


example involving three agents are shown in Section III fol-

lowed by concluding remarks and future research directions

in Section IV.

II. PROBLEM FORMULATION

A. Notation

The set of real numbers is denoted by R. Bold uppercase

(lowercase) letters denote matrices (column vectors). I and

0 respectively denote an identity matrix and a zero matrix

of suitable dimensions. P T denotes transpose of P . We use

the notation (P ≥ 0) P > 0 to denote symmetric positive

(semi-)definite matrices. Analogous notations are used to

denote negative (semi-)definite matrices. diag(x) denotes

a diagonal matrix with diagonal elements as the vector x.

Similarly, diag (P 1,P 2, · · · ,PN ) denotes a block diagonal

matrix. All powers and inequalities involving vectors are

to be interpreted elementwise. E [·] denotes the expectation

operator, and δij denotes the Kronecker delta defined as

δij := 1 if i = j, and δij := 0 if i 6= j.

B. System equations

Let us assume that there are N1 primary agents that can

be directly tracked from the tracking stations. Let there be

N2 secondary agents that are in the sensing-denied zone

where tracking stations are incapable of tracking them. The

dynamic models for the primary and secondary agents are

given by

x
(i)
k+1 = A

(i)
k x

(i)
k +B

(i)
k w

(i)
k , i = 1, · · · , (N1 +N2),

where k = 0, 1 · · · denotes the temporal index, and i =
1, · · · , N1 denotes dynamics of the primary agents, and i =
N1 + 1, · · · , N1 + N2 denotes dynamics of the secondary

agents. x
(i)
k denotes the state vector of the ith agent. The

process noise encountered by the ith agent is denoted by w
(i)
k

and it is assumed to be zero-mean Gaussian noise process

with covariance

E[w
(i)
k w

(i)
l ] = Q

(i)
k δkl.

The real time-varying system matrices A
(i)
k , B

(i)
k are of

appropriate dimensions. We define an augmented system as

follows

xk+1 = Akxk +Bkwk, (1)

xk :=









x
(1)
k
...

x
(N1+N2)
k









, wk :=









w
(1)
k
...

w
(N1+N2)
k









,

Ak := diag
(

A
(1)
k , · · · ,A

(N1+N2)
k

)

Bk := diag
(

B
(1)
k , · · · ,B

(N1+N2)
k

)

,

and wk is also a zero-mean Gaussian noise process with

augmented covariance matrix

Qk := diag
(

Q
(1)
k , · · · ,Q

(N1+N2)
k

)

.

As mentioned earlier, tracking stations can track the primary

N1 agents, and the secondary agents are tracked indirectly

using sensors aboard the primary agents. All measurements

yk are written as the following measurement equation in

terms of the augmented state xk

yk = Ckxk + nk, (2)

where Ck is the time-varying output matrix, and nk is the

zero-mean Gaussian sensor noise with covariance

E[nknl] = Rkδkl,

where Rk is assumed to be a diagonal matrix.

The initial condition µ0 := E [x0], Σ0 :=
E
[

(x0 − µ0)(x0 − µ0)
T
]

are assumed to be known,

and the initial state variable x0, process noise wk, and

sensor noise nk are assumed to be mutually independent.

For a system given by (1) and (2), the sequential optimal

Kalman filter takes the following form [25]

Prior mean: µ−
k = Akµ

+
k−1,

Prior covariance: Σ−
k = AkΣ

+
k−1A

T
k +BkQkB

T
k ,

Kalman gain: Kk = Σ
−
k C

T
k

[

CkΣ
−
k C

T
k +Rk

]−1

,

Posterior mean: µ+
k = µ−

k +Kk(yk −Ckµ
−
k ),

Posterior covariance: Σ+
k = (I −KkCk)Σ

−
k ,

with µ+
0 = µ0 and Σ

+
0 = Σ0. For a given Rk, the above

equations provide an estimate of the state with the least error

variance. Herein, we treat Rk as a variable, as discussed next.

The precision of a sensor channel is defined as inverse of

the signal variance. Let us define Sk := diag(sk) := R−1
k .

Therefore, Sk is interpreted as the precision matrix. As dis-

cussed earlier, in this work we are interested in determining

a sparse sensor configuration, with the minimum required

precision. This can be achieved by minimizing trace(Sk)
or ‖sk‖1, since minimization of l1-norm promotes sparsity

[26].

If precision of a sensor channel is zero, then that sensor

has infinite noise variance, hence it is removed from the

sensor architecture. While identifying a sparse sensor con-

figuration, we require that the posterior covariance should

satisfy trace
(

Σ
+
k

)

≤ γ, for a specified γ > 0, so that the

estimation errors are bounded.

We assume that the update step in the Kalman filter is

carried out every p time steps, thus, measurements over a

finite horizon of p time steps are accumulated and used in a

batch processing framework, which is discussed next.

C. Batch processing

Our objective is to determine a sparse sensing configura-

tion with minimum sensor precision, given posterior statistics

(mean and covariance) at time step kp, and the measurements

over the time steps from kp+1 to (k+1)p. To this end, we



write an augmented system as follows

x̄k :=







xkp+1

...

x(k+1)p






, w̄k :=







wkp

...

w(k+1)p−1






,

ȳk :=







ykp+1
...

y(k+1)p






, n̄k :=







nkp+1

...

n(k+1)p






,

x̄k = Ākxkp + B̄kw̄k,

ȳk = C̄kx̄k + n̄k,

where,

Āk :=





Akp

Akp+1Akp
∏p−1

i=0 Akp+i



 ,

B̄k :=











Bkp 0 · · · 0

Akp+ 1Bkp Bkp+1 · · · 0

...
...

. . .
...

∏p−1
i=1 Akp+iBkp · · · · · · B(k+1)p−1











C̄k := diag
(

Ckp+1, · · · ,C(k+1)p

)

.

Note that the overhead bar indicates an augmented variable.

The covariances of the augmented process noise w̄k and

sensor noise n̄k are given respectively as

Q̄k := diag
(

Qkp, · · · ,Q(k+1)p−1

)

R̄k := diag
(

Rkp+1, · · · ,R(k+1)p

)

.

The propagated prior statistics of the augmented state x̄k, i.e.

µ̄k and Σ̄k, are written in terms of the posterior statistics of

xkp as

µ̄−
k := E [x̄k] = Ākµ

+
kp

Σ̄
−
k := E

[

(x̄k − µ̄k)(x̄k − µ̄k)
T
]

= ĀkΣ
+
kpĀ

T

k + B̄kQ̄kB̄
T

k .

Similarly, the updated posterior statistics of the augmented

state are obtained using the standard Kalman update equation

as follows.

µ̄+
k = Ākµ

+
kp + K̄k(ȳk − C̄kĀkµ

+
kp),

Σ̄
+
k = (I − K̄kC̄k)Σ̄

−
k (I − K̄kC̄k)

T + K̄kR̄kK̄
T

k ,

where K̄k is the Kalman gain for the augmented system. The

optimal gain which minimizes the trace
(

Σ̄
+
k

)

is given by

K̄k = Σ̄
−
k C̄

T

k

[

C̄kΣ̄
−
k C̄

T

k + R̄k

]−1

. However, herein R̄k

and hence K̄k are variables.

We require that the inequality trace
(

Σ
+
(k+1)p

)

≤ γ is

satisfied. Therefore, let us define a masking matrix M :=
[0 I ] of appropriate dimensions such that we have

µ+
(k+1)p = Mµ̄+

k , and Σ
+
(k+1)p = MΣ̄

+
k M

T .

Then the inequality trace
(

Σ
+
(k+1)p

)

≤ γ, or

trace
(

MΣ̄
+
k M

T
)

≤ γ is equivalently written as

trace (W ) ≤ γ

W −NΣ̄
−
k N

T −MK̄kR̄kK̄
T

kM
T ≥ 0

where W > 0 and N := M(I − K̄kC̄k). Using Schur

complement lemma, we get the following LMI






W M(I − K̄kC̄k)

√

Σ̄
−
k MK̄k

∗ I 0

∗ ∗ diag(s̄k)






≥ 0 (3)

where

√

Σ̄
−
k is the principal matrix square root of Σ̄

−
k , and

we substitute R̄
−1
k = S̄k = diag(s̄k) [24]. Then the optimal

precision vector s̄∗k is determined by minimization of the l1-

norm or in a more general setting, weighted l1-norm of s̄k.

Weighted l1-norm is defined as

‖s̄k‖1,ρ := ρT s̄k,

where ρ > 0 is a specified weight vector of the same

dimensions as s̄k.

The precisions of sensors are generally upper bounded due

to physical constraints, i.e.

0 ≤ s̄k ≤ s̄max. (4)

Therefore, the optimal s̄∗k is given as

s̄∗k := arg
{

min ‖s̄k‖1,ρ subject to (3), (4)
}

. (5)

The sparseness of the solution s̄∗k can be improved by

implementing iterative reweighting schemes such as [26].

The problem (5) is solved iteratively with weights ρ(j+1) =

(s̄
(j)∗
k + ε1)−1, where j is the iteration index, 1 denotes

a column vector of all ones and the inverse is interpreted

elementwise, s̄
(j)∗
k is the solution determined in the jth

iteration, and ε > 0 is a small number which ensures that

the weights are well-defined.

A scenario in which some sensors can not be used, e.g.

primary agents are obscured by some obstacles, can be easily

accounted for in the optimization problem (5) by simply

imposing a linear constraint to enforce the corresponding

elements of s̄k to be zero.

III. SIMULATION RESULTS

Fig. (2) shows the nominal planar trajectories of three

different agents. The primary agent R1 shown in blue, moves

in a circular trajectory. The stationary tracking stations Si,

i = 1, 2, 3, 4 can track only R1. We assume that the position

coordinates of tracking stations are known, and they can

measure the range of R1 from their respective locations.

The secondary agents R2 and R3 (shown by red periodic

trajectories) are in sensing-denied zone, i.e. the tracking

stations Si can not directly measure the ranges of R2 and

R3. Instead, the primary agent R1 can measure the relative

ranges of R2 and R3 from its location.



Fig. 2. Tracking stations Si, i = 1, 2, 3, 4, and agents Ri, i = 1, 2, 3.
R2 and R3 are secondary agents in the sensing-denied zone.

Let (xi, zi) denote the position coordinates of the ith agent

Ri. The nonlinear equations of the trajectories are given by

ẋ1 = z1, ż1 = −x1 + w1,

ẋ2 = z2, ż2 = (1− x2
2/c

2)z2 − x2/c+ w2,

ẋ3 = −z3, ż3 = (1− x2
3/c

2)z3 − x3/c+ w3,

(6)

where wi denotes the zero-mean Gaussian process noise

encountered by the ith agent, and c = 0.9. Let us define

x :=
[

x1 z1 x2 z2 x3 z3
]T

.

The state variable x is decomposed into a nominal variable

x̂ and the perturbation x̃ such that

x(t) = x̂(t) + x̃(t). (7)

The nominal trajectories x̂(t) are shown in Fig. (2) for the

initial condition

x̂(0) =
[

3 0 1.7636 0.5215 −1.7636 0.5215
]T

.

We linearize the dynamics (6) about the nominal trajectory

x̂(t) to get a linear continuous-time periodic system as

follows.

˙̃x = Ac(t)x̃(t) +Bcw(t), (8)

where w(t) := [w1 w2 w3]
T

denotes the process noise.

Subscript c indicates that system matrices are continuous-

time. Ac(t) ∈ R
6×6 is the Jacobian of ẋ(t) with respect to

x(t) evaluated at x̂(t), and Bc = I ⊗ [0 1]T ∈ R
6×3.

The quantity of interest x(t) is a stochastic variable since

the perturbation x̃(t) is stochastic and governed by (8). Let

us denote mean and covariance of x̃(t) as µ(t) := E [x̃(t)]
and Σ(t) := E

[

(x̃(t)− µ(t))(x̃(t)− µ(t))T
]

. The mean

and covariance evolution equations follow from (8) as

µ̇(t) = Ac(t)µ(t), (9a)

Σ̇(t) = Ac(t)Σ(t) +Σ(t)AT
c (t) +BcQBT

c , (9b)

where Q := 0.052I ∈ R
3×3 denotes the spectral density

matrix of w(t). Initial statistics are assumed to be µ(0) =
0.05 x̂(0) and Σ(0) = 0.12 diag(|µ(0)|). The temporal

evolution of the mean and covariance obtained using (9) is

shown in Fig. (3).

Fig. 3. Mean and covariance evolution for linearized system (8) obtained
using (9). The perturbation mean is shown by the solid line, and the shaded
region highlights the 1σ-bound.

The time period of the trajectories shown in Fig. (2) is

Tp = 2π. We assume that the range measurements are

obtained 10 times in a period at time instants t = tk := k∆t,
with ∆t = 0.1Tp. The nonlinear range measurements in

terms of (xi, zi) and the known positions of the tracking

stations at t = tk are given as

yk :=

















(x1 − 3)2 + (z1 + 3)2

(x1 + 3)2 + (z1 + 3)2

(x1 + 3)2 + (z1 − 3)2

(x1 − 3)2 + (z1 − 3)2

(x2 − x1)
2 + (z2 − z1)

2

(x3 − x1)
2 + (z3 − z1)

2

















0.5

|t=tk

+ nk, (10)

where nk ∈ R
6 is the measurement noise. Peer-to-peer

measurements [5] e.g. relative range between R2 and R3,

if available, can be easily augmented in (10).

We discretize the linearized equation (8) in time interval

[0, Tp] with ∆t = 0.1Tp. The discretized dynamics is given



by

x̃k+1 = Akx̃k +Bkwk, (11)

where x̃k := x̃(tk), Ak := Φ(tk+1, tk), Bk = I ,

wk =

∫ tk+1

tk

Φ(τ, tk)Bcw(τ)dτ,

and Φ(·, ·) denotes the state transition matrix. The discrete

time process wk has zero mean i.e. E [wk] = 0 since

E [w(t)] = 0. The covariance of wk, Qk = E
[

wkw
T
k

]

is

determined via Σ(tk+1) calculated using the continuous-time

covariance propagation equation (9b), and the discrete-time

covariance propagation as

Qk = Σ(tk+1)−AkΣ(tk)A
T
k .

Similar to (7) and (8), the linearized range measurement

equation follows from (10),

yk = ŷk + ỹk, ỹk = Ckx̃k + nk, (12)

where Ck ∈ R
6×6 is the Jacobian of yk with respect to x(t)

evaluated at x̂(tk).
With equations (11) and (12), we have formulated the

tracking problem in the form given by (1) and (2), and we

can solve the optimization problem (5) for the system under

consideration. The performance requirement is specified as

trace
(

Σ
+(t10)

)

≤ 0.1 trace
(

Σ
−(t10)

)

,

i.e. we require 90% reduction in the trace of prior covariance

matrix after update at the time step k = 10.

The optimal solution of (5) is obtained using the solver

MOSEK [27] with CVX [28] as a parser for three different

values of s̄max, and shown in Fig. (4). The blocks with

dark blue color correspond to very low or zero precisions,

indicating that those measurements are not required.

By solving (5), we have introduced sparseness in the

sensing configuration. Since s̄k is a stacked vector of all

sensor precisions at all time steps, the sparseness that we

achieve is twofold. For example, see the top plot in Fig. (4)

corresponding to smax = 1200. At the time step k = 9,

only three measurements y2, y4, y5 out of total available six

measurements (10) are needed. We also observe that the

most measurements are required for k ≥ 8, thus introducing

sensing sparseness temporally.

On decreasing the precision of sensors from 1200 to 450,

we observe a reduction in the sparseness of measurements.

In other words, the same filtering performance is achieved

with fewer measurements by using sensors with higher

precisions. This exposes a trade-off between sensor precision

and sensing frequency.

Now, for the sake of argument, let us consider a case when

the tracking stations S1, S2 and S3 can not track the primary

agent at time step k = 10 due to some obstacles. This

condition is incorporated in the optimization problem (5) by

constraining the precision values of y1, y2, y3 at k = 10 to

zero, which is equivalent to not using those measurements in

the Kalman update step. The optimal solution for this case

is shown in Fig. (5).
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Fig. 4. Sensing precisions (shown by colorbar) for different range
measurements from time step k = 1 to k = 10.

Consider the plot for smax = 750 in Fig. (5). The

unavailability of y1, y2, y3 at k = 10 is compensated by

the extra measurements of y4 at k = 9, 10, which were not

required in the previous case shown in Fig. (4). We also

observe that the required precisions for some measurements

are higher in Fig. (5) than Fig. (4). Similar observation can

be made for the plot corresponding to smax = 1200 as well.

The optimization problem is infeasible for smax = 450,

and hence not shown in Fig. (5). It implies that the sensors

with smax = 450 are not precise enough to guarantee the

specified performance bound if the measurements y1, y2, y3
are unavailable at k = 10.

IV. CONCLUSION

In this paper we considered the problem of tracking multi-

agent systems in which some agents are non-cooperative

targets or in a sensing-denied environment, and indirect

measurements obtained by other agents are used to track

the complete system. The objective of obtaining optimal

sensor precisions while simultaneously promoting sparseness

in the sensing architecture was achieved by formulating the

problem in discrete-time Kalman filtering framework and
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Fig. 5. Sensing precisions (shown by colorbar) for different range
measurements from time step k = 1 to k = 10. Measurements y1, y2, y3
are unavailable at k = 10.

minimizing l1-norm of the precision vector. The optimization

problem formulated as a semi-definite program (SDP) subject

to linear matrix inequalities exposed a trade-off between

sensor precisions and the number of measurements required

to guarantee a certain estimation performance.

The dimension of the SDP grows quadratically with the

number of agents in the system and the discrete-time horizon

over which the problem is solved. Since general-purpose

SDP solvers do not scale well with the increasing problem

dimension, the development of customized solvers which

exploit local problem structure is a topic of our ongoing

research. For the sake of simplicity, we did not consider

communication or operational constraints on sensors, e.g.

the maximum number of sensors that can simultaneously

operate at a given instant. Our future work will incorporate

constrained sensing and correlated sensor noise (i.e. non-

diagonal covariance matrix) in the formulation.
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