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Servo error pre-compensation (SEP) is commonly used to improve the accuracy of feed drives. Existing SEP approaches often involve the 
use of physics-based linear models (e.g., transfer functions) to predict servo errors, but suffer from inaccuracies due to unmodeled 
nonlinear dynamics in feed drives. This paper proposes a linear hybrid model for SEP that combines physics-based and data-driven linear 
models. The proposed model is shown to approximate nonlinearities unmodeled in physics-based linear models. In experiments on a 
precision feed drive, the proposed hybrid model improves the accuracy of servo error prediction by up to 38% compared to a physics-
based model. 
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1. Introduction	

A wide range of manufacturing machines use feed drives 
powered by computer numerical control (CNC) to generate motion 
commands [1]. The accuracy of feed drives significantly affects the 
quality of the parts produced by manufacturing machines. Servo 
errors are a major source of inaccuracy in feed drives. When 
caused by motion commands, servo errors can often be reduced by 
pre-compensation (i.e., feedforward compensation). A model of 
the machine’s servo dynamics is used to modify motion commands 
offline or online in the CNC interpolator to reduce servo errors.  

Examples of servo error pre-compensation (SEP) methods 
include zero phase error tracking controller [2], inverse 
compensation filter [3], input shaper [4], model reference 
feedforward control [5], hierarchical predictive control [6], 
trajectory pre-filter [7] with friction compensator [8], and filtered 
B-splines [9,10]. These methods often involve the use of transfer 
functions of feed drive dynamics to predict and compensate servo 
errors. Sometimes, the parameters of the transfer functions are 
tuned online using data collected from the feed drives [7, 8].  

A major shortcoming of using transfer function models for SEP is 
that they cannot incorporate nonlinearities. A common practice to 
alleviate this issue is to pre-emptively cancel out nonlinearities 
from system dynamics using models of nonlinear dynamics (e.g., 
friction) [5,7,8,11,12]. However, in several practical cases, the 
nonlinearities are unknown or do not have reliable models, hence 
they cannot be cancelled out completely. For example, the 
nonlinear stiffness of a feed drive’s cable carrier may be unknown, 
or the nonlinear friction in a feed drive’s bearings may be poorly 
modeled. Another issue with nonlinear feed drive models, when 
available, is that they are not amenable to many SEP approaches 
which depend on linear models, e.g., [2-10].  

The idea of hybrid modeling, where physics-based models are 
combined with data-driven (machine learning) models is gaining a 
lot of attention [13,14]. One benefit of hybrid modeling is that data, 
which is becoming abundant, can be used to complement physics-
based models. This paper proposes a hybrid model to enable more 
accurate SEP of feed drives with unmodeled nonlinear (and linear) 
dynamics. In the proposed approach, the predictions of a linear 
physics-based model (e.g., derived from transfer function) are fed 

into a linear data-driven model to achieve a linear hybrid model. It 
is shown analytically and numerically that, though linear, the 
proposed hybrid model is able to approximate nonlinearities that 
are unmodeled by the physics-based model. As a result, it is able to 
more accurately predict servo errors, which is a pre-requisite for 
accurate SEP using linear models. Experiments carried out on a 
vibration-prone precision feed drive with unmodeled nonlinear 
dynamics demonstrate up to 38% improvement in servo error 
prediction accuracy using the proposed hybrid modeling approach 
compared to a standard physics-based model.  

The outline of the paper is as follows: In Section 2, the proposed 
hybrid model is presented. In Section 3, analytical and numerical 
case studies are used to demonstrate how the proposed linear 
hybrid model approximates unmodeled nonlinearity in feed 
drives. A precision feed drive with a vibrating fixture and 
unmodeled nonlinear dynamics is presented in Section 4 and used 
to experimentally validate the benefits of the proposed hybrid 
model in accurately predicting servo errors. This is followed by 
conclusions and a discussion of future work in Section 5. 

2. Proposed	Hybrid	Model	for	SEP	

  
Fig.	1 General framework of the proposed hybrid model. 

Assume that the stable SISO servo dynamics, H, of a feed drive, 
is broken down into a linear portion (𝐇௅ ) which is accurately 
modeled and a nonlinear portion (𝐇ே௅ ) which is unmodeled, as 
shown in Fig. 1. Let 𝑥ௗሺ𝑘ሻ and 𝑥ሺ𝑘ሻ represent discrete values of the 
desired and actual positions of the feed drive, where k = 0, 1, 2, … 
are the discrete time steps with a sampling interval 𝑇௦. Assume that 
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the CNC interpolator of the feed drive has look-ahead capabilities 
such that the desired trajectory, 𝑥ௗ, is fed to the feed drive in small 
batches, defined as the vector 

𝐱ௗ
ሺ௝ሻ ≜ ቄ𝑥ௗ൫𝑗𝑁௣൯, 𝑥ௗ൫𝑗𝑁௣ ൅ 1൯, … , 𝑥ௗ ቀሺ𝑗 ൅ 1ሻ𝑁௣ െ 1ቁቅ

்
,  (1) 

where 𝑁௣ is the length of the look-ahead window, j = 0, 1, 2, … is 
the batch index. Let 𝐱(j) denote the output position corresponding 
to 𝐱ௗ

(j). In standard SEP, a physics-based linear model, 𝐆௣௕ , is 
typically used to predict 𝐱(j) as  

𝐱ො௣௕
ሺ௝ሻ ≜ ቄ𝑥ො௣௕൫𝑗𝑁௣൯, 𝑥ො௣௕൫𝑗𝑁௣ ൅ 1൯, … , 𝑥ො௣௕ ቀሺ𝑗 ൅ 1ሻ𝑁௣ െ 1ቁቅ

்
  

ൌ 𝐆௣௕ 𝐱ௗ
ሺ௝ሻ, (2) 

where the subscript pb indicates that the prediction 𝐱ො௣௕
(j) is 

obtained using 𝐆௣௕ , a matrix (lifted) representation of a linear 
system. However, since 𝐆௣௕ does not capture 𝐇ே௅, using 𝐆௣௕ may 
result in inaccurate SEP. To address this deficiency, 𝐇 is modeled 
using a linear hybrid model (as shown in Fig. 1), 𝐆௛ , which 
combines the physics-based linear model, 𝐆௣௕, and a linear data-
driven model, 𝐆ௗௗ. The goal of 𝐆௛ is to return accurate predictions 
𝐱ො௛

(j) of 𝐱(j) based on current and past inputs, 𝐱ௗ
(j) and 𝐱ௗ

(j–1), as well 
as past measured output 𝐱(j–1). This is achieved by defining 

𝐱ො௛
ሺ௝ሻ ≜ 𝐆ௗௗ ቀ𝐱ො௣௕

ሺ௝ሻ, 𝐱ො௣௕
ሺ௝ିଵሻ, 𝐱ሺ௝ିଵሻቁ  

         ൌ 𝐆ௗௗ ቀ𝐆௣௕ 𝐱ௗ
ሺ௝ሻ, 𝐆௣௕ 𝐱ௗ

ሺ௝ିଵሻ, 𝐱ሺ௝ିଵሻቁ 

         ൌ 𝐆௛ ቀ𝐱ௗ
ሺ௝ሻ, 𝐱ௗ

ሺ௝ିଵሻ, 𝐱ሺ௝ିଵሻቁ, (3) 

where 𝐆ௗௗ is a data-driven model which learns the residual error 
of 𝐆௣௕  and then refines its prediction by using as its inputs the 
outputs of the physics-based model combined with the past output 
data measured from the feed drive. The accurate predictions 𝐱ො௛

(j) 
of the proposed hybrid model can be used online in a windowed 
(limited-preview) approach [10] for SEP.  

 
Fig.	2 Internal structure of the data-driven model (𝐆ௗௗ).  

In order to keep the overall model linear to facilitate SEP, 𝐆ௗௗ is 
built on a linear regression model. Fig. 2 shows the internal 
structure of 𝐆ௗௗ. Let 𝐞௣௕

(j) be defined as the prediction error of 𝐆௣௕ 
(i.e., 𝐞௣௕

(j) ≜ 𝐱(j) െ 𝐱ො௣௕
(j)). Accordingly, linear regression is used to 

determine 𝐞ො௣௕
(j) (the prediction of 𝐞௣௕

(j)) as a function of 𝐞௣௕
(j–1), 

𝐱ො௣௕
(j), and 𝐱ො௣௕

(j–1) by recursively applying the following formula 

𝑥ො௛ሺ𝑘ሻ ൌ 𝑥ො௣௕ሺ𝑘ሻ ൅ 𝑒̂௣௕ሺ𝑘ሻ ൌ 𝑥ො௣௕ሺ𝑘ሻ ൅ 𝐰ෝ ሺ௝ሻ்
𝛟ሺ𝑘ሻ, (4) 

where 𝑘 ∈  ሼ 𝑗𝑁௣, … , ሺ𝑗 ൅ 1ሻ𝑁௣ െ 1ሽ , i.e., the time steps defined 
within batch j; 𝐰ෝ(j) is the weight of the regression model for batch 
j, while 𝛟ሺ𝑘ሻ is the pre-defined feature vector for the regression 
model. For each time step k, it is defined as 

𝛟ሺ𝑘ሻ  ൌ ൣ1, 𝑥ො௣௕ሺ𝑘ሻ, … , 𝑥ො௣௕ሺ𝑘 െ 𝑞ሻ, 𝑒௣௕ሺ𝑘 െ 1ሻ, … , 𝑒௣௕ሺ𝑘 െ 𝑝ሻ൧
்

. (5) 

Here, q	< Np and p	≤	Np are design parameters, where q+1 and p 
represent the number of time steps in 𝑥ො௣௕ and 𝑒௣௕ in the regressor. 
Notice from Fig. 2 that only the past values of 𝑒௣௕ ሺi.e., 𝐞௣௕

(j–1)ሻ are 
available, meaning that in Eq. (5), 𝑒௣௕ሺ𝑘ሻ is unavailable for 𝑘 ൒
𝑗𝑁௣ . Therefore, for 𝑘 ൒ 𝑗𝑁௣ , 𝑒௣௕ሺ𝑘ሻ  is replaced with 𝑒̂௣௕ሺ𝑘ሻ ≜
𝑥ො௛ሺ𝑘ሻ െ 𝑥ො௣௕ሺ𝑘ሻ. In Eq. (4), 𝐰ෝ is updated recursively for each batch 

using recursive least squares algorithm to minimize the sum of 
square errors at all time steps with the following loss function: 

𝐰ෝ ሺ௝ሻ ൌ argmin
𝐰

∑ ൣ𝑒௣௕ሺ𝑘ሻ െ 𝐰୘𝛟ሺ𝑘ሻ൧
𝟐௝ே೛ିଵ

௞ୀ଴ ൅ λ‖𝐰‖ଶ
ଶ, (6) 

where 𝜆 > 0 is a constant regularization factor added to prevent 
overfitting. 

3. Analytical	Justification	and	Numerical	Validation	

3.1. 	Analytical	Justification	for	Hybrid	Model	

The hybrid model’s capability to approximate unmodeled 
nonlinear servo dynamics is analytically explained in this section. 
Consider a feed drive with servo dynamics H given by 

𝐳ሺ𝑘 ൅ 1ሻ ൌ 𝐀𝐳ሺ𝑘ሻ ൅ 𝐁𝑥ௗሺ𝑘ሻ ൅ 𝚪𝑥ௗ
ଶሺ𝑘ሻ,		

𝑥ሺ𝑘ሻ ൌ 𝐂𝐳ሺ𝑘ሻ, (7) 

where, 𝑥ௗ  and 𝑥 are the desired and actual positions of the feed 
drive, respectively, while 𝐳	is the vector of internal states; A, B, C 
and Γ are system matrices. Notice that, as a simple example but 
without loss of generality, H contains an unmodeled, input-
dependent nonlinear term, 𝚪𝑥ௗ

ଶሺ𝑘ሻ . Assume that the system is 
stable, and the linear portion of the servo dynamics (i.e., matrices 
A, B, C) is accurately modeled. Then, given zero initial conditions, 
the system output 𝑥ሺ𝑘ሻ is written as 

𝑥ሺ𝑘ሻ ൌ 𝐂𝐀௞ିଵ𝐁𝑥ௗሺ0ሻ ൅ 𝐂𝐀௞ିଵ𝚪𝑥ௗ
ଶሺ0ሻ ൅ ⋯	 

൅𝐂𝐁𝑥ௗሺ𝑘 െ 1ሻ ൅ 𝐂𝚪𝑥ௗ
ଶሺ𝑘 െ 1ሻ. (8) 

Equation (8) can be concatenated into matrix form as 

൦

𝑥ሺ1ሻ
𝑥ሺ2ሻ
𝑥ሺ3ሻ

⋮

൪ ൌ ൦

𝐂𝐁 0 0 ⋯
𝐂𝐀𝐁 𝐂𝐁 0 ⋯
𝐂𝐀𝟐𝐁 𝐂𝐀𝐁 𝐂𝐁 ⋯

⋮ ⋮ ⋮ ⋱

൪ ൦

𝑥ௗሺ0ሻ
𝑥ௗሺ1ሻ
𝑥ௗሺ2ሻ

⋮

൪

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
𝐱ො𝒑𝒃

	

൅ ൦

𝐂𝚪 0 0 ⋯
𝐂𝐀𝚪 𝐂𝚪 0 ⋯
𝐂𝐀𝟐𝚪 𝐂𝐀𝚪 𝐂𝚪 ⋯

⋮ ⋮ ⋮ ⋱

൪

⎣
⎢
⎢
⎡𝑥ௗ

ଶሺ0ሻ
𝑥ௗ

ଶሺ1ሻ
𝑥ௗ

ଶሺ2ሻ
⋮ ⎦

⎥
⎥
⎤

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
𝐞𝒑𝒃

.		 (9) 

Since the linear part of the system is modeled by the physics-based 
model, the first matrix product represents 𝐱ො௣௕ . Therefore, the 
second matrix product, 𝐞௣௕, is re-written as  

⎣
⎢
⎢
⎡
𝑒௣௕ሺ1ሻ
𝑒௣௕ሺ2ሻ
𝑒௣௕ሺ3ሻ

⋮ ⎦
⎥
⎥
⎤

ൌ ൦

𝐂𝚪 0 0 ⋯
𝐂𝐀𝚪 𝐂𝚪 0 ⋯
𝐂𝐀𝟐𝚪 𝐂𝐀𝚪 𝐂𝚪 ⋯

⋮ ⋮ ⋮ ⋱

൪

⎣
⎢
⎢
⎡𝑥ௗ

ଶሺ0ሻ
𝑥ௗ

ଶሺ1ሻ
𝑥ௗ

ଶሺ2ሻ
⋮ ⎦

⎥
⎥
⎤
.  (10) 

From Eq. (10), 𝑒௣௕ሺ𝑘ሻ can be seen as a linear combination of the 
terms 𝐂𝚪,	𝐂𝐀𝚪, …, 𝐂𝐀௞ିଵ𝚪, while the nonlinear inputs 𝑥ௗ

ଶ at each 
time step are the corresponding weights. Moreover, since the 
system is stable, we assume that 𝐂𝐀௡𝚪 ൎ 0 for n greater than or 
equal some value p. Put differently, 𝑒௣௕ሺ𝑘ሻ  is the linear 
combination of 𝐂𝚪,	𝐂𝐀𝚪, …,	𝐂𝐀௣ିଵ𝚪, while its p previous inputs are 
the weights. Accordingly, at any time step k, if the sequences of the 
nonlinear inputs, i.e., { 𝑥ௗ

ଶሺ𝑘 െ 1ሻ , 𝑥ௗ
ଶሺ𝑘 െ 2ሻ , … 𝑥ௗ

ଶሺ𝑘 െ 𝑝ሻ }T, are 
linearly related to the past sequences {𝑥ௗ

ଶሺ𝑘 െ 2ሻ, 𝑥ௗ
ଶሺ𝑘 െ 3ሻ, … 

𝑥ௗ
ଶሺ𝑘 െ 𝑝 െ 1ሻ}T, {𝑥ௗ

ଶሺ𝑘 െ 3ሻ, 𝑥ௗ
ଶሺ𝑘 െ 4ሻ, … 𝑥ௗ

ଶሺ𝑘 െ 𝑝 െ 2ሻ}T, … , then 
future values of 𝑒௣௕ can be approximated by linear combinations 
of past values of 𝑒௣௕. Therefore, by including past values of 𝑒௣௕ in 
the linear regressor of Eq. (5), future values of the prediction error 
caused by similar unmodeled nonlinearity can be approximated.  

Remark: Even though the unmodeled dynamics is assumed to be 
square inputs above, the analysis can also be generalized to other 
system- or input-dependent, linear or nonlinear terms of time-
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invariant systems, as long as responses can be approximated by 
series expansion and then reformatted as in Eq. (10).  

3.2. Numerical	Validation	of	Hybrid	Model	

 
Fig.	3 Model of feed drive servo dynamics used for numerical study. 

To further support our analysis in Section 3.1, consider a feed 
drive whose linear servo dynamics HL is represented by the spring-
mass-damper model shown in Fig. 3, combined with an unmodeled 
nonlinear dynamic force HNL. The equation of motion of the feed 
drive is expressed as 

𝑚𝑥ሷ ൅ 𝑐𝑥ሶ ൅ 𝑘𝑥 ൅ 𝐻ே௅ ൌ 𝑘𝑥ௗ ൅ 𝑐𝑥ሶௗ, (11) 

where 𝑚 ൌ 1 kg, 𝑐 ൌ 15.7 kg/s, and 𝑘 ൌ 24674 N/m. The linear 
system has a resonance mode at 25 Hz with 5% damping ratio. 
Assume that HNL (in Newtons) is defined as 

𝐻ே௅ ൌ 0.1 sgnሺ𝑥ሶሻ 𝑥ሶ ଶ ൅ 1 sgnሺ𝑥ሻ 𝑥ଶ. (12) 

The nonlinear force could arise from un-cancelled nonlinear 
damping from guideways or nonlinear stiffness from a cable 
carrier attached to the feed drive’s table. As a result of HNL, the 
dynamics of the feed drive becomes nonlinear as 

𝑚𝑥ሷ ൅ ሺ𝑐 ൅ 0.1|𝑥ሶ |ሻ𝑥ሶ ൅ ሺ𝑘 ൅ |𝑥|ሻ𝑥 ൌ 𝑘𝑥ௗ ൅ 𝑐𝑥ሶௗ. (13) 

Simulations are conducted with 𝑥ௗ  tracking a staircase position 
trajectory shown in Fig. 4 (a) where the feed drive travels from 0 
to 30 mm and then goes back to 0 mm in increments of 10 mm. The 
velocity, acceleration and jerk limits of the desired position 
trajectory are respectively set as follows: 

𝐹௠௔௫ ൌ 80 mm/s,  𝐴௠௔௫ ൌ 8 m/sଶ, and 𝐽௠௔௫ ൌ 1,000 m/sଷ. (14) 

The physics-based model, Gpb, is obtained from Eq. (11) with 
𝐻ே௅ ൌ 0,  i.e., not capturing the nonlinearity. It is used to 
determine 𝑥ො௣௕. To obtain the hybrid model (Gh), the actual position 
𝑥  of Eq. (13) is used, with some Gaussian noise 
ϵ~𝒩ሺ0 mm, 0.005ଶ mmଶሻ added. The parameter 𝑞 of Gh is set as 3 
so that it implicitly includes up to the jerk information of the 
desired trajectory. The parameter 𝑝 is set to 50, as half of the look 
ahead window size Np = 100. The sampling interval is 𝑇௦ = 1 ms. 
For each batch j of 𝐱ௗ

(j), the hybrid model is used to 
determine  𝐱ො௛

(j), the Np time steps ahead prediction of 𝐱(j). 

  
Fig.	4 (a) Desired staircase trajectory; and (b) comparison of servo 

position prediction errors of Gpb (green line) and Gh (black line).  

Fig. 4 (b) compares the prediction errors of the physics-based 
and the hybrid models. Note that during the initialization period 
marked in the figure, which is arbitrarily set as 5% of the whole 
trajectory, 𝑥ො௛ = 𝑥ො௣௕ , to give the hybrid model some time to get 
trained before being used for prediction. Otherwise, the 

performance of Gh in early batches may be worse than that of Gpb. 
Beyond the initialization period, the proposed hybrid model is 
more accurate than the physics-based model because of its ability 
to approximate HNL from data. The root mean squares (RMS) of the 
servo position prediction error of the hybrid model is 14.7 μm, 
which is 56.4% smaller than that of the physics-based model (33.7 
μm). 

4. Experimental	Validation	on	Precision	Feed	Drive	

Experimental results are presented in this section to compare 
the accuracy of the proposed hybrid model to a physics-based 
model in predicting servo errors of a feed drive. 

4.1. Experimental	Setup	and	Physics‐based	Modeling 

 
Fig.	5 Experimental setup – biaxial motion stage with a flexible fixture [9]. 

The biaxial linear motor-driven stage (Aerotech ALS 25010) 
shown in Fig. 5 is used for the experiments. The same stage was 
used in [9] to demonstrate SEP using the filtered basis functions 
(FBS) method. The stage is controlled using a traditional P/PI 
feedback controller, augmented with velocity and acceleration 
feedforward and feedforward friction compensation. The 
controller is implemented on a dSPACE 1103 real-time control 
board with 1 kHz sampling frequency (i.e., Ts = 1 ms). As shown in 
Fig. 5, the stage is equipped with a fixture consisting of a block 
mounted on a rod. The block is assumed to represent an apparatus 
(e.g., a workpiece or measurement device) whose X and Y positions 
are expected to track their respective desired trajectories, 𝑥ௗ and 
𝑦ௗ  accurately, despite inherent structural flexibilities. The 
acceleration of the fixture is measured using two unidirectional 
accelerometers (PCB Piezotronics 393B05) shown in Fig. 5. 

 
Fig.	6 Measured and modeled frequency response functions of X and Y 

axes of the experimental setup [9]. 

Fig. 6 shows the frequency response function (FRF) of the servo 
dynamics of each axis of the stage, generated by applying swept 
sine acceleration commands to the stage and measuring the 
accelerations of the fixture using the accelerometers. As discussed 
in [9], the linear servo dynamics of the stage with fixture for each 
axis is represented by the following physics-based model of a 
vibrating system 
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other system parameters, identified by curve fitting the FRFs, are 
presented in Table 1 for each axis. More details are available in [9].  
In addition to the identified linear dynamics, the stage has 
unmodeled nonlinear dynamics, like the stiffness of the stage’s 
cable carriers and accelerometer cables, and residual nonlinear 
friction that was uncancelled by the friction compensation.  

	
Tab.	1.	Model parameters of Gpb(s) for X and Y axes of stage [9].	

Axis-Mode# ωn,i [Hz] ζi αi βi
X-1 20.52 0.092 15797.5 54.3
X-2 34.94 0.540 −135160.6 −587.7
X-3 42.53 0.029 189225.5 −60.5
X-4 42.60 0.007 14633.4 −67.9
Y-1 17.86 0.120 6709.0 310.4
Y-2 25.70 0.021 42872.2 169.4
Y-3 30.66 0.440 −43178.2 −1260.2
Y-4 43.10 0.036 −966.3 7.5

 
4.2. Experimental	Results	

 
Fig.	7 Desired path: Circular spiral.  

 
Fig.	8 Prediction errors of of Gpb (green line) and Gh (black line) for the 

circular spiral. 

The stage is commanded to track the spiral path shown in Fig. 7 
by following jerk-limited position commands 𝑥ௗ  and 𝑦ௗ  having 
velocity, jerk and acceleration limits given in Eq. (14). The 
identified Gpb(s) is used to determine the predicted position 𝑥ො௣௕ 
and 𝑦ො௣௕ for the X and Y axes, respectively, of the physics-based 
model.  To obtain the data-driven model (Gdd) used in the hybrid 
model (Gh), the actual position of the flexible fixture is estimated 
from measured acceleration signals using an observer. For Gh, a 
look-ahead window length of Np = 100, together with q = 3 and p = 
50, are used, as also employed and described in Section 3. 

Fig. 8 shows the X and Y axes servo position prediction errors 
using the physics-based model and the proposed hybrid model for 
the spiral path shown in Fig. 7. As discussed in Section 3, during 
the initialization period, 𝑥ො௛ = 𝑥ො௣௕ is used to give the hybrid model 
some time to warm up before being used for prediction. The RMS 
of the X and Y axes prediction errors of the proposed hybrid model 
are 13.7 μm and 94.5 μm, which are respectively 38% and 27% 
more accurate than those of the physics-based model (i.e., 22 μm 
and 130.2 μm). However, Fig. 8 also shows that the hybrid model 
does not perform as well at the end of the motion when the stage 
is decelerating. This is because the hybrid model has not seen nor 
been trained by similar motion earlier. Also, for the Y axis, the 

hybrid model	does not capture the error spikes very well. This is 
because the spikes occur sparsely throughout the trajectory, 
meaning that the weights of the spikes in the training objective are 
relatively low. Nonetheless, the hybrid model is	never overall less 
accurate than the physics-based model throughout the trajectory.  

5. Conclusion	and	Future	Work	

This paper has proposed a linear hybrid model that combines 
physics-based and data-driven models to capture unmodeled 
nonlinearity in feed drive servo dynamics. The input to the 
proposed hybrid model is first filtered through the physics-based 
model to give a rough prediction, which is then refined by a linear 
data-driven model using past data acquired from the feed drive. 
Accordingly, the proposed hybrid model significantly improves the 
predictions of the physics-based model when the trajectory shows 
similar nonlinearity, as demonstrated analytically, numerically, 
and experimentally in this paper.  

The accuracy of the hybrid model can be further improved by 
having weights that vary for different regions of a trajectory, e.g., 
different weights at locations of spikes in Fig. 8 than the rest of the 
trajectory. This would require an intelligent approach for 
segmenting the trajectory into portions with similar features 
during the training process. Such an approach will be explored in 
future work. Moreover, future work will also include a 
determination of the uncertainty of 𝐆௛  and optimization of the 
initialization period as a function of the uncertainty. Lastly, the 
proposed linear hybrid model will be integrated into online SEP 
methods in future work.  
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