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Sparse Sensing and Optimal Precision: Robust 7{,, Optimal Observer
Design with Model Uncertainty

Vedang M. Deshpande' and Raktim Bhattacharya?

Abstract— We present a framework which incorporates three
aspects of the estimation problem, namely, sparse sensor con-
figuration, optimal precision, and robustness in the presence
of model uncertainty. The problem is formulated in the 7.,
optimal observer design framework. We consider two types
of uncertainties in the system, i.e. structured affine and un-
structured uncertainties. The objective is to design an observer
with a given 7., performance index with minimal number of
sensors and minimal precision values, while guaranteeing the
performance for all admissible uncertainties. The problem is
posed as a convex optimization problem subject to linear matrix
inequalities. Numerical simulations demonstrate the application
of the theoretical results presented in this work.

Index Terms— Sparse sensing, optimal sensor precision, ro-
bust estimation, 7. optimal observer, convex optimization.

I. INTRODUCTION

The problem of sparse sensor selection typically deals
with an estimator’s design while using a minimal number of
sensors from the available set. This is a well-studied problem
as there exist a number of works by various researchers [1]-
[14]. This problem has been formulated for both continuous
and discrete-time systems in different frameworks such as
Kalman filter [2]-[4], H2/H~ optimal estimation [5]-[10],
and in terms of CramrRao bound without any restrictions on
the type of an estimator [12].

It is typical for most sparse sensing formulations to assume
that the sensor precisions are known and fixed [1], [2], [8]—
[12]. However, this assumption often limits the performance
of the control and estimation algorithms designed for control
systems. On the other hand, at the design time, it might be
unclear how precise a sensor should be to achieve the pre-
specified performance criterion with a plausible risk of using
sensors with unnecessarily high precisions, which increases
the economic cost. In [5], authors presented a framework in
which sensor and actuator precisions are treated as variables
with economic cost constraints on them. The problem is
solved in a convex optimization framework with guaranteed
steady-state covariance bounds. They also proposed an ad-
hoc algorithm to reduce the number of sensors by iteratively
removing those with the least precision. An extension of their
work for uncertain plants in an 4 formulation is presented
in [6].
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Motivated by [5], in our recent work [7], we presented
an integrated framework for sparse sensor selection, which
also minimizes the required sensor precision in the context
of Ha/H o optimal observer design. This paper generalizes
the framework presented in [7] for systems with model
uncertainties but limited to an H ., formulation.

In related work, the authors of [10] considered the prob-
lem of sparse sensing for uncertain systems for a specific
application of battery temperature estimation. However, they
assumed that the sensor precision is known and fixed, and
they solved the problem via exhaustive search, which is a
combinatorial problem and does not scale well for large-
scale systems.

Contribution and novelty: In this paper, we present a
theoretical framework that incorporates three aspects of the
estimation problem: sparse sensor configuration, optimal
precision, and robustness in model uncertainty. In particular,
we discuss the Ho-optimal observer design for uncertain
systems. The objective here is threefold. First, we are inter-
ested in identifying a sparse sensor configuration. Second,
we want to minimize the required sensor precision to realize
the sparse configuration. And finally, the sparse observer
should satisfy the specified Ho, performance criterion for
all admissible uncertainties. We consider the following two
classes of uncertain systems: (i) systems with structured
affine uncertainty in the system matrices, and (ii) systems
with unstructured uncertainty which can be expressed in the
linear fractional transformation (LFT) [15] framework. We
present results to determine sparse and robust observers for
both types of uncertainties.

The organization of this paper is as follows. The sparse
robust H, observer design problems are formulated in
Section II, and solutions to these problems are presented in
Section III. In Section IV, we show numerical simulations.
Concluding remarks are discussed in Section V.

II. PROBLEM FORMULATION
A. Notation

The set of real numbers is denoted by R. Bold uppercase
(lowercase) letters denote matrices (column vectors). I and
0 respectively denote an identity matrix and a zero matrix
of suitable dimensions. Define sym (X ) := X + X*, where
X7 denotes transpose of X. Symmetric positive (negative)
definite matrices are denoted by the inequality X > 0 (X <
0). diag(x) denotes a diagonal matrix whose diagonal ele-
ments are the vector . Similarly, diag (X1, X, -, X n)
denotes a block diagonal matrix. All inequalities and expo-
nents of a vector are to be interpreted elementwise.



B. Systems with structured affine uncertainty

1) Plant: Consider the following LTI system

z=(A+AA)x+ (B;+ AB,)d, (1a)
y=Cyx+ Dyd+ D,S,n, (1b)
z=0Cx, (1c¢)

where, © € RM= is the state vector, y € RYv is the vector

of measured outputs, and z € RY= is the output vector we
are interested in estimating. The process noise d € R™¢ and
the sensor noise n € R™v are L£o-norm bounded signals. The
process equation (la) is assumed to be independent of the
sensor noise. The matrices AA € A and AB, € B denote
uncertainty in the system defined as

A:{AA | AA:MlFlNhF,{FlSI}’
B:={AB | ABZM214—12]V2,1’—12T1;12SI}7

(2a)
(2b)

where M, N1, M5, N, are known deterministic matrices.

The nominal system matrices A, By4,C,,C., Dy are
known constant real matrices of appropriate dimensions. The
diagonal matrix 0 < S,, € RVv*Nv is an unknown scaling
matrix to be determined. As discussed below in Section II-D,
S, is related to the precision of sensors. We also assume that
the individual sensor channels are independent of each other,
ie., D, = I. All other weightings or scaling matrices are
assumed to be known and absorbed in the system matrices.

2) Observer and error system: Now, let us consider the
state observer for the system (1) given by

t=(A+LC,)% Ly, 2=C.z, (3)

where, & € R¥= denotes the estimate of the state vector,
%2 € R¥= denotes the estimate of z, and the L € RN=*Ny g
the unknown observer gain. Let us define the state estimation
error e, and the observer error € as

e=xr—x, €:=z-—2. 4)
Therefore, from (1) and (3),

é=(A+LC,) e+ AAx + (B, + AB)d

+LDy,d+LS,n &)
The observation error dynamics follows from (1) and (5) as
= (A+AAZ+ (BS+AB)w, e=C% (6)
where & := [xT,e”]T is the augmented state vector, and
@ = [d",nT]T is the augmented vector of exogenous
noises. And the augmented system matrices are as follows
- (A 0
A= 0 A—I—LCy] ’
= [AA 0 ~ c
AA = A4 0} = M,F Ny,
= | By o) = |I O @)
B:= _Bd—‘rLDd L:| 8= [0 Sn] ’
= [AB; 0] - <
AB = _ABd 0:|M2F2N2a
M;:=[M" MT)T N;,:=[N; 0,i=1,2.

The objective is to determine the observer gain L such that
the error system (6) is stable, and the effect of w on e
is bounded by the specified performance index. The sparse
robust observer design problem will be stated in Section II-D.
Now lets consider the systems with unstructured uncertainty.

C. Systems with unstructured uncertainty

1) Plant: Consider the uncertain plant

z=A(A)x+ By(A)d, (8a)
y=Cy(A)x + Dy4(A)d + D, S,n, (8b)
z=0Cx, (8¢c)

where the coefficient matrices are dependent on the uncer-
tain parameters A. As in (1), here also we assume that the
process is independent of the sensor noise, and D,, = I.
Systems such as (8) can be expressed in linear fractional
transformation (LFT) framework [15] as shown in Fig. (1).

The signals wa and za are so-called fictitious input and
output of the plant due to uncertainty block A. Let A be
uncertainty block such that ||Al|_ < 1. The system in Fig.

Fig. 1.

Plant with unstructured uncertainty.

(1) can be equivalently written the following state-space form

& =Ax+ [Bn By 0]w, (9a)
za=Cax+ [Ean Eq 0]w, (9b)
y=Cyx+ [Dr Dy S,|w, (9c)

z=0C,x, (9d)

WA = AZA7 (96)

where w := [w} d’ nT}T, and A, B, etc. denote

nominal values of the uncertain matrices A(A), B;(A). Top
four equations in (9) denote the state-space equations for the
open loop system shown in the dotted box in Fig. (1).

2) Observer and error system: We consider a state ob-
server of the same form as (3) for the system (9), with
state estimation error and observer error as defined in (4).
Therefore, error dynamics equations follow as

é=(A+LC,))e+BSw, e=C.e, (10)

where, B:= [Bo By 0|+ L[Dx Dy I], (lla)
S :=diag(I,1,8S,). (11b)



The objective here is to determine the observer gain L such
that the transfer function from w to [24,e”]7 is stable and
bounded, and the effect of w on & should be minimal. A
formal problem statement will be presented in the following
section.

D. Sensor precision and observer design

As mentioned earlier, d and n are £>-norm bounded but
arbitrary signals. Let us denote the sensor noise entering the
system by 7 := S,,n, and let 72; denote the " component of
the signal . We define sensor precision to be the reciprocal
of square of Ly-norm (or energy) of a signal, i.e. precision
of the i sensor channel is 1/ [|72; 5.

Since S, > 0 is a diagonal matrix, let us define 0 < 3 =
(81, Bn,]" € RNv such that

diag(83) := (S,S,) . (12)

Therefore, precision of the i™ sensor then becomes
1/ ||ﬁl||§ = f3/ |ni||2. Further, without loss of generality,
we assume that [|[n;||; = 1. Therefore, precision of the i™
sensor is simply ;, and 3 is the precision vector.

Since 3 is interpreted as the precision vector, a sparse
sensor configuration can be characterized by a sparse vector
B. If B; = 0 for some sensor, it implies that the i sensor
noise channel contains infinite energy, or equivalently, that
sensor is not used.

Minimizing the number of non-zero elements in 3, i.e.
IB]|y» would yield a sparse configuration. However, mini-
mization of [y-norm is a non-convex problem, and in general
very difficult to solve, especially for large-scale systems. A
natural relaxation for the sparse configuration problem is
minimization of /;-norm instead. The minimization of ||3||,
promotes sparsity, and as discussed in Section III-C, iterative
reweighting techniques can be used to arrive at a sparse
configuration. Such iterative techniques minimize weighted
{;-norm defined as

181, = P" 18,

where 0 < p € RYv is a specified weighting vector. Next,
we formally define the sparse sensing problem for uncertain
systems as follows.

1) Observer design problem for system (1): For the ob-
server error system (6), let Gz (s) be the transfer function
matrix from w to €. We wish to minimize the effect of w on
the observation error €, which can be achieved by ensuring
1Gwe(s)]l < 7, ie. [lelly < v[|w],, for some v > 0.
Therefore, the robust sparse sensing problem is formally
stated as:

Given uncertain system (1) and error system (6),
given v > 0 and p > 0, determine optimal L, 3 (13)
that minimize ||B]|, , such that ||Gae(s)| <

for all admissible AA and AB,.

2) Observer design problem for the system in (9):
Consider the system in (9) and the error system in (10). As
mentioned earlier, the transfer function from w to [2%,eT]T
should be stable and bounded. This is guaranteed if we
ensure that the H,, norm of the transfer function from
w to € is less than a specified performance v > 0, i.e.
|G we(5)|l o, < 7, and for the transfer function from @ to za
we require |Gz, ||, < 1 for the overall stability. Therefore,
the robust sparse sensing problem is then:

Given the uncertain system in (9), and the error
system in (10), given v > 0 and p > 0, determine
optimal L, B that minimize ||B||, , such that

1Gwe(s)lloe <7 and |Gwzsllo <1
for all admissible A.

(14)

In the following section, we present the solutions to the
problems defined in (13) and (14).

III. ROBUST SPARSE H,, OBSERVERS

Before proceeding to the main results, we present the
following lemmas, which will be useful in completing the
proofs.

A. Preliminaries

Lemma 1 (Schur complement [16]): Let X be a well-
partitioned matrix defined as

—| P @
X = |:QT R:|7

then, X < 0, if and only if, R < 0 and PfQRleT < 0.
Lemma 2 (Variable elimination [16]): Let Q,X,Y,F

be real matrices of appropriate dimensions. Then the

following statements are equivalent.

(@ Q+ XFY +YTFTXT < 0 for all F that satisfy
FTF<T.

(b) There exists a scalar 6 > 0 such that Q + 6X X' +
YTy <o.

Lemma 3 (Wang et al. [17]): Let P,Q,X,Y , F be real
matrices of appropriate dimensions such that P > 0 and
F'F < I. If there exists a scalar & > 0 such that P~ —
61X XT > 0, then the following is true.

(Q+ XFY)"P(Q+ XFY)

<QTP ' -5 XXT)'Q+ oYY
Lemma 4 (Bounded real [16]): Consider the LTI system,

= Az + Bw, y=Cz + Dw,

and its transfer function matrix G(s) := C(sI-A)"'B+D.
Then for a given scalar v > 0, ||G(s)|| ., <~ if and only if
there exists a matrix X > 0 such that

XA+A'X+C'C XB+C'D| _
. DTD - 21| ="
Proof of the following lemma can be easily established by
starting with Lemma 4, followed by manipulations using the
results of Lemmas 1, 2 and 3.




Lemma 5: Consider the LTI system,
z=(A+AA)z+ (B+ AB)w, y=Cx + Dw,

such that AA € A and AB € B as defined in (2), and let
G(s) be the associated transfer function matrix. Then for a
given scalar v > 0, [|G(s)||,, < v for all admissible AA
and AB, if there exist a matrix X > 0, scalars §; > 0 and
b2 > 0 such that

Z XB+C'D XM, XM,
* D'D—-~?T+6N3Ny 0 I
* * 0.1 0 ’
* * * —0T

where Z := XA+ AT"X +CTC +5,NTN,.

B. Main result

Next, we present the result for solving the H,-optimal
robust observer design problem (13).

Theorem 6: The optimal observer gain L and sensor
precision B for the sparse Hoo-optimal robust observer
design problem (13) is determined by solving the following
optimization problem, and if the problem is feasible then the
gain is recovered as L = X,'Y.

x150.5250 0 sv0gso 1Bl
le 212 Z13 Zl4
h that Zy O o | _, (15)
e ‘ * —51_[ 0 )
o Y |
Z =
Sym(XlA)‘F(SlN?Nl 0
0 sym (X2A+YC,)+CIC.
Z1g = [ X.By 0
2 | X2Bi+YD, Y|’
_ [ XM, _[X1M,
Z3 = _X2M1:| = |:X2M2:| ’
Zo _ [T+ 5NN, 0 }
22 — 5 2 .
0 —7* diag(3)

Proof: As a direct application of Lemma 5 for the
system (6), the condition ||Gge(s)||,, < v in (13) is satisfied
if there exist a symmetric matrix X >0,6, >0and dy >0
such that

Zy, XBS XM, XM,
* %4 0 0
* * o011 0 <0, (16)
* * * —0o1
~ ~ ~T ~ ~T ~
where, Z11 := sym (XA) + €& "¢+ 6,N| Ny, (7

W = T + 62N§N2.

Using the result of Lemma 1 successively, the inequality
(16) becomes

Z11 Zi2 Ziz Zyuy
* Z22 0 0
* x =0T 0 <0, (18)
* * * o

where, Z 15 := XE, Z13 := X]\;Il, Z1y = X'Mz and
Zop =8 WS

— diag ((7721 +6,NTN,) | ﬂ?(snsn)fl)

= diag ((—°1 + NI N) . — diag(8)) |

wherein we have used (12) and the definitions of N 2 and S
from (7). We partition X using X1 > 0, X3 > 0, such that
X :=diag (X, X5). Let us define Y := X, L. Then Z1,
follows from (17) and (7) as follows

Zy =
Sym (XlA)JrcSleNl 0
0 sym(X2A+YC,) +CIC,

Similarly, Z15 = { X1Ba 0} ,

X:B;+YDy Y

g [XiMi] L [XiM,
13 — X2M1 b 14 — X2M2 .

Note that the inequality (18) is linear in unknown variables
X1,X5,Y, 3,6, and do, and defines a feasibility condition
for (13). The optimal solution is determined by minimizing
the weighted /1-norm |[|3]|, ,, and the observer gain can be
recovered as L = X, 'Y. ]

The following theorem presents a solution to the problem
(14).

Theorem 7: The optimal observer gain L and sensor
precision B for the sparse H..-optimal robust observer
design problem (14) is determined by solving the following
optimization problem, and if the problem is feasible then the
gain is recovered as L = X5 y.

X150, X550, #50 18111, such that
—Z11 Z12 Z13

x ELXEN-T ngd <0,
| * * E,E;—1 (19)
(Wi Wiy Wi Y

2

* —y°I 0 0

* * —fyZI 0 <0,
| * * * —~? diag(3)

Z1, =sym(X,A) +CLCa,

Z1y = X1(Ba+CAEL), Z13=X(Bg+ CAE,),
Wi =sym(X,A+YC,)+CIC,,

Wi =XoBA+YBa, Wiz=X2B;+YB,.



Proof: Consider the transfer function from w to za
from (9). The first LMI in the theorem statement follows
directly from the Lemma 4 for the condition |G, ||, < 1.

Now consider the condition ||G e (s)||,, < v for the error
system (10). Using Lemma 4, it becomes, for X5 > 0

sym (X2(A + LC,))+CTC. X,BS 0

Using the result of Lemma 1 successively, we get

sym (X2(A+ LC,))+CTC, X,B 1 _

* —*(88)7H
Finally, by defining Y := X» L, using the definitions of B,
S and B from (11) and (12), we arrive at the second LMI
in the theorem statement, which concludes the proof. [ ]

C. Iterative reweighted ly-minimization

We use an iterative reweighting scheme presented in
[18] to achieve a sparse sensor configuration. We perform
multiple iterations of solving the optimization problems (15)
or (19), and the weights for (k+ 1)™ iteration are defined in
terms of the previous iterate as

-1
P = (e+180))

where € > 0 is a small number which ensures that the
weights are well defined. Initial weights are chosen to be
equal, i.e. without loss of generality, pgo) = 1. These
iterations are stopped if the convergence criterion is met or
the maximum number of iterations is reached [18].

The final refined solution is determined by removing
sensors with very small precisions and re-solving (15) or
(19) with equal weights p; = 1.

(20)

1V. EXAMPLE

Let us consider a serially connected spring-mass-damper
system on a frictionless surface as shown in Fig. (2).

d% d# d%
K ko ks

L AAMA— L AAMA—
my D mo E ms
& &2 &3

Fig. 2. Serially connected spring-mass-damper system.

Let z; denote the distance of the i™ mass from the wall.
Define state vector to be = := [v1,%2,73,%1,2,43]".
The nominal values of masses m;, spring constants k;,
and damper coefficients &; are all assumed to be unity.
Disturbances d; enters the system in the form of external
forces acting independently on all masses. Also, we assume
that sensors measure position and velocity of each mass.
Therefore, there are six sensors. The first three sensors mea-
sure positions, and the last three sensors measure velocities

of the masses. The nominal system matrices are given by

-2 1 0
a=lp mlH=|1 2 1 |Ba=|{]ss

H H 0 1 -1
c,=1,D,=0,D,=1,C,=1,

where S, is a known matrix which represents a scaling
for the disturbance signal. Next we consider the uncertainty
of the form (1) and (9), and determine the robust sparse
observers using results of Theorems 6 and 7.

Uncertainty of the form (1): The uncertainty in the system
matrices is assumed to of the following form

0 cocH O 0
AA = |:I:| F1 |: 00 01H:| ,ABd: |:I:| FQ(CQI).

where FlTFl < I, FQTFQ < I and ¢, cq,co are known
non-negative constants which quantify the magnitude of un-
certainty in the system, i.e., larger values of these parameters
would imply uncertainty of larger magnitude, and on the
other extreme end, zero-valued parameters correspond to the
nominal plant with no uncertainty. For the system defined
as above, we can directly apply the result of Theorem 6
with iterative reweighting (20) to determine sparse sensor
configuration and corresponding optimal precision 3, which
is discussed next.

The optimization problems are solved using the solver
SDPT3 [19] with CVX [20] as a parser. In the figures of
this section, solid circle indicates that a sensor is required
and the number above it shows the required precision 3,
while cross indicates that a sensor is not used.

First, we consider the effect of specified performance
parameter -y, for uncertainty of a fixed magnitude quantified
by the parameters cg,c1,co. In particular, in Fig. (3), we
set cp,c1,co to non-zero values, and vary the specified
performance parameter v. We observer that as we decrease
v, i.e. demand better performance, the number of required
sensors and their associated precisions increase. For v = 1,
only two sensors are needed, whereas for v = 0.25, all six
sensors are needed with relatively higher precisions.

1 e2.30 =2 01 y N
=
13.49 14.75 5.25
0.5e ° X ) E
18.15 14.00 17.73 11.70 18.68 14.05
0.25@ o ° ° o ®
1 2 3 4 5 6

Sensor Number

Fig. 3. Sensor configuration and precision for different values of specified
v, and fixed cp = 0.01, ¢; = 0.02, cg = 0.03, and Sy = 1I.

In Fig. (4), we show a complementary case to Fig. (3), i.e.
we vary the magnitude of uncertainty for a fixed performance
parameter . In particular, we vary cg, for fixed parameters
c1 = 0,c0 =0, and v = 1. As we increase the magnitude
of uncertainty, i.e ¢y, we see that the number of sensors



0.3 =1'53 92 % * 35'00
0.2% 018‘89 x x x ID1'25
5
0.1% 05'89 x x x lb1'20
0 J9:36 B 3 .
1 2 3 4 5 6
Sensor Number
Fig. 4. Sensor configuration and precision for different magnitudes of

uncertainty quantified by cp, and fixed ¢c; = 0, c2 = 0, v = 1, and
Sq=1.

required and the precision values increase. For the nominal
plant corresponding to ¢y = 0, only one sensor is required,
whereas for ¢y = 0.3, three sensors are required.
Uncertainty of the form (9): We assume that the spring
constants and damper coefficients can take values in the
intervals [co—1, cop+1] and [¢; —1, ¢1 +1] respectively, where
co, c1 are known non-negative constants which quantify the
magnitude of uncertainty. We assume no uncertainty in the
masses. With such uncertainty, the system can be written in
an LFT form as in Fig. (1) and (9) such that ||A|_ < 1.
Analogous to Fig. (3) and Fig. (4), Fig. (5) and Fig. (6)
below respectively show the effect of decreasing performance
parameter v for a fixed magnitude of uncertainty, and the
effect of increasing magnitude of uncertainty for a fixed
performance parameter . Similar observations as in the
previous case can also be made for Fig. (5) and Fig. (6).

"R
05 e7.64 o 50 y N
-
17.35 73.33 78.92 23.10
0.2¢ ° ° ® x E
01 99.84 106.32 103.43 92.25 39.63 2.86
1 2 3 4 5 6

Sensor Number

Fig. 5. Sensor configuration and precision for different values of specified
v, and fixed ¢co = 0.1, ¢; = 0.1, Sg = 0.21.

034915 13883 11202 24.39
17.35 73.33 78.92 23.10
0.2e ° ° ° X X
5
51.37 48.35 55.61
0.1e o ° X E
0 J8415 3 .
1 2 3 4 5 6
Sensor Number
Fig. 6. Sensor configuration and precision for different magnitudes of

uncertainty quantified by cop, and fixed ¢; =0, v = 0.2, and S = 0.21.

V. CONCLUSION

Herein, we present a unified theoretical framework to
address the problem of sparse sensor configuration in the
presence of model uncertainty while simultaneously min-
imizing the required sensor precisions. We consider two
types of model uncertainties: structured affine uncertainty
in system matrices and unstructured uncertainty. For both
the cases, the robust sparse sensing problem is formulated
in the context of H.,-optimal observer design and posed
as a convex optimization problem subject to linear matrix
inequalities. We minimize [;-norm of the precision vector
to promote sparsity, and an iterative reweighting scheme is
used to refine the solution.

The convex optimization problems formulated in this
work are semi-definite programs (SDPs). General-purpose
solvers that we used in numerical simulations to solve the
SDPs, in general, do not scale well for large-scale systems.
These SDPs require customized solvers that can exploit the
optimization problem’s local structure, e.g., [11]. However,
for discussion brevity, this paper is limited to only the
theoretical development of the framework. The development
of customized algorithms for large-scale systems is a topic
of our ongoing research.
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