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Abstract

A unified framework to derive optimized compact schemes for a uniform grid is presented. The

optimized scheme coefficients are determined analytically by solving an optimization problem to minimize

the spectral error subject to equality constraints that ensure specified order of accuracy. A rigorous

stability analysis for the optimized schemes is also presented. We also show that other types of schemes

e.g., spatially explicit and biased finite differences, can be generated as special cases of the framework.

Optimized schemes generated using this framework are tested on canonical partial differential equations,

and numerical results are compared with the standard schemes.
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1 Introduction

Finite differences have been extensively studied and used to solve ordinary differential equations (ODEs)
and partial differential equations (PDEs) numerically. Finite differences, in a broad sense, are classified
into two categories, namely, explicit and implicit (compact) finite differences. In the explicit formulation,
approximation of a function derivative at a grid point depends only on the function values at that grid
point and grid points adjacent to it. On the other hand, the implicit formulation approximates a function
derivative at a grid point by using not only the function values but also the derivatives of the function
at adjacent grid points. Each one of these two formulations has benefits associated with it. For example,
explicit schemes are computationally more efficient than compact schemes. However, for a given stencil size,
compact schemes can achieve better accuracy and stability than explicit schemes. Thus, depending upon
the problem at hand, one can choose to use explicit or compact formulation.

Kumari, et al. (2019) proposed a unified approach to derive optimized explicit schemes in [1]. In this
paper, we present a unified framework to derive optimized compact schemes as a natural extension and
generalization of the approach presented in [1]. We also show that the optimized schemes derived using the
explicit formulation can be recovered as special cases of the compact formulation presented in this paper.

One of the widely used formulations for deriving compact schemes is the 7 grid points stencil which leads
to pentadiagonal finite differences [2–7]. Such formulations approximate the first derivative at ith grid point
as

βf ′
i−2 + αf ′

i−1 + f ′
i + αf ′

i+1 + βf ′
i+2 = c

fi+3 − fi−3

6∆x
+ b

fi+2 − fi−2

4∆x
+ a

fi+1 − fi−1

2∆x
+ O(∆xp+1), (1)
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where fi := f(xi), f
′
i :=

∂f
∂x

∣
∣
∣
x=xi

, and O(∆xp+1) indicates that the approximation error is of order (p+ 1).

Note that left hand side (LHS) and right hand side (RHS) stencil sizes for Eq.(1) are 5 and 7 respectively.
After substituting Taylor series expansion of the terms in the above equation, relations between the unknown
parameters a, b, c, α, and β are obtained by matching the coefficients. If the first unmatched coefficient is
associated with ∆xp+1, then the formal order of accuracy for the discretization is said to be p + 1. When
f is periodic over the x-domain, derivative at each grid point can be calculated by solving a cyclic linear
system of equations with formal truncation error as a global measure of error [2].

In real physical problems which involve a spectrum of scales, one is also keen to quantify and minimize
errors incurred at different wavenumbers. The method of matching coefficients does not guarantee the desired
spectral behavior of the compact scheme derived from Eq.(1). To ensure that all the relevant scales in a
problem are properly resolved, it is crucial to have desired spectral accuracy at the wavenumbers of interest.
Over the years, various frameworks were proposed to construct optimized compact schemes with desired
spectral accuracy [3–7]. They all formulate compact schemes as generalizations of Padé approximation
similar to Eq.(1), and calculate optimal coefficients by minimizing a cost function, most commonly, weighted
L2 norm of suitably defined spectral error over the wavenumber space. Different techniques have been used
to solve the minimization problem. For example, [3–6] used a weighting function constructed from unknown
variables involved in the optimization problem to make the cost function integrable. Then optimal solution
is calculated analytically by finding the local minimum of the cost function subject to order of accuracy
constraints. On the other hand, [7] minimizes the cost function weighted equally across all wavenumbers and
optimal solution is found using sequential quadratic programming (SQP). An extended optimized compact
schemes framework for the implementation of boundary conditions was presented in [4]. To circumvent
the computationally expensive inversion of a band matrix in case of compact schemes, [5, 6, 8] proposed
prefactored optimized compact finite differences which use forward and backward biased schemes that can
be solved explicitly. Frameworks devised specifically to derive optimized explicit schemes were presented
in [9–12]. Unlike others, [12] defined the cost function as maximum (infinity) norm of the spectral error
and used simulated annealing technique to find the optimal solution. Each afore discussed framework is
restrictive in at least one of the following ways:

1. Frameworks for optimal compact schemes are limited to derive pentadiagonal (or tridiagonal) schemes.
They can not be easily scaled up for larger stencil sizes.

2. Most of the frameworks rely on a carefully constructed weighting function to make the cost function
integrable, which facilitates the analytical computation of optimal coefficients. Therefore, the weighting
function has to have a special form, which restricts the choice of weighting function. Moreover, the
weighting function is dependent upon the variables of the optimization problem itself. Therefore,
nature of the weighting function is not completely known.

3. Frameworks are requirement specific and there is no unifying generalized framework. For example,
[3–7] focus on pentadiagonal compact schemes, [1, 9–12] are exclusively for explicit finite difference,
and [3, 9–11] approximate only the first derivative.

In this paper we present a unifying framework to derive optimized compact schemes, which overcomes
limitations of the existing frameworks. The key features of the proposed framework are as follows:

1. Optimized coefficients of compact schemes to approximate a derivative of any order are determined
analytically by solving a quadratic programming problem with equality constraints.

2. First, we develop a framework to derive optimized compact schemes of equal LHS and RHS stencil
sizes. Numerical simulations show that the schemes with equal LHS and RHS stencil sizes perform
better than those with unequal stencil sizes for a fixed degrees of freedom in the optimization.

3. This generalized framework also allows us to derive compact schemes with unequal LHS and RHS stencil
sizes, explicit finite differences, and biased schemes for non-periodic domains by imposing additional
equality constraints in the optimization problem, which are discussed as special cases of the framework.
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4. The weighting function can be chosen independent of the cost function.

5. A rigorous stability analysis of the schemes is performed to maximize the time step ∆t while guaran-
teeing the stability of discretization.

The organization of the paper is as follows. In Section 2 we present a generalized framework to derive
central optimized compact schemes. We perform stability analysis of the schemes for semi-discrete and fully
discrete case in Section 3. In Section 4 we discuss a few special cases of the framework. Numerical results
obtained using the optimized schemes derived in this paper are presented in Section 5. Conclusions of this
study are discussed in Section 6. Appendices at the end of the paper provide supplementary information.

2 Formulation of the unified framework

A generalization of Eq.(1) which is a Padé approximation of dth spatial derivative, ∂df(x)
∂xd , with equal LHS

and RHS stencil sizes is given as:

M∑

m=−M

bmf
(d)
i+m =

1

(∆x)d

M∑

m=−M

amfi+m + O(∆xp+1), (2)

where fi := f(xi), f
(d)
i := ∂df

∂xd

∣
∣
∣
x=xi

, M > 0, and N := 2M +1 is a positive integer which denotes the stencil

size. Note that index m = 0 corresponds to the ith grid point at which derivative is to be approximated.
For convenience and clarity of discussion, we denote (p + 1)th order accurate optimized compact finite

difference schemes obtained using Eq.(2) as OM
M (p+1). The superscript M denotes the range of m (−M to

M) on the RHS of Eq.(2), and the subscript M is for the range of m on the LHS of Eq.(2). For example, we
denote 4th order accurate optimized scheme obtained using M = 3 by O

3
3(4). Schemes derived by standard

method of matching coefficients without any optimization, such as presented in [2], are denoted by S
M
M (·).

Using Taylor series expansion, we get

fi+m = fi + f ′
i m∆x+ · · ·+ f

(d)
i

(m∆x)d

d!
+ · · ·+ f

(d+r)
i

(m∆x)(d+r)

(d+ r)!
+ · · · ,

and

f
(d)
i+m = f

(d)
i + f

(d+1)
i (m∆x) + · · ·+ f

(d+r)
i

(m∆x)r

r!
+ · · · .

Substituting them in Eq.(2), and matching coefficients we get the following linear constraints in am and bm,

∑

m

ammj = 0, for j = 0, · · · , d− 1;

∑

m

(
md+r

(d+ r)!
am − mr

r!
bm

)

= 0, for r = 0, · · · , p.

We use the definition 00 = 1 for the equations above. For a more compact representation of the formu-
lation, let m ∈ {−M, · · · ,M} for periodic domains. Let us define vectors ad ∈ RN and bd ∈ RN as1

ad :=
[
a−M a−M+1 · · · aM−1 aM

]T
,

bd :=
[
b−M b−M+1 · · · bM−1 bM

]T
.

1R denotes the set of all real numbers and C denotes the set of all complex numbers.

3



Let us also define a vector

m :=
[
−M −M + 1 · · · M − 1 M

]T
.

We can then write the above linear constraints in terms of ad and bd as

aTd Xd − bT
d Yd = 01×(d+p+1) (3)

where 0m×n ∈ Rm×n denotes a zero-matrix. The matrices Xd ∈ RN×(d+p+1), Yd ∈ RN×(d+p+1) are defined
as

Xd :=
[

1N m · · · md−1 md

d! · · · md+p

(d+p)!

]

, (4)

Yd :=
[

0N×d 1N m · · · mp

p!

]

. (5)

where 1N ∈ RN denotes a vector whose all elements are unity, and the exponents of m are element wise.
Eq.(3) represents (d + p + 1) constraints on 2(2M + 1) variables. When the number of constraints is less
than the number of variables, the system of linear equations can not be solved uniquely. In other words, the
system has extra degrees of freedom which can be used to calculate a set of variables which minimizes a well
defined cost function. We make use of this freedom to reduce the spectral error.

To study the spectral behavior of finite difference schemes at different wavenumbers, it is customary to
work in the wavenumber space. Therefore, we consider a discrete Fourier mode as follows

f(x) = f̂ ejkx

where, j :=
√
−1, and f̂ is the Fourier coefficient of the mode corresponding to wavenumber k. Then the

analytical dth derivative is

f (d)(x) = (jk)df(x) (6)

Throughout the paper, we use the notation f̃(·) to denote the approximation of f(·). Therefore, the approx-
imated dth derivative is denoted by f̃ (d)(x), i.e. f̃ (d)(x) ≈ f (d)(x). The finite difference approximation of
the dth derivative follows from Eq.(2) as

(
∑

m

bmejkm∆x

)

f̃
(d)
i =

1

(∆x)d

(
∑

m

amejkm∆x

)

fi.

Let us define the normalized wavenumber as η := k∆x, η ∈ [0, π]. Then the previous equation can be written
in terms of η as

(

CT (η) + jST (η)

)

bdf̃
(d)
i =

1

(∆x)d

(

CT (η) + jST (η)

)

adfi,

or,

f̃
(d)
i =

1

(∆x)d

(

CT (η) + jST (η)

)

ad

(

CT (η) + jST (η)

)

bd

fi, (7)

where
C(η) :=

[
cos(−Mη) · · · cos(−η) 1 cos η · · · cos(Mη)

]T
,

S(η) :=
[
sin(−Mη) · · · sin(−η) 0 sin(η) · · · sin(Mη)

]T
.

(8)
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Comparison of Eq.(7) with Eq.(6) leads us to define the spectral error e(η) at wavenumber η = k∆x as

e(η) :=

(

CT (η) + jST (η)

)

ad

(

CT (η) + jST (η)

)

bd

− (jη)d. (9)

Let us denote the first term on RHS of Eq.(9) by

(
CT (η)+jST (η)

)
ad

(
CT (η)+jST (η)

)
bd

=: (jη̃)d, where η̃ is the modified

wavenumber. Therefore, the spectral error can also be written as

e(η) = (jη̃)d − (jη)d = jd(η̃d − ηd). (10)

We compare η̃d with ηd to show the spectral accuracy of the optimized schemes in the sections to follow.
The weighted L2 norm of a function e(η), for η ∈ [0, π], is defined as

‖e(η)‖2L2
:=

∫ π

0

γ(η)ē(η)e(η)dη =: 〈ē(η)e(η)〉 . (11)

Where, ē(η) is the complex conjugate of e(η), and γ(η) ≥ 0 is a known weighting function. The objective

here is to determine ad and bd, which minimize ‖e(η)‖2
L2
, subject to order accuracy constraint, i.e.

min
ad,bd∈RN

‖e(η)‖2L2
, subject to Eq.(3).

Before proceeding further, we present a definition and a lemma to be used in the subsequent discussion.

Definition 1. A given vector x ∈ Rn, is said to be symmetric if Jx = x, or skew-symmetric if Jx = −x,

where J is an anti-diagonal identity matrix of dimension n.

Note that, J is an operator which reverses the order of elements in the vector. For example, let,

J =





0 0 1
0 1 0
1 0 0



 ; x =





1
2
3



 , then, Jx =





3
2
1



 ; and xTJ =
[
3 2 1

]
.

It can be easily verified that, C(η) and S(η) defined in Eq.(8) are respectively symmetric and skew-symmetric
vectors, i.e., they satisfy

CT (η)J = CT (η) and ST (η)J = −ST (η). (12)

Also note that, for any x ∈ Rn, we can define a symmetric vector xs := (x + Jx)/2 and a skew-symmetric
vector xw := (x− Jx)/2 such that x = xs + xw.

Lemma 1. Let f(x) : [q1, q2] → C and g(x) : [q1, q2] → C, g(x) 6= 0, where q1 ≤ q2 ∈ R. If ḡ(x)g(x) ≥ ε2 for

some ε > 0, then the following is true
∥
∥
∥
∥

f(x)

g(x)

∥
∥
∥
∥

2

L2

≤
‖f(x)‖2

L2

ε2
.

Proof. By assumption, ḡ(x)g(x) ≥ ε2. It follows immediately that,

1

ḡ(x)g(x)
≤ 1

ε2
=⇒ f̄(x)f(x)

ḡ(x)g(x)
≤ f̄(x)f(x)

ε2

=⇒
∫ q2

q1

γ(x)
f̄(x)f(x)

ḡ(x)g(x)
dx ≤

∫ q2

q1

γ(x)
f̄(x)f(x)

ε2
dx,

for weight function γ(x) ≥ 0. By using the definition of L2 norm from Eq.(11), we get the desired result.

Now, we consider the minimization problem for even and odd derivatives separately, and solve it analyt-
ically.
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2.1 Even derivatives

For even d, i.e. d := 2q, for q = {1, 2, 3, · · · }, the spectral error from Eq.(9) is

e(η) =

(
CT (η)ad − (−1)qηdCT (η)bd

)
+ j

(
ST (η)ad − (−1)qηdST (η)bd

)

(CT (η) + jST (η))bd
.

Therefore,

‖e(η)‖
L2

=

∥
∥
∥
∥
∥

(
CT (η)ad − (−1)qηdCT (η)bd

)
+ j

(
ST (η)ad − (−1)qηdST (η)bd

)

(CT (η) + jST (η))bd

∥
∥
∥
∥
∥
L2

.

Minimization of ‖e(η)‖2
L2

is not a convex problem. Therefore, we use Lemma 1 to relax the problem and find

an upper bound on ‖e(η)‖2
L2
. But, we have to ensure that ḡ(η)g(η) ≥ ε2, where g(η) := (CT (η)+ jST (η))bd.

Note that,

ḡ(η)g(η) = (CT (η)bd)
2 + (ST (η)bd)

2

= (CT (η)bd,s +CT (η)bd,w)
2 + (ST (η)bd,s + ST (η)bd,w)

2,

where bd is decomposed into symmetric and skew-symmetric parts as per Definition 1. Using the fact that
any symmetric and skew-symmetric vectors are orthogonal to each other, we get,

ḡ(η)g(η) = (CT (η)bd,s)
2 + (ST (η)bd,w)

2.

RHS of the previous equation is sum of squares and it can be zero only if each term is zero individually. If
we ensure that at least one term is non-zero, then we can use Lemma 1. Consider the first term,

(CT (η)bd,s)
2 = bT

d,sC(η)CT (η)bd,s.

This term can be zero only if either bd,s = 0, or bd,s 6= 0 and bd,s ∈ null(C(η)CT (η)). Because of the
special structure of C(η)CT (η), it can be easily verified that no symmetric vector lies in its null space. This
eliminates the second possibility. And we eliminate the first possibility by setting the central element of bd,
i.e. b0 to be a non-zero real constant κ0, i.e.

b0 = κ0 6= 0.

This also ensures that, for such a κ0 6= 0, there exists an ε > 0, such that (CT (η)bd,s)
2 ≥ ε2. Consequently,

ḡ(η)g(η) = (CT (η)bd)
2 + (ST (η)bd)

2 ≥ ε2, if b0 = κ0 6= 0.

Now we can use Lemma 1 to get

‖e(η)‖2
L2

=

∥
∥
∥
∥
∥

(
CT (η)ad − (−1)qηdCT (η)bd

)
+ j

(
ST (η)ad − (−1)qηdST (η)bd

)

(CT (η) + jST (η))bd

∥
∥
∥
∥
∥

2

L2

≤
∥
∥
(
CT (η)ad − (−1)qηdCT (η)bd

)
+ j

(
ST (η)ad − (−1)qηdST (η)bd

)∥
∥
2

L2

ε2
. (13)

We can minimize an upper bound on ‖e(η)‖2
L2

by minimizing the numerator of the previous inequality
since ε is a constant. The actual values of ε and κ0 are immaterial. The constant κ0 can be chosen arbitrarily.
In fact it can be verified empirically that numerical values of optimized ad and bd normalized by κ0 are
independent of its prescribed value. For simplicity, we select κ0 and hence b0 to be unity, as in [2]. This also
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provides an intrinsic scaling for coefficients, where all coefficients are scaled with respect to b0. Therefore, a
constraint on b0 is imposed as

b0 = 1; or, δTN (M + 1)bd = 1, (14)

where δN (i) ∈ RN is a unit vector whose ith entry is 1.
We therefore minimize

∥
∥
(
CT (η)ad − (−1)qηdCT (η)bd

)
+ j

(
ST (η)ad − (−1)qηdST (η)bd

)∥
∥
2

L2

=
〈(

CT (η)ad − (−1)qηdCT (η)bd

)2
+
(
ST (η)ad − (−1)qηdST (η)bd

)2
〉

,

=

(
ad
bd

)T
〈[

C(η)
−(−1)qηdC(η)

] [
C(η)

−(−1)qηdC(η)

]T

+

[
S(η)

−(−1)qηdS(η)

] [
S(η)

−(−1)qηdS(η)

]T
〉

︸ ︷︷ ︸

=:Qd

(
ad
bd

)

,

=

(
ad
bd

)T

Qd

(
ad
bd

)

.

The optimization problem is therefore

min
ad,bd∈RN

(
ad
bd

)T

Qd

(
ad
bd

)

,

subject to aTd Xd − bT
d Yd = 01×(d+p+1),

δTN (M + 1)bd = 1.







(15)

The equality constraints can also be written as

[
XT

d −YT
d

01×N δTN (M + 1)

](
ad
bd

)

=

[
0(d+p+1)×1

1

]

. (16)

This is a quadratic programming problem with equality constraints. The solution to this problem can be
found in many standard textbooks such as [13]. The analytical solution is given by the following Karush-
Kuhn-Tucker (KKT) condition







2Qd

(
XT

d −YT
d

01×N δTN (M + 1)

)T

(
XT

d −YT
d

01×N δTN (M + 1)

)

0(d+p+2)×(d+p+2)











a∗d
b∗
d

µ∗
d



 =





02N×1

0(d+p+1)×1

1



 , (17)

where µd is the Lagrange multiplier associated with Eq.(16), and the matrix on LHS is called the KKT
matrix. Assuming the inverse exists, the optimal solution to Eq.(15) is given by





a∗d
b∗
d

µ∗
d



 =







2Qd

(
XT

d −YT
d

01×N δTN (M + 1)

)T

(
XT

d −YT
d

01×N δTN (M + 1)

)

0(d+p+2)×(d+p+2)







−1




02N×1

0(d+p+1)×1

1



 . (18)

Although a∗d and b∗
d are optimal for the optimization problem in Eq.(15), we note that they only minimize

an upper bound on the ‖e(η)‖2
L2

given by Eq.(13) instead of the ‖e(η)‖2
L2

itself. Hereafter, we refer to a∗d
and b∗

d as the optimized coefficients.
The optimized coefficients a∗d and b∗

d for even derivatives turn out to be symmetric, and the imaginary
component of the spectral error vanishes. This is a well-known feature of the central difference schemes that is
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provable via different approaches. For the sake of completeness, one such approach providing the analytical
justification for symmetric coefficients from the optimization perspective considering the cost function in
Eq.(15) is given in Appendix A.

Fig.1 shows the solution of the optimization problem Eq.(15) for approximating second derivative with
fourth order accuracy, for various stencil sizes. As discussed above, both a∗d and b∗

d are symmetric. Numerical
values of the coefficients are tabulated in Table 1 of Appendix B. Note that, for M = 1, there is no degree of
freedom in the system for optimization. Consequently, for this case we recover the non-optimized standard
scheme. In other words, O1

1(4) is identical to the non-optimized S
1
1(4).

Figure 1: Optimized stencil coefficients for O
M
M (4) approximating the second derivative. γ(η) = 1 for

η ∈ [0, 3], and γ(η) = 0 otherwise.

For a specified value of M , we can derive standard schemes of order 4M , i.e. S
M
M (4M), to approximate

the first and second derivatives. Therefore, as M is increased, order of accuracy of the schemes improves,
and one may also expect improved spectral accuracy. However, these standard schemes are not optimized to
reduce the spectral error. On the other hand, in case of the optimized schemes, we can achieve even better
spectral accuracy by increasing M and holding the order of accuracy constant. A similar comparison of the
convergence of spectral error (in log scale) for S

M
M (4M) (magenta) and O

M
M (4) (blue) is shown in Fig.2.

Clearly, the optimized schemes present better convergence of the spectral error as M is increased. In other
words, for a fixed computational cost (characterized by M), the optimized schemes provide better spectral
accuracy than the standard schemes.

The L2 norm of e(η) provides only a cumulative measure of the spectral error across all wavenumbers.
Nature of the spectral error can be further analyzed as shown in Fig.3. The first row of Fig.3 shows the
comparison of η̃2 (defined in Eq.(10)) for different values of M , with η2 which is calculated analytically
(black dashed). In all subplots, blue and magenta lines correspond to O

M
M (4) and S

M
M (4M) respectively. It

is evident that, η̃2 for the optimized schemes is closer to analytical η2 than the standard schemes, especially
in the higher wavenumber region.

Absolute values of the real and imaginary components of e(η) are shown in the bottom two rows of
Fig.3. For a better visualization, |<[e(η)]| is plotted in log scale. The standard schemes show lower errors in
lower wavenumber region, but these errors increase quickly with the wavenumber. In contrast, the optimized
schemes show almost similar accuracy across the wavenumber space due to the weighting function γ(η) = 1
that weights all wavenumbers equally, and provide a better resolving efficiency. Note that the spectral error
for the optimized schemes is similar to the standard schemes for η > 3 since it lies outside the optimization
bandwidth of the optimized schemes. As expected, the imaginary component =[e(η)] is zero for the second
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Figure 2: Convergence of L2 norm of the spectral error for OM
M (4) (blue) and S

M
M (4M) (magenta) approxi-

mating the second derivative. γ(η) = 1 for η ∈ [0, 3], and γ(η) = 0 otherwise.

derivative.

Figure 3: Comparison of η̃2, and real and imaginary components of spectral error for O
M
M (4) (blue) and

S
M
M (4M) (magenta) approximating the second derivative. γ(η) = 1 for η ∈ [0, 3], and γ(η) = 0 otherwise.

Analytical η2 is shown by the black-dashed line.

2.2 Odd derivatives

For odd d, i.e. d := 2q + 1, for q = {0, 1, 2, · · · }, the spectral error from Eq.(9) is

e(η) =

(
CT (η)ad + (−1)qηdST (η)bd

)
+ j

(
ST (η)ad − (−1)qηdCT (η)bd

)

(CT (η) + jST (η))bd
.

9



Using arguments similar to the case for even d, here we minimize

∥
∥
(
CT (η)ad + (−1)qηdST (η)bd

)
+ j

(
ST (η)ad − (−1)qηdCT (η)bd

)∥
∥
2

L2
,

=

(
ad
bd

)T

Qd

(
ad
bd

)

,

where, Qd =

〈[
C(η)

(−1)qηdS(η)

] [
C(η)

(−1)qηdS(η)

]T

+

[
S(η)

−(−1)qηdC(η)

] [
S(η)

−(−1)qηdC(η)

]T
〉

. (19)

The optimization problem is the same as Eq.(15), with Qd defined by Eq.(19), and the analytical solution
is given by Eq.(18).

As discussed in Appendix A, a well-known result for odd derivatives shows that the optimized coefficients
a∗d and b∗

d are respectively skew-symmetric and symmetric, and the real component of the spectral error
becomes zero.

Fig.4 shows the solution of the optimization problem Eq.(15) for approximating the first derivative with
fourth order accuracy, for various stencil sizes. Numerical values of the coefficients are tabulated in Table
2. As in the case of second derivative, here also we recover the standard non-optimized scheme, S1

1(4), for
M = 1.

Figure 4: Optimized stencil coefficients for OM
M (4) approximating the first derivative. γ(η) = 1 for η ∈ [0, 3],

and γ(η) = 0 otherwise.

Again, as in the case of second derivative, similar observations can be made for the spectral accuracy
of optimized schemes approximating the first derivative. Fig.5 and Fig.6 show that the optimized schemes
provide better resolving efficiency than the standard schemes for a fixed computational cost.

Quadratic programs such as Eq.(15) are known to suffer from the rank deficient KKT matrix, especially
when dimension of the problem is large. Therefore, solving Eq.(17) may not be trivial for large M when
the KKT matrix is not invertible. Numerous works exist in the literature which discuss special algorithms
to solve large quadratic programs. For instance, see [14] and the references therein. However, a detailed
discussion on such algorithms is out of the scope of this paper. We observed empirically that the KKT
matrix in Eq.(18) becomes rank deficient for M ≥ 6 and η ∈ [0, 3]. We also observed that the minimum
M at which the KKT matrix becomes rank deficient depends on the range of η. However, the schemes of
practical relevance with smaller M , such as tabulated in Appendix B, can be computed easily with any

10



Figure 5: Convergence of L2 norm of the spectral error for OM
M (4) (blue) and S

M
M (4M) (magenta) approxi-

mating the first derivative. γ(η) = 1 for η ∈ [0, 3], and γ(η) = 0 otherwise.

Figure 6: Comparison of η̃, and real and imaginary components of spectral error for O
M
M (4) (blue) and

S
M
M (4M) (magenta) approximating the first derivative. γ(η) = 1 for η ∈ [0, 3], and γ(η) = 0 otherwise.

Analytical η is shown by the black-dashed line.

standard linear algebra package on a personal computer. The explicit schemes discussed in Section 4.2 do
not suffer from this problem.

Next, we consider the effect of γ(η) on spectral accuracy of the optimized schemes.

2.3 Effect of γ(η)

Recall that we used weighting function γ(η) ≥ 0 when we defined L2-norm of error in Eq.(11). In the optimal
solutions presented so far, we have used γ(η) = 1 for η ∈ [0, 3] and γ(η) = 0 otherwise, i.e. equal weight was

11



given to all wavenumbers within [0, 3]. We can use γ(η) to weight some preferred wavenumbers more than
others, and the choice is typically motivated by the physics involved in the PDE. This essentially means that,
we can keep the error lower at preferred wavenumbers at the expense of higher errors at other wavenumbers
that are not vital to the physics of problem.

To study the effect of weighting function on spectral behavior of the optimized schemes, let us consider
a candidate function γ(η) = exp(αη) ≥ 0 where α ∈ R. By choosing different values of α, one can assign
different weights to different wavenumbers. For example, α < 0 weights lower wavenumbers more than the
higher ones, α = 0 i.e., γ(η) = 1 weights all wavenumbers equally, and α > 0 weights higher wavenumbers
more that the lower ones. This spectral behavior of optimized schemes is illustrated in Fig.7.

Figure 7: Spectral error for O
3
3(4) approximating the second derivative for different γ(η) = exp(αη) for

η ∈ [0, 3], and γ(η) = 0 otherwise.

The choice of exponential for weighting function is purely for the purpose of illustration in Fig.7. One
can also weight wavenumbers only over a finite number of intervals, e.g., γ(η) = sin(η) for η ∈ [0, 1], γ(η) = 1
for η ∈ [2, 3], and γ(η) = 0 otherwise. From this discussion it is evident that, the flexibility of choosing γ(η)
can be leveraged to improve the accuracy of solution at wavenumbers that are relevant to the physics of
problem.

The unified framework presented in this section allows us to derive central compact schemes with specified
order of accuracy. The schemes are also optimized using γ(η) to have desired spectral accuracy over the
wavenumber space. The third important aspect of discretization, in addition to order of accuracy and
spectral error, is the temporal stability, which is discussed next.

3 Stability

Let us consider the general linear partial differential equation

∂f

∂t
=

D∑

d=1

βd
∂df

∂dx
. (20)

Suppose the spatial periodic domain is discretized in Np grid points. The optimized coefficients for the ith

grid point are derived using Eq.(2). Since i is arbitrary, it is obvious that the optimized coefficients must be
identical for all i in the domain. Approximation of the dth derivative at all grid points using Eq.(2) results
in a cyclic linear system of equations [2]. These linear equations can be written compactly in the following

12



matrix form

BΦ
d F̃

(d) =
1

(∆x)d
AΦ

d F, (21)

where, F is the vector of known function values at the grid points, and F̃(d) is the vector of approximated
dth derivatives at the respective grid points, i.e.

F :=
[
f1 f2 · · · fNp

]T
, and F̃(d) :=

[

f̃
(d)
1 f̃

(d)
2 · · · f̃

(d)
Np

]T

.

The matricesAΦ
d , B

Φ
d ∈ RNp×Np are sparse circulant matrices whose rows contain cyclically shifted optimized

coefficients a∗d and b∗
d. The superscript Φ indicates that the matrices are circulant, and we use this notation

for the consistency with [1].
Therefore, finite-difference approximation for the dth derivative over the entire domain follows from

Eq.(21) as

F̃(d) =
1

(∆x)d
(BΦ

d )
−1AΦ

d F. (22)

subject to the existence of the inverse. For all the schemes presented in this paper, BΦ
d turns out to be

invertible.

3.1 Stability of semi-discrete scheme

Similar to the stability analysis presented in [1] for explicit spatial schemes, herein we generalize it for
implicit schemes. When the Eq.(20) is integrated temporally, the solution suffers from approximation errors
even if the initial condition is exactly known because we approximate the spatial derivatives using Eq.(22).
Therefore, we denote the approximate solution at time t, at the grid points as a vector F̃(t). Using spatial
discretization Eq.(22), we can convert PDE Eq.(20) into an ODE which is continuous in time as follows

˙̃
F(t) =

( D∑

d=1

1

(∆x)d
βd(B

Φ
d )

−1AΦ
d

)

︸ ︷︷ ︸

Λ:=

F̃(t) = ΛF̃(t), (23)

with solution

F̃(t) = exp(tΛ)F0, (24)

where F0 is the given initial condition. For a single Fourier mode, the approximate dth derivative can be

expressed in terms of the modified wavenumber as (jη̃)d
ˆ̃
f , where

ˆ̃
f is the Fourier coefficient calculated from

the approximate solution. Then the original PDE becomes,

d
ˆ̃
f

dt
=

D∑

d=1

βd(jη̃)
d ˆ̃f.

The solution is given by

ˆ̃
f

f̂0
= exp

[
D∑

d=1

βd(jη̃)
dt

]

,

where f̂0 is the initial condition at t = 0. If the solution to the original PDE is non-increasing in time, then
the discretization is considered stable if no Fourier mode grows in time. This is satisfied if

<
{

D∑

d=1

βd(jη̃)
d

}

≤ 0. (25)
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From Eq.(9), Eq.(57), and Eq.(59)

(jη̃)d =
CT (η)ad
CT (η)bd

, for even d, and

(jη̃)d = j

(
ST (η)ad
CT (η)bd

)

, for odd d.

Therefore,

D∑

d=1

βd(jη̃)
d = jβ1

ST (η)a1
CT (η)b1

+ β2
CT (η)a2
CT (η)b2

+ jβ3
ST (η)a3
CT (η)b3

+ β4
CT (η)a4
CT (η)b4

...

= (β2
CT (η)a2
CT (η)b2

+ β4
CT (η)a4
CT (η)b4

+ ...) + j(β1
ST (η)a1
CT (η)b1

+ β3
ST (η)a3
CT (η)b3

+ ...)

Then Eq.(25) implies,

<
{

D∑

d=1

βd(jη̃)
d

}

= β2
CT (η)a2
CT (η)b2

+ β4
CT (η)a4
CT (η)b4

+ ... ≤ 0. (26)

For even d, i.e. d = 2q, the optimization of spectral error guarantees,

(jη̃)d = (−1)q η̃2q =
CT (η)a2q
CT (η)b2q

.

Therefore, the sign of
CT (η)a2q

CT (η)b2q
changes alternatively with q as follows,

for q = 1,
CT (η)a2
CT (η)b2

= −η̃2 ≤ 0,

for q = 2,
CT (η)a4
CT (η)b4

= η̃4 ≥ 0,

for q = 3,
CT (η)a6
CT (η)b6

= −η̃6 ≤ 0,

and so on. If coefficients βd for d = 2q satisfy β2q = (−1)q+1ζ22q for ζ2q ∈ R, then Eq.(26) is implicitly
satisfied. In general, if

−β2η̃
2 + β4η̃

4 − β6η̃
6 + ... ≤ 0, (27)

then the overall discretization is stable.

3.2 Stability of fully discretized scheme

After temporal discretization of Eq.(23) using a given temporal scheme, we get a fully discretized system.
We analyze the stability of such system in this section. Our goal is to find maximum ∆t for which the overall
discretization is stable. We begin with the forward Euler method.

3.2.1 Forward Euler method

Using forward Euler method for ∂f/∂t and the optimized finite difference approximation for ∂df/∂xd, from
Eq.(23) we get the following
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F̃n+1 =

(

INp
+

D∑

d=1

∆t

(∆x)d
βd(B

Φ
d )

−1AΦ
d

)

F̃n. (28)

where F̃n is the approximated function at nth time step, and INp
is an identity matrix of dimension Np.

This is a linear discrete-time system in F̃, where the system matrix is dependent on the stencil coefficients

AΦ
d and BΦ

d . For stability, magnitudes of the eigenvalues of
(

INp
+∆t

∑

d
1

(∆x)d
βd(B

Φ
d )

−1AΦ
d

)

should be

less than one, which can be achieved by constraining the 2-norm as

∥
∥
∥
∥
∥
INp

+∆t

D∑

d=1

1

(∆x)d
βd(B

Φ
d )

−1AΦ
d

∥
∥
∥
∥
∥
2

≤ 1. (29)

We use the analytical solution for AΦ
d and BΦ

d from spectral error optimization, and maximize ∆t subject to
the stability constraint Eq.(29). The reader is referred to [1] for the solution of this maximization problem
using software packages such as cvx [15]. Solving optimization problem by this approach may become
difficult if temporal schemes other than forward Euler method are used. Therefore, we present an approach
to determine maximum ∆t for generalized temporal schemes in the following section.

3.2.2 Generalized temporal scheme

Runge-Kutta (RK) methods are widely used for temporal discretization of ODEs to attain higher order
of accuracy. Many temporal schemes can be expressed as special cases of implicit RK method, e.g., see
Appendix C for different temporal schemes written in Butcher tableau [16] form of RK methods. Thus,
herein, we consider implicit RK method as a generalized temporal scheme to determine the maximum ∆t
which guarantees the stability. An implicit s-stage RK scheme with the following Butcher tableau

c A

bT :=

c1 a11 a12 . . . a1s
c2 a21 a22 . . . a2s
...

...
...

. . .
...

cs as1 as2 . . . ass
b1 b2 . . . bs

(30)

is given by

f̃n+1 = f̃n +∆t

s∑

i=1

biki, (31)

ki =
˙̃
f

(

tn + ci∆t, f̃n +∆t

s∑

j=1

aijkj

)

,

where, f̃n is the approximate value of function f(t) at nth time step and
˙̃
f(·) is the approximate time

derivative of f(t). For a scalar equation such as ḟ = λf , f̃n+1 can be written in terms of the stability

function of the RK scheme r(z), z ∈ C, as [16]

f̃n+1 = r(λ∆t)f̃n, (32)

where, r(z) = 1 + zbT (Is − zA)−11s =
det(Is + z(1sb

T −A))

det(Is − zA)
,
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det(·) denotes the determinant of the matrix. Thus, r(z) is a polynomial-over-polynomial function of z. The
sequence formed by Eq.(32) is bounded iff |r(z)| ≤ 1, which is the stability condition for the RK scheme.
The equality |r(z)| = 1 defines a closed stability curve in the complex plane. Generally, for the explicit RK
schemes, area enclosed by the stability curve defines the stability region. While in the case of implicit RK
schemes, stability region may lie either inside or outside the closed curve. If stability curve is the imaginary
axis itself, then the scheme is stable for all z which lie in the left half of the complex plane. Note that,
∆t > 0 is a real number while λ can be complex, so that z = λ∆t is complex. The timestep ∆t just scales
the radius of λ while keeping the argument same in the complex plane. We are interested in finding the
maximum scaling ∆t for which the product λ∆t lies in the stability region.

As in the forward Euler case, here also we assume that AΦ
d and BΦ

d are determined analytically and
hence Λ is known. Now, let us consider multi-dimensional semi-discrete system defined by Eq.(23). We
reduce this Np-dimensional system into Np scalar decoupled systems using the similarity transformation.
Let D be a diagonal matrix with eigenvalues of the Λ as its diagonal elements and M be the modal matrix
with eigenvectors of Λ as its columns, such that D = M−1ΛM. Let us define the transformation L := MF̃.
Then Eq.(23) can be written as

ML̇ = ΛML =⇒ L̇ = M−1ΛML = DL. (33)

Since D is diagonal, Eq.(33) represents Np scalar decoupled systems as follows

l̇i = λili, i = 1 . . . Np,

where λi, are Np eigenvalues of Λ. The ith scalar system can be fully discretized using the RK scheme, and
from Eq.(32) it follows that

ln+1
i = r(λi∆t)lni , i = 1 . . . Np.

For overall stability of Eq.(33), it is required that the products λi∆t lie within stability region of the RK
scheme. Thus, for known λi and r(z), the maximum ∆t can be calculated numerically to guarantee the
stability of the system.

The stability curves for different RK schemes tabulated in Appendix C are shown in Fig.8. The asterisks
show the eigenvalues of Λ obtained for O

4
4(4), β1 = −0.1, β2 = 0.2, and Np = 31. In subplots (a), (b),

and (c), the area enclosed by the curves defines the stability region. Therefore, maximum allowable ∆t is
determined by ensuring that the eigenvalues λi after scaling, i.e. the products λi∆t lie within the closed
curves. On the other hand, in subplot (d), the region outside the curve defines the stability region and all
eigenvalues are already in that region. Therefore, this scheme is stable for all ∆t > 0. If we increase the
number of grid points, or equivalently decrease ∆x, the magnitude of eigenvalues of Λ will increase as ∆xd

appears in the denominator of Eq.(23). Consequently, the stability limit or the maximum allowable ∆t will
decrease. The dependence of ∆t on ∆x is also affected by the PDE coefficients βd. Therefore, for linear
PDEs, the stability is often discussed in terms of a normalized parameter, namely, Courant-Friedrichs-Lewy
(CFL) number, which is discussed next.

The CFL number with respect to dth derivative is defined as rd := |βd|∆t/∆xd. By varying ∆x and
calculating the corresponding maximum ∆t, we can calculate and plot CFL numbers r1 and r2 for the
advection-diffusion equation (see Eq.(48)). A similar plot obtained for the optimized schemes of different
stencil sizes for forward Euler and ERK4 method is shown in Fig.9. M = 1 (blue) corresponds to the
standard scheme S

1
1(4), and M = 2 onwards correspond to the optimized schemes, O

M
M (4). There is a

drastic reduction in stability region from M = 1 to M = 2. As M is increased further, the stability region
decreases.

We next consider the relationship between λi and the derivatives in a PDE. For even derivatives, both a∗d
and b∗

d are symmetric. Consequently, both AΦ
d and BΦ

d are real symmetric circulant matrices. Therefore, if
a PDE consists of only even derivatives, then Λ defined in Eq.(23) is also symmetric and hence all λi are real.
Real parts of λi cause only amplitude decay (diffusion) or amplification but phase of the solution remains
constant. On the other hand, for odd derivatives, a∗d is skew-symmetric and b∗

d is symmetric. Therefore,
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z
]

<[z](a) (b) (c) (d)

Figure 8: Closed curve shows stability regions for different RK schemes. Asterisks are eigenvalues of Λ for
M = 4, β = [−0.1, 0.2], Np = 31. (a), (b) and (c): Inside the curve is stable. (d): Outside the curve is
stable.

Figure 9: r2 vs r1 for forward Euler and ERK4 method. First and second derivatives approximated using
O

M
M (4), γ(η) = 1 for η ∈ [0, 3], and γ(η) = 0 otherwise.

circulant matrices AΦ
d and BΦ

d become skew-symmetric and symmetric respectively, which in turn make
Λ a skew-symmetric matrix. Consequently, if a PDE consists of only odd derivatives, then all λi are pure
imaginary which affect only phase of the solution preserving the magnitude of amplitudes, leading to pure
dispersion. It is clear that even derivatives contribute to the real part of λi and hence diffusion of the
numerical solution, and odd derivatives cause dispersion by means of the imaginary part of λi. However,
this is true only for central schemes. It is shown in the subsequent section that in the case of biased schemes,
both even and odd derivatives individually contribute to real and imaginary components of λi.

In what follows next, we extend the stability analysis discussed in this section, and framework presented
in Section 2 to derive and analyze special types of optimized schemes.
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4 Special cases of the framework

We generalize Eq.(2) further as

MB
R∑

m=−MB
L

bmf
(d)
i+m =

1

(∆x)d

MA
R∑

m=−MA
L

amfi+m + O(∆xp+1), (34)

where, each one of MB
L ,MB

R ,MA
L and MA

R can be chosen independently. In Section 2, we have presented
a general framework to derive optimized implicit finite difference approximations. These approximations
are obtained for equal LHS and RHS stencil sizes, i.e. MB

L = MB
R = MA

L = MA
R = M . In this section,

we show that other types of schemes, namely, compact schemes with unequal LHS and RHS stencil sizes,
spatially explicit, and biased finite difference approximations can be derived as special cases of the framework
presented in Section 2. These special cases are derived by imposing additional constraints on the coefficients
ad and bd while solving the minimization problem defined in Eq.(15).

In the most generalized form, we denote (p+1)th order accurate optimized schemes derived using Eq.(34)

as O
MA

L ,MA
R

MB
L
,MB

R

(p + 1). For example, 5th order accurate optimized scheme obtained using MA
L = 1,MA

R =

2,MB
L = 3 and MB

R = 4 is denoted by O
1,2
3,4(5). See Fig.10 as an illustration of this. The ith grid point

at which derivative is to be approximated is shown by the green asterisk, and the neighboring grid points
are shown by black circles. Blue and red braces respectively show stencil points used in RHS and LHS of
Eq.(34).

M
A

L
= 1 M

A

R
= 2

M
B

L
= 3 M

B

R
= 4

i
th grid point

Figure 10: Illustration for the notation of optimized schemes in the most generalized form.

4.1 Central compact schemes with unequal LHS and RHS stencil sizes

In Eq.(2), indices of both am and bm vary from −M to M . We can also have different ranges of index m
for am and bm. Let MB

L = MB
R = MB and MA

L = MA
R = MA. i.e., Eq.(34) becomes,

MB

∑

m=−MB

bmf
(d)
i+m =

1

(∆x)d

MA

∑

m=−MA

amfi+m + O(∆xp+1), (35)

where MB 6= MA.
Continuing the use of the notation defined in Section 2, we refer to optimized schemes derived using

Eq.(35) as O
MA

MB (·). On the other hand, if a scheme is derived by the standard method of coefficient

matching without optimization, then it is referred to as S
MA

MB (·). When Eq.(1) is compared with Eq.(35),
we observe that MA = 3 and MB = 2 for Eq.(1). Therefore, pentadiagonal optimized schemes are denoted
by O

3
2(·), and pentadiagonal standard schemes are denoted by S

3
2(·).

The stencil size for the right side of Eq.(35) is defined as NA := 2MA + 1, and similarly the stencil size
for the left side is NB := 2MB + 1. Let us define augmented parameters as M̂ := max{MA,MB} and
N̂ := 2M̂ + 1.
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First, we consider the case MA > MB , and hence M̂ = MA. This O
MA

MB (·) scheme can be treated as

an O
MA

MA(·) scheme with augmented stencil size N̂ = NA = 2MA + 1, and an extra imposed constraint that
bm = 0 for m = {−MA,−MA + 1, · · · ,−(MB + 1),MB + 1,MB + 2, · · · ,MA}. In other words, we are
imposing a constraint that (NA − NB) elements of bd which are located symmetrically about the central
element, to be zero. Therefore, we can use the central difference framework presented in Section 2 with
M = MA and the following additional constraint


















δTn (1)

δTn (2)
...

δTn (M
A −MB)

δTn (M
A +MB + 2)

δTn (M
A +MB + 3)

...

δTn (N̂)


















︸ ︷︷ ︸

∆T :=

bd = 0(N̂−NB)×1, (36)

for n = N̂ , and as defined earlier, δn(i) ∈ Rn is a unit vector whose ith entry is 1. Therefore, the constraint
can be written as

[

0(N̂−NB)×N̂ ∆T
] [

ad
bd

]

= 0(N̂−NB)×1. (37)

The minimization problem defined in Eq.(15) is solved analytically using the KKT condition constructed by
incorporating the additional constraint Eq.(37). Then the optimal solution similar to Eq.(18) is given by





a∗d
b∗
d

µ∗
d



 = P







02N̂×1

0(d+p+1)×1

1
0(N̂−NB)×1






, (38)

where,

P =












2Qd





XT
d −YT

d

01×N̂ δT
N̂
(M̂ + 1)

0(N̂−NB)×N̂ ∆T





T





XT
d −YT

d

01×N̂ δT
N̂
(M̂ + 1)

0(N̂−NB)×N̂ ∆T



 0(N̂−NB+d+p+2)×(N̂−NB+d+p+2)












−1

.

In a similar manner, we can calculate optimized coefficients for the complementary case MA < MB by
setting (NB −NA) elements of ad to zero.

Note that by setting MA = 3 and MB = 2 in Eq.(35), we get the pentadiagonal compact schemes such
as presented in [2] and [3]. These frameworks restrict the stencil size and require that MA > MB . On the
other hand, the proposed framework is more general because MA and MB can be chosen independently.

In Fig.11, we show the comparison of spectral error ‖e(η)‖2
L2

for different optimized schemes O
MA

MB (4)

approximating the first and second derivatives. Let us consider the schemes O
1
2(4) and O

2
1(4) which are

located symmetrically about the diagonal dotted line, for d = 1. Although both the schemes utilize equal
number of grid points and hence the same number of degrees of freedom in the optimization, the scheme
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O
2
1(4) in the lower half of the plot presents smaller error than the O

1
2(4) (0.258 < 0.308). In fact, all the

schemes in lower half of the plot with MA > MB present smaller errors than their complementary schemes
with MA < MB located symmetrically in the upper half of the plot. A similar observation can be made for
d = 2 as well. Therefore, based on this data, we can say that adding more grid points on RHS of Eq.(35) is
more effective for improving the spectral accuracy than on the LHS.

Now lets consider the schemes O3
1(4), O

2
2(4), and O

1
3(4) all of which have the same number of degrees of

freedom in the optimization. We already discussed that, O3
1(4) performs better than O

1
3(4). However, note

that O2
2(4) presents the smallest spectral error among these three optimized schemes, and similar observation

can be made about other schemes as well. Therefore, we can say that among the family of optimized schemes
with equal number of degrees of freedom, the scheme with MA = MB (if exists) which lies on the dotted
line produces the smallest spectral error.

Figure 11: The spectral error ‖e(η)‖2
L2

(shown by numerical values) for different OMA

MB (4) schemes approxi-
mating the first and second derivatives. γ(η) = 1 for η ∈ [0, 3], and γ(η) = 0 otherwise.

Also, note that the constraint Eq.(36) sets bm = 0 symmetrically about the central element of bd.
Therefore, the discussion on (skew-)symmetry of the optimized coefficients in Appendix A, and the stability
analysis presented in Section 3 are valid for this special case.

4.2 Central spatially explicit schemes

A finite difference approximation is said to be spatially explicit if the coefficients bm in Eq.(2) are

bm =

{
1 if m = 0,
0 if m 6= 0.

i.e.,

f
(d)
i =

1

(∆x)d

MA

∑

m=−MA

amfi+m + O(∆xp+1). (39)

It is obvious that central approximations which are spatially explicit can be obtained by substituting MB = 0

in Eq.(35). Therefore, an optimized explicit central schemes is represented by O
MA

0 (·). Constraints Eq.(36)
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and Eq.(14) can be combined together as
















δTn (1)

δTn (2)
...

δTn (M
A + 1)
...

δTn (N̂ − 1)

δTn (N̂)
















︸ ︷︷ ︸

∆T :=

bd =















0
0
...
1
...
0
0















= δn(M
A + 1), (40)

for n = N̂ , where N̂ = 2MA + 1. Since ∆T in the above equation is an identity matrix, the constraint
reduces to

bd = δn(M
A + 1). (41)

Therefore, optimal solution can be found analytically as





a∗d
b∗
d

µ∗
d



 =







2Qd

(
XT

d −YT
d

0N̂×N̂ IN̂

)T

(
XT

d −YT
d

0N̂×N̂ IN̂

)

0(N̂+d+p+1)×(N̂+d+p+1)







−1




02N̂×1

0(d+p+1)×1

δN̂ (MA + 1)



 . (42)

The only difference between spatially implicit and explicit schemes is the structure of matrix BΦ
d . Since

in the case of explicit schemes bd is given by Eq.(40), BΦ
d becomes an identity matrix. Therefore stability

analysis discussed in Section 3 holds true for explicit schemes as well with the substitution BΦ
d = I in Eq.(22).

A similar framework exclusively for spatially explicit schemes has been presented in [1] and the optimized
coefficients calculated using this framework match exactly with the ones obtained using Eq.(42). In [1],
authors extensively discuss error characteristics and stability analysis for the optimized explicit schemes.

4.3 Biased schemes

In the discussion so far, we have assumed the domain to be periodic, which enables us to use central schemes
at all grid points in the domain. Central schemes can not be used if the domain is not periodic or there
are specified boundary conditions. This is because of the fact that there are unequal number of usable grid
points on either side of a point which lies near boundary of the domain. Thus, we have to use one-sided or
biased schemes near boundaries. A finite difference approximation is said to be biased if the number of grid
points used on the left and right side of a point at which derivative is calculated is not equal. For the sake of
discussion, in this special case we assume that MB

L = MA
L = ML and MB

R = MA
R = MR. Therefore, Eq.(34)

becomes

MR∑

m=−ML

bmf
(d)
i+m =

1

(∆x)d

MR∑

m=−ML

amfi+m + O(∆xp+1), (43)

Thus, actual or true stencil size is N̄ := ML+MR+1. The augmented parameters are M̂ := max{ML,MR}
and N̂ := 2M̂+1. Note that, a biased scheme is said to be backward finite difference if ML 6= 0 and MR = 0,
and forward finite difference if ML = 0 and MR 6= 0.

Let ML > MR, and hence M̂ = ML. We refer to this type of approximation as left-biased. This biased
scheme can be treated as a central scheme with augmented stencil size N̂ = 2ML +1, and an extra imposed
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constraint that the rightmost (N̂ − N̄) coefficients to be zero. Therefore, we can use the central difference
framework presented in Section 2 with M = ML and the following additional constraint








δTn (N̄ + 1)

δTn (N̄ + 2)
...

δTn (N̂)








︸ ︷︷ ︸

∆T :=

ad =








δTn (N̄ + 1)

δTn (N̄ + 2)
...

δTn (N̂)








︸ ︷︷ ︸

∆T :=

bd =








0
0
...
0







, (44)

for n = N̂ . Therefore, the constraint can be written as

[

∆T 0(N̂−N̄)×N̂

0(N̂−N̄)×N̂ ∆T

] [
ad
bd

]

= 02(N̂−N̄)×1. (45)

Now, we can write the analytical optimal solution for Eq.(15) subject to Eq.(45) as follows





a∗d
b∗
d

µ∗
d



 = P







02N̂×1

0(d+p+1)×1

1
02(N̂−N̄)×1






, (46)

where,

P =
















2Qd







XT
d −YT

d

01×N̂ δT
N̂
(M̂ + 1)

∆T 0(N̂−N̄)×N̂

0(N̂−N̄)×N̂ ∆T







T







XT
d −YT

d

01×N̂ δT
N̂
(M̂ + 1)

∆T 0(N̂−N̄)×N̂

0(N̂−N̄)×N̂ ∆T







0(2(N̂−N̄)+d+p+2)×(2(N̂−N̄)+d+p+2)
















−1

.

Similarly, we can determine the optimal right-biased approximation for the case ML < MR by setting
the leftmost (N̂ − N̄) coefficients to zero. It can be proved that the optimized coefficients of left-biased
scheme (a∗dL

,b∗
dL
) with ML = M1, MR = M2 (where, M1 > M2) and its complementary right-biased scheme

(a∗dR
,b∗

dR
) with ML = M2, MR = M1 satisfy

a∗dR
= Ja∗dL

; b∗
dR

= Jb∗
dL
, for even derivatives,

a∗dR
= −Ja∗dL

; b∗
dR

= Jb∗
dL
, for odd derivatives,

where J is an anti-diagonal identity matrix of the appropriate dimension.
Fig.12 and Fig.13 compare modified wavenumbers of different implicit left-biased schemes (ML = 4, 5, 6,

red) with the implicit central scheme (M = 3, blue) of equal true stencil size (N̄ = 2M + 1 = 7) for second
and first derivatives respectively. Numerical values of the optimized coefficients are tabulated in Table 4 and
5.

From the middle row of Fig.12, we observe that the variation of the real component <[e(η)] (shown in
log scale) for biased schemes (red) is very close to that of the central scheme of same stencil size (blue).

In case of central scheme (blue), the imaginary component =[e(η)] for even derivatives is zero, which is
seen in the last row of Fig.12 (see Fig.3). And as expected, the imaginary component =[e(η)] for biased
schemes (red) which approximate even derivatives is not zero. This is due to the fact that the discussion in
Appendix A does not hold for biased schemes as constraint Eq.(45) imposes asymmetry on the optimized
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Figure 12: Modified wavenumber, and real and imaginary components of the spectral error for left-biased
O

ML,MR

ML,MR
(4) (red) approximating the second derivative. N̄ = 7, γ(η) = 1 for η ∈ [0, 3], and γ(η) = 0

otherwise.

Figure 13: Modified wavenumber, and real and imaginary components of the spectral error for left-biased
O

ML,MR

ML,MR
(4) (red) approximating the first derivative. N̄ = 7, γ(η) = 1 for η ∈ [0, 3], and γ(η) = 0 otherwise.

coefficients. For fixed true stencil size, as ML increases, MR = N̄ − (ML +1) decreases and schemes become
more biased. It can be observed from the last row of Fig.12 that the imaginary component =[e(η)] increases
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with increase in biasedness of the scheme.
Similarly, the middle row of Fig.13 shows that unlike the central scheme (blue), real component <[e(η)]

for biased schemes (red) which approximate odd derivatives is not zero, and its magnitude increases with
the increase in biasedness of the scheme. However, the variation of imaginary component =[e(η)] (shown in
log scale) for biased schemes (red) is very close to that of the central scheme (blue).

While solving PDEs numerically, we use a central scheme of stencil size (2M + 1) at (Np − 2M) points
within the domain and biased schemes at M points adjacent to each one of left and right boundaries
of the domain. Therefore, (Np − 2M) middle rows of AΦ

d and BΦ
d defined in Eq.(21) contain the same

central scheme coefficients, last M rows contain left-biased scheme coefficients and first M rows contain
complementary right-biased scheme coefficients. Semi-discrete stability discussed in Section 3.1 is not valid
for biased approximations since coefficients do not satisfy the properties described in Appendix A. However,
Eq.(22) and Eq.(23) hold true for non-periodic discretization. Therefore, fully discretized stability analysis
presented in Section 3.2.2 is valid for this case.

Special cases discussed in this section are a few examples which demonstrate how to derive optimized
finite difference schemes with a desired structure by imposing suitable constraints on the coefficients. Since
all constraints are linear, one can impose any number and combination of the constraints given by Eq.(36),
Eq.(41) and Eq.(44) to obtain the desired schemes. For example, we can impose constraints in Eq.(41)
and Eq.(44) simultaneously and solve the resulting optimization problem to derive biased schemes which
are spatially explicit. However, to ensure the invertibility of the matrix P, such as in Eq.(46), duplicate
constraints should be removed while constructing the KKT condition.

5 Numerical Results

In this section we use the optimized schemes derived in preceding sections to solve some PDEs numerically
and compare the results with the standard schemes of the same stencil sizes. In particular, we compare
the numerical solutions obtained using the optimized scheme O

3
2(4) (see Table 3) with the standard scheme

S
3
2(10).
Initial condition for solving PDEs is taken to be the superposition of multiple sinusoidal waves with

wavenumbers k, given by Eq.(47). A(k) is amplitude of the wave corresponding to wavenumber k, and
φk ∈ [0, 2π] is the corresponding phase initialized randomly. We use the same initial condition for solving
different PDEs in sections to follow.

f0(x) := f(x, t = 0) =
∑

k

A(k) sin(kx+ φk). (47)

5.1 Advection-diffusion equation

Consider the following simplified version of Eq.(20), where coefficients of only first two spatial derivatives
are non-zero.

∂f

∂t
= β1

∂f

∂x
+ β2

∂2f

∂x2
. (48)

To satisfy Eq.(27), we have the diffusivity β2 > 0. Analytical solution for Eq.(48) is known and given by

ft(x) := f(x, t > 0) =
∑

k

exp(−β2k
2t)A(k) sin(k(x+ β1t) + φk), (49)

In this case, the amplitude decays with time due to non-zero β2 and the phase changes due to non-zero β1.
We used CFL number to express ∆t and ∆x as a normalized quantity. Similarly, we define normalized

time with respect to dth derivative as t∗d := |βd|tkdmax, where kmax is the largest wavenumber present in
the initial condition Eq.(47). Eq.(48) is solved numerically using the optimized and standard spatial finite
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difference schemes. For a fixed diffusive CFL (r2), we have used matching order explicit Runge-Kutta (ERK)
schemes for the temporal discretization, i.e for spatial schemes which are 4th and 10th order accurate, we
have used 2nd and 5th order ERK for the temporal discretization respectively.

The spectral energy at wavenumber k at time t is defined to be |f̂t(k)|2, where f̂t(k) is the discrete
Fourier coefficient corresponding to wavenumber k at time t. To assess the dissipative numerical errors at
different wavenumbers, we plot normalized error in spectral energy of the numerical solution with respect to

the analytical solution in Fig.14. Note,
ˆ̃
ft(k) is the Fourier coefficient calculated from the numerical solution

f̃t(k). These results are obtained for the diffusive CFL number r2 = 0.01 at t∗2 ≈ 25.
The error is small for the standard pentadiagonal scheme, S3

2(10) (magenta), in low wavenumber region.
However, it demonstrates steep variation of error as the wavenumber increases. On the other hand, the
optimized scheme O3

2(4) (blue) shows relatively slower variation of error with increasing wavenumber. Again,
this behavior is expected due to equally weighted wavenumbers (γ(η) = 1) in the optimization. O

3
2(4) has

larger error than S
3
2(10) at lower wavenumbers. But at higher wavenumbers, the 4th order accurate O

3
2(4)

demonstrates much better accuracy than the 10th order accurate S
3
2(10).

Figure 14: Diffusion error for advection-diffusion equation: O3
2(4) (blue) and S

3
2(10) (magenta). r1 ≈ r2 =

0.01, t∗2 ≈ 25, A(k) = 1, γ(η) = 1 for η ∈ [0, 3], and γ(η) = 0 otherwise.

While Fig.14 shows numerical dissipation error, the dispersion error is shown in Fig.15. Dispersion error is

quantified by the calculation of numerical speed, c̃(k) := arg[
ˆ̃
ft(k)/f̂0(k)]/kt. The analytical speed is c := β1

for all wavenumbers. Normalized numerical speed, c∗(k) := c̃(k)/c, is unity when there is no dispersion error.
The observations made for Fig.14 are consistent with Fig.15 as well. From Fig.15, it is evident that

the normalized numerical speed for the standard schemes S
3
2(10) (magenta), deviates from unity at lower

wavenumbers leading to large dispersion error at higher wavenumbers. The normalized numerical speed for
the optimized scheme O3

2(4) (blue) is close to unity even at higher wavenumbers. As in the case of dissipative
error, here also we observe that the standard scheme shows steep variation of the dispersion error, while the
optimized scheme is relatively slower in variation.

5.2 Non-linear advection-diffusion equation

Now let us consider the non-linear advection-diffusion equation which is also known as Burgers’ equation
and widely studied in various areas of applied mathematics.

∂f

∂t
= −f

∂f

∂x
+ β2

∂2f

∂x2
. (50)

Because of the non-linear term, different Fourier modes interact with each other and produce new wavenum-
bers in the solution. Therefore, to ensure that all wavenumbers are well resolved, we performed grid conver-

gence study and observed that space-averaged energy (K :=
∑Np

i=1 f
2
i (x, t)/Np) becomes independent of the

number of grid points in the domain at Np = 256.
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Figure 15: Dispersion error for advection-diffusion equation: O3
2(4) (blue) and S

3
2(10) (magenta). r1 ≈ r2 =

0.01, t∗2 ≈ 25, A(k) = 1, γ(η) = 1 for η ∈ [0, 3], and γ(η) = 0 otherwise.

Numerical solution of Eq.(50) is obtained in a periodic domain x ∈ [0, 2π] with initial condition given
by Eq.(47), where A(k) = k−1/2. The negative exponent ensures that higher wavenumbers have sufficient
energy content without being unstable. For this particular PDE, we define timescale as t = K/ε, where

ε is space averaged energy dissipation rate (ε :=
∑Np

i=1(∂fi(x, t)/∂x)
2/Np). Then time is expressed as a

normalized quantity t∗ := t/t0 where t0 = K0/ε0 is the initial timescale.
The analytical solution of Eq.(50) is obtained by applying Cole-Hopf transformation as follows [17, 18].

First, let us define the transformation

f = −2β2
1

φ

∂φ

∂x
.

With this substitution, Eq.(50) becomes diffusion equation and the analytical solution for f(x, t) is given by

ft(x) := f(x, t) =

∫∞

−∞

x−y
t φ(y, 0) exp

(
(x−y)2

4β2t

)

dy

∫∞

−∞
φ(y, 0) exp

(
(x−y)2

4β2t

)

dy
, (51)

where initial φ(y, 0) is obtained using

φ(y, 0) = exp
(

−
∫ y

0

f(z, 0)

2β2
dz
)

.

Eq.(51) is the exact solution for non-linear advection-diffusion equation. However, integrals involved are
computed numerically.

Fig.16 shows the spectral energy content normalized with initial energy for different wavenumbers. All
numerical results for this PDE are obtained for β2 = 0.04, r2 = 0.01 at t∗ ≈ 148. It can be clearly seen that
the spectral energy content for the standard schemes S

3
2(10) (magenta) deviates from analytical solution

(black-dashed) at high wavenumbers. In the same wavenumber region, the optimized scheme O
3
2(4) (blue)

is relatively closer to the analytical solution.
Similar to Fig.14, we show the normalized error in spectral energy for the non-linear advection-diffusion

equation in Fig.17. Due to the interaction of Fourier modes with each other, in general, we do not expect
the spectral behavior of different schemes for non-linear PDE to be in exact agreement with the behavior
observed for the linear case. Unlike the linear case (Fig.14), Fig.17 shows that the optimized schemes O3

2(4)
(blue) has better accuracy than S

3
2(10) (magenta) in both low and high wavenumber region.

Because of the non-linearity, there is no well-defined analytical speed in this case and therefore, the notion
of numerical speed can not be used to quantify the dispersion error. However, we can calculate and compare
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Figure 16: Spectral energy content for non-linear advection-diffusion equation normalized with initial energy:
Analytical solution (black-dashed), O3

2(4) (blue) and S
3
2(10) (magenta). β2 = 0.04, r2 = 0.01, A(k) = k−1/2,

t∗ ≈ 148, kmax = 121, γ(η) = 1 for η ∈ [0, 3], and γ(η) = 0 otherwise.

Figure 17: Diffusion error for non-linear advection-diffusion equation: O3
2(4) (blue) and S

3
2(10) (magenta).

β2 = 0.04, r2 = 0.01, A(k) = k−1/2, t∗ ≈ 148, kmax = 121, γ(η) = 1 for η ∈ [0, 3], and γ(η) = 0 otherwise.

the argument of Fourier coefficients, θ̂k := arg[f̂t(k)], for different wavenumbers. The normalized error in

θ̂k is shown in Fig.18 where
ˆ̃
θk is the argument of the numerical solution. Clearly, the optimized scheme

O
3
2(4) (blue) has smaller phase error than the standard scheme S

3
2(10) (magenta) across all wavenumbers.

Whereas, in the linear case (Fig.15) S3
2(10) demonstrates better accuracy than the optimized scheme in the

low wavenumber region.

Fig.17 and Fig.18 independently quantify the errors in |f̂t(k)| and θ̂k. Fig.19 accounts for | ˆ̃ft(k)− f̂t(k)|,
which quantifies the combined effect of error in |f̂t(k)| and θ̂k in a single plot. When we look at the combined
error in the non-linear case, it is observed from Fig.19 that the optimized scheme O

3
2(4) (blue) has better

accuracy than the standard schemes S
3
2(10) (magenta) at all wavenumbers. Thus, for solving practical

physical problems which are governed by non-linear PDEs, the optimized scheme seem to provide much
better spectral resolution than the non-optimized standard scheme.

6 Conclusions

In this paper, we presented a generalized unified framework to derive compact optimized schemes. The
optimized coefficients are determined analytically by solving a quadratic program subject to linear equality
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Figure 18: Phase error for non-linear advection-diffusion equation: O
3
2(4) (blue) and S

3
2(10) (magenta).

β2 = 0.04, r2 = 0.01, A(k) = k−1/2, t∗ ≈ 148, kmax = 121, γ(η) = 1 for η ∈ [0, 3], and γ(η) = 0 otherwise.

Figure 19: Amplitude error for non-linear advection-diffusion equation: O3
2(4) (blue) and S

3
2(10) (magenta).

β2 = 0.04, r2 = 0.01, A(k) = k−1/2, t∗ ≈ 148, kmax = 121, γ(η) = 1 for η ∈ [0, 3], and γ(η) = 0 otherwise.

constraints to minimize an upper bound on L2 norm of the spectral error. We have shown that for a
given order of accuracy, we can increase the stencil size and hence the number of degrees of freedom in the
optimization to achieve better spectral resolution. The freedom of selecting weighting function (γ(η)) allows
us to achieve better resolution of the wavenumbers which are important to the physics of problem by giving
them more weight in the optimization problem.

We have shown that the special cases, namely, central schemes with unequal LHS and RHS stencil sizes
(e.g. pentadiagonal), explicit, and biased schemes can be derived by imposing additional linear constraints
in the optimization problem. Using these three special cases as building blocks, an optimized scheme with
any desired structure can be derived as all constraints are linear and therefore, they can be imposed in any
number and combination.

We have also presented a rigorous stability analysis for a generalized implicit RK scheme. We showed
that by increasing the stencil size the spectral resolution can be improved, but simultaneously it results in
reduced stability region in r1 − r2 space.

The numerical results show that the optimized schemes show better accuracy than the standard scheme
of the same stencil size with larger formal order of accuracy in the high wavenumber region. The better
resolution in high wavenumber region is achieved at the expense of relatively larger error at the lower
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wavenumbers, because γ(η) = 1 was used in the simulations which weights all wavenumbers equally. However,
in the case of non-linear PDE, we observed that the optimized scheme shows overall better accuracy than
the standard scheme across the wavenumber spectrum.

Empirical observations show that KKT matrix used in determining the optimized coefficients suffer from
rank deficiency at certain stencil size (M). However, explicit schemes are unaffected by this problem. This
issue, perhaps, hints at the fundamental limitation of implicit schemes to scale up beyond certain stencil
size, and it will be investigated in our future studies.

Although our framework allows us to derive biased schemes, for the brevity of discussion we have restricted
numerical results presented in this work on periodic domains. Also, implementation of boundary conditions
without compromising the accuracy of numerical solution is an important area of research and will be
addressed in our future work.

A (Skew-)Symmetry of optimized coefficients for central differ-
ences

Even derivatives:

The optimized coefficients both a∗d and b∗
d are symmetric, and imaginary component of the spectral error e(η)

is zero.

In Eq.(15), the cost function is given by

〈(
CT (η)ad − (−1)qηdCT (η)bd

)2
+
(
ST (η)ad − (−1)qηdST (η)bd

)2
〉

. (52)

Now, let us consider the integrand function in Eq.(52)

f(ad,bd) = γ(η)
[(
CT (η)ad − (−1)qηdCT (η)bd

)2
+
(
ST (η)ad − (−1)qηdST (η)bd

)2
]

. (53)

After substituting (Jad,Jbd) in Eq.(53) we get,

f(Jad,Jbd) = γ(η)
[(
CT (η)Jad − (−1)qηdCT (η)Jbd

)2
+
(
ST (η)Jad − (−1)qηdST (η)Jbd

)2
]

.

Clearly from Eq.(12),

f(Jad,Jbd) = f(ad,bd). (54)

This is a property of the function f(ad,bd) and holds true for any admissible pair (ad,bd). Let (a
∗
d,b

∗
d) be

an optimal pair which minimizes the cost function. It immediately follows from Eq.(54),

f(Ja∗d,Jb
∗
d) = f(a∗d,b

∗
d).

For (a∗d,b
∗
d) being a unique minimizer, the following must be true,

Ja∗d = a∗d and Jb∗
d = b∗

d. (55)

By Definition 1, both a∗d and b∗
d are symmetric. To show that (a∗d,b

∗
d) that satisfies Eq.(55) is also a feasible

solution for the order of accuracy constraints, consider Eq.(3),

aTd Xd − bT
d Yd = 01×(d+p+1). (56)

Substitute (ad,bd) with (Jad,Jbd) to get,

aTd J
TXd − bT

d J
TYd = 01×(d+p+1).
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Note that, JT = J, and it operates on the columns of Xd and Yd. Let Xi and Yi be ith columns of Xd and
Yd. From equations Eq.(4) and Eq.(5), it is evident that Xi and Yi are symmetric vectors for an odd i. It
implies that aTd JXi = aTd Xi and bT

d JYi = bT
d Yi. Clearly, constraint Eq.(56) is satisfied for odd columns of

Xd and Yd. Similarly, for an even i, it can be shown that aTd JXi = −aTd Xi and bT
d JYi = −bT

d Yi, which
again satisfies Eq.(56) since right hand side is zero. Hence, it can be concluded that, if (ad,bd) satisfies
the order constraint, then (Jad,Jbd) also satisfies the constraint Eq.(56). Therefore, (a∗d,b

∗
d) which satisfy

Eq.(55) is a feasible solution for Eq.(56).
Recalling that symmetric and skew-symmetric vectors are orthogonal, we get,

ST (η)a∗d = 0 and ST (η)b∗
d = 0. (57)

Thus, spectral error from Eq.(9) becomes, e(η) =
CT (η)a∗

d

CT (η)b∗

d

− (−1)qηd. Therefore, for even derivatives, the

optimized coefficients make imaginary component of the spectral error e(η) zero.

Odd derivatives:

The optimized coefficients a∗d and b∗
d are respectively skew-symmetric and symmetric, and real component of

the spectral error is zero.

For odd derivatives, the integrand function is

g(ad,bd) = γ(η)
[(
CT (η)ad + (−1)qηdST (η)bd

)2
+
(
ST (η)ad − (−1)qηdCT (η)bd

)2
]

.

Using similar arguments as for the case of even derivatives, it can be easily shown that,

g(−Jad,Jbd) = g(ad,bd).

Uniqueness of the optimal solution requires that

−Ja∗d = a∗d and Jb∗
d = b∗

d. (58)

By definition, a∗d and b∗
d are respectively skew-symmetric and symmetric. To establish the feasibility of such

a solution for the order of accuracy constraints, consider Eq.(3) and substitute (ad,bd) with (−Jad,Jbd).
Then, using similar arguments as for the case of even derivatives, it can be shown that if (ad,bd) satisfies
Eq.(3), then (−Jad,Jbd) also satisfies the same constraint for odd d. Therefore, (a∗d,b

∗
d) which satisfy

Eq.(58) is a feasible solution for Eq.(3).
Using the orthogonality property,

CT (η)a∗d = 0 and ST (η)b∗
d = 0. (59)

The spectral error follows from Eq.(9) as e(η) = j

(

ST (η)a∗

d

CT (η)b∗

d

− (−1)qηd
)

, indicating that the real component

is zero.
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B Optimized coefficients

M = 1 M = 2 M = 3 M = 4
a∗0 -2.4 -1.55920152194026 -0.979288292571078 -0.719422653838933
a∗1 1.2 0.396897309677732 -0.033306701818875 -0.156640799785708
a∗2 0.382703451292396 0.440495791275238 0.340037669820826
a∗3 0.0824550568291757 0.161702448995973
a∗4 0.0146120078883761
b∗0 1 1 1 1
b∗1 0.1 0.437358728499431 0.607804000534683 0.69537501810989
b∗2 0.0264968289242269 0.122983617052232 0.223008838348136
b∗3 0.00459836978541528 0.0272452165890212
b∗4 0.000682950290635715

Table 1: Coefficients for the second derivative corresponding to Fig.1. Note that a∗−m = a∗m and b∗−m = b∗m.

M = 1 M = 2 M = 3 M = 4
a∗0 0 0 0 0
a∗1 0.75 0.682194069313335 0.560054939856331 0.472419664132013
a∗2 0.214144479273011 0.326746645436286 0.367572867069987
a∗3 0.0418602478971568 0.0980340659498803
a∗4 0.00699750157631073
b∗0 1 1 1 1
b∗1 0.25 0.547827381201651 0.658367308183134 0.72407136413065
b∗2 0.0626556466577058 0.170094141092335 0.26326428439027
b∗3 0.0106675251449049 0.0407179433494389
b∗4 0.00160401055651088

Table 2: Coefficients for the first derivative corresponding to Fig.4. Note that a∗−m = −a∗m and b∗−m = b∗m.
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d = 1 d = 2
a∗0 0 -1.22993292260472
a∗1 0.630815603923759 0.130644921343958
a∗2 0.273862907724336 0.459462898620059
a∗3 0.00849109849909385 0.0248586413383436
b∗0 1 1
b∗1 0.599688672582508 0.531049490588671
b∗2 0.104326042287205 0.0650626533459724
b∗3 0 0

Table 3: Coefficients for O
3
2(4) approximating the first and second derivatives. Note that b∗−m = b∗m, and

a∗−m = a∗m for d = 2, and a∗−m = −a∗m for d = 1.

Note that, in Table 4 and 5, # denotes coefficient of the grid point at which derivative is to be approxi-
mated.

ML = 4 ML = 5 ML = 6
0.135141927552199 0.662304984252634 17.3670624080996
0.722707534591416 3.53558092392018 92.3021288782114
-0.0524729395599328 -0.250337371007728 -6.49624407257855

a∗ -1.60731259496048 -7.85976328865994 -204.957850510534
#-0.0583231083517459 -0.310357190338834 -8.85074823578218

0.72408652155438 #3.54961920557169 92.8470054538251
0.13617265917416 0.672952736261999 #17.7886460787584
0.0075365800956553 0.0369784406883765 0.971865865002116
0.201615926044887 0.987464737949076 25.8562746553017
0.99713483322273 4.88096076338054 127.576933509124

b∗ 1.64238167997833 8.04522660766854 210.335351055833
#1 4.91039583089326 128.733779558004

0.202831788738001 #1 26.3512560574889
0.00760492052475932 0.0376863400465079 #1

Table 4: Coefficients for the left-biased schemes which approximate second derivative corresponding to
Fig.12. Corresponding central scheme is M = 3 from Table 1.
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ML = 4 ML = 5 ML = 6
-0.0621972998530267 -0.232619531619737 -3.52690296300194
-0.488868232296276 -1.83780260017807 -27.9116587382461
-0.846178148476397 -3.2098376453028 -49.0922987950105

a∗ -0.00918720281492579 -0.0700718215089091 -1.57497223752058
#0.844294225659752 3.19534746352695 48.7613719684532
0.497811414459153 #1.90604922449128 29.4470383302118
0.0643252433217213 0.248934910591297 #3.89742243511407
0.0158345798757476 0.0591989978487381 0.898171816719291
0.253744537333521 0.951710004840582 14.4387550915639
0.987857487221426 3.72365571735861 56.675421516294

b∗ 1.50948607590456 5.7229905302476 87.5412499132427
#1 3.81632520991078 58.7608049690781

0.260059400465721 #1 15.5296377878293
0.016417216370275 0.0636716245952377 #1

Table 5: Coefficients for the left-biased schemes which approximate first derivative corresponding to Fig.13.
Corresponding central scheme is M = 3 from Table 2.

C Butcher tableaux of RK schemes

1. Forward Euler method (FE)

0 0
1

Following RK schemes are taken from [16].

2. Explicit four stage RK method (ERK4)

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

3. Implicit two stage RK method (IRK2)

0 0 0
2/3 1/3 1/3

1/4 3/4

4. Implicit three stage RK method (IRK3)

0.158984 0.158984 0 0
0.579492 0.420508 0.158984 0

1 0.348023 0.492993 0.158984
0.348022 0.492994 0.158984
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