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ABSTRACT

In dense stellar environments, the merger products of binary black hole mergers may undergo ad-
ditional mergers. These hierarchical mergers are naturally expected to have higher masses than the
first generation of black holes made from stars. The components of hierarchical mergers are expected

to have significant characteristic spins, imprinted by the orbital angular momentum of the previous
mergers. However, since the population properties of first-generation black holes are uncertain, it is
difficult to know if any given merger is first-generation or hierarchical. We use observations of gravita-

tional waves to reconstruct the binary black hole mass and spin spectrum of a population including the
possibility of hierarchical mergers. We employ a phenomenological model that captures the properties
of merging binary black holes from simulations of globular clusters. Inspired by recent work on the
formation of low-spin black holes, we include a zero-spin subpopulation. We analyze binary black holes

from LIGO and Virgo’s first two observing runs, and find that this catalog is consistent with having
no hierarchical mergers. We find that the most massive system in this catalog, GW170729, is mostly
likely a first-generation merger, having a 4% probability of being a hierarchical merger assuming a

5× 105M� globular cluster mass. Using our model, we find that 99% of first-generation black holes in
coalescing binaries have masses below 44 M�, and the fraction of binaries with near-zero component
spins is less than 0.16 (90% probability). Upcoming observations will determine if hierarchical mergers

are a common source of gravitational waves.

Keywords: Gravitational wave sources — Gravitational wave astronomy — Astrophysical black holes
— Hierarchical models

1. INTRODUCTION

The gravitational-wave (GW) observations of LIGO
(Aasi et al. 2015) and Virgo (Acernese et al. 2015) have
revealed a population of stellar-mass binary black holes

(Abbott et al. 2016a, 2019a, 2020b). These black holes
range in mass over ∼ 7–50M�, extending beyond the
masses observed in X-ray binaries (Abbott et al. 2016b;
Miller & Miller 2014). Since black hole systems can
encode information about how their progenitor systems
evolve (Abbott et al. 2016b, 2017a; Mandel & Farmer
2018), this new population of black holes observed via
GWs has broadened our understanding of the physi-
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cal processes that shape the mass spectrum of stellar-
origin black holes. Already, GW observations hint at
a dearth of stellar-mass black holes with component
masses & 45M� (Abbott et al. 2019b), as predicted by

theory decades ago.
Black holes are the end point of stellar evolution for

stars & 20M� (Woosley et al. 2002). Though more mas-
sive stars typically result in more massive black holes,
the mapping between initial stellar mass and remnant
mass is affected by many physical processes including
stellar winds, stellar rotation, and binary interactions
(Belczynski et al. 2010; Spera et al. 2015; Kruckow et al.
2018; Neijssel et al. 2019; Ertl et al. 2020). Addition-
ally, stellar evolution does not predict a simple contin-

uum that persists to arbitrarily high black hole masses.
When stellar cores reach ∼ 50M� they become become
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susceptible to pair instability (Fowler & Hoyle 1964).
In this process, high-energy photons undergo electron–
positron pair production, causing a drop in the radia-
tion pressure supporting the stellar core. The core sub-
sequently contracts, increasing the temperature, trig-
gering nuclear burning of carbon, oxygen, and silicon
(Woosley & Heger 2015). Stellar cores of ∼ 35–65M�
undergo pulsational pair instabilities (PPSNe; Woosley
et al. 2007; Woosley 2017; Marchant et al. 2019), where
the star sheds large amounts of mass prior to collapse,
limiting the resultant mass of the remnant black hole.
Stars with cores of ∼ 65–135M� are subject to pair-
instability supernovae (PISNe; Barkat et al. 1967; Fryer
et al. 2001; Heger & Woosley 2002), where the insta-
bility results in the complete disruption of the star and
no remnant black hole. Stellar evolution theory predicts
a gap in the black hole mass spectrum between ≈ 45–
135M� (Belczynski et al. 2016; Spera & Mapelli 2017;
Stevenson et al. 2019).

Measuring the bounds of the PISN mass gap will
provide insights into stellar evolution and fundamental
physics (Farr et al. 2019; Farmer et al. 2019; van Son
et al. 2020; Talbot & Thrane 2018). However, one needs

to account for the dynamical processes that can lead
to black holes in this mass range. In dense stellar en-
vironments, such as globular clusters and nuclear star

clusters, gravitational encounters of black holes in the
cluster core harden the orbits of binary black hole sys-
tems, facilitating mergers within the cluster (e.g., Heggie

1975; Banerjee et al. 2010; Rodriguez et al. 2016a).
If these merger products remain in the cluster envi-

ronment, they can potentially merge again. These hi-
erarchical mergers are characterized by a higher masses

and spins than is typical of black holes born from stars
(Miller & Hamilton 2002; Gerosa & Berti 2017; Fishbach
et al. 2017; Kimball et al. 2020; Arca Sedda et al. 2020;

Baibhav et al. 2020). Dense stellar environments are
prime locations for facilitating such hierarchical merg-
ers, which exhibit unique intrinsic properties that can
be measured with GWs.

Identifying black holes formed through previous merg-
ers requires knowledge of the initial mass spectrum of
black holes formed through direct stellar collapse (Kim-
ball et al. 2020; Doctor et al. 2019). Given the uncer-
tainties in massive star evolution and binary stellar evo-
lution, the properties of the natal black hole popula-

tion are uncertain—it is something we aim to determine
from GW observations. Therefore, it is essential to si-
multaneously infer the properties of the natal black hole
population as part of our hierarchical mergers model.
By doing so we can reconstruct valuable information
about the origins of binary black holes. For example, the

mass spectrum of the natal black hole population con-
tains information on the stellar mass-loss rates (Steven-
son et al. 2015; Barrett et al. 2018). Meanwhile, the
fraction of merger products that go on to merge again
encodes information on the physics of dense stellar en-
vironments. Only a fraction of black holes formed from
binary black hole mergers are retained within a cluster,
since the merger product receives a recoil kick from the
anisotropic GW emission (Blanchet 2014; Campanelli
et al. 2007; Lousto & Zlochower 2011; Sperhake 2015)
or can be subsequently ejected through close dynami-
cal interactions with other objects (Heggie 1975; Porte-
gies Zwart & McMillan 2000; Moody & Sigurdsson 2009;
Downing et al. 2011). The fraction retained depends
on the mass and size of the cluster, and crucially upon
the spins of the progenitor black holes (Rodriguez et al.
2018, 2019; Gerosa & Berti 2019; Banerjee 2020). Fur-

thermore, the number of hierarchical mergers may en-
able us to determine the dominant formation channel
for binary black holes.

In this study, we investigate how hierarchical binary
black hole mergers can be identified within a population
of GW observations. We focus on formation in globular
clusters, where, due to the shallow gravitational poten-

tial, merger products typically cannot proceed through
more than one additional merger before being ejected.
We refer to the population of black holes formed from

standard stellar evolution as first generation (1G), and
black holes that result from a binary black hole merger
of 1G components as second generation (2G). Hierar-

chical mergers, involving one or more 1G black hole,
are denoted 1G+2G and 2G+2G depending on whether
the merger contains one or two 2G black holes. First-
generation mergers are denoted 1G+1G.

Using simple phenomenological models for the prop-
erties of 1G+1G, 1G+2G, and 2G+2G binaries, we per-
form hierarchical inference to determine the properties

and rates of these different subpopulations. These phe-
nomenological models are a natural extension of previ-
ous studies of the mass and spin distributions of binary
black holes (Fishbach & Holz 2017; Talbot & Thrane
2018; Wysocki et al. 2019; Abbott et al. 2019b) and are
explained in Sec. 2. The hierarchical inference method-
ology using these models is explained in Sec. 3. We
apply our methodology to the set of binary black holes
presented in GWTC-1 (Abbott et al. 2019a) in Sec. 4,
and discuss the inferred population hyperparameters in
Appendix A. In Appendix B, we consider how results
change upon adding GW190412 (Abbott et al. 2020b)
to the GWTC-1 population. In future work, we will ex-
tend this analysis to events found by external searches

(Nitz et al. 2020; Venumadhav et al. 2019; Zackay et al.
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2019b; Venumadhav et al. 2020; Zackay et al. 2019a).
We find that observations are consistent with all bina-
ries being 1G+1G (Kimball et al. 2020; Chatziioannou
et al. 2019; Yang et al. 2019); however, if we include the
possibility that some 1G black holes are born with near-
zero spins (Qin et al. 2018; Fuller & Ma 2019; Belczynski
et al. 2020), we find a small probability of GW170729
containing a 2G black hole using our models for globular
clusters. Our conclusions are summarized in Sec. 5.

2. POPULATION MODEL

Phenomenological models are computationally effi-
cient tools for parameterizing black hole population
properties. The model we develop in this study approxi-
mates the detectable population of merging binary black
holes from globular clusters, and is designed to capture
the main features of binaries formed through hierarchi-
cal mergers. The model is constructed using population
hyperparameters Λ that describe the 1G+1G black hole

population.
We assume that the overall population of binary black

holes consists of three subpopulations: 1G+1G, 1G+2G
and 2G+2G binaries. We neglect the probability of
higher-order mergers (containing a ≥ 2G component) in
this analysis since the number of these mergers is negli-
gible in globular cluster models (Rodriguez et al. 2019;

Arca Sedda et al. 2020). However, dense stellar envi-
ronments such as those in galactic nuclei, nuclear star
clusters (Antonini et al. 2019), and active galactic nu-

cleus disks (Yang et al. 2019), may retain higher-order
merger products and our approach can be expanded to
include their contribution.

The fractions of total mergers associated with each
generation are denoted ζ1G+1G(Λ), ζ1G+2G(Λ) and
ζ2G+2G(Λ). Since only a small fraction of 2G black holes
are retained in the fiducial cluster and able to form a

new binary, we expect that ζ1G+1G(Λ) � ζ1G+2G(Λ) �
ζ2G+2G(Λ). By unitarity, we have

ζ1G+1G(Λ) + ζ1G+2G(Λ) + ζ2G+2G(Λ) = 1. (1)

The fraction of binaries in each subpopulation depends
upon the population properties of the 1G+1G binary
black holes. In particular, the distributions of compo-
nent spins and mass ratio have a strong effect on the
recoil kick during merger.

For each generation, we define an astrophysically mo-
tivated prior on the properties θ describing individual
binary black holes, such as their masses and spins. We
decompose the overall prior for a given generation into
priors on the primary mass m1, mass ratio q = m2/m1,
spin magnitudes χ1 and χ2, spin orientations z1 ≡ cos θ1
and z2 ≡ cos θ2 (where θi is the angle between the black

hole spin and the orbital angular momentum vector),
and extrinsic parameters ϑ. The prior on the extrinsic
parameters is assumed to be the same for all generations:
mergers are uniformly distributed in comoving volume
and we employ standard priors for other extrinsic pa-
rameters.

The population model is described in the following
subsections. In Sec. 2.1, we describe a model for the
mass and spin distributions of 1G+1G binary black holes
(Wysocki et al. 2019; Talbot & Thrane 2018, 2017; Ab-
bott et al. 2019b). The population of 1G+1G binary
black holes forms the cornerstone of our models, and the
properties of merger products are set based upon this.
In Sec. 2.2, we describe our prescription to estimate the
mass and spin distributions of 1G+2G and 2G+2G bi-
naries given the 1G+1G distribution. In Sec. 2.3, we de-
scribe our method for calculating the generational frac-

tions ζ1G+1G, ζ1G+2G, and ζ2G+2G given our population
model. The hierarchical inference method we outline in
Sec. 3 can be adapted to use alternative phenomenologi-

cal models as improved descriptions are developed. The
phenomenological method presented here predicts dis-
tributions that are qualitatively similar to simulations

of globular clusters (e.g., Rodriguez et al. 2019).

2.1. 1G+1G binaries

2.1.1. Primary mass

Following Abbott et al. (2019b), we model the distri-

bution of 1G+1G black hole primary mass m1 using the
prescription from Talbot & Thrane (2018)

π(m1|α,mmin,mmax, λm, µm, σm, 1G+1G) =

[(1− λm)Amα
1 Θ(mmax −m1) +

λmBN(m1|µm, σm)] , (2)

where {α,mmin,mmax, λm, µm, σm, } ∈ Λ are the popu-
lation hyperparameters defining this distribution. This

model includes two components. The first is a trun-
cated power-law distribution with spectral index α and a
maximum mass of mmax (enforced by the Heaviside step
function Θ). The second is a Gaussian component with
mean µm and standard deviation σm. The parameter
λm is a mixing fraction, which determines the fraction of
binaries associated with either component. The factors

A and B are normalization constants that depend on the
other population hyperparameters. This mass distribu-
tion is chosen to enforce the expected cutoff in the black
hole mass spectrum from PISNe (Heger et al. 2003; Bel-
czynski et al. 2016; Fishbach & Holz 2017), with the
Gaussian capturing a buildup from PPSNe (Woosley
2017; Marchant et al. 2019; Talbot & Thrane 2018).

2.1.2. Mass ratio
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Following Abbott et al. (2019b), we model the 1G+1G
mass ratio q using a power-law distribution (Talbot &
Thrane 2018),

π(q|m1, βq,mmin, 1G+1G) = C(m1)m
βq
2 Θ(m1 −m2),

(3)

defined using population hyperparameters {m1, βq,mmin} ∈
Λ. Here βq is the power-law index, and C is a normal-
ization constant.

2.1.3. Spin magnitudes

We assume that the spin magnitudes of both black
holes χ1 and χ2 are described by the same distribution,

π(χ|λ0, αχ, βχ, 1G+1G) = λ0δ(χ) + (1− λ0)B(χ|αχ, βχ),
(4)

described by population hyperparameters {λ0, αχ, βχ} ∈
Λ Here, B is a Beta distribution parameterized by shape
parameters αχ and βχ (Wysocki et al. 2019).

However, a simple Beta distribution will struggle to

capture the morphology of the true population if a sig-
nificant fraction of binary black holes have low (. 0.01)
natal spins, which is anticipated to be the case if an-
gular momentum transport in massive stars is efficient

(Qin et al. 2018; Fuller & Ma 2019). The mixing param-
eter λ0 controls the fraction of black holes merging with
negligible spin. We assume that the spin of the primary

black hole in a binary is independent from the spin of
the secondary black hole.

2.1.4. Spin orientation

The orientation of black hole spin can be parameter-

ized using the cosine of the polar angle between the spin
vector and the Newtonian orbital angular momentum
zi = cos θi. In Abbott et al. (2019b), the orientation
of black hole spin was modeled using a mixture model

(Talbot & Thrane 2017)

π(z1, z2|ζiso, σ1, σ2, 1G+1G) = ζisoU(z1)U(z2)

+ (1− ζiso)Nt(z1|0, σ1)Nt(z2|0, σ2), (5)

defined with population hyperparameters {ζiso, σ1, σ2} ∈
Λ. Here ζiso is the fraction of binaries that are drawn

from a distribution with isotropic spin orientations (uni-
form in z1 and z2). The isotropic distribution is ex-
pected for dynamically assembled binaries because the
stellar progenitors did not coevolve. Binaries that are
not drawn from this uniform distribution U are drawn
from a truncated normal distribution Nt. The nor-
mal distribution is centered on z = 0 corresponding to
aligned spin with width determined by the standard

deviations σ1 and σ2. The truncated normal distri-
bution represents the binaries formed in the galactic
field, where spins are predicted to be generally aligned,
with some scatter due to supernova kicks (Rodriguez
et al. 2016b). For this analysis, we set ζiso = 1, which
effectively adopts the framework that all binaries are
dynamical mergers:

π(z1, z2|σ1, σ2, 1G+1G) = U(z1)U(z2). (6)

For future work, this model could be extended to rein-
troduce ζiso and only to consider hierarchical mergers
from the fraction of events formed dynamically.

2.2. 1G+2G and 2G+2G binaries

2.2.1. Primary mass

Our model for the primary mass distributions for
1G+2G and 2G+2G mergers is built on the premise

that 2G+2G black holes are roughly twice as massive as
1G+1G black holes.1 We make the simplifying assump-
tion that in a 1G+2G binary, the primary is always the

2G black hole (Kimball et al. 2020). Thus, the 1G+2G
and 2G+2G primary mass spectra are modeled as

π(m1|Λ, 1G+2G) ∝ π
(m1

2

∣∣∣Λ, 1G+1G
)
, (7)

π(m1|Λ, 2G+2G) ∝ π
(m1

2

∣∣∣Λ, 1G+1G
)
, (8)

This representation is found to qualitatively match the
results of globular cluster simulations (e.g., Rodriguez
et al. 2018, 2019).

2.2.2. Mass ratio

Since we expect that 1G+2G and 2G+2G binaries are
formed dynamically, the mass ratio distributions should

depend upon mass segregation and the dynamical in-
teractions that form binaries inside dense stellar envi-
ronments. We calibrate our mass ratio distributions
against the results of globular cluster simulations from
Rodriguez et al. (2019). For 1G+2G binaries, we adopt
a model where the mass ratio distribution peaks around

q ∼ 0.5. We find that the distribution recovered from
cluster simulations may be approximated as

π(q|Λ, 1G+2G) ∝

π(q|Λ, 1G+1G)1.5 q ≤ 1/2

π(1− q|Λ, 1G+1G)−1.5 q > 1/2
.

(9)

1 While mass energy is radiated away in GWs so that the rem-
nant mass is a few percent less than the sum of the primary and
secondary masses (Reisswig et al. 2009; Healy et al. 2014; Jiménez-
Forteza et al. 2017), this is negligible compared to astrophysical
modeling uncertainties.
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An alternative parameterization, producing a similar
form, is given in Chatziioannou et al. (2019). The most
important feature of the 1G+2G distribution is that it
peaks away from q = 1, as this distinguishes it from the
1G+1G and 2G+2G distributions.

For 2G+2G binaries we find that

π(q|Λ, 2G+2G) ∝π(q|Λ, 1G+1G)4 (10)

produces qualitative agreement with predictions from
Rodriguez et al. (2019). This distribution is more tightly
peaked at q ∼ 1 than the 1G+1G population, reflecting
the preference for dynamically formed binary mergers to
by dominated by the most massive components in the
cluster (Heggie et al. 1996; Sigurdsson & Phinney 1993;
Downing et al. 2011).

2.2.3. Spins

The spin magnitude of post-merger remnants is pri-

marily determined by the orbital angular momentum of
the progenitor binary (Pretorius 2005; Buonanno et al.
2008; Gonzalez et al. 2007). For typical binaries (with

mass ratio q ≈ 1 and low spins) the remnant spin is
≈ 0.67. We therefore adopt for 1G+2G spins

π(χ1|Λ, 1G+2G) = B(χ1|14.14, 6.97), (11)

π(χ2|1G+2G) = π(χ2|Λ, 1G+1G), (12)

and for 2G+2G spins

π(χ1|Λ, 2G+2G) = B(χ1|14.14, 6.97), (13)

π(χ2|Λ, 2G+2G) = B(χ2|14.14, 6.97). (14)

Here, B(µ, σ) is a beta function with shape parameters
αχ, βχ, which corresponds to a mean 0.67 and stan-
dard deviation 0.1 (Fishbach et al. 2017; Chatziioannou

et al. 2019; Arca Sedda et al. 2020). We assume that
the 1G+2G and 2G+2G spins are isotropically oriented,
the same as for 1G+1G binaries.

2.3. Retention fraction

Given a 1G+1G population, the branching ratios of

the 1G+2G and 2G+2G populations are determined by
the fraction of 1G+1G merger products that are retained
in the cluster. During the coalescence of a binary black
hole, the anisotropic emission of GWs imparts a kick
on the remnant. The magnitude of the kicks depends
sensitively on the spin and mass ratio of the binary
(Gonzalez et al. 2007; Campanelli et al. 2007; Brueg-
mann et al. 2008; Lousto & Zlochower 2011; Varma
et al. 2019), and can far exceed the typical escape ve-
locities of globular clusters (∼ 30–50 km s−1 at z = 0),

ejecting merger products and leaving them unavailable

to form new generations of binary black holes (Merritt
et al. 2004; Moody & Sigurdsson 2009; Varma et al.
2020). Therefore, the branching ratios of the 1G+2G
and 2G+2G popoulations are sensitive to the distribu-
tion of mass ratios and component spins in the 1G+1G
population, as well as the mass and size of the cluster.

In order to estimate the retention fraction, we begin by
calculating the probability Pret(χ1, χ2, q) that the rem-
nant of a merging binary with component spins and mass
ratio (χ1, χ2, q) will be retained in a cluster potential fol-
lowing the GW recoil kick. For our cluster model, we
adopt a Plummer potential (Plummer 1911) with mass
distribution

ρp(r) =
3Mc

4πr3c

(
1 +

r2

a2c

)−5/2

. (15)

We assume a cluster mass Mc = 5×105M� and a Plum-
mer radius rc = 1 pc to represent a fiducial globular

cluster. For a given {χ1, χ2, q} we sample merger loca-
tions following Eq. (15) and sample component spin-tilts
isotropically, then calculate recoil velocities according to
Gerosa & Kesden (2016) and check against the local es-

cape velocity to obtain Pret(χ1, χ2, q).
Figure 1 shows Pret(χ1, χ2, q) for the case of equal spin

magnitudes. Pret is negligible when component spins

are & 0.1, except in the regime of extreme mass ratios
(q → 0) where recoil velocities disappear. Therefore,
nearly all 1G+1G binaries with appreciable spins will

form merger products that are promptly ejected from
the fiducial cluster and will be unable to form hierarchi-
cal mergers. We see that a subpopulation of 1G black
holes with negligible spin, represented by the delta func-

tion in Eq. (4), is a key ingredient for hierarchical merg-
ers.

For a population determined by population hyperpa-

rameters Λ, we calculate the fraction Fret of 1G+1G
remnants that are retained in our fiducial cluster as

Fret(Λ) =

∫
dq

∫
dχ1

∫
dχ2 π(χ1|Λ, 1G+1G) (16)

π(χ2|Λ, 1G+1G)π(q|Λ, 1G+1G)Pret(χ1, χ2, q).

Here, π(q|Λ, 1G+1G) and π(χ|Λ, 1G+1G) are the
1G+1G mass ratio and component-spin distributions.

2.4. Branching ratios

Using Fret(Λ), we calculate hierarchical branching ra-
tios given a 1G+1G population with mass and spin dis-
tributions determined by population hyperparameters
Λ. Let R1G+1G, R1G+2G, and R2G+2G be the rates of
1G+1G, 1G+2G, and 2G+2G mergers, respectively, av-

eraged over the lifetime of the cluster. The number of
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Figure 1. Top: the retention fractions Pret assuming a
5 × 105M� cluster with a 1 pc Plummer radius. Bottom:
recoil velocities for equal component-spin binary black holes,
colored according to mass ratio q ≡ m2/m1. For each {χ, q}
configuration, we sample spin orientations isotropically and
plot the mean recoil velocity.

2G black holes available to form new binaries is propor-

tional to FretR1G+1G. Therefore, we expect

R1G+2G = ξ1G+2GFret(Λ)R1G+1G, (17)

R2G+2G = ξ2G+2G[Fret(Λ)]2R1G+1G, (18)

where the constants of proportionality ξ1G+2G and ξ1G+2G

are set by the dynamical processes within the cluster,
such as the frequency at which binaries form. Based
on comparison with simulations (Rodriguez et al. 2019),
we find that ξ1G+2G ' 1/2 and ξ2G+2G ' 1/8 are good
approximations. From the rates we can define branching

ratios,

Γ1G+2G ≡
R1G+2G

R1G+1G
∝ Fret(Λ), (19)

Γ2G+2G ≡
R2G+2G

R1G+1G
∝ [Fret(Λ)]2 (20)

Since Fret is small, we have Γ2G+2G � Γ1G+2G � 1.

We combine these branching ratios with our individual
1G+1G, 1G+2G, and 2G+2G population distributions to

construct a multigenerational mixture model:

πhier(θ|Λ) = ζ1G+1G(Λ)π(θ|Λ, 1G+1G)

+ ζ1G+2G(Λ)π(θ|Λ, 1G+2G)

+ ζ2G+2G(Λ)π(θ|Λ, 2G+2G), (21)

where

ζ1G+1G =
1

1 + Γ1G+2G + Γ2G+2G
, (22)

ζ1G+2G =
Γ1G+2G

1 + Γ1G+2G + Γ2G+2G
, (23)

ζ2G+2G =
Γ2G+2G

1 + Γ1G+2G + Γ2G+2G
. (24)

We use the GWTC-1 catalog of GW observations to con-
strain this model, and infer the population hyperparam-
eters Λ, and obtain the odds that any of the observations
are from a hierarchical merger.

3. POPULATION INFERENCE

Given a set of population hyperparameters Λ, the

overall likelihood of an observation is

Lhier(di|Λ) =
1

Pdet(Λ)

∫
dθL(di|θ)πhier(θ|Λ), (25)

where we use di to denote the GW data associated with
the i-th observation, L(di|θ) is the likelihood of the data

given the source parameters θ (Cutler & Flanagan 1994;
Abbott et al. 2016c), πhier(θ|Λ) is the population model
defined in Sec. 2, and Pdet(Λ) is the fraction of all as-

trophysical events which are observed and accounts for
selection biases (Thrane & Talbot 2019; Mandel et al.
2019). The fraction Pdet(Λ) scales as the surveyed
space-time volume V T (Λ) of the detector network for a

binary black hole population with population hyperpa-
rameters Λ; we calculate V T (Λ) analytically following
Finn & Chernoff (1993), using a single-detector network
with a median (over observing times from the first and
second observing runs) LIGO Hanford noise curve and
signal-to-noise ratio threshold of 8. The overall likeli-
hood in Eq. (25) can be broken into pieces associated
with each generation,

Lhier(di|Λ) =
1

Pdet(Λ)
[ζ1G+1G(Λ)L(di|Λ, 1G+1G)

+ ζ1G+2G(Λ)L(di|Λ, 1G+2G)

+ ζ2G+2G(Λ)L(di|Λ, 2G+2G)] , (26)

where

L(di|Λ, 1G+1G) =

∫
dθL(di|θ)π(θ|Λ, 1G+1G), (27)
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and likelihoods for the other generations are defined sim-
ilarly.

For a set of N detections (described by data ~d), the
total likelihood becomes

Ltot(~d|Λ) =
N∏
i

Lhier(di|Λ). (28)

To calculate the total likelihood, we use samples drawn
from the black hole parameter posterior probability dis-
tributions

p(θ|di) =
L(di|θ, θ)π(θ|∅)

Z∅(di)
, (29)

calculated for each event using some fiducial parame-
ter prior distribution π(θ|∅) which does not depend on
the population hyperparameters. Taking ni parameter

posterior samples for the i-th event,

Ltot(~d|Λ) '
N∏
i

1

Pdet(Λ)

Z∅(di)

ni

ni∑
k

π(θk|Λ)

π(θk|∅)
, (30)

where θk indicates the parameters of the k-th sample

(Thrane & Talbot 2019; Mandel et al. 2019).
In the case where our 1G+1G spin distribution in-

cludes the delta function at 0, we alter this approach

to account for the lack of parameter estimation samples
with precisely zero component spin. For each event,
we produce posterior samples with two fiducial priors

(which are identical except for the component spins):
one uniform in spin magnitude πχ(θ|∅), which enables
us to sample the entire range of spins, and one where
the spin is always zero π0(θ|∅), which is applicable to

the delta function model.
In this case, the 1G+1G term in Eq. (30) becomes

L(di|Λ, 1G+1G) ' 1

ni

λ0 ni,0∑
j

π(θj |Λ, 1G+1G)

π0(θj |∅)

+(1− λ0)

ni,χ∑
k

π(θj |Λ, 1G+1G)

πχ(θk|∅)

]
.

(31)

Here, ni,0 and ni,χ are the number of samples included

using the zero-spin and uniform-spin respectively, and
ni = ni,0 +ni,χ is the total number of samples used; the
ratio of the number of zero- and uniform-spin samples is
the ratio of the evidences calculated with the two priors,

ni,0
ni,χ

=
Z0(di)

Zχ(di)
=

∫
dθL(di|θ)π0(θ|∅)∫
dθL(di|θ)πχ(θ|∅)

. (32)

This procedure allows us to calculate the population
likelihood even though the delta function and Beta dis-
tribution components of the spin model from Eq. (4)
have different ranges of support.

We use hierarchical Bayesian inference to construct a
posterior for our population hyperparameters

p(Λ|~d) =
Lhier(~d|Λ)π(Λ)∫
dΛLhier(~d|Λ)π(Λ)

, (33)

where π(Λ) is our prior for the population hyperparam-
eters. With the exception of mmax, we take this prior
to be flat (Abbott et al. 2019b). To account for uncer-
tainties in the location of the PISN mass gap inherent
in different sets of assumptions about nuclear reaction
rates, stellar rotation, accretion, and fallback (Farmer
et al. 2019; Mapelli et al. 2020; van Son et al. 2020), we
take a Gaussian prior on mmax with a mean of 50M�
and standard deviation of 10M�.

We use gwpopulation (Talbot et al. 2019) and

dynesty (Speagle 2020) within the Bilby framework
(Ashton et al. 2019) to sample the likelihoods in Eq. (28)
and Eq. (31). Parameter estimation for each event is
also performed using Bilby (Romero-Shaw et al. 2020),

following the settings used to produce GWTC-1 results
(Abbott et al. 2019a). GW data from LIGO and Virgo
are obtained from the Gravitational Wave Open Science

Center (Abbott et al. 2019c).

4. APPLICATION TO GWTC-1

4.1. Inferred Populations

We apply the above analysis using the 10 binary black

hole observations contained in GWTC-1 (Abbott et al.
2019a), and infer population hyperparameters for our
hierarchical model. The inferred population hyperpa-

rameters are discussed in detail in Appendix A. We plot
the posterior predictive distributions for the 1G+1G,
1G+2G, and 2G+2G populations in Fig. 2 and Fig. 3.
The population hyperparameters governing the 1G+1G
mass distribution (see Fig. 2 in Appendix A) are consis-
tent with the results in Abbott et al. (2019b). The Gaus-
sian mass component corresponding to PPSN buildup is
well constrained to µm ' 22–38, but we recover our
prior on the location of the PISN maximum-mass cutoff
mmax. We find that 99% of 1G+1G black holes are less

than 44M�, in agreement with 45M� found in Abbott
et al. (2019b), and that 99% of black holes in the com-
bined multigeneration population are less than 45M�.
In Fig. 10 of Appendix A, we show population hyperpa-
rameters for the 1G+1G spin distribution.

The fraction λ0 of black holes from the zero-spin for-
mation channel is constrained to be less than 0.32 at

the 99% credible level, and is consistent with λ0 = 0.
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Figure 2. Posterior predictive distributions for primary
mass m1 and mass ratio q. The solid, dashed, and dotted
lines are the 1G+1G, 1G+2G, 2G+2G distributions, respec-
tively. The 1G+2G and 2G+2G primary masses are drawn
from the same distributions. In blue, we plot the distri-
butions inferred when allowing for the zero-spin formation
channel, and the distributions inferred when excluding this
channel are plotted in orange.

Therefore, these GW observations suggest that at least
some 1G+1G binary black holes have spinning compo-
nents, consistent with Miller et al. (2020), and not all 1G
black holes have extremely low (< 0.01) spins as would
be expected if all progenitor stars had efficient angular
momentum transfer (Fuller & Ma 2019). We find that

90% of 1G+1G primary black holes have a spin magni-
tude less than 0.57.

In the bottom panel of Figure 4, we reweight the

GWTC-1 mass posteriors to apply our inferred hierar-
chical population model as a prior: the primary effect
acts to constrain the mass ratio compared to the fidu-
cial prior used in the initial parameter inference. Upon
reweighting, the 90% credible interval on the primary
black hole mass for GW170729 becomes 35–55 M�, com-
pared to 40–66 M� with the default prior (Abbott et al.
2019a).

4.2. Relative merger rates

As shown in Fig. 5, we find that the relative rates
Γ1G+2G and Γ2G+2G are strongly correlated with the frac-
tion λ0 of 1G black holes that form in the zero-spin
channel. These branching ratios are set by the fraction
of 1G+1G merger products that are retained in a typ-
ical cluster. Since merging binaries with non-spinning
components experience lower recoil velocities than those
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Figure 3. Posterior predictive distributions for the compo-
nent black hole spins. The solid, dashed, and dotted lines are
the 1G+1G, 1G+2G, 2G+2G distributions, respectively. The
1G+2G and 2G+2G primary spins are drawn from the same
distributions, as are the 1G+1G and 1G+2G secondary spins.
In blue, we plot the distributions inferred when allowing for
the zero-spin formation channel, and distributions inferred
when excluding this channel are plotted in orange.

with non-negligible spin, the inclusion of the zero-spin
formation channel drastically affects the retention frac-
tion in the globular cluster potential, and consequently

the branching ratios.
We find the median relative rates Γ1G+2G and Γ2G+2G

to be 2.5× 10−3 and 3.1× 10−6, respectively, with 99%
upper limits of 0.049 and 1.2×10−3. Adopting a fiducial

binary black hole merger rate of ∼ 50 Gpc−3 yr−1 (Ab-
bott et al. 2019b) as a 1G+1G merger rate (we do not ex-
plicitly infer the rate as part of our model) these 99% up-
per limits would imply merger rates of . 2.5 Gpc−3 yr−1

for Γ1G+2G and . 0.06 Gpc−3 yr−1 for Γ2G+2G. Rerun-
ning our analysis without the zero-spin subcomponent,
the median branching ratios Γ1G+2G and Γ2G+2G become
8.1× 10−4 and 3.3× 10−7, respectively, with 99% upper
limits of 0.018 and 1.6× 10−4.

As the rates are much lower, we are less likely to ob-
serve hierarchical mergers than when there are black
holes with effectively zero spin. The sensitivity of the
merger rates to spin could potentially enable us to place
tight constraints on the spins of 1G black holes—which
are difficult to measure directly from GW observations
(Poisson & Will 1995; Pürrer et al. 2016; Vitale et al.
2014; Abbott et al. 2019a)—through the constraints on

the hierarchical merger rate.
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Figure 4. Reweighted GWTC-1 mass posteriors using our
inferred hierarchical population model as a prior. Contours
indicate the 90% credible areas. The original posteriors from
Abbott et al. (2019a) are indicated with solid lines, and the
reweighted posteriors are shown with dashed lines. Top: re-
sults reweighted using the model inferred when excluding the
zero-spin channel. Bottom: results reweighted using the pop-
ulation model inferred when allowing for the zero-spin forma-
tion channel. The exclusion of the zero-spin channel pushes
the highest-mass events toward lower masses. Including zero-
spin allows for more retained 2G black holes and hence more
efficient hierarchical mergers, which, in turn, allows for larger
masses. In both cases, the region of support at high primary
mass (∼ 60M�) in the reweighted GW170729 posterior is
due to the hierarchical component of the population prior.

The lower branching ratios inferred when excluding
the zero-spin formation channel affect the shape of the
overall multigenerational population, with little support
for primary masses in the PPSN mass gap. In the top
panel of Fig. 4, we plot the reweighted component mass

posterior samples for the 10 events in GWTC-1, with
the population model excluding the zero-spin compo-
nent as a prior. The reduced hierarchical merger rates
lead to smaller support for masses above the upper mass
cutoff, and the 90% interval on the primary black hole
mass for GW170729 tightens to 34–53M�. Without
the zero-spin population subcomponent, the 90% up-
per limit on 1G+1G primary black hole spin magnitude
becomes 0.54.

The inferred branching ratios are consistent with

Monte Carlo modeling of binary black hole populations
in globular clusters; in the most extreme case where all
black holes are assumed to be born with zero spin, such
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Figure 5. Posteriors of the inferred branching ratios, which
are the relative 1G+2G vs. 1G+1G and 2G+2G vs. 1G+1G
merger rates, and the fraction of 1G+1G binary black holes
with zero-spin λ0. In blue we plot the results when we allow
for the zero-spin formation channel and in orange we plot
the results when excluding the zero-spin formation channel
(fixing λ0 = 0).

modeling predicts ≈ 13% (1%) of merging binary black
holes are 1G+2G (2G+2G) systems (Rodriguez et al.
2019). As the natal spins of black holes increase, the
retention fractions and relative rates precipitously drop

as the recoil kicks become stronger. Rodriguez et al.
(2019) find that if black hole natal spins are assumed to
be χ = 0.5, that the number of black holes with a 2G
component drops to . 1% of the total population.

4.3. Odds ratios for the hierarchical merger scenario

With our multigenerational model, we also can calcu-
late the hierarchical/1G+1G odds ratio O for each event.
If the parameter distributions of each generational sub-
population were known, the odds ratio that the i-th ob-
servation came from a 1G+2G system versus a 1G+1G
system would be

Oi1G+2G ≡
P (1G+2G|di)
P (1G+1G|di)

=
Z(di|1G+2G)

Z(di|1G+1G)

P (1G+2G)

P (1G+1G)
, (34)

where the first term in Eq. (34) is the ratio of evidences
for the observation given the 1G+2G and 1G+1G sub-
populations (a Bayes factor; Kimball et al. 2020), and

the second term is the prior odds (relative rates) of merg-
ers of the two generations. However, as we do not know
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Figure 6. Hierarchical/1G+1G odds ratios for each of the
GWTC-1 events. The odds for 1G+2G origin are plotted in
blue, while the odds for 2G+2G origin are in green. The
dashed lines indicate the odds when we use the model in-
ferred when excluding the zero-spin channel. The dotted
line indicates even odds.

the exact form of the underlying population, our uncer-
tainty in the population hyperparameters affects both
the relative rates and the ratio of evidences. To take

this into account, we marginalize over the population
hyperparameters, weighting by our posterior probabil-
ity distribution p(Λ|~d), yielding

Oi1G+2G =

∫
dΛZ(di|Λ, 1G+2G)ζ1G+2G(Λ)p(Λ|~d)∫
dΛZ(di|Λ, 1G+1G)ζ1G+1G(Λ)p(Λ|~d)

.

(35)

Here, the evidence for the 1G+2G population is

Z(di|Λ, 1G+2G) =

∫
dθL(di|θ)π(θ|Λ, 1G+2G), (36)

while the 1G+1G evidence Z(di|Λ, 1G+1G) is defined

similarly, and ζ1G+2G and ζ1G+1G are the hierarchical
merger fractions. The odds ratio for a 2G+2G system
versus a 1G+1G system Oi2G+2G can be calculated by
swapping 1G+2G to 2G+2G in Eq. (35).

We calculate these odds ratios for all 10 events in
GWTC-1 (Abbott et al. 2019a), and plot the results in
Fig. 6. For GW170729—the event with the most massive
primary black hole—we favor a 1G+1G over a 1G+2G
origin with 25:1 odds when including the zero-spin for-
mation channel. The probability that GW170729 is
of hierarchical origin (either 1G+2G or 2G+2G) is 4%.
GW151226, which has the most confidently measured
non-zero spin (Abbott et al. 2016d, 2019a; Miller et al.

2020)—we find that log10(Zχ/Z0) = 6.5—has the sec-
ond highest probability (0.2%) for a hierarchical origin.
Across all 10 systems in GWTC-1, we find the proba-
bility that at least one binary black hole system is of
hierarchical origin is 5%.

As the inferred branching ratios are much smaller
when excluding the zero-spin formation channel, the
odds ratios for hierarchical origin in our globular cluster
model, shown in dashed lines in Fig. 6, are reduced by
∼ 3–5. If we exclude the zero-spin channel, we find that
GW170729 most likely has a 1G+1G origin by a factor
of 60:1, and that the probability of at least one event
being of hierarchical origin is only 2%.

The branching ratios are also dependent on the escape
velocity of the dynamical environment. If we increase
our cluster mass to 108 M�, typical of a nuclear star
cluster, the branching ratios—and hence the odds ra-
tios in favor of a hierarchical origin—increase by ∼ 1–3
orders of magnitude. Since our transfer functions for
1G+2G and 2G+2G populations are tuned to globular
cluster simulations, a robust analysis of an nuclear star
cluster hierarchical merger scenario would require more
detailed study.

To check how our prior on mmax affects our results we

rerun the analysis with a uniform prior between 20M�
and 200M�. While we infer a peak in the posterior
on mmax near 40M�, we find support all the way out
to 200M�, well above any of the GWTC-1 black hole

masses, indicating that we are insensitive to the exis-
tence of the mass gap (discussed further in Appendix A).
The odds ratios in favor of the GWTC-1 events being

hierarchical mergers remains largely the same, with a
small increase in favor of hierarchical mergers as the
prior for mmax extends down to 20M�. With this prior,

the GW170729 1G+2G odds ratio is 0.041. Allowing
mmax to extend to larger values makes it easier to incor-
porate high-mass systems into the 1G+1G population.
Cutting on the maximum of the mmax prior from 200M�
to 40M� increases the GW170729 1G+2G odds ratio to
0.046. Overall, our conclusions are not significantly af-
fected by the prior assumptions on mmax as none of the
systems lack posterior support for having masses below
the PISN mass gap.

5. CONCLUSIONS

GW observations have demonstrated that binary

black holes merge to form more massive black holes
(Abbott et al. 2016a). If these merger products form a
new binary, they may again become a GW source. The
complete catalog of GW sources may therefore contain
a mixture of 1G black holes formed from stellar col-
lapse, and 2G black holes formed in mergers. In using
the population of GW sources to infer the formation
mechanisms for black holes, e.g., if their progenitors
are subject to PPSN, it is necessary to account for
the potential presence of 2G black holes to prevent our

conclusions being biased. However, it is difficult to con-
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cretely distinguish between 1G and 2G black holes, as
the populations overlap in properties. We perform an
analysis that self-consistently infers both the fraction of
binaries containing 2G black holes, and the fundamental
properties of the population of 1G+1G binaries.

Our analysis uses phenomenological models to de-
scribe the binary black hole population. The models
are calibrated to reproduce the features seen in simula-
tions of globular clusters (Rodriguez et al. 2019). The
fraction of 2G black holes that are retained in a cluster
following a merger depends sensitively upon the spins of
1G black holes, as larger spins results in larger GW recoil
kicks. Simulations of massive stars with efficient angu-
lar momentum transfer predict that black holes would
form with spins . 0.01 (Fuller & Ma 2019). Therefore,
our population model also includes the possibility of a
fraction of 1G black holes that have effectively zero spin.
Our analysis demonstrates that this is a potentially key
ingredient in the search for hierarchical mergers.

We apply our approach to the 10 binary black holes
found by LIGO and Virgo in their first two observing
runs (Abbott et al. 2019a). We find that:

1. The 1G+1G population is fit by a steep power law
with exponent α > 0.83 plus a Gaussian com-

ponent with mean µm = 31+7.1
−8.6M�. We find

an upper cutoff to the power law of mmax =
47.5+16.5

−13.5M�, but this is dominated by our choice

of prior. Across the multigenerational population,
we find that 99% of black holes in binaries have
masses m1 . 45M�. Overall, the 1G+1G pop-
ulation is consistent with the mass distributions

inferred in Abbott et al. (2019b).

2. The fraction of 1G+1G binaries with zero spin

is λ0 < 0.32 with 99% probability, and 90% of
1G+1G primary black holes have spins less than
0.57. Excluding the zero-spin formation channel,
90% of 1G+1G primary black holes have spins less
than 0.54

3. The median merger rates of 1G+2G and 2G+2G
binaries relative to 1G+1G binaries are inferred to
be 2.5×10−3 and 3.1×10−6, respectively, with 99%
upper limits of 0.049 and 1.2× 10−3. The relative
rates are tightly correlated with the fraction of 1G
black holes with zero spin. Excluding the zero-
spin subcomponent of our spin distribution, the
relative rates drop to 8.1 × 10−4 and 3.3 × 10−7

respectively, with 99% upper limits of 0.018 and
1.6 × 10−4. Since the relative rates and spins are
tightly linked, a measurement of one would pin

down the other.

4. The 10 binary black holes from GWTC-1 are all
consistent with being 1G+1G. Given the rarity of
1G+2G and 2G+2G mergers, this is not surprising.
GW170729’s source, which is the most massive of
the observed systems, is still found to most likely
have a first-generation origin. This result is not
especially sensitive to the allowed range for mmax,
as the masses for GW170729 are consistent with
being below the PISN gap.

We cannot make a definite conclusion about the presence
of hierarchical mergers amongst this catalog of 10 events.

The analysis is currently limited to considering binary
black holes formed in globular clusters. In reality, we ex-
pect that binary black holes form in other environments
as well. Black holes in the field are unlikely to undergo

a hierarchical merger. On the other hand, those formed
in a nuclear star cluster are much more likely to be re-
tained and available to form hierarchical mergers due to

their higher escape velocities (Antonini & Rasio 2016;
Antonini et al. 2019; Yang et al. 2019).

Including alternative channels is necessary for defini-
tively identifying hierarchical mergers, as this and other

evolutionary channels, such as stellar collisions in young
stellar clusters (Di Carlo et al. 2019), growth in active
galactic nucleus disks (McKernan et al. 2012), or con-

secutive mergers in quadruple systems (Fragione et al.
2020), can grow black holes to masses above the PISN
cutoff. The rate at which these mass-gap black holes

form merging binaries is highly uncertain. If these black
holes merge, they would be (incorrectly) classified as hi-
erarchical mergers within our globular cluster picture.

Our method can be extended to include additional

subpopulations. This would require defining new mod-
els, for example, including an aligned-spin distribution,
as detailed in Eq. (5), to model binaries formed via iso-
lated evolution (Kalogera 2000; Rodriguez et al. 2016b).
Including more subpopulations adds parameters to the
likelihood, Eq. (26). With only the 10 binaries, a rel-
atively simple model is prudent (Abbott et al. 2019b).

However, this will change as the catalog grows with fur-
ther observing runs (Vitale et al. 2017; Stevenson et al.
2017; Zevin et al. 2017; Talbot & Thrane 2017).

The third observing run of LIGO and Virgo began in
April 2019 and was suspended in March 2020. The first
binary black hole detection of the third observing run
has recently been announced: GW190412 (Abbott et al.
2020b), a system with an unequal component masses; in
Appendix B, we examine how adding this new event to
the GWTC-1 updates our results, again finding that all
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binaries are consistent with being 1G+1G.2 Full results
from the third observing run are still to be announced.
The fourth observing run, which will extend the global
GW detector network to include KAGRA (Akutsu et al.
2019), is scheduled to start in mid 2021 (Abbott et al.
2020a). As we gather more observing time, and improve
the sensitivity of the detector network, we expect the
number of observations and the rate of discoveries to in-
crease. With larger catalogs of events it will be possible
to make more precise measurements of the population,
and we will be able to determine whether hierarchical
mergers play a significant role in the GW catalog. Fur-
thermore, improvements in the detectors’ low-frequency
sensitivity will improve their ability to detect higher-
mass binaries (Abbott et al. 2017b). The next gener-
ation of ground-based detectors offers the opportunity
to perform the same measurements across cosmic time
(Kalogera et al. 2019). With the precise population mea-
surements coming from larger catalogs we can infer the

details of the physical processes that shape black hole
formation; however, for these conclusions to be accurate,
it is necessary to account for the population being a mix
of both 1G black holes and the products of mergers.
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APPENDIX

A. GWTC-1 HYPERPARAMETER DISTRIBUTIONS

Here we present the full sets of inferred population parameter Λ posteriors for our population models. In Fig. 7, we

plot the parameters determining the mass distributions, as defined in Eq. (2) and Eq. (3), for our default model. In
Fig. 8 we plot the equivalent mass population hyperparameters for the model excluding the zero-spin subcomponent,
and in Fig. 9 we plot the mass population hyperparameters when we switch to using a uniform prior for mmax. The
results are largely consistent between model choices.

When using the astrophysically motivated prior for mmax, the posterior closely follows the prior. The posterior on
mmax is more restricted at smaller values of the power-law index α: when the mass distribution is flatter we are more
sensitive to the upper cutoff than when the distribution sharply decreases with mass and we can increase the upper
cutoff with little consequence (Fishbach & Holz 2017). When switching to the uniform prior on mmax we see the same
qualitative behavior with varying α. For steep power laws (α & 2), we are effectively insensitive to the existence of
an upper cutoff, but for flatter power laws (α . 1), the dearth of higher-mass black holes means that there is little
posterior support for mmax & 45M�.

The power-law index α has more support for higher (α & 2) values. Our posterior on α is truncated by our choice
of prior. Abbott et al. (2019b) found that the posterior on α becomes uninformative at large values (α & 4), with all

values matching equally well.

2 The recently announced GW190814 has an uncertain nature
and could be a binary black hole or a neutron star–black hole
binary (Abbott et al. 2020c), and we do not consider it in our
analysis.

https://www.gw-openscience.org
https://www.gw-openscience.org
https://dcc.ligo.org/LIGO-P2000131/public
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The Gaussian component of the mass spectrum has a mean well constrained between µm ' 22–38M�. The exception
to this is when λm ∼ 0, as then the Gaussian component is negligible and so can be positioned anywhere. There is
a correlation between the width of the Gaussian component σm and the mean (Talbot & Thrane 2018), with smaller
µm permissible when σm is larger, as this enables the upper edge of the Gaussian to stay in place. The value of σm is
not well constrained by the current set of observations.

The posteriors for the minimum mass mmin are largely unconstrained. As the GW detectors are less sensitive to
low-mass systems, it is more difficult to place constraints on this end of the distribution (Fishbach & Holz 2017; Talbot
& Thrane 2018; Abbott et al. 2019b). The lower limit of the mmin distribution is set by our prior, and the upper limit
is set by the least massive black hole amongst our observations.

The mass ratio is degenerate with the spin (Poisson & Will 1995; Baird et al. 2013; Farr et al. 2016). Fixing spins
to be zero breaks the mass–spin degeneracy results in a more equal mass ratio and a larger m2 for a system of a given
chirp mass. However, the inclusion of the zero-spin subcomponent makes little difference for our inferred mass ratio
distribution, with the posterior for the power-law index βq being largely determined by our assumed prior.

In Fig. 10, we plot the parameters determining the spin distributions, as defined in Eq. (4), for our default model. In
Fig. 11 we plot the equivalent spin population hyperparameters for the model with λ0 = 0, and in Fig. 12 we plot the
spin population hyperparameters when using a uniform prior for mmax. The mmax prior makes negligible difference
to the spin distributions. There is no simple correlation between the fraction of 1G+1G binaries with zero spin λ0
and the other population hyperparameters. The λ0 distribution is peaked at 0 and shows that many 1G+1G binaries
are not well described by both black holes having near-zero spins. In all cases we favor models with αχ < βχ, which

corresponds to distributions which decrease with increasing spin magnitude (Farr et al. 2017; Abbott et al. 2019b).

B. INCLUDING GW190412

GW190412 is the first announced binary black hole detection of the third observing run of LIGO and Virgo (Abbott
et al. 2020b). It is exceptional on account of its mass ratio, which is inferred as q = 0.28+0.13

−0.06 assuming the fiducial
parameter estimation prior. The large difference in component masses would not be surprising for a hierarchical

merger (Rodriguez et al. 2020; Gerosa et al. 2020), so here we investigate how our results change including GW190412.
For this, we use parameter-estimation results for GW190412 from Zevin et al. (2020). Since GW190412 has been
especially selected for publication, we cannot assume that using GWTC-1 plus GW190412 is a fair representation of

the binary black hole population, and so results using these 11 systems should be considered as preliminary, pending
the completion of the catalog from the third observing run.

In Fig. 13, we plot the population hyperparameters for the mass and mass ratio distributions. As in Abbott et al.
(2020b), we find that including GW190412 leads to tighter constraints on the mass ratio distribution. This single

additional event acts as a lever arm, constraining βq to smaller values, flattening our inferred mass ratio distribution.
The inferred spin parameters, shown in Fig. 14, are unaffected.

In Fig. 15, we show the odds ratios for our events having a hierarchical versus 1G+1G origin. The extreme mass

ratio of GW190412 is well explained by the 1G+2G population, but its primary component’s spin is below the 2G
black hole spin distribution. Overall, we find that GW190412 most likely has a 1G+1G origin, at odds of ∼ 500:1.
Including GW190412 also reduces the odds of GW170729 having a 1G+2G origin by ∼ 20%, since our 1G+1G mass
ratio distribution flattens and has increased support at more unequal mass ratios. When we increase our cluster mass
to 108M�, chosen to be typical of a nuclear star cluster, we still find that GW190412 most likely has a 1G+1G origin,
but at lower odds of ∼ 6:1.
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