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Abstract—In many applications, multilabel classifi-
cation involves time-series predictors, as in multilabel
video classification. How to account for the temporal
dependencies with respect to input variables remains
an issue, especially in action learning from videos.
Motivated by the problem of video categorization
and captioning, we propose a nonlinear multilabel
classifier based on a hidden Markov model and a
weighted loss separating false positive and negative
classification errors. This allows us to account for
label dependence and temporal dependencies of input
variables in classification. Computationally, we derive
a decomposable algorithm based on block-wise co-
ordinate descent for non-convex minimization, where
it permits not only to block-wise updates but also
label-wise updates, leading to scalable computation.
Theoretically, we derive the Bayes rule and prove
that the proposed method consistently recovers the
optimal performance of the Bayes rule. In simula-
tions, the proposed method compares favorably with
its competitors ignoring either label dependence or
time-dependence. Finally, the utility of the proposed
method is demonstrated by an application to Activ-
ityNet Captions dataset for understanding a video’s
contents.

Index Terms—Label dependence, hidden Markov
models, video sequence, nonconvex minimization, scal-
ability.
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D IGITAL information processing has become
an essential part of modern life. Given the

explosive growth of information in the big data
era, it is extremely critical that digital information
is accurately summarized and organized. One im-
portant yet challenging problem is the automatic
summarization of video content, having enormous
applications in video advertisements, online video
searching and browsing, the automatic recommen-
dation on movies based on personal preference,
essentially any electronic commerce platform. In
this article, we investigate statistical modeling of
multilabel classification of multivariate time-series,
motivated from video categorization associated with
captioning.

Multilabel classification is useful in modern ap-
plications, including protein function classification
[1], music categorization [2], and semantic scene
classification [3], [4]. Multilabel classification per-
mits multiple labels to be assigned to each instance.
There is a large body of literature on multilabel
classification. Relevant references include binary
relevance [5]–[8], a co-occurrence-based method
[9], Markov/Bayesian/dependence network meth-
ods [10], and pseudo-likelihood based on an Ising
model [11]. Whereas the latter approaches intend
to account for label dependence, working loss
functions such as the Hamming loss [12] and the
Jaccard distance [13] can not account for label
dependence. However, most existing methods as-
sume independent learning samples, yet difficult to
treat predictors with temporal dependencies such as
time series. Two major challenges emerge. First,
often semantic labels are used, particularly in video
categorization, exhibiting strong label dependence
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due to word-to-word relations. For example, “foot-
ball” and “tennis” are two semantic labels that
are unconditionally dependent, usually co-occurring
in a sports event, whereas they are conditionally
independent given the equipment used in sports
[14]. In such a situation, how to exploit the label
dependence becomes critical to improve the classifi-
cation performance. Second, how to treat predictors
induced by piecewise stationary time series, such as
a video sequence, remains open.

In this article, we will address these two chal-
lenges by developing novel classification models
to account for label dependence as well as tem-
poral dependencies. Particularly, we motivate our
methodological development by the problem of
understanding the content of a video and develop
classifiers to recognize multiple concurrent actions
of a video. For a video, multiple semantic labels
describe a video’s content given that each scene
may involve multiple actions simultaneously. On
the other hand, a video’s temporal dependence may
switch from one scene to another, which remains
steady over certain consecutive frames before tran-
siting to the next state. Indeed, action recognition
has been under-studied in statistics, although it has
received some attention in machine learning and the
film industry. In [15], motions are combined with
appearance features to learn to recognize, while
[16] develops temporal segment neural networks.
For single-label classification for videos, deep learn-
ing has shown some promising empirical results,
including long-short memory fully convolutional
networks (LSTM-FCN) and its attention version
ALSTM-FCN [17]. Both LSTM-FCN and ALSTM-
FCN use temporal convolutional blocks for feature
extraction and a LSTM block for learning temporal
dependencies. In [17], LSTM-FCN and ALSTM-
FCN achieve the state of the art performance against
strong competitors in some benchmarks for the ac-
tivity or action recognition, including the distance-
based methods [18], [19], traditional feature-based
algorithms [20], classical machine learners [21],
[22], dimensional reduction techniques [23]–[25],
as well as other deep learners.

To address the two aforementioned challenges,
we develop a nonlinear classifier for multilabel clas-

sification with multivariate time-series predictors,
motivated by the unique characteristics of a video.
Specifically, we model our nonlinear classifier that
is driven by a hidden state of a hidden Markov
model, which leads to predictions with a local
piecewise constant structure. This is well-suited
for semantic content prediction for videos, because
semantic entities or actions in videos often remains
to be unchanged until it switches to a different
scene. The transition probabilities of the hidden
states are estimated by the regularized maximum
likelihood while a classifier based on the weighted
loss is constructed given a hidden state. Moreover,
we propose to use a nonlinear classifier based on
random forests to account label dependence as well
as a weighted classification loss separating false
from negative positives. The resulting classifier
integrates nonlinear classification with a Gaussian
hidden Markov model, in which random forest is
used to construct a nonlinear classifier.

Computationally, we propose a margin loss-based
approach replacing the likelihood function for clas-
sification. To make computation scalable, we de-
velop a strategy of divide-and-conquer to divide the
corresponding optimization into many equivalent
small ones to optimize, as opposed to the use of the
EM algorithm. On this ground, we derive a decom-
posable algorithm based on blockwise coordinate
decent [26] for convex and nonconvex minimiza-
tions. The block involving continuous parameters
can be estimated using random forest and graphical
lasso algorithm, while the block involving latent
states can be estimated using Viterbi algorithm.
Theoretically, we prove that the proposed classifier
recovers the optimal performance of the Bayes rule
consistently. To our knowledge, we are unaware of
any results for this type of result with dependent
features. One key challenge of our analysis is
to show that consistent recovery of the proposed
method remains intact even with a small fraction
of samples whose hidden states are incorrectly
estimated. Towards this end, we derive technical
conditions under which the number of such cases
can be small. Numerically, we demonstrate the
utility of the proposed method in simulated and
real examples, where it compares favorably with
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its counterpart without accounting for temporal
dependence [14], the random forests [27], and
deep learners [17]. Moreover, in the benchmark
ActivityNet Captions dataset, the proposed method
performs well in terms of learning a video’s actions.
This demonstrates the advantages of modeling the
temporal dependence in classification involving de-
pendent inputs such as a video’s frames.

The article is organized as follows. Section 2
briefly introduces the propose methodology. Section
3 provides theoretical justification of the proposed
classifier in terms of recovering the optimal per-
formance of the Bayes rule. Section 4 presents the
numerical results on simulation study and real data
analysis. Section 5 summarizes the conclusions and
Appendix provides technical proofs.

II. METHODOLOGY

Consider a situation in which input-output pairs
{Xt,Yt}Tt=1 are observed, where, at time t, Xt =

{X(1)
t , . . . , X

(p)
t }T ∈ Rp is a multivariate time-

series predictor vector and Yt = (Y 1
t , . . . , Y

K
t )T is

a label vector with each Y tj ∈ {±1}. This occurs,
for instance, in video categorization, in which Xt

represents a video clip’s feature vector observed at
time t and Yt encodes certain objects or actions at
time t. In such a situation, it is known that (Xt,Yt)
has a piecewise smooth temporal dependence over
time t, or local stationary, as one action or objects
may remain in many consecutive frames of a video.
Our focus is predicting the label values of Yt0 at
a future observation time point t = t0 based on
{Xt,Yt}Tt=1.

To quantify the aforementioned temporal depen-
dence of Xt, we first introduce our hidden Markov
models. Let Zt be an unobserved latent state at
time t, where Zt = s; s = 1, . . . , S, and S is a
total number of possible latent states, which is a
discrete Markov chain with an initial probability
P (Z1 = s) = πs and a transition probability
P (Zt = s′|Zt−1 = s) = pss′ . Assume, without
of loss of generality, that Zt is stationary and irre-
ducible. Given Zt = s, Xt follows a multivariate
Gaussian distribution N(µs,Ω

−1
s ), with a mean µs

and a precision matrix Ωs.

To predict the outcome of Yt = (Y 1
t , · · · , Y Kt )>,

we introduce classification function vector
fs(xt) = (fs,1(xt), . . . , fs,K(xt))

> with
fs,k(xt) for label k at latent state Zt = s;
k = 1, . . . ,K , mapping from xt ∈ Rp to
{−1, 1}K . For each k, Y kt is predicted by
Ŷ kt =

∑
s I(Zt = s) Sign(fs,k(Xt)), where I(·)

is the indicator function and Sign(·) is the sign
function. As suggested by Figure 1, temporal
dependence is modeled through the latent state
Zt of (Yt,Xt), inducing a piecewise stationary
time-series.

To measure the performance of f , we define
the generalization error, Err(f) = EL(Y ,f) =∑K
k=1 E[

∑S
s=1 I(Zt = s)Lk(Yt, fs,k(Xt))], where

Lk is the loss weighted multilabel classification
loss in [14], which enables to account for partial
correctness.

Latent States Z1 Z2 Z3 Zt

Predictors
X1 X2 X3 Xt

Labels

Y1 Y2 Y3 Yt

. . .

Fig. 1. Diagram of the information flow for the hidden Markov
model.

A. Multilabel classification based on hidden
Markov models

This section develops a nonlinear classifier ac-
counting for time-dependence of (Yt,Xt) through
a hidden Markov model with latent states defined
by a discrete Markov chain Zt. In this fashion,
(Yt,Xt) are dependent, whereas (Yt,Xt) given Zt
can be conditionally independent; t = 1, . . . , T . As
a consequence, a higher accuracy of prediction can
be realized than a classifier ignoring such a temporal
structure.
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Given observed input-output pair {Xt,Yt}Tt=1,
the negative log-likelihood based on {Yt,Xt}Tt=1

given {Zt = zt}Tt=1 can be written as

−
∑T
t=1 logP(Yt|Xt, Zt = zt)

−
∑T
t=1 logP(Xt|Zt = zt)

−
∑T−1
t=1 log pzt,zt+1

− log πz1 , (1)

where pzt,zt+1 = P(Zt+1 = zt+1|Zt = zt) denotes
the transition probability from Zt = zt to Zt+1 =
zt+1 with 1 ≤ zt, zt+1 ≤ S, and πz1 = P(Z1 = z1)
is an initial probability.

Motivated by the likelihood function in (1), we
develop a loss-based method without specifying
the likelihood for classification. Towards this end,
we consider a weighted loss [14] separating false
positive from negatives as follows:

L(Yt,fs) =
K∑
k=1

Lk(Yt, fs,k(Xt)), (2)

where Lk(Yt, fs,k(Xt)) =
|δk(Yt)|I(δk(Yt)fs,k(Xt) < 0), δk(Yt) =∑
j:Y jt =+1 ω+jk −

∑
j:Y jt =−1 ω−jk, and ω+jk ≥ 0

and ω−jk ≥ 0 are false positive and negative
misclassification errors of Y jt by fs,k(Xt). Loss (2)
quantifies label dependence and accounts for partial
label correctness. It is additive to each label, which
makes scalable computation possible. In (1), we
replace − logP(Yt|Xt, Zt = zt) by its surrogate
loss L(·, ·) and re-write P(Xt|Zt = zt) as Pµzt ,Ωzt

.
This renders the proposed cost function with respect
to parameters θ = {f , zt,µs,Ωs, πs, pss′} with
t = 1, . . . , T and 1 ≤ s, s′ ≤ S:

H(θ) =
T∑
t=1

L(Yt,fzt(Xt))−
T∑
t=1

logPµzt ,Ωzt
(Xt)

−
T−1∑
t=1

log pzt,zt+1
− log πz1 , (3)

where logPµzt ,Ωzt
(Xt) = −p

2
log(2π) +

1

2
log |Ωzt | −

1

2
(Xt − µzt)TΩzt(Xt − µzt).

For a typical hidden Markov model, the cost
function to minimize involves the integral of (3)

over all possible latent states, which is often treated
with the EM algorithm that is usually not scalable.
Then we choose to optimize (3) with respect to the
hidden states, which is computationally amenable.
To deal with high-dimensional parameters, we regu-
larize (3) using a graph Lasso (GLasso) penalty [28]
on Ωs and consider the following minimization

min
θ=(f ,zt,µs,Ωs,πs,pss′ )

H(θ) + λ
S∑
s=1

J(Ωs) (4)

where λ > 0 is a tuning parameter and J(Ωs) =∑
i<j |Ωs,(i,j)| is the GLasso penalty, which en-

courages each precision matrix Ωs to be sparse.
Moreover, we propose to use random forest to
treat the minimization of

∑T
t=1 L(Yt,fzt(Xt))

over nonlinear function space fzt . One benefit of
using a nonlinear classifier is that it can effectively
model label dependence, c.f., [14].

B. Computation

To make the proposed method (4) scalable, we
utilize the strategy of divide-and-conquer to solve
two minimizations separately, which is equivalent
to minimize (4). Particularly, we derive a bi-block
coordinate descent algorithm with involving a la-
tent variable block {Zt}Tt=1 and a parameter block
(fs,k,µs,Ωs, πs, ps′s)1≤s′,s≤S,1≤k≤K , to solve (6)
iteratively until convergence, while alternatively be-
tween these two blocks. Given the present solution
(f̂s,k, µ̂s, Ω̂s, π̂s, p̂s′s) for the continuous parame-
ter, we employ Viterbi algorithm [29], a dynamic
programming algorithm, solving (3) with respect to
{Zt = zt}Tt=1, which amounts to solving

minz1,...,zT −
(∑T

t=1 logPµ̂zt ,Ω̂zt
(Xt)

−
∑T−1
t=1 log p̂zt,zt+1 − log π̂z1

)
, (5)

to yield the estimated latent state {Ẑt = ẑt}Tt=1.
Then given the current solution of latent states
{Ẑt = ẑt}Tt=1, solving (3) with respect to{

fzt,k,µzt ,Ωzt , πzt , pzt,zt+1
;

1 ≤ zt, zt+1 ≤ S, 1 ≤ k ≤ K
}
,
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which is again decomposed into three minimization
subproblems subsequently:

min
fs,k

∑T
t=1
ẑt=s

∑K
k=1 Lk(Yt, fs,k(Xt));

s = 1, . . . , S, k = 1, . . . ,K, (6)
min
µs,Ωs

−
∑T

t=1
ẑt=s

logPµs,Ωs(Xt) + λJ2(Ωs);

l = 1, . . . , S, (7)
min
ps′s,πl∑

s′
ps′s=1

∑
s
πs=1

−
∑
s′,sNs′s log ps′s − log πs;

s′, s = 1, . . . , S. (8)

To solve (6), we decompose it into K separate
subproblems to solve utilizing the additive property
of Lk(·, ·):

min
fs,k

T∑
t=1
ẑt=s

Lk(Yt, fs,k(Xt)) =

min
fs,k

T∑
t=1
ẑt=s

|δk(Yt)|I(δk(Yt)fs,k(Xt) < 0);(9)

k = 1, . . . ,K , permitting parallel computation. As a
result, the computational complexity becomes linear
in K, where we employ a weighted version of
random capability of variable selection. In (9), we
solve weighted binary classification for predicting
Sign(δk(Yt)), where the overall misclassification
loss is weighted by δk(Yt). A fast algorithm [30]
can be modified with weights for estimating classi-
fier fs,k which is a random forests.

To solve (7), note that logPµzt ,Ωzt
(Xt) =

−p2 log(2π)+ 1
2 log |Ωzt |− 1

2 (Xt−µzt)TΩzt(Xt−
µzt). Then (7) reduces to

minµs,Ωs

1

2

T∑
t=1
ẑt=s

(Xt − µs)TΩs(Xt − µs)

− log |Ωs|+ λJ(Ωs).

Then the sample mean vector and covariance matrix

can be written as

µ̂s = 1
Ns·

∑T
t=1
ẑt=s

Xt,

Σ̂s = 1
Ns·−1

∑T
t=1
ẑt=s

(Xt − µ)(Xt − µ)>.

(10)
Given a L1-penalty J(Ω) =

∑
i6=j |Ωi,j | and λ > 0,

the L1-regularized Gaussian maximum likelihood
estimate of Ωs is the solution of the following
problem:

argmin
Ω�0

− log detΩs + Tr(Σ̂sΩs) + λ
∑
i6=j

|Ωs,(i,j)|, (11)

which reduces to a GLasso problem that can be
efficiently solved [28], [31], where Ωs,(i,j) denotes
the (i, j)th entry of Ωs.

To solve (8), note that p̂ss′ = Nss′
Ns·

, where Nss′ =

#{t : Ẑt = s and Ẑt+1 = s′}, Ns· =
∑S
s′=1Nss′ ,

and π̂s is 1 if Z1 = s and otherwise 0.
The optimization strategy for computing the so-

lution of (4) is summarized in Algorithm 1.
Algorithm 1
Step 1: Specify initial values for

(µ̂
(0)
s , Ω̂

(0)
s , π̂

(0)
s , p̂

(0)
s′s) based on sample statistics of

each cluster generated by the k-means algorithm;
Start iteration:

Step 2: Estimate latent states z1, · · · , zT using
the Viterbi algorithm and via (5);

Step 3: Given updated latent states, minimize
(9) for fs,k; k = 1, · · · ,K, s = 1, · · · , S, (11) for
Ωs; s = 1, . . . , S, and update p̂ss′ = Nss′

Ns.
;

Step 4: Terminate when the amount of im-
provement in terms of the cost function is smaller
than the pre-specified tolerance.

III. STATISTICAL LEARNING THEORY

This section develops a learning theory to in-
vestigate the proposed method’s capability of re-
covery of the Bayes performance, as measured by
the generalization error. In particular, we establish
consistency result for a global minimizer of (4)
f̂ , where the generalization error of the classifier
defined by f̂ is

Err(f̂) =
∑
k ELk(f̂k)

=
∑
k

∑
s P (Z = s)E(Lk(f̂s,k)|Z = s),
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where Lk =
∑
s I(Z = s)Lk(f̂s,k), Lk(f̂s,k)

is the loss for label k at state s, and E and
E(·|Z = s) are the expectation and the conditional
expectation given Z = s, respectively. Similarly,
the Bayes error is Err(f?) =

∑K
k=1

∑S
s=1 P (Z =

s)E(Lk(f?s,k)|Z = s), where f?s,k denotes the
Bayes decision rule for label k at state s. Consis-
tency of classifier f̂ means that Err(f̂)→ Err(f?)
as the sample size tends to ∞.

Lemma 1 below gives the Bayes decision
rule f?s,k that minimizes the generalization error
Err(fs,k) = E(Lk(fs,k)|Z = s).

Lemma 1: (Bayes decision rule) Given loss Lk,
the Bayes decision function f?s,k is expressed as

f?s,k(xt) = Sign(E(δk(Yt)|Xt = xt, Zt = s)); (12)

k = 1, . . . ,K; s = 1, . . . , S, where E(δk(Yt)|Xt =
xt, Zt = s) =

∑K
j=1(ω−jkPs(Yj = 1|Xt =

xt, Zt = s)−ω+jkPs(Yj = −1|Xt = xt, Zt = s)).
Next we analyze our random forests classifier f

in (2), which is a voting classifier of simple decision
trees considered in [14], [32], [33]. Specifically, for
a single tree, a coordinate of X = (X1, . . . , Xp)
is chosen at each node with each Xr having a
probability pr ∈ (0, 1) of being selected, and the
selected partition is split along the randomly chosen
variable at the midpoint. Then a voting classifier
f̂

(B)
s,k for label k at state s is defined as the average

of B independent tree classifiers

f̂
(B)
s,k = B−1

B∑
b=1

f̂s,kb(x), k = 1, . . . ,K (13)

where f̂ (b)
s,k ; b = 1, . . . , B, are independent single-

tree classifiers with the same number of variable
splits. Note that this split scheme differ from that
used by the standard random forest in how features
and split are chosen, yet it is more amenable to
theoretical analysis. As a technical note, [14] ex-
amines the same voting classifier for a weighted
loss function with independent observations. Our
analysis may be regarded as an expansion of the
theory in [14] to a multivariate time series model
generated by a hidden Markov model.

Two key components of our theoretical analysis
are as follows. First, we prove that the fraction of

time points at which latent states can be incorrectly
estimated is essentially small. Second, even with in-
correctly estimated latent states, the classifier given
the estimated latent states remains consistent when
the number of splits can be adjusted.

The following assumptions are imposed for con-
sistent consistency.

Assumption 1: (Model assumptions)
(A1) (Parameter space) The parameter space Θ =

(µs,Ωs, πs, ps′s)1≤s′,s≤S is compact and the
true parameter value θ? is an interior point of
Θ. The dimension of the feature dimension p
does not grow with T . Moreover, for all T > 1,
θ? is identifiable in that it is a unique solution
of E[log pθ? (X)

pθ(X) ] = 0 for θ ∈ Θ.
(A2) (Transition probabilities) For the ss′ element

pss′ of the transition probability matrix, there
exist constants p+ and p− such that 0 < p− ≤
pss′ ≤ p+ < 1; s, s′ = 1, · · · , S.

(A3) (Eigenvalues) There exist constants 0 < ηl ≤
ηu < ∞ such that ηl ≤ minλl,s ≤
maxλu,s ≤ ηu, where λl,s and λu,s are the
smallest and largest eigenvalues of the covari-
ance matrix Ω−1

s .
Conditions (A1)–(A3) in Assumption 1 are the

same as A2.1, A3.1 to A3.4 in Section 3 of [34]
for multivariate hidden Markov mixture models.
These conditions ensure that the all continuous
parameters in the hidden Markov model can be
estimated consistently.

Assumption 2: (Transition probabilities) Assume
that

(S−1) exp

(
−mins6=s′ h

2
ss′

2

)
max

s,s′,s′′ 6=s

√
pss′′

pss′
< 1 .

(14)
where hss′ denotes the Hellinger-distance between
two normal densities N(µs,Ω

−1
s ) and N(µs′ ,Ω

−1
s′ ).

Assumption 2 concerns the transition matrix and
the degree of separation between the mixtures. The
conditions are imposed so that the latent states in
the hidden Markov model can mostly be estimated
consistently.

Assumption 3: (Relation of tree tuning and tran-
sition probabilities) Let M be the number of splits
for each individual tree in the random forest. For
Xt ∈ Xs at state s, the sample size ns → ∞ as
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T =
∑S
s=1 ns → ∞; s = 1, . . . , S. Moreover, the

transition probability pss′ , the number of splits M ,
the feature sampling probability pr, and the number
of categories K, satisfy

M →∞, M max
s6=s′

√
ps′s
ps′s′

→ 0,

K3M

ns
→ 0, pr logM − 2 log(K)→∞ ;

r = 1, . . . , p; s = 1, . . . , S, as T →∞.
Assumption 3 requires that maxs6=s′

ps′s
ps′s′

→ 0,
which says that the probability of staying at the
same state as the previous one is much larger than
that of moving to a different state. Moreover, if K
is fixed and all variables are equally likely to be
chosen for splitting, that is, pr remains the same
across r, then a sufficient condition for Assumption
3 are simplified as

max
s6=s′

√
ps′s
ps′s′

→ 0 (15)

when choosing M to be, for example, M =

(maxs6=s′
√

ps′s
ps′s′

)−1/2.
Assumption 4: (Smooth Bayes decision func-

tions) Assume that the Bayes decision functions
f?s,k; k = 1, . . . ,K; s = 1, . . . , S, are uniformly L-
Lipschitz continuous in that max1≤k≤K |f?s,k(x1)−
f?s,k(x2)| ≤ D||x1 − x2||2, where D > 0 is a
constant independent of p,K, ns and ‖ · ‖2 denotes
the L2-norm.

Assumption 4 is usually required for analyzing a
tree voting classifier [32].

Theorem 1 establishes consistent recovery of the
Bayes performance by the proposed method under
the loss (3).

Theorem 1: Under Assumptions 1–4, the clas-
sifier defined by a global minimizer of (4) f̂ is
consistent as T →∞.

IV. NUMERICAL EXAMPLES

This section investigates operating characteristics
of the proposed method with respect to the impacts
of (1) latent states, (2) different covariance matrix
structures of input vector Xt, (3) overlapping input
vector Xt, and (4) label dependence of components

of Y . Importantly, it is compared against the ran-
dom forest with and without assuming latent states
to be known, referred to as random forests (RF) and
Oracle.

A. Simulation
1) Model Setting: Our example concerns three

latent states with T = 10000, where the temporal
dependence is induced by a Markov chain with
initial probabilities π = (1/3, 1/3, 1/3) and a
transition matrix

P =

0.4 0.5 0.1
0.2 0.3 0.5
0.4 0.3 0.3

 .

To generate a multivariate time-series, a p = 100-
dimensional input vector Xt is drawn from a
normal distribution N(µl,Ω

−1
l ) given that Zt =

l; l = 1, · · · , 3. Two situations are considered:
overlapping and non-overlapping samples between
states, by varying the relative size of µl and Ωl.
In the non-overlapping situation, the input vector
Xt is perfectly separable with respect to different
states, which is in contrast to the overlapping case.
Specifically, let µl = l1µ0 and Ωl = l2Ω

(i) given
state Zt = l, where µ0 = (1, 1, 1) and Ω(i) is to be
specified. Here l1 = −3, 0, 3 and l2 = 3, 2, 3 yield
the overlapping situation, while l1 = −12, 0, 12 and
l2 = 3, 2, 3 give the non-overlapping situation. To
investigate the influence of covariance matrix on
the performance, we consider the following three
covariance structures, as in [35]: Σ(1) with entries
σ

(1)
ij = ρ|i−j| with ρ = 0.7, Σ(2) with entries
σ

(2)
ij = I(|i−j| = 0)+0.4I(|i−j| = 1)+0.2I(|i−
j| = 2) + 0.2I(|i− j| = 3) + 0.1I(|i− j| = 4), and
Σ(3) with entries σ(3)

ij = I(i = j) + 0.5I(i 6= j),
where Σ(i) = [Ω(i)]−1.

To investigate the impact of modeling la-
bel dependence, in each state, we use an Ising
model defined in (16) as in [14], modeling linear
pairwise conditional dependencies. Given Y =
(Y1, · · · , YK) follows a conditional Ising model
given Xt and latent state Zt. The probability den-
sity of Y given Xt = xt and Zt = l is

P (y|x, z = l) = 1
M(αl(x)) exp

(
1
2

∑K
j=1 αl,jj(x)yj

+ 1
2

∑
m>j αl,jm(x)yjym

)
(16)
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where y = (y1, · · · , yK)T ,αl(x) =
(αl,11(x), αl,12(x), · · · , αl,pp(x)) is a
p(p + 1)/2-dimensional vector and M(αl(x))
is a partition function to ensure that 2p

probabilities summing up to one. Now we let
αl,jm = αl,mj = xTθl,jm + θl,jm0, m < j, where
θl,jm = (θl,jm1, · · · , θ1,jmp). θl,jmu, u = 1, · · · , p
are drawn from Unif(−γ1, γ1), and θl,jm0 is
drawn from Unif(−γ2, γ2), for different states,
γ1 = 10, 50, 20 and γ2 = −10, 50,−5. In total, we
generate 30 labels.

Nine methods are compared, including the pro-
posed method (Our), two binary relevance methods
based on linear (LSVM-BR) and Gaussian kernel
(NSVM-BR) support vector machines both ignor-
ing label dependence with estimated hidden states,
two standard methods based on linear (LSVM)
and Gaussian kernel (NSVM-BR) support vector
machines ignoring both label and temporal depen-
dencies, the weighted random forests (RF) [14]
ignoring temporal dependence with hidden states
sharing the identical mean and covariance, the ora-
cle method (Oracle) with known hidden states, and
two deep learning methods using temporal convolu-
tion and long short memory network for temporal
dependence without attention mechanism (LSTM-
FCN) and with attention mechanism (ALSTM-
FCN) [17]. For deep learning, we use the publicly
available code and default parameters provided by
the authors. The training is processed on a single
GTX 1050 Ti GPU.

The accuracy of classification is evaluated on
a test sample under the weighted loss (9) and
the Hamming loss [12]. The following two weight
matrices are used for the weighted loss in (9):

W+ = IK×K and

W− =


.6 .4

K−1 · · · .4
K−1

.4
K−1 .6 · · · .4

K−1
...

...
. . .

...
.4

K−1
.4

K−1 · · · .6

 ,

where I is the identity matrix and each row or
column sum of W− is one.

2) Numerical results: In the case of K = 5
involving S = 3 hidden states, as shown in Ta-

ble I, the proposed method is the best performer
or close to the best performer in terms of the
weighted loss, which is close to NSVM-BR and
the optimal performance—the oracle. Interestingly,
it outperforms the other competitors RF by about
3% to 11% and substantially outperforms LSVM-
BR, LSVM and NSVM by about 38% to 50%. The
proposed method also performs far better than the
deep learning methods LSTM-FCN and ALSTM-
FCN, improving the weighted loss by about 70%.
In general, nonlinear methods performs better than
linear methods, and methods that account for label
dependence performs better than those that do not.
Moreover, it is noted that the proposed method
performs better in the separable case, which is
anticipated as the latent states can be estimated
more precisely in this situation. Overall, the im-
proved performance of the proposed method can be
attributed to latent state modeling.

In the cases of K = 20 and K = 40, the
proposed method is either the best performer or
close to the best, particularly achieving a similar
performance of the oracle method (Oracle). The
amounts of improvement of the proposed method
over LSVM-BR, NSVM-BR, LSVM, NSVM, RF,
LSTM-FCN, and ALSTM-FCN range from 45%
to 92%, from 4% to 10%, from 53% to 97%,
from 36% to 60%, from 0% to 7%, from 182%
to 284%, and from 180% to 287%. Roughly, large
improvements occur for challenging situations, as
K increases. As in the case of K = 5, the first seven
methods all outperform the last two deep learning
methods, which is attributed to the fact that the
deep learning methods could neither estimate the
explicit temporal structure nor account for the la-
bel dependence. Moreover, the generalization error
escalates about 5% to 60% when Xt has a more
complex covariance structure such as Ω(2) and Ω(3)

as opposed to Ω(1).
The proposed method continues to fare well even

under the other commonly used loss—Hamming
loss, as indicated in Table II. In summary, the
proposed method performs well even when the
classification loss differs from the evaluation loss
in this case. This could be attributed to the fact that
label dependence has been adequately taken into
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TABLE I
TEST ERRORS (STANDARD ERRORS IN PARENTHESES) IN ORDER OF 10−4 OF VARIOUS METHODS UNDER THE WEIGHTED LOSS

OVER 100 SIMULATIONS. TYPES 1 AND 2 DENOTE NON-SEPARABLE AND SEPARABLE CASES AND Ω(1)–Ω(3) REPRESENT
THREE TEMPORAL DEPENDENCIES.

K Type Ω Our LSVM-BR NSVM-BR LSVM NSVM RF LSTM-FCN ALSTM-FCN Oracle

5

1
Ω(1) 916(11) 1609(23) 913(10) 1680(14) 1468(13) 945(11) 3349(64) 3231(73) 917(10)
Ω(2) 962(10) 2160(14) 1021(11) 1510(11) 1551(11) 1055(11) 3879(54) 3660(67) 960(10)
Ω(3) 1110(11) 1690(13) 1061(11) 2196(14) 1863(13) 1180(13) 3757(68) 3714(86) 1113(13)

2
Ω(1) 586(10) 1621(20) 611(10) 968(10) 963(10) 595(10) 3710(58) 3742(63) 584(10)
Ω(2) 949(10) 1954(20) 1081(10) 2042(13) 1758(14) 960(10) 3925(49) 3918(51) 951(11)
Ω(3) 680(8) 1124(13) 693(8) 1282(11) 1256(13) 705(8) 3471(71) 3264(38) 677(8)

20

1
Ω(1) 1076(7) 1889(10) 1179(8) 1925(13) 1582(10) 1120(8) 3726(36) 3692(39) 1074(8)
Ω(2) 1155(6) 1949(11) 1258(6) 2208(13) 1810(8) 1203(6) 3607(38) 3779(31) 1152(6)
Ω(3) 1368(7) 2237(11) 1439(6) 2208(10) 2053(8) 1461(7) 3861(29) 3828(35) 1368(7)

2
Ω(1) 969(6) 1771(10) 1054(6) 1572(8) 1490(8) 978(6) 3503(19) 3612(40) 970(6)
Ω(2) 959(6) 1539(8) 1049(4) 1843(7) 1509(7) 958(4) 3685(23) 3707(33) 957(6)
Ω(3) 1159(8) 1677(7) 1266(8) 1770(8) 1600(7) 1166(8) 3690(19) 3730(26) 1161(8)

40

1
Ω(1) 1198(4) 1884(6) 1289(4) 2218(7) 1840(6) 1228(4) 3904(29) 3892(14) 1196(4)
Ω(2) 1066(4) 1935(7) 1148(4) 1825(8) 1709(7) 1127(6) 3686(47) 3823(24) 1065(4)
Ω(3) 1296(4) 2084(8) 1393(4) 2292(7) 2017(6) 1378(4) 3779(20) 3698(31) 1293(4)

2
Ω(1) 997(6) 1911(6) 1084(6) 1717(10) 1541(8) 1005(6) 3709(19) 3633(19) 1000(6)
Ω(2) 1165(4) 1748(6) 1286(4) 1782(4) 1584(4) 1171(4) 3806(51) 3849(69) 1165(4)
Ω(3) 1029(7) 1817(8) 1073(7) 2025(13) 1558(10) 1047(7) 3624(31) 3618(48) 1028(7)

TABLE II
TEST ERRORS (STANDARD ERRORS IN PARENTHESES) IN ORDER OF 10−4 OF VARIOUS METHODS UNDER THE HAMMING LOSS

OVER 100 SIMULATIONS. TYPES 1 AND 2 DENOTE NON-SEPARABLE AND SEPARABLE CASES AND Ω(1)–Ω(3) REPRESENT
THREE TEMPORAL DEPENDENCIES.

K Type Ω Our LSVM-BR NSVM-BR LSVM NSVM RF LSTM-FCN ALSTM-FCN Oracle

5

1
Ω(1) 1186(14) 2040(27) 115(13)3 2193(18) 1926(16) 1222(14) 4266(77) 4139(82) 1184(14)
Ω(2) 1231(12) 2634(17) 1287(14) 1906(15) 1969(15) 1347(14) 4812(69) 4579(80) 1229(13)
Ω(3) 1416(17) 2072(16) 1327(14) 2777(19) 2357(16) 1510(15) 4697(83) 4687(103) 1420(15)

2
Ω(1) 756(12) 2011(19) 775(12) 1210(13) 1202(13) 767(12) 4710(77) 4753(84) 753(12)
Ω(2) 1223(14) 2397(23) 1363(13) 2547(17) 2189(18) 1236(13) .4809(65) 4797(67) 1226(14)
Ω(3) 858(11) 1440(16) 865(11) 1637(14) 1607(15) 890(11) 4489(87) 4269(46) 855(11)

20

1
Ω(1) 1346(9) 2326(12) 1469(11) 2367(16) 1968(13) 1402(1) 4618(48) 4584(48) 1345(1)
Ω(2) 1449(7) 2450(14) 1576(7) 2750(16) 2268(11) 1510(7) 4506(47) 4721(38) 1446(7)
Ω(3) 1718(8) 2766(13) 1796(7) 2773(12) 2575(10) 1837(8) 4793(33) 4755(42) 1719(9)

2
Ω(1) 1211(7) 2230(12) 1315(7) 1968(1) 1861(1) 1222(7) 4404(25) 4535(49 1213(6)
Ω(2) 1194(7) 1936(10) 1303(6) 2306(8) 1883(8) 1195(6) 4593(29) 4618(40) 1192(7)
Ω(3) 1448(11) 2107(10) 1578(10) 2212(10) 1998(9) 1458(10) 4635(22) 4686(33) 1451(10)

40

1
Ω(1) 1493(5) 2361(7) 1604(5) 2768(9) 2293(6) 1532(6) 4885(36) 4870(18) 1491(5)
Ω(2) 1335(6) 2412(9) 1431(6) 2285(10) 2137(9) 1413(6) 4592(57) 4758(27) 1333(6)
Ω(3) 1616(5) 2611(11) 1735(5) 2862(10) 2516(7) 1718(5) 4737(26) 4631(36) 1613(6)

2
Ω(1) 1241(7) 2410(8) 1347(7) 2145(12) 1920(11) 1250(7) 4650(24) 4558(23) 1244(7)
Ω(2) 1455(6) 2193(8) 1604(6) 2234(6) 1982(6) 1463(5) 4767(63) 4816(86) 1455(6)
Ω(3) 1292(8) 2283(10) 1344(9) 2541(16) 1959(13) 1314(8) 4513(36) 4523(60) 1291(8)

account in the model.

Concerning computational speed, as indicated in
Table III, SVM based methods run faster, including
LSVM-BR, NSVM-BR, LSVM, and NSVM, due
to the efficient software–LIBLINEAR [36] and LIB-
SVM [37]. Moreover, they run at least 50% faster
than the methods based on random forests, includ-

ing Our, RF and Oracle. Generally, the methods
accounting for the temporal dependence run faster
than those ignoring it. For example, Our method
runs as fast as the oracle method, while improves
the speed of the weighted random forests (RF) by
about 30%.
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TABLE III
AVERAGE RUNTIME IN SECONDS OF VARIOUS METHODS IN TABLE I FOR ONE 100 SIMULATION. HERE Ω(1)–Ω(3) REPRESENT

THREE TEMPORAL DEPENDENCIES.

K type Ω Our LSVM-BR NSVM-BR LSVM NSVM RF LSTM-FCN ALSTM-FCN Oracle

5

1
Ω(1) 21.67 0.45 3.63 0.28 10.33 33.24 398.65 425.85 21.53
Ω(2) 21.28 0.55 3.21 0.28 11.62 34.58 408.21 449.63 21.32
Ω(3) 25.00 0.52 4.26 0.30 13.40 38.69 411.38 463.24 24.85

2
Ω(1) 14.97 0.64 2.06 0.25 8.80 23.04 385.12 441.96 14.79
Ω(2) 21.93 0.83 3.54 0.27 12.10 32.61 399.65 462.67 21.89
Ω(3) 16.94 0.69 2.56 0.26 9.75 27.18 392.81 459.29 16.83

20

1
Ω(1) 93.20 1.20 12.51 0.73 34.53 138.82 1625.25 1844.85 93.20
Ω(2) 90.35 1.68 13.40 0.86 43.69 141.93 1663.84 1869.57 90.30
Ω(3) 96.23 2.10 13.45 0.84 45.05 154.74 1695.79 1886.63 96.19

2
Ω(1) 78.21 3.24 12.50 0.95 44.80 116.90 1612.62 1821.74 78.04
Ω(2) 88.73 2.09 16.31 0.99 46.26 125.20 1698.65 1877.38 88.77
Ω(3) 109.16 1.81 22.83 1.05 46.05 142.22 1672.93 1854.69 109.08

40

1
Ω(1) 185.30 2.66 23.86 1.52 79.43 286.95 3225.32 3589.16 185.13
Ω(2) 167.47 3.00 21.83 1.85 96.32 274.87 3232.25 3528.76 168.70
Ω(3) 198.82 4.33 30.55 2.15 109.72 312.87 3276.67 3716.52 198.48

2
Ω(1) 158.29 6.42 23.15 1.78 89.80 242.19 3255.48 3632.27 158.12
Ω(2) 218.38 3.75 45.67 1.81 92.90 288.74 3305.16 3689.61 218.47
Ω(3) 177.18 4.28 28.67 1.81 91.92 267.09 3298.57 3710.54 176.72

B. Video data analysis

This section applies the proposed
method to a benchmark dataset in
ActivityNet Captions dataset [38]
(https://cs.stanford.edu/people/ranjaykrishna/densevid/).
This dataset is comprised of annotated videos with
captions giving a short sentence description as well
as their duration, where each sentence is associated
with one segment of the video, depicting multiple
distinct events. Note that multiple events may
occur simultaneously over a long or short period
of time. The reader may consult http://activity-
net.org/challenges/2017/captioning.html for more
details.

1) Preprocessing: Given a video V = (vt), each
caption is expressed as {(t1, t2), caption}, where
the caption describes events occurred in a time
interval (t1, t2). To create labels for classification,
we employ the Stanford NLP parser to extract
subjects in addition to the corresponding verbs from
main entitles, treating same verbs in different tenses
as one category. More specifically, a parser yields
a single word with a part-of-sentence tags as well
as the grammar between words for a sentence.
For example, a parsed sentence (’holds’, ’VBZ’),
’dobj’, (’arms’, ’NNS’) indicates that ’arms’ is a

direct object of the verb “holds”, and the main
action in this sentence is “hold arms”. Then we
code a main action as 1/-1 in the presence/absence
in a video. For an entire video, we rank actions
in parse sentences in captions by the number of
occurrences in the video, and choose the top 15
actions to generate labels. As a result, the label
Yt is a 15-dimensional vector, one for each action,
with Y kt = ±1 indicating that the k-th action is
present/absent at time t.

To generate latent states for our method, we
calculate the sentence embeddings via sentence2vec
[39]. For any two sentences j and k, a similarity
measure is defined as exp(

uTj uk
||uj ||2||uk||2 ) based on

embeddings, where uj is the sentence vector repre-
sentation of sentence j. Then we perform clustering
analysis based on the similarity measure, resulting
that similar sentences are within one cluster serving
as latent states. Therefore, two latent states are
constructed, coded as Zi; i = 1, 2.

For feature generation, we apply a pre-trained
C3D deep network [40] to ActivityNet, and sam-
ple one for every 16 frames of a video, resulting
500-dimensional feature vectors at n sampled time
points, or a n× 500 feature matrix, where n is the
number of sampled frames.

http://activity-net.org/challenges/2017/captioning.html
http://activity-net.org/challenges/2017/captioning.html
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Preprocessing yields a sample Ut =
{Xt,Yt, Zt; t = 1, · · · , T}, where at time
t, Xt is a 500-dimensional feature vector,
Yt = (Y 1

t , · · · , Y 15
t ) is a 15-dimensional label

vector, and Zt represents the latent state.
In order to retain the natural temporal dependence

of each original video, we reserve the first 60% of a
video’s frames for initial training and subsequently
perform a one-step forward prediction starting from
there. In particular, given a video with N frames,
the initial training set includes frames from 1 to
0.6N , while the (0.6N + 1)th and (0.6N + 2)th
frames are used for tuning and testing. Then, we
roll one step forward, that is, the training, tuning,
and testing sets involve frames 2 to 0.6N + 1, the
(.6N + 2)th frame, and the (0.6N + 3)th frame,
respectively. Finally this process iterates until the
last frame is included in the testing set.

Finally, due to the computational constraint in
R-package –mhsmm [41], we randomly choose 75
dimensions from 500-dimension features in the
training, tuning and testing sets. Then this sampling
process is repeated for 100 times, and we report
the mean and standard deviation of the evaluation
metrics based these 100 replications.

2) Numerical results: This section compares the
proposed method against two state-of-art deep neu-
ral networks, namely long-short term memory fully
convolutional network (LSTM-FCN) and the atten-
tion long-short term memory fully convolutional
network (ALSTM-FCN) [42] in one benchmark
example ActivityNet Captions dataset. For a refer-
ence, also included in the comparison are the afore-
mentioned five competitors LVSM-BR, NSVM-
BR, LSVM, NSVM, and RF. For LSTM-FCN and
ALSTM-FCN, we use the Keras library with the
Tensorflow backend to train. The codes are available
at https://github.com/titu1994/LSTM-FCN.

With 100 replications of 500-step forward pre-
diction, we summarize the performances under the
weighted loss (2) and the Hamming loss in Table
IV, in addition to the runtimes.

As suggested in Table IV, the proposed method
and the weighted random forests (RF) are the
best performers and perform similarly in terms
of the weighted loss, while the proposed method

TABLE IV
TEST ERRORS (STANDARD ERRORS IN PARENTHESES) UNDER

THE WEIGHTED AND HAMMING LOSSES AND AVERAGE
RUNTIME IN SECONDS OF VARIOUS METHODS OVER 100

RANDOM SAMPLES FROM THE VIDEO SEQUENCE.

Weighted Loss Hamming Loss Runtime(seconds)
Our .0060(.00003) .0389(.0002) 73.13
LSVM-BR .0212(.00042) .0450(.0005) 1.47
NSVM-BR .0124(.00013) .0279(.0002) 11.66
LSVM .0153(.00016) .0316(.0002) 1.23
NSVM .0119(.00013) .0274(.0002) 19.18
RF .0061(.00003) .0407(.0002) 103.52
LSTM-FCN [42] .0306(.00382) .0480(.004) 2828.15
ALSTM-FCN [42] .0466(.00927) .0691(.010) 3143.40

outperforms the weighted random forests in terms
of the Hamming distance. Overall, the proposed
method outperforms other competitors. In terms of
the weighted loss, the amount of improvement of
the proposed method is 71.7% over LSVM-BR,
51.6% over NSVM-BR, 60.7% over LSVM, 49.6%
over NSVM, 80.3% over LSTM-FCN, and 87.1%
over ALSTM-FCN. In terms of the Hamming loss,
the amount of improvement of the proposed method
is 13.6% over LSVM-BR, 4.4% over RF, 18.9%
over LSTM-FCN, and 43.7% over ALSTM-FCN.
The improvement is primarily attributed to that the
proposed method accounts for label and temporal
dependencies, while other methods have not mod-
eled neither dependence or both dependencies. This
result is consistent with the simulation results. In
terms of the runtime, the proposed method and the
weighted random forests are among the slowest,
followed by LSTM-FCN and ALSTM-FCN.

In summary, the proposed method performs best
in terms of the weighted loss, while it runs faster
than its competitors that deliver similar perfor-
mances.

V. DISCUSSION

This article introduces a new framework of
nonlinear multilabel classification for time-series
predictors under a weighted loss separating false
positives from negatives. The framework uses a
hidden Markov model to describe local piecewise
constancy of the time series, motivated primarily
from the application of video categorization, where
each transition state of the hidden Markov model
corresponds to one scene of a video. Moreover,
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it has accounted for both temporal dependency
as well as label dependency, particularly semantic
label dependency, simultaneously. Computationally,
we design a scalable algorithm solving the corre-
sponding nonconvex minimization. Numerically, we
demonstrate the utility of the proposed method by
comparing with its competitors ignoring either the
temporal structure or label dependency in simulated
and real benchmark examples. Theoretically, we es-
tablish consistency of the proposed classifier, which
guarantees the recovery of the optimal performance
of the Bayes classifier. While the proposed method
is applicable to other situations as well, further
investigation is necessary.
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