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Sparse Sensing Architectures with Optimal Precision for Tracking
Multi-agent Systems in Sensing-denied Environments

Vedang M. Deshpande! and Raktim Bhattacharya?®

Abstract—1In this paper the tracking problem of multi-agent
systems, in a particular scenario where a segment of agents
entering a sensing-denied environment or behaving as non-
cooperative targets, is considered. The focus is on determining
the optimal sensor precisions while simultaneously promoting
sparseness in the sensor measurements to guarantee a specified
estimation performance. The problem is formulated in the
discrete-time centralized Kalman filtering framework. A semi-
definite program subject to linear matrix inequalities is solved
to minimize the trace of precision matrix which is defined to
be the inverse of sensor noise covariance matrix. Simulation
results expose a trade-off between sensor precisions and sensing
frequency.

Index Terms— GPS-denied, sensor precision, sparse sensing,
convex optimization.

I. INTRODUCTION

We consider the tracking problem of multi-agent systems.
In particular, we are interested in a scenario wherein some
agents can not be tracked using the tracking station, referred
herein as secondary agents. We refer the agents which can
be directly tracked as primary agents. We assume that the
secondary agents can be tracked using the sensors onboard
primary agents. See Fig. (1) as an illustration of this.
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Fig. 1. Multi-agent system in a sensing-denied zone.

The primary agents, shown by blue circles in Fig. (1), can
be tracked from the primary sensor or the tracking station
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(black circle). The ellipse shown by red dotted line denotes
the sensing-denied zone in which the secondary agents (red
circles) can not be tracked directly from the tracking station.
However, sensors aboard primary agents are used to track
the secondary agents.

Fig. (1) illustrates many practical applications of inter-
est. For example, consider a scenario in which emergency
responders (secondary agents) are in a GPS-denied envi-
ronment. Whereas, ground or air vehicles (primary agents)
are able to track the responders using vision-based sensors.
As an another example, consider exploration or surveillance
mission of a sensing-denied landscape like tunnel, mine or a
crater on a planet, and the primary agents are equipped with
ranging equipment to track the secondary agents.

There exists substantial literature on control, estimation
and navigation in sensing-denied, particularly, GPS-denied
environments e.g. see [1]-[9] and the references therein. In
these works, agents actively estimate their own states using
various onboard sensors such as inertial measurement units
[2], [5], [6], laser or radio based ranging instruments [4], [5],
or vision based systems [7]-[9].

The problem under consideration in this paper (Fig. (1)) is
slightly different as we are interested in passive tracking of
the secondary agents using sensors aboard primary agents.
This is an extensible scenario capable of accommodating
non-cooperative targets, e.g. space objects or enemy vehicles
[10]-[13], as secondary agents.

While tracking a multi-agent system, it is crucial that the
estimation errors are bounded, and the number of measure-
ments (or sensors) required to achieve a certain performance
is minimal. In general, higher sensor precisions imply higher
economic costs, thus, it is also desirable that the sensors
require minimal precisions. Therefore, the objective is to
design a sparse sensing architecture with minimal sensor
precisions for the system shown in Fig. (1) such that the es-
timation errors are within the specified performance bounds.

Sparse sensor selection [14]-[17] and sensor scheduling
[18]-[21] are well-studied problems. However, only few
formulations [22]-[24] allow simultaneous minimization of
sensor precisions while designing sparsity promoting sens-
ing architectures. Therefore, to meet the aforementioned
objective, we employ the formulation discussed in [24],
which achieves a sparse sensing configuration with optimal
precisions by minimizing of /;-norm of the precision vector
in the discrete-time Kalman filtering framework.

The rest of the paper is organized as follows. Section II
formulates the multi-agent tracking problem in the Kalman
filtering framework. Numerical simulation results for a test



example involving three agents are shown in Section III fol-
lowed by concluding remarks and future research directions
in Section IV.

II. PROBLEM FORMULATION
A. Notation

The set of real numbers is denoted by R. Bold uppercase
(lowercase) letters denote matrices (column vectors). I and
0 respectively denote an identity matrix and a zero matrix
of suitable dimensions. P denotes transpose of P. We use
the notation (P > 0) P > 0 to denote symmetric positive
(semi-)definite matrices. Analogous notations are used to
denote negative (semi-)definite matrices. diag(x) denotes
a diagonal matrix with diagonal elements as the vector x.
Similarly, diag (P;, Ps,--- , Px) denotes a block diagonal
matrix. All powers and inequalities involving vectors are
to be interpreted elementwise. E [] denotes the expectation
operator, and §;; denotes the Kronecker delta defined as
5ij =1 le:j, and 51‘]‘ :Olfl%j

B. System equations

Let us assume that there are N; primary agents that can
be directly tracked from the tracking stations. Let there be
Ny secondary agents that are in the sensing-denied zone
where tracking stations are incapable of tracking them. The
dynamic models for the primary and secondary agents are
given by

931@1 = Al(ci)gjl(ci) + Bg)wg), i=1,--,(Ny+ No),

where £k = 0,1--- denotes the temporal index, and i =
1,---, N; denotes dynamics of the primary agents, and ¢ =
N1 +1,---, N1 + N3 denotes dynamics of the secondary
agents. a:,(J) denotes the state vector of the i agent. The
process noise encountered by the i agent is denoted by w,(;)
and it is assumed to be zero-mean Gaussian noise process

with covariance

Elw; w;”] = Q8.

The real time-varying system matrices A,(f), Bl(f) are of
appropriate dimensions. We define an augmented system as
follows

Tpi1 = Az, + Brwy, )]
2V wid
T = , Wk = 5
ml(cN1+N2) wl(cN1+N2)

Ay = diag (A, AT
B, :— diag (Bﬁj), - ,B;Nl“V?)) :

and wy, is also a zero-mean Gaussian noise process with
augmented covariance matrix

Qk = dlag ( 5@1)7 R IE:N1+N2)> .

As mentioned earlier, tracking stations can track the primary
N; agents, and the secondary agents are tracked indirectly
using sensors aboard the primary agents. All measurements
vy, are written as the following measurement equation in
terms of the augmented state xy

Y = Crxp + Ny, )

where C|; is the time-varying output matrix, and 7 is the
zero-mean Gaussian sensor noise with covariance

E[nini] = R0k,

where R is assumed to be a diagonal matrix.

The initial condition g, := E[xo], X9 :=
E [(®o — po)(wo — po)”] are assumed to be known,
and the initial state variable x(, process noise wy, and
sensor noise m are assumed to be mutually independent.

For a system given by (1) and (2), the sequential optimal
Kalman filter takes the following form [25]

Prior mean: p, = Akﬂ}:,p
Prior covariance: X, = A;X} | Al + B,Q, B},

—1
Kalman gain: K = E;Cf [C;J);Cf + Rk} ,
Posterior mean: MZ =p;, + Ki(y, — Crpy, ),
Posterior covariance: £} = (I — K;Cy)Z,,

with pg = po and B = 3. For a given Ry, the above
equations provide an estimate of the state with the least error
variance. Herein, we treat R, as a variable, as discussed next.

The precision of a sensor channel is defined as inverse of
the signal variance. Let us define Sy, := diag(sy) := R; "
Therefore, S, is interpreted as the precision matrix. As dis-
cussed earlier, in this work we are interested in determining
a sparse sensor configuration, with the minimum required
precision. This can be achieved by minimizing trace(S})
or ||sx||;, since minimization of {;-norm promotes sparsity
[26].

If precision of a sensor channel is zero, then that sensor
has infinite noise variance, hence it is removed from the
sensor architecture. While identifying a sparse sensor con-
figuration, we require that the posterior covariance should
satisfy trace (X;) < v, for a specified v > 0, so that the
estimation errors are bounded.

We assume that the update step in the Kalman filter is
carried out every p time steps, thus, measurements over a
finite horizon of p time steps are accumulated and used in a
batch processing framework, which is discussed next.

C. Batch processing

Our objective is to determine a sparse sensing configura-
tion with minimum sensor precision, given posterior statistics
(mean and covariance) at time step kp, and the measurements
over the time steps from kp+ 1 to (k+ 1)p. To this end, we



write an augmented system as follows

[ Thpi Wp
Ty = : , Wi 1= : )
LT (k+1)p] W(k+1)p-1
[ Yrp+1 1 NEp4+1
go=| 0 [me=| ]
LY (k+1)p ] " (k+1)p

where,
— [ Akp
Ak = Akpii-lAkp
_Hf;o Akari
[ By, 0 0
_ Akp + 1By, Bypi - 0
By = . . .
2= AkpyiBiy B (i+1)p-1

Ci. == diag (Cipt1,- -, Citr)p) -

Note that the overhead bar indicates an augmented variable.
The covariances of the augmented process noise wj and
sensor noise 7 are given respectively as

Q, = diag (Qkp, e aQ(k+1)p—l)
Rkt = diag (Rkp-l,—la e 7R(/€+1)p) .

The propagated prior statistics of the augmented state Ty, i.e.
[, and Xy, are written in terms of the posterior statistics of
Tp as

[._l,; =K [ik] = Akll’:p

w = E (@ — ) (@ — )" ]
= =T = =~ =T
= A3 AL + BiQ, By,
Similarly, the updated posterior statistics of the augmented

state are obtained using the standard Kalman update equation
as follows.

By = Ay, + Ki(G, — CrAipy,),

o+ N A = = =T

S =I-K.CpE,(I-K.C,)" + KxR.K,,,
where K, is the Kalman gain for the augmented system. The
optimal gain which minimizes the trace Z_]z. is given by
_ — = = _ 11 _
K, =%, CZ {CkEk C: +Rk] . However, herein Ry
and hence K, are variables.

We require that the inequality trace (2+ ) < v s

(k+1)p
satisfied. Therefore, let us define a masking matrix M :=
[0 I] of appropriate dimensions such that we have
=MS M”.

+ _ = +
Bty = M, and E(k-‘,—l)p

IN

Then the inequality trace (Ea +1)p) v, or

trace (M EZM T) < « is equivalently written as

trace (W) < v
W - NS, NT - MK,R,K, M" >0

where W > 0 and N := M(I — K;C},). Using Schur
complement lemma, we get the following LMI

W M -K.C,)\/Z, MK,
% I 0 >0 )
* * diag(sy,)

where \/ X, is the principal matrix square root of X, , and
. -1 5 . .

we substitute R, = S}, = diag(5)) [24]. Then the optimal

precision vector 5j, is determined by minimization of the /;-

norm or in a more general setting, weighted [;-norm of 5j.

Weighted /;-norm is defined as

||§7€||1,p = pTgkn

where p > 0 is a specified weight vector of the same
dimensions as 5.

The precisions of sensors are generally upper bounded due
to physical constraints, i.e.

0 S gk S gmax~ (4)

Therefore, the optimal sj; is given as

5 = arg {min||§kH17p subject to (3), (4)}. (5)

The sparseness of the solution 5} can be improved by
implementing iterative reweighting schemes such as [26].
The problem (5) is solved iteratively with weights plU+1) =
(5}: * + €l)7L, where j is the iteration index, 1 denotes
a column vector of all ones and the inverse is interpreted
elementwise, Eg ) is the solution determined in the j‘h
iteration, and ¢ > 0 is a small number which ensures that
the weights are well-defined.

A scenario in which some sensors can not be used, e.g.
primary agents are obscured by some obstacles, can be easily
accounted for in the optimization problem (5) by simply
imposing a linear constraint to enforce the corresponding
elements of s to be zero.

III. SIMULATION RESULTS

Fig. (2) shows the nominal planar trajectories of three
different agents. The primary agent R; shown in blue, moves
in a circular trajectory. The stationary tracking stations 5;,
i =1,2,3,4 can track only R;. We assume that the position
coordinates of tracking stations are known, and they can
measure the range of R; from their respective locations.
The secondary agents R, and R3 (shown by red periodic
trajectories) are in sensing-denied zone, i.e. the tracking
stations .S; can not directly measure the ranges of Ry and
R3. Instead, the primary agent Ry can measure the relative
ranges of Ry and R3 from its location.



Fig. 2. Tracking stations S;, ¢ = 1,2,3,4, and agents R;, i = 1,2, 3.
R> and R3 are secondary agents in the sensing-denied zone.

Let (w;, z;) denote the position coordinates of the i agent
R;. The nonlinear equations of the trajectories are given by

T1 =21, %1 =-—T1+wi,
iy =29, Zo=(1—a3/c%)z —xa/c+ wo, (6)
i3 =—z3, 23=(1-— x%/cZ)z;), —x3/c+ w3,

where w; denotes the zero-mean Gaussian process noise
encountered by the ™ agent, and ¢ = 0.9. Let us define
T
xr .= [[L‘l zZ1 X2 29 X3 23] .
The state variable « is decomposed into a nominal variable
& and the perturbation & such that

z(t) = &(t) + &(1). )

The nominal trajectories &(t) are shown in Fig. (2) for the
initial condition

#0)=[3 0 17636 05215 —1.7636 0.5215]" .

We linearize the dynamics (6) about the nominal trajectory
Z(t) to get a linear continuous-time periodic system as
follows.

T = A(t)&(t) + Bow(t), (8)

where w(t) := [w wa w3]T denotes the process noise.
Subscript ¢ indicates that system matrices are continuous-
time. A.(t) € R®*6 is the Jacobian of @(t) with respect to
x(t) evaluated at £(t), and B. = I ® [0 1]T € R®*3.

The quantity of interest (t) is a stochastic variable since
the perturbation &(t) is stochastic and governed by (8). Let
us denote mean and covariance of &(t) as p(t) := E [Z(¢)]
and 2(t) := E [(&(t) — p(t))(Z(t) — u(t))"]. The mean
and covariance evolution equations follow from (8) as

fu(t) = Ac(t)p(t),
3(t) = Ac(t)S(t) + S(HA, (1) + B.QB,,

(9a)
(9b)

where @ := 0.052I € R®*3 denotes the spectral density

matrix of w(t). Initial statistics are assumed to be p(0) =
0.05 £(0) and X(0) = 0.1% diag(|u(0)|). The temporal
evolution of the mean and covariance obtained using (9) is
shown in Fig. (3).
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Fig. 3. Mean and covariance evolution for linearized system (8) obtained
using (9). The perturbation mean is shown by the solid line, and the shaded
region highlights the 1o-bound.

The time period of the trajectories shown in Fig. (2) is
T, = 2m. We assume that the range measurements are
obtained 10 times in a period at time instants ¢ = ¢y := kAL,
with At = 0.17,. The nonlinear range measurements in
terms of (x;,z;) and the known positions of the tracking
stations at t = tj, are given as

(71— 3)* + (21 +3)2 1°7
(21 +3)%*+ (21 + 3)*
(21 +3)*+ (21 — 3)°
Y = (.’1,‘1 _ 3)2 + (21 _ 3)2 + ny, (10)
(2 — 21)° + (22 — 21)?
(w3 —21)? + (23 — 21) [t=ts,

where n; € RS is the measurement noise. Peer-to-peer
measurements [5] e.g. relative range between R, and Rs,
if available, can be easily augmented in (10).

We discretize the linearized equation (8) in time interval
[0,T,] with At = 0.17),. The discretized dynamics is given



by

Tp1 = A&y + Brwy,

(11
where fék = .’;J(tk), Ak = ‘I’(tk+1,tk), Bk = I,

tht1
wi= [ @) Baw(r)ar,
tr

and ®(-,-) denotes the state transition matrix. The discrete
time process wy has zero mean ie. E[wg] = 0 since
E [w(t)] = 0. The covariance of wy, Q, = E [w,w] ] is
determined via 3 (¢x 1) calculated using the continuous-time
covariance propagation equation (9b), and the discrete-time
covariance propagation as

Q) = X(tps1) —

Similar to (7) and (8), the linearized range measurement
equation follows from (10),

ALX(t) AT

Y = U + Yy Yp = CrZr + ny, (12)

where C, € R6*6 is the Jacobian of y,, with respect to z(t)
evaluated at &(ty).

With equations (11) and (12), we have formulated the
tracking problem in the form given by (1) and (2), and we
can solve the optimization problem (5) for the system under
consideration. The performance requirement is specified as

trace (X7 (t19)) < 0.1 trace (X~ (t10)) ,

i.e. we require 90% reduction in the trace of prior covariance
matrix after update at the time step k = 10.

The optimal solution of (5) is obtained using the solver
MOSEK [27] with CVX [28] as a parser for three different
values of Sp,,x, and shown in Fig. (4). The blocks with
dark blue color correspond to very low or zero precisions,
indicating that those measurements are not required.

By solving (5), we have introduced sparseness in the
sensing configuration. Since §j is a stacked vector of all
sensor precisions at all time steps, the sparseness that we
achieve is twofold. For example, see the top plot in Fig. (4)
corresponding to Smax = 1200. At the time step k = 9,
only three measurements yo, 94, ¥5 out of total available six
measurements (10) are needed. We also observe that the
most measurements are required for £ > 8, thus introducing
sensing sparseness temporally.

On decreasing the precision of sensors from 1200 to 450,
we observe a reduction in the sparseness of measurements.
In other words, the same filtering performance is achieved
with fewer measurements by using sensors with higher
precisions. This exposes a trade-off between sensor precision
and sensing frequency.

Now, for the sake of argument, let us consider a case when
the tracking stations S, Sy and S5 can not track the primary
agent at time step k = 10 due to some obstacles. This
condition is incorporated in the optimization problem (5) by
constraining the precision values of y;,y2,ys at k = 10 to
zero, which is equivalent to not using those measurements in
the Kalman update step. The optimal solution for this case
is shown in Fig. (5).
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Fig. 4. Sensing precisions (shown by colorbar) for different range
measurements from time step k£ = 1 to k£ = 10.

Consider the plot for sp.x = 750 in Fig. (5). The
unavailability of yi,y2,y3 at k = 10 is compensated by
the extra measurements of y, at k = 9,10, which were not
required in the previous case shown in Fig. (4). We also
observe that the required precisions for some measurements
are higher in Fig. (5) than Fig. (4). Similar observation can
be made for the plot corresponding to Sy = 1200 as well.
The optimization problem is infeasible for sy.x = 450,
and hence not shown in Fig. (5). It implies that the sensors
with spax = 450 are not precise enough to guarantee the
specified performance bound if the measurements y, y2, ys3
are unavailable at k£ = 10.

IV. CONCLUSION

In this paper we considered the problem of tracking multi-
agent systems in which some agents are non-cooperative
targets or in a sensing-denied environment, and indirect
measurements obtained by other agents are used to track
the complete system. The objective of obtaining optimal
sensor precisions while simultaneously promoting sparseness
in the sensing architecture was achieved by formulating the
problem in discrete-time Kalman filtering framework and
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Fig. 5. Sensing precisions (shown by colorbar) for different range
measurements from time step k = 1 to k = 10. Measurements y1, Y2, Y3
are unavailable at k = 10.

minimizing [;-norm of the precision vector. The optimization
problem formulated as a semi-definite program (SDP) subject
to linear matrix inequalities exposed a trade-off between
sensor precisions and the number of measurements required
to guarantee a certain estimation performance.

The dimension of the SDP grows quadratically with the
number of agents in the system and the discrete-time horizon
over which the problem is solved. Since general-purpose
SDP solvers do not scale well with the increasing problem
dimension, the development of customized solvers which
exploit local problem structure is a topic of our ongoing
research. For the sake of simplicity, we did not consider
communication or operational constraints on sensors, €.g.
the maximum number of sensors that can simultaneously
operate at a given instant. Our future work will incorporate
constrained sensing and correlated sensor noise (i.e. non-
diagonal covariance matrix) in the formulation.
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