. The problem is
posed as a convex optimization problem subject to linear matrix
inequalities. Numerical simulations demonstrate the application
of the theoretical results presented in this work.

Index Terms— Sparse sensing, optimal sensor precision, ro-
bust estimation, H∞ optimal observer, convex optimization.

I. INTRODUCTION

The problem of sparse sensor selection typically deals

with an estimator’s design while using a minimal number of

sensors from the available set. This is a well-studied problem

as there exist a number of works by various researchers [1]–

[14]. This problem has been formulated for both continuous

and discrete-time systems in different frameworks such as

Kalman filter [2]–[4], H2/H∞ optimal estimation [5]–[10],

and in terms of CramrRao bound without any restrictions on

the type of an estimator [12].

It is typical for most sparse sensing formulations to assume

that the sensor precisions are known and fixed [1], [2], [8]–

[12]. However, this assumption often limits the performance

of the control and estimation algorithms designed for control

systems. On the other hand, at the design time, it might be

unclear how precise a sensor should be to achieve the pre-

specified performance criterion with a plausible risk of using

sensors with unnecessarily high precisions, which increases

the economic cost. In [5], authors presented a framework in

which sensor and actuator precisions are treated as variables

with economic cost constraints on them. The problem is

solved in a convex optimization framework with guaranteed

steady-state covariance bounds. They also proposed an ad-

hoc algorithm to reduce the number of sensors by iteratively

removing those with the least precision. An extension of their

work for uncertain plants in an H2 formulation is presented

in [6].
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Motivated by [5], in our recent work [7], we presented

an integrated framework for sparse sensor selection, which

also minimizes the required sensor precision in the context

of H2/H∞ optimal observer design. This paper generalizes

the framework presented in [7] for systems with model

uncertainties but limited to an H∞ formulation.

In related work, the authors of [10] considered the prob-

lem of sparse sensing for uncertain systems for a specific

application of battery temperature estimation. However, they

assumed that the sensor precision is known and fixed, and

they solved the problem via exhaustive search, which is a

combinatorial problem and does not scale well for large-

scale systems.

Contribution and novelty: In this paper, we present a

theoretical framework that incorporates three aspects of the

estimation problem: sparse sensor configuration, optimal

precision, and robustness in model uncertainty. In particular,

we discuss the H∞-optimal observer design for uncertain

systems. The objective here is threefold. First, we are inter-

ested in identifying a sparse sensor configuration. Second,

we want to minimize the required sensor precision to realize

the sparse configuration. And finally, the sparse observer

should satisfy the specified H∞ performance criterion for

all admissible uncertainties. We consider the following two

classes of uncertain systems: (i) systems with structured

affine uncertainty in the system matrices, and (ii) systems

with unstructured uncertainty which can be expressed in the

linear fractional transformation (LFT) [15] framework. We

present results to determine sparse and robust observers for

both types of uncertainties.

The organization of this paper is as follows. The sparse

robust H∞ observer design problems are formulated in

Section II, and solutions to these problems are presented in

Section III. In Section IV, we show numerical simulations.

Concluding remarks are discussed in Section V.

II. PROBLEM FORMULATION

A. Notation

The set of real numbers is denoted by R. Bold uppercase

(lowercase) letters denote matrices (column vectors). I and

0 respectively denote an identity matrix and a zero matrix

of suitable dimensions. Define sym (X) := X+XT , where

XT denotes transpose of X . Symmetric positive (negative)

definite matrices are denoted by the inequality X > 0 (X <
0). diag(x) denotes a diagonal matrix whose diagonal ele-

ments are the vector x. Similarly, diag (X1,X2, · · · ,XN )
denotes a block diagonal matrix. All inequalities and expo-

nents of a vector are to be interpreted elementwise.
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B. Systems with structured affine uncertainty

1) Plant: Consider the following LTI system

ẋ = (A+∆A)x+ (Bd +∆Bd)d, (1a)

y = Cyx+Ddd+DnSnn, (1b)

z = Czx, (1c)

where, x ∈ R
Nx is the state vector, y ∈ R

Ny is the vector

of measured outputs, and z ∈ R
Nz is the output vector we

are interested in estimating. The process noise d ∈ R
Nd and

the sensor noise n ∈ R
Ny are L2-norm bounded signals. The

process equation (1a) is assumed to be independent of the

sensor noise. The matrices ∆A ∈ A and ∆Bd ∈ B denote

uncertainty in the system defined as

A := {∆A | ∆A = M1F 1N1,F
T
1 F 1 ≤ I}, (2a)

B := {∆B | ∆B = M2F 2N2,F
T
2 F 2 ≤ I}, (2b)

where M1,N1,M2,N2 are known deterministic matrices.

The nominal system matrices A,Bd,Cy,Cz,Dd are

known constant real matrices of appropriate dimensions. The

diagonal matrix 0 < Sn ∈ R
Ny×Ny is an unknown scaling

matrix to be determined. As discussed below in Section II-D,

Sn is related to the precision of sensors. We also assume that

the individual sensor channels are independent of each other,

i.e., Dn = I . All other weightings or scaling matrices are

assumed to be known and absorbed in the system matrices.

2) Observer and error system: Now, let us consider the

state observer for the system (1) given by

˙̂x = (A+LCy) x̂−Ly, ẑ = Czx̂, (3)

where, x̂ ∈ R
Nx denotes the estimate of the state vector,

ẑ ∈ R
Nz denotes the estimate of z, and the L ∈ R

Nx×Ny is

the unknown observer gain. Let us define the state estimation

error e, and the observer error ε as

e := x− x̂, ε := z − ẑ. (4)

Therefore, from (1) and (3),

ė = (A+LCy) e+∆Ax+ (Bd +∆B)d

+LDdd+LSnn (5)

The observation error dynamics follows from (1) and (5) as

˙̃x = (Ã+∆Ã)x̃+ (B̃S̃ +∆B̃)w̃, ε = C̃x̃, (6)

where x̃ := [xT , eT ]T is the augmented state vector, and

w̃ := [dT ,nT ]T is the augmented vector of exogenous

noises. And the augmented system matrices are as follows

Ã :=

[

A 0

0 A+LCy

]

,

∆Ã :=

[

∆A 0

∆A 0

]

= M̃1F 1Ñ1,

B̃ :=

[

Bd 0

Bd +LDd L

]

, S̃ :=

[

I 0

0 Sn

]

,

∆B̃ :=

[

∆Bd 0

∆Bd 0

]

= M̃2F 2Ñ2,

M̃ i := [MT
i MT

i ]
T , Ñ i := [N i 0], i = 1, 2.
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The objective is to determine the observer gain L such that

the error system (6) is stable, and the effect of w̃ on ε

is bounded by the specified performance index. The sparse

robust observer design problem will be stated in Section II-D.

Now lets consider the systems with unstructured uncertainty.

C. Systems with unstructured uncertainty

1) Plant: Consider the uncertain plant

ẋ = A(∆)x+Bd(∆)d, (8a)

y = Cy(∆)x+Dd(∆)d+DnSnn, (8b)

z = Czx, (8c)

where the coefficient matrices are dependent on the uncer-

tain parameters ∆. As in (1), here also we assume that the

process is independent of the sensor noise, and Dn = I .

Systems such as (8) can be expressed in linear fractional

transformation (LFT) framework [15] as shown in Fig. (1).

The signals w∆ and z∆ are so-called fictitious input and

output of the plant due to uncertainty block ∆. Let ∆ be

uncertainty block such that ‖∆‖
∞

≤ 1. The system in Fig.

z∆w∆

∆

Fig. 1. Plant with unstructured uncertainty.

(1) can be equivalently written the following state-space form

ẋ = Ax+
[

B∆ Bd 0
]

w̃, (9a)

z∆ = C∆x+
[

E∆ Ed 0
]

w̃, (9b)

y = Cyx+
[

D∆ Dd Sn

]

w̃, (9c)

z = Czx, (9d)

w∆ = ∆z∆, (9e)

where w̃ :=
[

wT
∆ dT nT

]T
, and A,Bd etc. denote

nominal values of the uncertain matrices A(∆),Bd(∆). Top

four equations in (9) denote the state-space equations for the

open loop system shown in the dotted box in Fig. (1).

2) Observer and error system: We consider a state ob-

server of the same form as (3) for the system (9), with

state estimation error and observer error as defined in (4).

Therefore, error dynamics equations follow as

ė = (A+LCy) e+ B̃S̃w̃, ε = Cze, (10)

where, B̃ :=
[

B∆ Bd 0
]

+L
[

D∆ Dd I
]

, (11a)

S̃ := diag (I , I ,Sn) . (11b)



The objective here is to determine the observer gain L such

that the transfer function from w̃ to [zT
∆, ε

T ]T is stable and

bounded, and the effect of w̃ on ε should be minimal. A

formal problem statement will be presented in the following

section.

D. Sensor precision and observer design

As mentioned earlier, d and n are L2-norm bounded but

arbitrary signals. Let us denote the sensor noise entering the

system by ñ := Snn, and let ñi denote the ith component of

the signal ñ. We define sensor precision to be the reciprocal

of square of L2-norm (or energy) of a signal, i.e. precision

of the ith sensor channel is 1/ ‖ñi‖
2
2.

Since Sn > 0 is a diagonal matrix, let us define 0 < β =
[

β1, · · · , βNy

]T
∈ R

Ny such that

diag(β) := (SnSn)
−1. (12)

Therefore, precision of the ith sensor then becomes

1/ ‖ñi‖
2
2 = βi/ ‖ni‖

2
2. Further, without loss of generality,

we assume that ‖ni‖
2
2 = 1. Therefore, precision of the ith

sensor is simply βi, and β is the precision vector.

Since β is interpreted as the precision vector, a sparse

sensor configuration can be characterized by a sparse vector

β. If βi = 0 for some sensor, it implies that the ith sensor

noise channel contains infinite energy, or equivalently, that

sensor is not used.

Minimizing the number of non-zero elements in β, i.e.

‖β‖0, would yield a sparse configuration. However, mini-

mization of l0-norm is a non-convex problem, and in general

very difficult to solve, especially for large-scale systems. A

natural relaxation for the sparse configuration problem is

minimization of l1-norm instead. The minimization of ‖β‖1
promotes sparsity, and as discussed in Section III-C, iterative

reweighting techniques can be used to arrive at a sparse

configuration. Such iterative techniques minimize weighted

l1-norm defined as

‖β‖1,ρ := ρT |β|,

where 0 < ρ ∈ R
Ny is a specified weighting vector. Next,

we formally define the sparse sensing problem for uncertain

systems as follows.

1) Observer design problem for system (1): For the ob-

server error system (6), let Gw̃ε(s) be the transfer function

matrix from w̃ to ε. We wish to minimize the effect of w̃ on

the observation error ε, which can be achieved by ensuring

‖Gw̃ε(s)‖∞ < γ, i.e. ‖ε‖2 ≤ γ ‖w̃‖2, for some γ > 0.

Therefore, the robust sparse sensing problem is formally

stated as:

Given uncertain system (1) and error system (6),

given γ > 0 and ρ > 0, determine optimal L,β

that minimize ‖β‖1,ρ such that ‖Gw̃ε(s)‖∞ ≤ γ

for all admissible ∆A and ∆Bd.

(13)

2) Observer design problem for the system in (9):

Consider the system in (9) and the error system in (10). As

mentioned earlier, the transfer function from w̃ to [zT
∆, ε

T ]T

should be stable and bounded. This is guaranteed if we

ensure that the H∞ norm of the transfer function from

w̃ to ε is less than a specified performance γ > 0, i.e.

‖Gw̃ε(s)‖∞ ≤ γ, and for the transfer function from w̃ to z∆

we require ‖Gw̃z∆
‖
∞

≤ 1 for the overall stability. Therefore,

the robust sparse sensing problem is then:

Given the uncertain system in (9), and the error

system in (10), given γ > 0 and ρ > 0, determine

optimal L,β that minimize ‖β‖1,ρ such that

‖Gw̃ε(s)‖∞ ≤ γ and ‖Gw̃z∆
‖
∞

≤ 1

for all admissible ∆.

(14)

In the following section, we present the solutions to the

problems defined in (13) and (14).

III. ROBUST SPARSE H∞ OBSERVERS

Before proceeding to the main results, we present the

following lemmas, which will be useful in completing the

proofs.

A. Preliminaries

Lemma 1 (Schur complement [16]): Let X be a well-

partitioned matrix defined as

X :=

[

P Q

QT R

]

,

then, X < 0, if and only if, R < 0 and P −QR−1QT < 0.

Lemma 2 (Variable elimination [16]): Let Q,X,Y ,F
be real matrices of appropriate dimensions. Then the

following statements are equivalent.

(a) Q + XFY + Y TF TXT < 0 for all F that satisfy

F TF ≤ I .

(b) There exists a scalar δ > 0 such that Q + δXXT +
δ−1Y TY < 0.

Lemma 3 (Wang et al. [17]): Let P ,Q,X,Y ,F be real

matrices of appropriate dimensions such that P > 0 and

F TF ≤ I . If there exists a scalar δ > 0 such that P−1 −
δ−1XXT > 0, then the following is true.

(Q+XFY )TP (Q+XFY )

≤ QT (P−1 − δ−1XXT )−1Q+ δY TY .
Lemma 4 (Bounded real [16]): Consider the LTI system,

ẋ = Ax+Bw, y = Cx+Dw,

and its transfer function matrix G(s) := C(sI−A)−1B+D.

Then for a given scalar γ > 0, ‖G(s)‖
∞

≤ γ if and only if

there exists a matrix X > 0 such that
[

XA+ATX +CTC XB +CTD

∗ DTD − γ2I

]

< 0.

Proof of the following lemma can be easily established by

starting with Lemma 4, followed by manipulations using the

results of Lemmas 1, 2 and 3.



Lemma 5: Consider the LTI system,

ẋ = (A+∆A)x+ (B +∆B)w, y = Cx+Dw,

such that ∆A ∈ A and ∆B ∈ B as defined in (2), and let

G(s) be the associated transfer function matrix. Then for a

given scalar γ > 0, ‖G(s)‖
∞

≤ γ for all admissible ∆A

and ∆B, if there exist a matrix X > 0, scalars δ1 > 0 and

δ2 > 0 such that









Z XB +CTD XM1 XM2

∗ DTD − γ2I + δ2N
T
2 N2 0 0

∗ ∗ −δ1I 0

∗ ∗ ∗ −δ2I









< 0.

where Z := XA+ATX +CTC + δ1N
T
1 N1.

B. Main result

Next, we present the result for solving the H∞-optimal

robust observer design problem (13).

Theorem 6: The optimal observer gain L and sensor

precision β for the sparse H∞-optimal robust observer

design problem (13) is determined by solving the following

optimization problem, and if the problem is feasible then the

gain is recovered as L = X−1
2 Y .

min
X1>0,X2>0,Y ,β>0,δ1>0,δ2>0

‖β‖1,ρ

such that









Z11 Z12 Z13 Z14

∗ Z22 0 0

∗ ∗ −δ1I 0

∗ ∗ ∗ −δ2I









< 0,
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(15)

Z11 =
[

sym (X1A) + δ1N
T
1 N1 0

0 sym (X2A+ Y Cy) +CT
z Cz

]

Z12 =

[

X1Bd 0

X2Bd + Y Dd Y

]

,

Z13 =

[

X1M1

X2M1

]

, Z14 =

[

X1M2

X2M2

]

,

Z22 =

[

−γ2I + δ2N
T
2 N2 0

0 −γ2 diag(β)

]

.

Proof: As a direct application of Lemma 5 for the

system (6), the condition ‖Gw̃ε(s)‖∞ ≤ γ in (13) is satisfied

if there exist a symmetric matrix X̃ > 0, δ1 > 0 and δ2 > 0
such that









Z11 X̃B̃S̃ X̃M̃1 X̃M̃2

∗ W 0 0

∗ ∗ −δ1I 0

∗ ∗ ∗ −δ2I









< 0, (16)

where, Z11 := sym
(

X̃Ã
)

+ C̃
T
C̃ + δ1Ñ

T

1 Ñ1, (17)

W := −γ2I + δ2Ñ
T

2 Ñ2.

Using the result of Lemma 1 successively, the inequality

(16) becomes








Z11 Z12 Z13 Z14

∗ Z22 0 0

∗ ∗ −δ1I 0

∗ ∗ ∗ −δ2I









< 0, (18)

where, Z12 := X̃B̃, Z13 := X̃M̃1, Z14 := X̃M̃2, and

Z22 := S̃
−1

WS̃
−1

= diag
(

(−γ2I + δ2N
T
2 N2) , −γ2(SnSn)

−1
)

= diag
(

(−γ2I + δ2N
T
2 N2) , −γ2 diag(β)

)

,

wherein we have used (12) and the definitions of Ñ2 and S̃

from (7). We partition X̃ using X1 > 0, X2 > 0, such that

X̃ := diag (X1,X2) . Let us define Y := X2L. Then Z11

follows from (17) and (7) as follows

Z11 =
[

sym (X1A) + δ1N
T
1 N1 0

0 sym (X2A+ Y Cy) +CT
z Cz

]

Similarly, Z12 =

[

X1Bd 0

X2Bd + Y Dd Y

]

,

Z13 =

[

X1M1

X2M1

]

, Z14 =

[

X1M2

X2M2

]

.

Note that the inequality (18) is linear in unknown variables

X1,X2,Y ,β, δ1 and δ2, and defines a feasibility condition

for (13). The optimal solution is determined by minimizing

the weighted l1-norm ‖β‖1,ρ, and the observer gain can be

recovered as L = X−1
2 Y .

The following theorem presents a solution to the problem

(14).

Theorem 7: The optimal observer gain L and sensor

precision β for the sparse H∞-optimal robust observer

design problem (14) is determined by solving the following

optimization problem, and if the problem is feasible then the

gain is recovered as L = X−1
2 Y .

min
X1>0,X2>0,Y ,β>0

‖β‖1,ρ such that





Z11 Z12 Z13

∗ ET
∆E∆ − I ET

∆Ed

∗ ∗ ET
d Ed − I



 < 0,









W 11 W 12 W 13 Y

∗ −γ2I 0 0

∗ ∗ −γ2I 0

∗ ∗ ∗ −γ2 diag(β)




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

< 0,
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(19)

Z11 = sym (X1A) +CT
∆C∆,

Z12 = X1(B∆ +CT
∆E∆), Z13 = X1(Bd +CT

∆Ed),

W 11 = sym (X2A+ Y Cy) +CT
z Cz,

W 12 = X2B∆ + Y B∆, W 13 = X2Bd + Y Bd.



Proof: Consider the transfer function from w̃ to z∆

from (9). The first LMI in the theorem statement follows

directly from the Lemma 4 for the condition ‖Gw̃z∆
‖
∞

≤ 1.

Now consider the condition ‖Gw̃ε(s)‖∞ ≤ γ for the error

system (10). Using Lemma 4, it becomes, for X2 > 0
[

sym (X2(A+LCy)) +CT
z Cz X2B̃S̃

∗ −γ2I

]

< 0.

Using the result of Lemma 1 successively, we get

[

sym (X2(A+LCy)) +CT
z Cz X2B̃

∗ −γ2(S̃S̃)−1

]

< 0.

Finally, by defining Y := X2L, using the definitions of B̃,

S̃ and β from (11) and (12), we arrive at the second LMI

in the theorem statement, which concludes the proof.

C. Iterative reweighted l1-minimization

We use an iterative reweighting scheme presented in

[18] to achieve a sparse sensor configuration. We perform

multiple iterations of solving the optimization problems (15)

or (19), and the weights for (k+1)th iteration are defined in

terms of the previous iterate as

ρ
(k+1)
i =

(

ε+ |β
(k)
i |

)

−1

, (20)

where ε > 0 is a small number which ensures that the

weights are well defined. Initial weights are chosen to be

equal, i.e. without loss of generality, ρ
(0)
i = 1. These

iterations are stopped if the convergence criterion is met or

the maximum number of iterations is reached [18].

The final refined solution is determined by removing

sensors with very small precisions and re-solving (15) or

(19) with equal weights ρi = 1.

IV. EXAMPLE

Let us consider a serially connected spring-mass-damper

system on a frictionless surface as shown in Fig. (2).

m1 m2 m3

k1 k2 k3

ξ1 ξ2 ξ3

d1 d2 d3

Fig. 2. Serially connected spring-mass-damper system.

Let xi denote the distance of the ith mass from the wall.

Define state vector to be x := [x1, x2, x3, ẋ1, ẋ2, ẋ3]
T .

The nominal values of masses mi, spring constants ki,
and damper coefficients ξi are all assumed to be unity.

Disturbances di enters the system in the form of external

forces acting independently on all masses. Also, we assume

that sensors measure position and velocity of each mass.

Therefore, there are six sensors. The first three sensors mea-

sure positions, and the last three sensors measure velocities

of the masses. The nominal system matrices are given by

A =

[

0 I

H H

]

,H =





−2 1 0
1 −2 1
0 1 −1



 ,Bd =

[

0

I

]

Sd,

Cy = I ,Dd = 0,Dn = I ,Cz = I ,

where Sd is a known matrix which represents a scaling

for the disturbance signal. Next we consider the uncertainty

of the form (1) and (9), and determine the robust sparse

observers using results of Theorems 6 and 7.

Uncertainty of the form (1): The uncertainty in the system

matrices is assumed to of the following form

∆A =

[

0

I

]

F 1

[

c0H 0

0 c1H

]

,∆Bd =

[

0

I

]

F 2(c2I ).

where F T
1 F 1 ≤ I , F T

2 F 2 ≤ I and c0, c1, c2 are known

non-negative constants which quantify the magnitude of un-

certainty in the system, i.e., larger values of these parameters

would imply uncertainty of larger magnitude, and on the

other extreme end, zero-valued parameters correspond to the

nominal plant with no uncertainty. For the system defined

as above, we can directly apply the result of Theorem 6

with iterative reweighting (20) to determine sparse sensor

configuration and corresponding optimal precision β, which

is discussed next.

The optimization problems are solved using the solver

SDPT3 [19] with CVX [20] as a parser. In the figures of

this section, solid circle indicates that a sensor is required

and the number above it shows the required precision β,

while cross indicates that a sensor is not used.

First, we consider the effect of specified performance

parameter γ, for uncertainty of a fixed magnitude quantified

by the parameters c0, c1, c2. In particular, in Fig. (3), we

set c0, c1, c2 to non-zero values, and vary the specified

performance parameter γ. We observer that as we decrease

γ, i.e. demand better performance, the number of required

sensors and their associated precisions increase. For γ = 1,

only two sensors are needed, whereas for γ = 0.25, all six

sensors are needed with relatively higher precisions.

Fig. 3. Sensor configuration and precision for different values of specified
γ, and fixed c0 = 0.01, c1 = 0.02, c2 = 0.03, and Sd = I .

In Fig. (4), we show a complementary case to Fig. (3), i.e.

we vary the magnitude of uncertainty for a fixed performance

parameter γ. In particular, we vary c0, for fixed parameters

c1 = 0, c2 = 0, and γ = 1. As we increase the magnitude

of uncertainty, i.e c0, we see that the number of sensors



Fig. 4. Sensor configuration and precision for different magnitudes of
uncertainty quantified by c0, and fixed c1 = 0, c2 = 0, γ = 1, and
Sd = I .

required and the precision values increase. For the nominal

plant corresponding to c0 = 0, only one sensor is required,

whereas for c0 = 0.3, three sensors are required.

Uncertainty of the form (9): We assume that the spring

constants and damper coefficients can take values in the

intervals [c0−1, c0+1] and [c1−1, c1+1] respectively, where

c0, c1 are known non-negative constants which quantify the

magnitude of uncertainty. We assume no uncertainty in the

masses. With such uncertainty, the system can be written in

an LFT form as in Fig. (1) and (9) such that ‖∆‖
∞

≤ 1.

Analogous to Fig. (3) and Fig. (4), Fig. (5) and Fig. (6)

below respectively show the effect of decreasing performance

parameter γ for a fixed magnitude of uncertainty, and the

effect of increasing magnitude of uncertainty for a fixed

performance parameter γ. Similar observations as in the

previous case can also be made for Fig. (5) and Fig. (6).

Fig. 5. Sensor configuration and precision for different values of specified
γ, and fixed c0 = 0.1, c1 = 0.1, Sd = 0.2I .

Fig. 6. Sensor configuration and precision for different magnitudes of
uncertainty quantified by c0, and fixed c1 = 0, γ = 0.2, and Sd = 0.2I .

V. CONCLUSION

Herein, we present a unified theoretical framework to

address the problem of sparse sensor configuration in the

presence of model uncertainty while simultaneously min-

imizing the required sensor precisions. We consider two

types of model uncertainties: structured affine uncertainty

in system matrices and unstructured uncertainty. For both

the cases, the robust sparse sensing problem is formulated

in the context of H∞-optimal observer design and posed

as a convex optimization problem subject to linear matrix

inequalities. We minimize l1-norm of the precision vector

to promote sparsity, and an iterative reweighting scheme is

used to refine the solution.

The convex optimization problems formulated in this

work are semi-definite programs (SDPs). General-purpose

solvers that we used in numerical simulations to solve the

SDPs, in general, do not scale well for large-scale systems.

These SDPs require customized solvers that can exploit the

optimization problem’s local structure, e.g., [11]. However,

for discussion brevity, this paper is limited to only the

theoretical development of the framework. The development

of customized algorithms for large-scale systems is a topic

of our ongoing research.

REFERENCES

[1] S. Joshi and S. Boyd. Sensor selection via convex optimization. IEEE

Transactions on Signal Processing, 57(2):451–462, Feb 2009.

[2] H. Zhang, R. Ayoub, and S. Sundaram. Sensor selection for kalman
filtering of linear dynamical systems: Complexity, limitations and
greedy algorithms. Automatica, 78:202–210, 2017.

[3] V. Tzoumas, A. Jadbabaie, and G. J. Pappas. Sensor placement
for optimal kalman filtering: Fundamental limits, submodularity, and
algorithms. In 2016 American Control Conference (ACC), pages 191–
196, July 2016.

[4] N. Das and R. Bhattacharya. Sparse sensing architecture for kalman
filtering with guaranteed error bound. In 1st IAA ICSSA, 2017.

[5] F. Li, M. C. de Oliveira, and R. Skelton. Integrating information
architecture and control or estimation design. SICE JCMSI, 1(2):120–
128, 2008.

[6] R. Saraf, R. Bhattacharya, and R. Skelton. H2 optimal sensing
architecture with model uncertainty. In 2017 American Control

Conference, pages 2429–2434, 2017.

[7] V. M. Deshpande and R. Bhattacharya. Sparse sensing and optimal
precision: An integrated framework for H2/H∞ optimal observer
design. IEEE Control Systems Letters, 5(2):481–486, 2021.

[8] J. Lopez, Y. Wang, and M. Sznaier. Sparse H2 optimal filter design
via convex optimization. In 2014 ACC, pages 1108–1113, June 2014.

[9] U. Mnz, M. Pfister, and P. Wolfrum. Sensor and actuator placement for
linear systems based on h2 and h∞ optimization. IEEE Transactions

on Automatic Control, 59(11):2984–2989, 2014.

[10] X. Lin, H. E. Perez, J. B. Siegel, and A. G. Stefanopoulou. Robust
estimation of battery system temperature distribution under sparse
sensing and uncertainty. IEEE Transactions on Control Systems

Technology, 28(3):753–765, 2020.

[11] A. Zare, H. Mohammadi, N. K. Dhingra, T. T. Georgiou, and M. R.
Jovanovic. Proximal algorithms for large-scale statistical modeling
and sensor/actuator selection. IEEE T AUTOMAT CONTR, 2019.

[12] S. P. Chepuri and G. Leus. Sparsity-promoting sensor selection
for non-linear measurement models. IEEE Transactions on Signal

Processing, 63(3):684–698, 2015.

[13] N. Das and R. Bhattacharya. Optimal sensing precision in ensemble
and unscented kalman filtering. In 21st IFAC World Congress, 2020.
To appear. Preprint: arXiv:2003.06003.

[14] K. Hiramoto, H. Doki, and B. Obinata. Optimal sensor/actuator place-
ment for active vibration control using explicit solution of algebraic
riccati equation. J. Sound Vibr., 229(5):1057–1075, 2000.



[15] K. Zhou, J. C. Doyle, and K. Glover. Robust and Optimal Control.
Prentice-Hall, Inc., Upper Saddle River, New Jersey, 1 edition, 1996.

[16] Guang-Ren Duan and Hai-Hua Yu. LMIs in Control Systems. CRC
Press, Boca Raton, FL, 1 edition, 2013.

[17] Youyi Wang, Lihua Xie, and Carlos E. de Souza. Robust control of
a class of uncertain nonlinear systems. Systems & Control Letters,
19(2):139–149, 1992.

[18] E. J. Candes, M. B. Wakin, and S. P. Boyd. Enhancing sparsity by
reweighted l1 minimization. J. Fourier Anal. Appl., 14:877905, 2008.

[19] K. C. Toh, M. J.Todd, and R. H. Ttnc. Sdpt3 a matlab software
package for semidefinite programming, version 1.3. Optimization

Methods and Software, 11(1-4):545–581, 1999.
[20] Michael Grant and Stephen Boyd. CVX: Matlab software for disci-

plined convex programming, version 2.1, March 2014.


	I INTRODUCTION
	II Problem Formulation
	II-A Notation
	II-B Systems with structured affine uncertainty
	II-B.1 Plant
	II-B.2 Observer and error system

	II-C Systems with unstructured uncertainty
	II-C.1 Plant
	II-C.2 Observer and error system

	II-D Sensor precision and observer design
	II-D.1 Observer design problem for system (1)
	II-D.2 Observer design problem for the system in (9)


	III Robust Sparse H Observers
	III-A Preliminaries
	III-B Main result
	III-C Iterative reweighted l1-minimization

	IV Example
	V Conclusion
	References

