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Abstract
In multilabel classification, strong label dependence is present for exploiting, particularly for word-

to-word dependence defined by semantic labels. In such a situation, we develop a collaborative-learning

framework to predict class labels based on label-predictor pairs and label-only data. For example, in image

categorization and recognition, language expressions describe the content of an image together with a large

number of words and phrases without associated images. This article proposes a new loss quantifying partial

correctness for false positive and negative misclassifications due to label similarities. Given this loss, we

develop the Bayes rule to capture label dependence by nonlinear classification. On this ground, we introduce

a weighted random forest classifier for complete data and a stacking scheme for leveraging additional labels to

enhance the performance of supervised learning based on label-predictor pairs. Importantly, we decompose

multilabel classification into a sequence of independent learning tasks, based on which the computational

complexity of our classifier becomes linear in the size of labels. Compared to existing classifiers without

label-only data, the proposed classifier enjoys the computational benefit while enabling the detection of

novel labels absent from training by exploring label dependence and leveraging label-only data for higher

accuracy. Theoretically, we show that the proposed method reconstructs the Bayes performance consistently,

achieving the desired learning accuracy. Numerically, we demonstrate that the proposed method compares

favorably in terms of the proposed and Hamming losses against binary relevance and a regularized Ising

classifier modeling conditional label dependence. Indeed, leveraging additional labels tends to improve the

supervised performance, especially when the training sample is not very large, as in semisupervised learning.

Finally, we demonstrate the utility of the proposed approach on the Microsoft COCO object detection

challenge, PASCAL visual object classes challenge 2007, and Mediamill benchmark.

Keywords: Binary relevance, label dependence, multimodality, novel labels, nonconvex minimization, scala-

bility.
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1 Introduction

In multilabel classification, semantic labels such as words and phrases present strong label

dependence, characterized by word-to-word dependence. Such dependence can be uncon-

ditional or conditional depending on predictors. For example, “football” and “tennis” are

two semantic labels that are unconditionally dependent, usually co-occurring in a sports

event, and conditionally independent given the equipment used in sports. In such a situa-

tion, classification based on inadequate training examples often yields a poor performance

given the complex structure of semantic labels in the presence of a large number of ad-

ditional labels without predictors. For instance, in image-captioning [12], a learner trains

image-caption pairs to describe the contents of an image, together with a large number of

captions from news articles in newspapers, which the learner can leverage to account for

label dependence for enhancing prediction. One central issue is how to leverage additional

labels while accounting for label dependence to enhance supervised learning based on label-

predictor pairs. Also, do label-only data provide the relevant information for classification

in a similar manner as unlabeled data in semisupervised learning [29]? In this article, we

develop a classification framework, what we call collaborative multilabel classification, un-

der which we develop classifiers to leverage label dependence and additional labels to deliver

higher predictive accuracy than its supervised counterpart ignoring either additional labels

or label dependence.

Given a large body of literature on multilabel classification focusing on non-semantic

labels, we focus our discussion on the most relevant references. Ideally, one may perform

independent binary classifications, one for each label, known as binary relevance (BR). The

state-of-art binary relevance learning [10, 6, 20, 5] is an ensemble of binary classifications

by treating predicted values as predictors for one additional classification. However, binary

relevance largely ignores label dependence. As illustrated in [5], component-wise dependen-

2



cies are crucial to prediction in multi-response regression, indicating that a classification

model must model label dependence To account for unconditional dependence, the frequen-

cies of label co-occurrences are used in training examples [23]. To account for conditional

label dependence, Markov/Bayesian/dependence networks are employed for estimation of

the dependence structure and classification see [15] for an excellent survey. For example,

[14] constructs a classifier chain utilizing the frequencies of label co-occurrences in training

examples to account for unconditional dependence, yet identifying a good chain is indeed

challenging. Given the mounting cost of estimation of the dependence structure, an effort

of modeling label dependency has not been rewarded in the past. Recently, [8] utilizes a

sparse pseudo-likelihood for an Ising model describing linear conditional dependence, which

is a frequentist version of [15]. Moreover, [17] proposed a compressed sensing method by

exploring output sparsity. On a related topic, [30] suggested a tree-based approach for hi-

erarchical labels. Despite progress, issues remain, particularly for modeling semantic labels

and leveraging additional labels without predictors, as in image captioning [12].

The contributions of this paper are five-fold. First, we develop a multilabel framework of

collaborative classifiers for label-predictor pairs as well as additional labels, with a focus con-

centrating on semantic labels. One salient feature of the proposed classifier is its capability

of detection of a novel class absent from training by exploring conditional label dependence.

Moreover, the classifier can improve the supervised performance by leveraging additional

labels, particularly when the training sample size is not large, as in semisupervised learning

[29]. Second, we develop nonlinear classifiers based on random forests [4] to capture label de-

pendence, conditionally and unconditionally, integrating additional labels through stacking

[26], where the use of nonlinear classifiers is critical to learn conditional label dependence.

Third, we introduce a weighted loss quantifying partial correctness for false positive and

negative misclassifications due to label similarities, which is in contrast to the Hamming loss

[27], the Jaccard distance [13], and the subset loss or the 0-1 loss [13]. In the literature,
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a hierarchical loss imposes partial correctness through the size of offspring of a node when

each label corresponds to a node in a hierarchy such as a tree [7], which dramatically differs

from our situation. Moreover, existing classifiers are typically designed under the Hamming

loss, or 0-1 loss, which does not target the Bayes rule under the proposed loss, and hence

that they tend to perform worse when the proposed loss is used to evaluate, as demonstrated

by our simulations. Fourth, we develop a computational method that decomposes the joint

learning task into the independent learning of transformed labels, which dramatically re-

duces the computation cost. As a result, the proposed method is more scalable than its

competitors in the memory requirement. In simulations, we demonstrate that the proposed

classifier outperforms binary relevance and a regularized pseudo-likelihood classifier under

two evaluation loss functions, namely, the proposed loss (3) and the Hamming loss; see

Tables 1 and 2. Moreover, for three benchmark examples, it continues to outperform its

competitors, including a ResNet50 Convolution Neural Networks (CNN) deep learner [16].

Fifth, we establish consistent recovery of the Bayes performance by the proposed classifier in

terms of the evaluation loss function and give conditions for the proposed classifier to detect

novel labels.

This article is organized as follows. Section 2 presents the proposed loss function, Section

3 formulates a collaborative learning framework, develops a classier to account for label

dependence, and integrates additional labels through stacking. Computationally, we develop

a decomposable learning strategy to allow the computational complexity of our classifier to

be linear in the label size. Section 4 investigates the theoretical properties of the proposed

classifier. Section 5 examines their numerical performances and compares them with some

strong competitors, namely, the approaches binary relevance and an Ising model classifier

through simulations, followed by an application to three benchmark examples. Finally, the

appendix contains technical proofs.
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2 Collaborative classification

In multilabel classification,
(
X = (X1, · · · , Xq)

>,Y = (Y1, · · · , Yp)>
)

is an input-output

pair, where labels Y1, · · · , Yp present strong label dependence given X, with each label Yj

is coded as {−1, 1}; j = 1, · · · , p. In addition, an independent sample of additional label

observations {Zj}n+mj=n+1 following the same distribution of {Yi}ni=1 are available, typically a

small amount of complete data with a large amount of additional labels in that the size of

additional labels m may greatly exceed the sample size n. This framework is what we call

collaborative multilabel classification. Our primary objective is to (1) leverage additional

labels, (2) label dependence for higher accuracy of classification, as well as (3) detection of

novel labels.

2.1 A novel loss

In collaborative multilabel classification, we introduce a new loss to quantify partial correct-

ness for false positive and negative misclassifications due to label similarities.

The accuracy of classification is measured by the generalization error Err(f) = EL(Y ,f),

where L(·, ·) is a loss function measuring discrepancy between observed Y and its prediction

by f(x) = (f1(x), · · · , fp(x))>, which is a decision function vector with fk(x) predicting

Yk, and E is the expectation with respect to (X,Y ). Now we propose a nonnegative loss to

quantify false positive and negative errors:

L(y,f) =
∑

1≤l,k≤p

(
I(yl = 1)w−lk + I(yl = −1)w+lk

)
I(ylfk(x) < 0)

−
p∑

k=1

min
( ∑
l:yl=+1

w−lk ,
∑

l:yl=−1

w+lk

)
, (1)

where w+lk ≥ 0 and w−lk ≥ 0 are the amounts of penalty for false positive and negative errors

made by fk(x) for predicting label yl, and I is the indicator function. For false negatives,
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w−lk > 0 when labels yl and yk are semantically similar, w−kk ≥ w−kl; l 6= k when correct

classification of yk by fk(x) is more important than that by fk(x) for l 6= k. For false

positives, w+kl is usually small and can be w+kl = 0 without any loss; k 6= l, particularly

when the primary objective is to identify the presence of certain labels as in image object

detection. Note that the second term in (1) ensures that L(y,f) = 0 corresponds to no

error because of (3) as false positive and negative errors can not occur simultaneously. For

convenience, we may normalize the rows or columns of W± so that the row or column sum

equals 1.

In contrast, the Hamming (symmetric difference) loss [27], the Jaccard distance [13], and

the subset loss or the 0-1 loss [13] neither discriminate the false positive and negative errors

nor permit partial label correctness. Note that (1) reduces to the Hamming loss if w±lk = 0

when l 6= k. As illustration, consider a simple case of three semantic labels “football”,

“basketball”, and “vehicle”, where w+ll = 1/3 and w+lk = 0 otherwise; 1 ≤ l, k ≤ 3, and

w−11 = w−12 = w−21 = w−22 = 1/6, w−33 = 1/3 and w−lk = 0 otherwise. In this case,

we are concerned about the false positive error, and hence that misclassifying ”football”

to “basketball” incurs a penalty of 1/3, which is smaller than misclassifying ”football” to

“vehicle” with a loss of 1/2, according to the degree of similarity. Hence, loss (1) appears

more sensible than the aforementioned loss functions that yield neither partial correctness

nor discriminate false negative and positive errors.

In practice, W− = {w−kl}{1≤k,l≤p} may be estimated semantic similarity measure based

on an independent sample. Whereas W+ = p−1I is sensible, particularly for our target

application of object recognition, W− is estimated by global vectors for word representation

(GLOVE) [21]. Vector-space representations of this kind encode the semantic information of

words as numerical vectors in the Euclidean space. They are constructed so that semantically

similar words have word vectors close to each other, making it an ideal tool to measure word-

to-word similarities. In particular, we propose to use the Cosine similarities between the word
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vector representations of two vectors to measure their similarity. Formally, denote by vj the

word vector representation of label j. We compute a similarity measure, for any two labels

j and k, as

exp

(
v>j vk

‖vj‖2‖vk‖2

)
, (2)

and normalize the rows of W− so that the row sum equals to 1. For the applications

considered in this paper, all labels have pre-trained GLOVE word vector representations

available. For other applications involving word labels beyond GLOVE, one could fine-tune

the pre-trained GLOVE models over the new corpus.

Loss (1) is non-negative and seems non-decomposable at first blush, which is unlike the

Hamming loss LH(y,f) [27] in that LH(y,f) = 1
p

∑p
k=1 I(yk 6= fk(x)) can be written as

a sum of individual label loss functions. Surprisingly, we can decompose L(y,f) in (1) as

follows

L(y,f) =
∑p

k=1 Lk(y, fk) , Lk(y, fk) = |δk(y)|I(δk(y)fk(x) < 0),

δk(y) =
∑

l:yl=+1w−lk −
∑

l:yl=−1w+lk; k = 1, . . . , p , (3)

where we have used

L(y,f) =

p∑
k=1

(
(
∑
l:yl=1

w−lk)I(fk(x) < 0) + (
∑

l:yl=−1

w+lk)I(fk(x) ≥ 0)
)

−
p∑

k=1

min
( ∑
l:yl=+1

w−lk ,
∑

l:yl=−1

w+lk

)
=

p∑
k=1

Lk(y, fk)

and the fact that I(fk(x) < 0) + I(fk(x) ≥ 0) = 1.

The decomposition (3) has several consequences. First, it decomposes the overall gen-

eralization error with respect to each label classification: Err(f) =
∑p

k=1 Errk(fk), where
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Errk(fk) = ELk(Y , fk) is the error for misclassifying label k. Second, Lk(y, fk) is highly

interpretable in that δk(y) is the aggregated misclassification error over false positives and

negatives, which is determined by w+lk and w−lk. Moreover, it is a margin loss that is a func-

tion of functional margin δk(Y )fk(X) for predicting outcome of Sign(δk(Y )) by Sign(fk(X)).

Note, however, that even if Sign(δk(Y )) = Yk for all 1 ≤ k ≤ p, minimization under the new

loss is not equivalent to that under the Hamming loss. This is because weights δk(Y ) may

not necessarily equal to each other for 1 ≤ k ≤ p.

3 Methods

3.1 Multilabel classification and label dependence

To predict the outcome of Y given X, we derive the Bayes rule under loss L in (3), based

on which our predication rule is constructed. Specifically, Lemma 1 gives the Bayes decision

function f ? that minimizes the generalization error Err(f) = Errk(fk) over {f : f(x) =

(f1(x), · · · , fp(x))>}.

Lemma 1 (Bayes decision rule) Given loss L in (1), the Bayes decision rule is expressed

as

Sign(f ?k (x)) = Sign

(
p∑
l=1

(
w−lkP(Yl = 1 | x)− w+lkP(Yl = −1 | x)

))
, (4)

where f ?k (x) = E(δk(Y ) | x) is the Bayes decision function.

In (4), f ?k is a sum of weighted conditional probabilities, which reduces to the case of

Hamming loss in which f ?k (x) = 2P (Yk = 1|x) − 1 when W±lj = 0; l 6= j. However, the

Bayes rule in (4) typically differs from that under the Hamming loss provided that not all

W±lj = 0; l 6= j. This means that a classifier constructed under the Hamming loss is not

Fisher-consistent or fail to converge to the Bayes rule, which is in contrast to the proposed

classifier that is Fisher-consistent, c.f., Theorem 2.
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Lemma 1 suggests that label dependence needs to be leveraged to deliver a good perfor-

mance of a classifier under loss L accounting for label dependence. Based on (4), we propose

our prediction rule as Yk = Sign(f ?k (X)), where f ?k (x) estimates E(δk(Y ) | x); k = 1, · · · , p.

Given training data (Y i,X i)ni=1 and additional labels (Zi)n+mi=n+1, we construct a cost

function to learn f , where Y i = (Y i
1 , . . . , Y

i
p )>, Zi = (Zi

1, . . . , Z
i
p)
>, andX i = (X i

1, . . . , X
i
p)
>.

First, we propose a cost function based on complete data (Y i,X i)ni=1 and (3), after ignoring

the constant
∑p

k=1 min
(∑

l:yl=+1w−lk ,
∑

l:yl=−1w+lk

)
:

S(f) =

p∑
k=1

Sk(fk); Sk(fk) ≡
n∑
i=1

|δk(Y i)|I(δk(Y i)fk(X
i) < 0). (5)

Now minimizing S(f) in f is equivalent to solving p independent optimizations, that is, for

k = 1, · · · , p,

min
fk∈Fk

Sk(fk) = min
fk∈Fk

(
n∑
i=1

|δk(Y i)|I(δk(Y i)fk(X
i) < 0), (6)

reducing the complexity of parameter estimation from O(p2) [19] to O(p) in dimension p ,

where Fk is a class of candidate decision functions for fk. In (6), we solve weighted binary

classification for predicting Sign(δk(Y )), where the overall misclassification loss is weighted

by |δk(Y i)| over p labels Y i
1 , · · · , Y i

p . Note that the solution of (6) is not unique and the

indicator function there is replaced by a large margin surrogate to resolve this issue [9].

To estimate fk in (6), we employ a weighted version of random forest [4] due to its parsi-

monious tree representations with the capability of variable selection, permitting treatment

of nonparametric classification with many variables. Random forest uses trees and boot-

strap aggregation or bagging. Bagging repeats B times to select a bootstrap sample or a

random sample with replacement of the training data and fits classification trees to these

samples. In particular, for b = 1, · · · , B, a classification tree f̂kb is trained on each boot-
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strap sample. Then the label of unseen x is predicted by averaging the predictions from

all the individual classification trees on x, that is, the predicted label Ŷk = Sign(f̂k(x)),

where f̂k(x) = B−1
∑B

b=1 fkb(x). Note that the random forest suffers from a lesser degree of

the curse of dimensionality with respect to the dimension of x because a classification tree

involves a lower degree of piecewise constants.

3.2 Prediction based on additional labels

This section focuses on multilabel classification based on additional labels (Zi)n+mi=n+1, which is

integrated with that based on complete data for label prediction through stacking in Section

3.3.

In the absence of input x, to predict label values of Z, we introduce a decision function

vector g = (g1, · · · , gp)>, one for each label, which serves as baseline functions without x.

Then we propose a loss L(z, g) =
∑p

k=1 Lk(z, gk) +
∑p

k=1 min
(∑

l:zl=+1w−lk ,
∑

l:zl=−1w+lk

)
based on (3), where z = (z1, · · · , zp)>. This in turn yields our proposed cost function: for

k = 1, · · · , p,
n+m∑
i=n+1

Lk(Z
i, gk) =

n+m∑
i=n+1

|δk(Zi)|I(δk(Zi)gk < 0). (7)

Since we can write the RHS of (7) as

I(gk < 0)
∑

i:n+1≤i≤n+m,δk(Zi)>0

δk(Z
i)− I(gk > 0)

∑
i:n+1≤i≤n+m,δk(Zi)<0

δk(Z
i)

= I(gk < 0)
n+m∑
i=n+1

δk(Z
i)−

∑
i:n+1≤i≤n+m,δk(Zi)<0

δk(Z
i) ,

minimization of (7) in gk yields an estimated decision function ĝk =
∑n+m
i=n+1 δk(Z

i)∑n+m
i=n+1 |δk(Zi)|

. Inter-

estingly, ĝk is the normalized value of δk(·) aggregated over the additional observed labels.

Note that the solution of (7) is not unique.
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We use additional labels and feature-only data to learn the weight matrices W+ and W−.

In particular, we consider minimizing the following objective with respect to the discriminant

function and both weight matrices jointly

min
f ,W+,W−

p∑
k=1

n∑
i=1

Lk(yi, fk)+λ

(
p∑

k=1

`(E1fk(X),E2yk) +
∑
k′<k

`(E1fk(X)fk′(X),E2ykyk′)

)
(8)

where E1 and E2 are empirical expectations over feature-only data and additional labels, and

`(p1, p2) = −p1 log(p2)− (1− p1) log(1− p2) . (9)

Note that the joint minimization of f and weight matrices may be difficult if we use

the random forest model for f . This is because the random forest software can not handle

the loss function in the second term (i.e., l(·, ·)). We can potentially consider the following

greedy approach.

We sample (W
(m)
+ ,W

(m)
− ); m = 1, . . . ,M , and compute f̂

(m)
k = arg minfk

∑n
i=1 Lk(yi, fk);

k = 1, . . . , p. Then using the sampled weight matrices (W
(m)
+ ,W

(m)
− ), we compute a score

Sm = `(E1f̂
(m)
k (X),E2yk) +

∑
k′<k

`(E1f̂
(m)
k (X)f̂

(m)
k′ (X),E2ykyk′) . (10)

Finally, we choose (W
(m)
+ ,W

(m)
− ) with the smallest Sm. The idea is that we treat the weight

matrices as tuning parameters (as opposed to model parameters).

3.3 Integration of complete and additional labels

This section derives a stacking or an ensemble method, to further enhance the accuracy of

prediction based on complete data by incorporating the prediction from additional labels.

Specifically, we combine two prediction functions in a form ĥk(α,x) = αf̂k(x) + (1 − α)ĝk,

where α ∈ [0, 1] is a tuning parameter for model averaging. Our objective is to tune α to
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ensure that predictive accuracy of hk is no less than that based on complete data alone.

Given cross-validation data (Ỹ i, X̃ i)Ni=1, we minimize the predictive loss:

T (α) ≡ 1

N

p∑
k=1

N∑
i=1

|δk(Ỹ i)|I(δk(Ỹ i)ĥk(α, X̃
i) < 0); k = 1, · · · , p, (11)

with respect to uniform grids over [0, 1], that is, α ∈
{

0, 1
cN
, 2
cN
, . . . , cN−1

cN
, 1
}

. The minimizer

α̂ leads to our final prediction: Ŷk = Sign(ĥk(α̂k,X)).

The next lemma says that the combined classifier performs no worse than that complete

data alone asymptotically.

Lemma 2 Assume that
∑p

k=1

∑p
l=1(w+lk+w−lk) is upper bounded by a constant, and E [T (α)]

is L-Lipschitz continuous in α at α?, where α? = argminα∈[0,1]E [T (α)]. Moreover, suppose

that

v(α) := Var(T (α)− T (α?)) ≤ a {E(T (α)− T (α?))}γ , (12)

for some constants a, γ ≥ 0. Suppose that cN = O(Nmin(1/(2−γ),1)). Then for the stacked

classifier ĥ(x) = (ĥ1(x), . . . , ĥp(x) with ĥk(x) = ĥk(α̂k,x)); k = 1, . . . , p,

Err(ĥ) ≤ Err(ĥ(α?)) + Op(N
−min( 1

2−γ ,1)). (13)

As a technical remark, (12) is a commonly used smoothness assumption in the classifi-

cation literature, see, for example, [24], which is implied by the low-noise condition (margin

assumption) [28].

Usually, Err(ĥ(α?)) does not converge faster than Op(n
−1). Hence Lemma 2 implies that

if N ≈ n then Err(ĥ) ≤ (1 + o(1)) Err(ĥ(α?)).
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3.4 Nonlinear learning and label dependence

This section presents a result arguing that the pairwise label dependence is taken into account

through nonlinear learning regardless of such dependence is expressed in terms of linear

conditional dependence. To see this aspect, we examine pairwise conditional dependence of

Yj and Yk given X in an Ising model.

Lemma 3 Suppose that Y = (Y1, · · · , Yp)> follows a conditional Ising model given a pre-

dictor vector X. The probability density of Y given X = x is

P (y|x) =
1

Z(α(x))
exp

(
1

2

p∑
j=1

αjj(x)yj +
1

2

∑
k>j

αjk(x)yjyk

)
, (14)

where y = (y1, · · · , yp)>, α(x) = (α11(x), α12(x), · · · , αpp(x)) is a p(p + 1)/2-dimensional

vector and Z(α(x)) is the partition function. Then, for k = 1, · · · , p, logit(P(Yk = 1 | x)) is

written as

αkk(x) + log

∑
y−k

exp
(

1
2

∑
j 6=k(αjj(x) + αjk(x))yj + 1

2

∑
j<j′ αjj′(x)yjyj′

)
∑

y−k
exp

(
1
2

∑
j 6=k(αjj(x)− αjk(x))yj + 1

2

∑
j<j′ αjj′(x)yjyj′

) ≡ gk(α(x)).(15)

As indicated by Lemma 3, the conditional covariance of Yj and Yk given X = x, which

is proportional to αjk(x), enters into a classification model (15) nonlinearly even if αjk(x)

is linear in x. This observation, together with the result of Lemma 1, suggests that our

nonlinear representation of fk(x) in (6) is more appropriate than its linear counterpart for

accounting for label dependence in any situation.
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4 Learning theory

4.1 Detection of novel labels

When a label is absent from a training set, a classifier typically does not assign any instances

to that label, failing to detect novel labels. In contrast, our classifier, as defined in (6), has

the capability of detecting a novel class absent from training through label dependence.

Theorem 1 gives such a result.

Theorem 1 (Detection of novel labels) Suppose that the k-th label is absent from the training

data, that is, Y i
k = −1; i = 1, · · · , n. If there exists an i with 1 ≤ i ≤ n + m such

that δk(Y
i) > 0 then there exists α∗ with 0 ≤ α∗ ≤ 1 such that ĥk(α

∗,xi) > 0 for some

1 ≤ i ≤ n, or class k can be detected.

4.2 Consistent recovery of the Bayes performance

The original random forests [4] rely on complex data-dependent mechanisms of selecting

variables and cutting points, which makes it extremely difficult to analyze. As a result,

its basic statistical properties remain not fully understood. To the best of our knowledge,

most existing theoretical results focus on a simplified version of the original random forest

algorithm so that statistical analysis is more tractable; see [3] for a comprehensive review of

recent theoretical developments. As such, we expand existing results to our new loss function

based on a simplified version of random forests [1].

More specifically, we analyze a simple random forest in (6), which is a voting classifier of

simple decision trees considered in [2, 1]. For a single tree, a coordinate of X = (X1, . . . , Xq)

is chosen at each node, and the j-th feature having probability pnj ∈ (0, 1) of being selected,

and the selected cell is split along with the randomly chosen variable at the midpoint of the

chosen side.
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A voting classifier f̂
(B)
k for the k-th label is defined as the average of B independent tree

classifiers

f̂
(B)
k (x) =

1

B

B∑
j=1

f̂kb(x), k = 1, . . . , p, (16)

where f̂kb(x); b = 1, . . . , B are independent single trees with the same number of variable

splits. Next we generalize consistency results of [2, 1] under the Hamming loss to the loss

L in (3). Specifically, consistency of the voting classifier f̂ (B) means that Err(f̂ (B)) =∑p
k=1 E{|δk(Y )|I(f̂ (B)

k (X) 6= Sign(δk(Y ))} converges to L? =
∑n

k=1 E{|δk(Y )|I(f ?k (X) 6=

Sign(δk(Y ))}, where f ?k is a Bayes classifier.

The next theorem establishes conditions under which our method (6) is consistent under

(1).

Theorem 2 Assume that the distribution of X is supported on [0, 1]q. Moreover, we assume

that f ?k (x) = E(δk(Y ) | X = x); k = 1, · · · , p, are uniformly L-Lipschitz continuous:

max
1≤k≤p

|f ?k (x1)− f ?k (x2)| ≤ L‖x1 − x2‖2, (17)

where L > 0 is a constant independent of p, q, and n. Let S denote the number of splits for

each individual tree. Then, the voting random forest classifier f̂ (B) is consistent if, S →∞,

p3S
n
→ 0, and min1≤j≤q pnj log S − 2 log p→∞ as S →∞.

It is worth mentioning that any classifier that is not Fisher-consistent is not consistent

in the sense of Theorem 2. For example, a classier constructed under the Hamming loss is

inconsistent because the label dependence is ignored; see the discussion after Lemma 1.

If (pn1, . . . , pnq) is chosen to split variables at random for each tree, or (pn1, . . . , pnq) =

(1/q, . . . , 1/q), then the scaling condition requires that q = o
(

logn
log p

)
, which means that the

feature dimension can only grow more slowly than logn
log p

.

To handle a high-dimensional situation, the probabilities (pn1, . . . , pnq) need to be chosen
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adaptively and a true classification model is sparse. For example, as heuristically discussed

in [1], if the target decision function E(δk(Y ) |X) depends only on q0 = |S0| features, which

is a subset S0 of the q features, then pnj can be chosen adaptively using an independent

validation set when so that the feature dimension q can grow much faster with n.

5 Numerical examples

This section investigates several aspects of the proposed method, namely, (1) the operating

characteristics of the classifier, (2) the contribution of additional labels on the accuracy of

prediction, and (3) the capability of detection of partially observed labels. Importantly,

we compare the proposed classifier with four state-of-art classifiers, including two binary

relevance based on SVM [9] classifications, the unweighted random forest classifier [4], and

a Pseudo-Ising classifier [8] based on an Ising model. In three benchmark examples, we also

include a ResNet50 Convolution Neural Networks (CNN) deep learner [16] for a comparison.

The three binary relevance classifiers are denoted by linear-SVM, nonlinear-SVM, and CW,

which are separate linear and Gaussian-kernel SVM classifiers, one for each label, and CW

is a refitting classifier using the fitted values from binary relevance based on linear SVM [4].

To investigate the impact of modeling label dependence, we use an Ising model (14) as in

[8], for linear pairwise conditional dependence by setting αjk(x) = αkj(x) = x>θjk + θjk0 in

(14), k < j. In particular, we generate a q-dimensional feature vector x independently from

a standard Normal distribution N(0, 1). Given x, we recursively generate n + m responses

from an Ising model with the conditional density following (14), where θjkl; l = 0, . . . , p

are drawn from Unif(−γ1, γ1); j 6= k, and θjjl; l = 0, . . . , p are drawn from Unif(−γ2, γ2);

j = 1, . . . , q, where diffident values of γ1 and γ2 will be examined: γ1 = γ2 = 50 in Table

1–4 and γ1 = 50 and γ2 = .1 in Table 5. Note that the signal strength level reduces when γ2

decreases.
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The accuracy of classification is evaluated by the test error based on a test sample of

2000 under loss L in (3) as well as the Hamming loss, approximating the generalization error

Err(f) for f , where two weight matrices defining (3) are

W+ = Ip×p and W− =



.6 .4
p−1 · · ·

.4
p−1

.4
p−1 .6 · · · .4

p−1
...

...
. . .

...

.4
p−1

.4
p−1 · · · .6


, (18)

where rows/columns of the weight matrices have sum equal to 1.

Numerical analysis is performed in R. For our training data, we first generate m + n

paired observations, with n = 200, 500 and m = 2000. Furthermore, we consider p =

2, 10, 50, 100, 500, 1000 and q = 20, 50. Finally, we generate a test set with 2000 independent

complete observations. Then the test error is computed under the loss (1) over the test data.

For the proposed method integrating with additional labels, five-fold cross-validation is used

for selection of the tuning parameter α over a set of 1000 uniform grid points of [0, 1].

As shown in Table 1, the proposed method outperforms all the competitors in terms of the

test error across all the settings under our evaluation loss (3). The amounts of improvement

over LSVM, NSVM, CW, and P-Ising range from 42.5% to 67.8%, from 14.9% to 61.8%,

from 23.9% to 56.6%, and 13.1% to 155.4%, respectively. Roughly, large improvements

occur for challenging situations, particularly when either p or q increases while n is held

fixed. Interestingly, the Pseudo-Ising classifier does not perform as well as expected even

although the data are generated from the Ising model. This is mainly because it uses a

linear classification to account for linear label dependence. As indicated in Lemma 3, linear

dependence is only captured by a nonlinear method. Moreover, a pseudo-likelihood approach

is less efficient when it does not target the evacuation loss. Interestingly, the proposed method

continues to fare well even under other commonly used loss functions. For instance, as
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indicated in Table 2, the proposed method performs well under the Hamming loss, although

the amount of improvement over the Pseudo-Ising classier shrinks as p increases. Moreover,

as shown in Table 3, the aforementioned results extend to the F1-score with higher F1-

scores than other competing methods across all situations, where F1 =
(
1 + FN+FP

2TP

)−1
. In

summary, the proposed method performs well even when the classification loss differs from

the evaluation loss in this case, which is attributed to the fact that label dependence has

been adequately taken into account in the model.

Concerning the contribution of additional labels, Table 5 suggests that our method does

improve the classification performance of its counterpart with complete data alone consis-

tently across all the settings. However, the amount of improvement becomes large for difficult

situations. The improvement is attributed primarily to the utilization of additional labels

through stacking.

Concerning runtime, the proposed method runs faster than other nonlinear methods for

more difficult set-ups and is slower than linear SVM, as suggested in Table 4. Importantly,

the proposed method runs linearly in the number of labels, while enabling to account for

label dependence. This is in contrast to binary relevance methods ignoring label dependence.

Finally, to investigate the capability of detecting novel labels for the proposed method, we

consider the same simulation setup as before with n = 200, 500, p = 2, 10, 50, 100, 500, 1000,

and q = 4. In particular, we set the first label to be −1 in all cases in the training data.

As suggested by Table 6, the TPR of the proposed method is strictly positive as long as

the dimension p is not that large, but it decays as p increases because the level of difficulty

escalates. This occurs in 4 out of 12 cases. This indicates that the proposed method is

capable of detecting the novel label if the noise level is not too large. This corroborates with

the result of Theorem 1. By comparison, all competitors are not capable of detecting novel

labels with TPR = 0 and FPR = 0.
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Tables 1-6 about here

6 Benchmarks

This section demonstrates the utility of the proposed method and also compares with some

state-of-art methods for multilabel classification on two benchmark examples.

(A) Microsoft COCO object detection challenge

We first examine the 2017 COCO Object Detection Task data in the Microsoft COCO

object detection challenge dataset [18], consisting of about 118, 287 images with 80 object

categories and about 500, 000 disparate objects. In each image, each object is bounded by

a box, which is associated with one label, with multiple bounding boxes corresponding to

multiple labels. The training, validation, and testing sets are available. Moreover, all images

are labeled, so we do not consider additional labels in the full analysis. As labels for the test

set is unreleased, we will use the training set for learning and the validation set for testing

instead.

To apply a classifier, we extract image features from these images by first applying a

ResNet50 Convolution Neural Networks (CNN) deep learner [16]. Specifically, we extract

the last layer of a trained ResNet50 model applying to images in our training and test

sets. This gives a feature dimension of 2056 for each image from the final layer of the

ResNet50 CNN model. Moreover, we also include a binary relevance CNN for comparison,

that is, a ResNet50 CNN classifier [16] performing binary classification for each label, which is

implemented using a Python deep learning library–Keras. To expedite training, we initialize

all the weights except for the last layer using a pre-trained version of ResNet50.

For the whole data set of 118, 287 images with p = 80 and q = 2056, we run our method

on a machine with 2 Twelve Core Xeon E5-2690 v3 2.6GHz CPUs and 128GB memory. For

the weight matrices, we setW+ = p−1I to be the 80×80 identity matrix andW− is computed
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using (2) based on label-label similarity matrix computed by GLOVE word vectors [21]. As

suggested by Table 8, the proposed method yields an overall test errors of .002 under loss

(1) and .025 under the Hamming loss over 80 categories as measured by Err(·, ·) based on

a test set of size 5000, supplied in the COCO data. However, the other competitors require

much higher memory and are unable to run there. By comparison, the proposed method is

scalable to this data without a large memory requirement.

To compare with LSVM, NSVM, Pseudo-Ising, and the ResNet50 CNN classifier, we

decrease the size of the original problem by randomly subsampling 6000 images on six cat-

egories: “person”, “car”, “motorcycle”, “bus”, “truck”, “train”. The average numbers of

positively labeled observations for the six categories are 3252, 621, 178, 200, 311, and 182.

For the weight matrices, W− becomes a 6 × 6 matrix, as defined in Table 7, while W+ is

the 6 × 6 identity matrix. To be more informative, we report separate test errors for each

category Errk(f̂k); k = 1, · · · , 6, as well as the overall error Err(f̂), which are obtained by

averaging over 100 random subsamples, where f̂ = (f̂1, · · · , f̂6)> is a classifier.

Tables 7-11 about here

As suggested in Table 8, the proposed method outperforms the competitors substantially

under loss L in (3), with the smallest test error .004 over six classes, which is in contrast to the

corresponding test error .002 for the full data over 80 classes. An increased training sample

size does improve the accuracy of classification. Moreover, the amounts of improvement over

LSVM, NSVM, and Pseudo-Ising are 825%, 150%, and 6775%. Interestingly, the proposed

method continues to perform the best in the largest two classes “Person” and “Car”, and

performs well for the other four small classes. However, the proposed method underperforms

NSVM under the Hamming loss, although it outperforms other methods for this reduced

data. This is because the classification and evaluation losses differ.
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To study the impact of additional labels on classification, we take a random sample of 500

images with at least two objects within the six categories: “person”, “car”, “motorcycle”,

“bus”, “truck”, “train”, and another sample of 100 images containing at most one in these

categories. The rest of the training samples are now treated as additional labels. As shown

in Table 9, the proposed method leveraging paired data and additional labels significantly

outperforms its counterpart without leveraging additional labels. Note that the improvement

of five competing methods without leveraging additional labels ranges from 280% to 575%.

This suggests that additional labels indeed provide valuable information for prediction. This

is an analogy of the situation in semisupervised learning in which a semisupervised classifier

that leverages unlabeled data usually leads to an improvement over its supervised counterpart

[29]. In a sense, the proposed method borrows external information from additional labels

to enhance the performance of supervised learning as in transfer learning [22].

(B) PASCAL visual object classes challenge 2007

Now, we analyze a different image dataset from the PASCAL Visual Object Classes

Challenge 2007 [11], consisting of training and validation sets of 5011 images and a testing

set of 4952 images. Now we apply all the methods on the training and validation sets for

training and use the testing set for evaluation. The weight matrix for the proposed loss

is generated as in (A) using the label-label similarity matrix computed by GLOVE word

vectors.

As suggested by Table 10, the proposed method continues to outperform its competitors

under the proposed weighted loss. The amounts of improvement over LSVM, NSVM, Pseudo-

Ising, and CNN are 200%, 16.67%, 5300%, and 66.67%. Moreover, the proposed method is

the second better in both the Hamming loss and the F1-score, that is, it is slightly worse

than NSVM under the Hamming loss but better than NSVM under the F1-score, and is

slightly worse than P-Ising under the F1-score but better than P-Ising under the Hamming

loss. Overall, the proposed method fares well across three evaluation criteria.
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(C) Mediamill benchmark

Lastly, we analyze a Mediamill dataset, which extracted from 85 hours of international

news videos from the TRECVID 2005/2006 benchmark datasets [25] and is publicly avail-

able at https://ivi.fnwi.uva.nl/isis/mediamill/challenge/data.php. This dataset

includes 120 low-level visual and textual features with labels consisting of a lexicon of 101

semantic concepts, like commercials, nature, and baseball. The training set is comprised of

30993 samples while the testing set has 12914 samples. Again, the weight matrix for the

proposed loss is generated as in (A) using the label-label similarity matrix computed by

GLOVE word vectors. There are no additional labels for this dataset.

For our analysis, we use the given training and testing sets for training and evaluation.

Moreover, we examine all aforementioned classifiers except CNN because the generated fea-

tures are not suited for CNN.

As seen from Table 11, the proposed method again outperforms its competitor NSVM

under the proposed weighted loss as well as the Hamming loss. The amount of improvement

over NSVM is about 49%, 4%, and 6% under the proposed weighted loss, the Hamming loss,

and the F1-score. Note that LSVM and Pseudo-Ising can not complete after one week.
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Table 1: Test errors (standard errors in parentheses) of various methods under the loss L
in (3) based on 100 simulations for complete data, where LSVM, NSVM, P-Ising, CW, and
Our denote linear SVM, nonlinear SVM, Pseudo-Ising classifier [8], Breiman’s classifier by
combining binary relevance linear-SVMs, and the proposed method.

(n, p, q) LSVM NSVM P-Ising CW Our

(500, 2, 20) .101(.002) .077(.002) .146(.007) .083(.003) .067(.002)
(500, 10, 20) .106(.002) .11(.002) .162(.005) .093(.003) .082(.002)
(500, 50, 20) .134(.003) .143(.004) .179(.006) .124(.004) .092(.002)
(500, 100, 20) .169(.004) .168(.004) .184(.007) .161(.005) .101(.003)
(500, 500, 20) .255(.005) .246(.005) .195(.007) .255(.005) .152(.007)
(500, 1000, 20) .274(.004) .266(.004) .198(.008) .274(.004) .175(.007)
(200, 2, 20) .104(.003) .083(.003) .178(.009) .090(.004) .078(.002)
(200, 10, 20) .117(.004) .129(.005) .204(.009) .111(.005) .092(.003)
(200, 50, 20) .182(.005) .179(.006) .225(.010) .177(.006) .110(.003)
(200, 100, 20) .228(.006) .214(.006) .231(.011) .228(.007) .127(.005)
(200, 500, 20) .279(.005) .27(.005) .244(.009) .279(.005) .180(.008)
(200, 1000, 20) .288(.005) .277(.005) .248(.009) .288(.005) .201(.008)
(500, 2, 50) .101(.002) .066(.002) .143(.007) .065(.002) .056(.001)
(500, 10, 50) .106(.002) .106(.002) .162(.007) .077(.002) .070(.001)
(500, 50, 50) .132(.002) .14(.003) .177(.007) .108(.002) .088(.002)
(500, 100, 50) .166(.003) .163(.003) .182(.007) .150(.004) .102(.002)
(500, 500, 50) .249(.003) .231(.003) .193(.007) .249(.003) .146(.003)
(500, 1000, 50) .267(.003) .252(.003) .198(.009) .267(.003) .170(.004)
(200, 2, 50) .103(.002) .073(.002) .186(.012) .076(.002) .065(.002)
(200, 10, 50) .117(.003) .125(.004) .213(.010) .100(.004) .083(.002)
(200, 50, 50) .178(.004) .173(.004) .231(.011) .169(.005) .111(.002)
(200, 100, 50) .224(.005) .204(.005) .237(.010) .222(.005) .127(.003)
(200, 500, 50) .271(.004) .258(.006) .250(.011) .271(.004) .175(.004)
(200, 1000, 50) .278(.003) .267(.006) .255(.011) .278(.003) .195(.004)
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Table 2: Test errors (standard errors in parentheses) of various methods under the Hamming
loss based on 100 simulations for complete data, where LSVM, NSVM, P-Ising, CW, and
Our denote linear SVM, nonlinear SVM, Pseudo-Ising classifier [8], Breiman’s classifier by
combining binary relevance linear-SVMs, and the proposed method.

(n, p, q) LSVM NSVM P-Ising CW Our

(500, 2, 20) .129(.003) .091(.003) .189(.009) .099(.004) .091(.003)
(500, 10, 20) .136(.003) .141(.003) .209(.006) .112(.004) .119(.003)
(500, 50, 20) .168(.004) .189(.005) .230(.007) .152(.004) .148(.004)
(500, 100, 20) .209(.005) .224(.005) .235(.008) .199(.006) .168(.004)
(500, 500, 20) .317(.005) .332(.004) .250(.008) .317(.005) .249(.008)
(500, 1000, 20) .344(.004) .358(.004) .253(.009) .344(.004) .279(.009)
(200, 2, 20) .133(.004) .102(.004) .227(.011) .109(.005) .107(.004)
(200, 10, 20) .149(.005) .167(.006) .261(.011) .135(.005) .138(.004)
(200, 50, 20) .226(.006) .240(.007) .286(.012) .219(.008) .183(.006)
(200, 100, 20) .283(.008) .288(.007) .294(.013) .282(.008) .212(.007)
(200, 500, 20) .352(.006) .363(.004) .310(.011) .352(.006) .286(.010)
(200, 1000, 20) .368(.005) .372(.003) .315(.012) .368(.005) .314(.010)
(500, 2, 50) .131(.002) .080(.002) .185(.009) .081(.002) .079(.002)
(500, 10, 50) .138(.002) .138(.003) .208(.008) .096(.003) .105(.002)
(500, 50, 50) .169(.002) .190(.003) .228(.008) .136(.003) .141(.003)
(500, 100, 50) .211(.003) .223(.004) .234(.009) .191(.005) .169(.003)
(500, 500, 50) .315(.004) .319(.003) .248(.008) .315(.004) .251(.004)
(500, 1000, 50) .340(.004) .345(.002) .255(.010) .340(.004) .287(.005)
(200, 2, 50) .135(.003) .091(.003) .238(.014) .095(.003) .094(.003)
(200, 10, 50) .151(.003) .166(.005) .274(.012) .126(.004) .128(.003)
(200, 50, 50) .226(.005) .238(.005) .297(.013) .214(.007) .185(.004)
(200, 100, 50) .282(.006) .280(.006) .305(.012) .280(.006) .216(.005)
(200, 500, 50) .346(.005) .353(.004) .322(.013) .346(.005) .293(.006)
(200, 1000, 50) .360(.004) .364(.003) .328(.013) .360(.004) .322(.006)
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Table 3: F1-scores (standard errors in parentheses) of various methods based on 100 simu-
lations for complete data, where LSVM, NSVM, P-Ising, CW, and Our denote linear SVM,
nonlinear SVM, Pseudo-Ising classifier [8], Breiman’s classifier by combining binary relevance
linear-SVMs, and the proposed method.

(n, p, q) LSVM NSVM Pseudo-Ising CW Our

(500, 2, 20) .888(.002) .919(.002) .84(.007) .912(.003) .922(.002)
(500, 10, 20) .882(.003) .878(.003) .823(.005) .901(.003) .899(.003)
(500, 50, 20) .854(.003) .841(.004) .806(.006) .866(.004) .879(.003)
(500, 100, 20) .817(.004) .814(.004) .801(.007) .826(.005) .866(.003)
(500, 500, 20) .723(.005) .737(.003) .789(.007) .723(.005) .813(.006)
(500, 1000, 20) .703(.004) .72(.003) .786(.008) .703(.004) .793(.006)
(200, 2, 20) .885(.003) .911(.003) .807(.009) .904(.004) .908(.003)
(200, 10, 20) .871(.004) .857(.005) .780(.010) .881(.005) .885(.003)
(200, 50, 20) .803(.006) .802(.006) .758(.011) .808(.007) .855(.004)
(200, 100, 20) .752(.007) .767(.006) .751(.011) .752(.007) .836(.005)
(200, 500, 20) .697(.006) .716(.006) .737(.010) .697(.006) .788(.007)
(200, 1000, 20) .688(.006) .710(.008) .733(.010) .688(.006) .770(.007)
(500, 2, 50) .882(.002) .927(.002) .836(.008) .927(.002) .930(.002)
(500, 10, 50) .876(.002) .876(.002) .816(.007) .914(.002) .908(.002)
(500, 50, 50) .848(.002) .834(.003) .799(.007) .878(.003) .881(.002)
(500, 100, 50) .811(.003) .807(.003) .793(.008) .830(.004) .860(.002)
(500, 500, 50) .718(.004) .735(.003) .781(.007) .718(.004) .805(.003)
(500, 1000, 50) .699(.003) .716(.003) .776(.009) .699(.003) .782(.004)
(200, 2, 50) .879(.002) .918(.002) .789(.012) .915(.003) .917(.002)
(200, 10, 50) .865(.003) .853(.004) .759(.010) .887(.004) .890(.003)
(200, 50, 50) .797(.005) .796(.004) .740(.012) .809(.006) .849(.003)
(200, 100, 50) .747(.006) .763(.005) .733(.011) .750(.006) .827(.003)
(200, 500, 50) .694(.004) .709(.006) .719(.011) .695(.004) .778(.004)
(200, 1000, 50) .687(.004) .701(.006) .714(.011) .687(.004) .759(.004)
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Table 4: Run-times as well as standard errors (in parentheses) in minutes of methods in
Table 1 based on 100 simulations. Here LSVM, NSVM, P-Ising, CW, and Our denote linear
SVM, nonlinear SVM, Pseudo-Ising classifier [8], and the proposed method.

(n, p, q) LSVM NSVM Pseudo-Ising CW Our

(500, 2, 20) .256(.025) 1.05(.106) 241(9.12) .955(.023) 7.75(.262)
(500, 10, 20) .448(.038) 2.15(.131) 208(6.38) 1.31(.130) 11.6(.444)
(500, 50, 20) 2.29(.199) 8.85(.471) 183(3.85) 3.80(.200) 25.8(4.53)
(500, 100, 20) 4.94(.602) 15.7(.903) 195(4.58) 6.79(.359) 37.1(5.68)
(500, 500, 20) 16.4(.800) 68.2(3.40) 311(3.68) 27.0(.455) 75.1(6.54)
(500, 1000, 20) 42.6(4.05) 176(7.06) 447(3.71) 67.0(4.81) 104(6.67)
(200, 2, 20) .145(.006) .539(.018) 274(4.40) .569(.014) 4.25(.129)
(200, 10, 20) .234(.007) 1.08(.024) 258(2.91) .732(.019) 4.97(.196)
(200, 50, 20) .84(.041) 3.64(.078) 262(2.40) 1.54(.054) 6.74(.202)
(200, 100, 20) 1.35(.034) 6.20(.077) 265(1.74) 2.42(.059) 8.13(.062)
(200, 500, 20) 9.17(.233) 34.9(.722) 319(2.03) 15.7(.203) 16.1(.339)
(200, 1000, 20) 19.0(.460) 69.7(.932) 385(2.12) 32.8(1.08) 23.6(.512)
(500, 2, 50) .671(.021) 2.69(.072) 816(11.7) 4.09(.092) 14.2(.229)
(500, 10, 50) 1.38(.034) 5.96(.111) 693(5.37) 5.37(.104) 20.0(.289)
(500, 50, 50) 6.38(.203) 22.6(.434) 773(4.83) 12.1(.25) 35.1(.529)
(500, 100, 50) 14.4(.739) 42.5(1.17) 874(5.17) 21.3(.766) 47.6(1.01)
(500, 500, 50) 46.8(.87) 195(3.33) 1627(5.57) 81.7(.478) 109(3.26)
(500, 1000, 50) 164(21.1) 641(14.5) 2570(6.99) 271(20.5) 164(5.18)
(200, 2, 50) .282(.021) 1.12(.079) 454(10.7) 1.54(.035) 12.3(.389)
(200, 10, 50) .463(.022) 2.34(.083) 441(11.2) 1.83(.037) 14.9(.422)
(200, 50, 50) 1.70(.083) 7.54(.275) 462(10.0) 3.5(.077) 24.6(2.65)
(200, 100, 50) 2.71(.124) 13.1(.462) 495(9.67) 5.28(.104) 36(5.47)
(200, 500, 50) 17.4(.600) 68.0(2.00) 780(8.22) 31.2(.216) 70.8(5.34)
(200, 1000, 50) 36.4(1.17) 140(3.55) 1130(6.94) 63(2.6) 97.1(4.84)
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Table 5: Test errors (standard errors in parentheses) of the proposed method without and
with additional labels based on 100 simulations.

(n, p, q) w/o additional labels w additional labels

(500, 2, 20) .387(.005) .345(.004)
(500, 10, 20) .377(.005) .346(.004)
(500, 50, 20) .367(.005) .346(.003)
(500, 100, 20) .361(.005) .345(.004)
(500, 500, 20) .352(.005) .344(.004)
(500, 1000, 20) .350(.004) .343(.003)
(200, 2, 20) .388(.006) .349(.006)
(200, 10, 20) .383(.007) .349(.006)
(200, 50, 20) .373(.008) .347(.005)
(200, 100, 20) .367(.008) .346(.005)
(200, 500, 20) .356(.007) .344(.004)
(200, 1000, 20) .354(.008) .344(.004)
(100, 2, 20) .387(.008) .351(.007)
(100, 10, 20) .386(.008) .351(.006)
(100, 50, 20) .377(.009) .350(.006)
(100, 100, 20) .373(.010) .348(.006)
(100, 500, 20) .365(.014) .347(.007)
(100, 1000, 20) .363(.013) .347(.007)
(50, 2, 20) .388(.008) .353(.008)
(50, 10, 20) .387(.010) .353(.007)
(50, 50, 20) .381(.013) .351(.008)
(50, 100, 20) .377(.016) .350(.008)
(50, 500, 20) .370(.013) .349(.007)
(50, 1000, 20) .371(.016) .350(.008)
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Table 6: True positive and false positive error rates (TPR and FNR) of a novel label
detection of the proposed method based on 100 simulations, where TPR> 0 indicates its
capability and all other competing methods are impossible with TPR= 0.

(n, p) TPR FPR

(200,2) .036(.022) .354(.050)
(200,10) .023(.018) .255(.073)
(200,50) .006(.009) .068(.065)
(200,100) .002(.005) .017(.035)
(200,500) .000(.000) .000(.000)
(200,1000) .000(.000) .000(.000)
(500,2) .044(.017) .359(.032)
(500,10) .021(.014) .320(.044)
(500,50) .011(.012) .158(.073)
(500,100) .005(.006) .072(.060)
(500,500) .000(.001) .001(.003)
(500,1000) .000(.000) .000(.000)

Table 7: Label-label weight matrix W− for the reduced COCO object image detection task
involving six objects.

person car motorcycle bus truck train

person 1 .0 .0 .0 .0 .0
car 0 .4 .1 .2 .2 .1
motorcycle 0 .1 .6 .1 .1 .1
bus 0 .2 .1 .4 .2 .1
truck 0 .2 .1 .2 .4 .1
train 0 .1 .1 .1 .1 .6
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Table 8: Averaged test errors for the full COCO object detection image data as well as
corresponding standard errors in parentheses based on 100 random subsamples involving
six categories with the average numbers of positively labeled observations 3252, 621, 178,
200, 311, 182. Here LSVM, NSVM, P-Ising, CNN [16], and Proposed denote linear SVM,
nonlinear SVM, Pseudo-Ising classifier [8], a convolutional neural network method, and the
proposed method. Note that “NA” means that a routine cannot return a value.

Full Weighed loss (3) Hamming F1-score
LSVM NA NA NA
NSVM NA NA NA
P-Ising NA NA NA
CNN .0025 .035 .093
Proposed .0022 .025 .228

Evaluation loss: L in (1) for 100 random samples
Person Car Motorcycle Bus Truck Train Overall

LSVM .094(.005) .069(.005) .008(.002) .012(.002) .037(.004) .006(.001) .038(.001)
NSVM .041(.003) .013(.002) .001(.000) .002(.000) .004(.001) .001(.000) .010(.001)
P-Ising .179(.008) .250(.009) .320(.007) .316(.010) .263(.012) .328(.009) .276(.005)
CNN .013(.002) .005(.000) .002(.000) .002(.000) .003(.000) .001(.000) .004(.000)
Proposed .011(.000) .005(.000) .002(.000) .002(.000) .003(.000) .001(.000) .004(.000)

Evaluation loss: Hamming for 100 random samples
Person Car Motorcycle Bus Truck Train Overall

LSVM .175(.006) .123(.005) .022(.002) .027(.002) .067(.004) .014(.001) .071(.002)
NSVM .118(.003) .081(.002) .018(.001) .022(.001) .044(.001) .012(.000) .049(.001)
P-Ising .251(.006) .306(.01) .339(.008) .338(.01) .298(.012) .347(.011) .313(.006)
CNN .385(.008) .107(.000) .032(.000) .038(.000) .050(.000) .031(.000) .107(.001)
Proposed .299(.007) .107(.000) .032(.000) .038(.000) .050(.000) .031(.000) .093(.001)
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Table 9: Test errors for COCO object detection image data as well as corresponding standard
errors in parentheses based on a subsample of 600 observations involving six categories. Here
LSVM, NSVM, P-Ising, CNN, Proposed, and Integration denote linear SVM, nonlinear SVM,
Pseudo-Ising classifier [8], a convolutional neural network method, the proposed method
using only complete data, and the proposed method integrating additional labels. The best
performer is marked in bold.

Evaluation loss: L in (1)
Person Car Motorcycle Bus Truck Train Overall

LSVM .2364 .3026 .1593 .1997 .3147 .0380 .2084
NSVM .4322 .2504 .0168 .0797 .2591 .0010 .1732
P-Ising .3601 .4412 .3529 .3252 .3638 .3322 .3626
CNN .0915 .0312 .0016 .0047 .0043 .0012 .0224
Proposed .2316 .1564 .0013 .0021 .0222 .0012 .0691
Integration .0645 .0543 .0013 .0017 .0029 .0012 .0210
Evaluation loss: Hamming

Person Car Motorcycle Bus Truck Train Overall
LSVM .2884 .3224 .1712 .2102 .3290 .0468 .228
NSVM .4344 .2718 .0298 .0890 .2692 .0250 .1865
P-Ising .4424 .4780 .3728 .3516 .3802 .3580 .3971

CNN .2218 .0954 .0310 .0306 .0510 .0314 .0768
Proposed .2770 .1770 .0246 .0276 .0610 .0314 .0997
Integration .0442 .0602 .0013 .0018 .0027 .0012 .0186

Table 10: Averaged test errors for the full PASCAL object detection image data (2007
version), as measured by the weighed loss (3), the Hamming distance, and the F1-score.
Here LSVM, NSVM, P-Ising, CNN [16], and Proposed denote linear SVM, nonlinear SVM,
Pseudo-Ising classifier [8], a convolutional neural network method, and the proposed method.

Method Weighted loss (3) Hamming F1-score
LSVM .018 .038 .690
NSVM .007 .031 .399
P-Ising .329 .390 .784
CNN .010 .073 .453
Proposed .006 .038 .757
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Table 11: Averaged test errors for the full Mediamill data [25], as measured by the weighed
loss (3), the Hamming distance, and the F1-score. Here LSVM, NSVM, P-Ising, and Pro-
posed denote linear SVM, nonlinear SVM, Pseudo-Ising classifier [8], and the proposed
method. Here NA means that the method did not produce a result after running for one
week.

Method Weighted loss (3) Hamming F1-score
LSVM NA NA NA
P-Ising NA NA NA
NSVM .0063 .0302 .5406
Proposed .0032 .029 .5714
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