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Servo error pre-compensation (SEP) is commonly used to improve the accuracy of feed drives. Existing SEP approaches often involve the
use of physics-based linear models (e.g., transfer functions) to predict servo errors, but suffer from inaccuracies due to unmodeled
nonlinear dynamics in feed drives. This paper proposes a linear hybrid model for SEP that combines physics-based and data-driven linear
models. The proposed model is shown to approximate nonlinearities unmodeled in physics-based linear models. In experiments on a
precision feed drive, the proposed hybrid model improves the accuracy of servo error prediction by up to 38% compared to a physics-

based model.

Feed drive, Machine learning, Hybrid modeling

1. Introduction

A wide range of manufacturing machines use feed drives
powered by computer numerical control (CNC) to generate motion
commands [1]. The accuracy of feed drives significantly affects the
quality of the parts produced by manufacturing machines. Servo
errors are a major source of inaccuracy in feed drives. When
caused by motion commands, servo errors can often be reduced by
pre-compensation (i.e., feedforward compensation). A model of
the machine’s servo dynamics is used to modify motion commands
offline or online in the CNC interpolator to reduce servo errors.

Examples of servo error pre-compensation (SEP) methods
include zero phase error tracking controller [2], inverse
compensation filter [3], input shaper [4], model reference
feedforward control [5], hierarchical predictive control [6],
trajectory pre-filter [7] with friction compensator [8], and filtered
B-splines [9,10]. These methods often involve the use of transfer
functions of feed drive dynamics to predict and compensate servo
errors. Sometimes, the parameters of the transfer functions are
tuned online using data collected from the feed drives [7, 8].

A major shortcoming of using transfer function models for SEP is
that they cannot incorporate nonlinearities. A common practice to
alleviate this issue is to pre-emptively cancel out nonlinearities
from system dynamics using models of nonlinear dynamics (e.g.,
friction) [5,7,8,11,12]. However, in several practical cases, the
nonlinearities are unknown or do not have reliable models, hence
they cannot be cancelled out completely. For example, the
nonlinear stiffness of a feed drive’s cable carrier may be unknown,
or the nonlinear friction in a feed drive’s bearings may be poorly
modeled. Another issue with nonlinear feed drive models, when
available, is that they are not amenable to many SEP approaches
which depend on linear models, e.g., [2-10].

The idea of hybrid modeling, where physics-based models are
combined with data-driven (machine learning) models is gaining a
lot of attention [13,14]. One benefit of hybrid modeling is that data,
which is becoming abundant, can be used to complement physics-
based models. This paper proposes a hybrid model to enable more
accurate SEP of feed drives with unmodeled nonlinear (and linear)
dynamics. In the proposed approach, the predictions of a linear
physics-based model (e.g., derived from transfer function) are fed

into a linear data-driven model to achieve a linear hybrid model. It
is shown analytically and numerically that, though linear, the
proposed hybrid model is able to approximate nonlinearities that
are unmodeled by the physics-based model. As a result, it is able to
more accurately predict servo errors, which is a pre-requisite for
accurate SEP using linear models. Experiments carried out on a
vibration-prone precision feed drive with unmodeled nonlinear
dynamics demonstrate up to 38% improvement in servo error
prediction accuracy using the proposed hybrid modeling approach
compared to a standard physics-based model.

The outline of the paper is as follows: In Section 2, the proposed
hybrid model is presented. In Section 3, analytical and numerical
case studies are used to demonstrate how the proposed linear
hybrid model approximates unmodeled nonlinearity in feed
drives. A precision feed drive with a vibrating fixture and
unmodeled nonlinear dynamics is presented in Section 4 and used
to experimentally validate the benefits of the proposed hybrid
model in accurately predicting servo errors. This is followed by
conclusions and a discussion of future work in Section 5.

2. Proposed Hybrid Model for SEP
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Fig. 1 General framework of the proposed hybrid model.

Assume that the stable SISO servo dynamics, H, of a feed drive,
is broken down into a linear portion (H;) which is accurately
modeled and a nonlinear portion (Hy;) which is unmodeled, as
shown in Fig. 1. Let x4 (k) and x (k) represent discrete values of the
desired and actual positions of the feed drive, where k=0, 1, 2, ...
are the discrete time steps with a sampling interval T;. Assume that



the CNC interpolator of the feed drive has look-ahead capabilities
such that the desired trajectory, xg, is fed to the feed drive in small
batches, defined as the vector

x5 2 (xa(N,), xa Ny + 1), o0 (G + DN, = 1)}, )

where Np is the length of the look-ahead window, j =0, 1, 2, ... is
the batch index. Let x() denote the output position corresponding
to x4 (). In standard SEP, a physics-based linear model, G, is
typically used to predict x() as

T
£ 2 {2 (INp), 2o (1N + 1), s 2y (G + DN, — 1)}
= G X, @

where the subscript pb indicates that the prediction X,, @ is
obtained using G, a matrix (lifted) representation of a linear
system. However, since G, does not capture Hy;, using G,;, may
result in inaccurate SEP. To address this deficiency, H is modeled
using a linear hybrid model (as shown in Fig. 1), G, which
combines the physics-based linear model, G, and a linear data-

driven model, G;4. The goal of G, is to return accurate predictions
X, 0 of x() based on current and past inputs, x;) and x,;0-1), as well
as past measured output xU-1). This is achieved by defining
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where G, is a data-driven model which learns the residual error
of Gy, and then refines its prediction by using as its inputs the
outputs of the physics-based model combined with the past output
data measured from the feed drive. The accurate predictions X, ()
of the proposed hybrid model can be used online in a windowed
(limited-preview) approach [10] for SEP.
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Fig. 2 Internal structure of the data-driven model (Gg4).

In order to keep the overall model linear to facilitate SEP, G, is
built on a linear regression model. Fig. 2 shows the internal
structure of Gg4. Let e,,() be defined as the prediction error of G,
(e, epp ) £ x0) — R, (D). Accordingly, linear regression is used to
determine &,,0) (the prediction of e,, ) as a function of e, (-1,
Xpp ", and X, (-1 by recursively applying the following formula

2 (k) = £ () + &,y (k) = Zpy (k) + WO (), )

where k € {jN,,..,(j + 1)N, — 1}, ie, the time steps defined
within batch j; W0) is the weight of the regression model for batch
Jj, while ¢ (k) is the pre-defined feature vector for the regression
model. For each time step k, it is defined as

) = [1, %K), ... D, . epp(k=p)]. (5)

Here, g < Np and p < N, are design parameters, where g+1 and p
represent the number of time steps in X,;, and e,, in the regressor.
Notice from Fig. 2 that only the past values of e,, (i.e., €,,0~1) are
available, meaning that in Eq. (5), epp (k) is unavailable for k >
jN, . Therefore, for k = jN,, ep,(k) is replaced with é,,(k) 2
%y (k) — X, (k). In Eq. (4), W is updated recursively for each batch

;fpb (k - Q). epb(k -

using recursive least squares algorithm to minimize the sum of
square errors at all time steps with the following loss function:

WO = argmin ¥ e, (k) — wTb()]” + Allwll2, (6)
w

where 1 > 0 is a constant regularization factor added to prevent
overfitting.

3. Analytical Justification and Numerical Validation
3.1. Analytical Justification for Hybrid Model

The hybrid model’s capability to approximate unmodeled
nonlinear servo dynamics is analytically explained in this section.
Consider a feed drive with servo dynamics H given by

z(k + 1) = Az(k) + Bxy (k) + Tx3(k),
x(k) = Cz(k), (7

where, x; and x are the desired and actual positions of the feed
drive, respectively, while z is the vector of internal states; A, B, C
and I' are system matrices. Notice that, as a simple example but
without loss of generality, H contains an unmodeled, input-
dependent nonlinear term, I‘xé(k). Assume that the system is
stable, and the linear portion of the servo dynamics (i.e., matrices
A, B, C) is accurately modeled. Then, given zero initial conditions,
the system output x(k) is written as

x(k) = CA*"*Bx,4(0) + CA*~'rx3(0) + -
+CBxg(k — 1) + CTx3(k — 1). (8)

Equation (8) can be concatenated into matrix form as
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Since the linear part of the system is modeled by the physics-based
model, the first matrix product represents %, . Therefore, the
second matrix product epb, is re-written as

rpb(l) cr rd(O)
epp()| _ | car x3(1)
le:b(3)J car CAI‘ cr ‘ 3(2) (10)

From Eq. (10), epb (k) can be seen as a lmear combination of the
terms CT, CAT, ..., CA¥='T, while the nonlinear inputs x2 at each
time step are the corresponding weights. Moreover, since the
system is stable, we assume that CA"T' = 0 for n greater than or
equal some value p. Put differently, e,,(k) is the linear
combination of CT, CAT, ..., CAP~'T, while its p previous inputs are
the weights. Accordingly, at any time step k, if the sequences of the
nonlinear inputs, ie, {x2(k —1),x2(k — 2), .. x3(k — p)}7, are
linearly related to the past sequences {x2(k —2), x3(k — 3),

x2(k —p— 1)}, {x3(k — 3), x3(k — 4), ... x3(k — p — 2)}7, ..., then
future values of e, can be approximated by linear combinations
of past values of ey,;,. Therefore, by including past values of e, in
the linear regressor of Eq. (5), future values of the prediction error
caused by similar unmodeled nonlinearity can be approximated.

Remark: Even though the unmodeled dynamics is assumed to be
square inputs above, the analysis can also be generalized to other
system- or input-dependent, linear or nonlinear terms of time-



invariant systems, as long as responses can be approximated by
series expansion and then reformatted as in Eq. (10).

3.2. Numerical Validation of Hybrid Model
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Fig. 3 Model of feed drive servo dynamics used for numerical study.

To further support our analysis in Section 3.1, consider a feed
drive whose linear servo dynamics H. is represented by the spring-
mass-damper model shown in Fig. 3, combined with an unmodeled
nonlinear dynamic force Hn.. The equation of motion of the feed
drive is expressed as

mx +cx + kx + Hy, = kxg + cxg, (11

where m = 1kg, c = 15.7kg/s, and k = 24674 N/m. The linear
system has a resonance mode at 25 Hz with 5% damping ratio.
Assume that Hu., (in Newtons) is defined as

Hy, = 0.1sgn(x) %2 + 1 sgn(x) x2. (12)

The nonlinear force could arise from un-cancelled nonlinear
damping from guideways or nonlinear stiffness from a cable
carrier attached to the feed drive’s table. As a result of Hni, the
dynamics of the feed drive becomes nonlinear as

mi + (c +0.1|x])x + (k + |x])x = kxg + cxg4. (13)

Simulations are conducted with x,; tracking a staircase position
trajectory shown in Fig. 4 (a) where the feed drive travels from 0
to 30 mm and then goes back to 0 mm in increments of 10 mm. The
velocity, acceleration and jerk limits of the desired position
trajectory are respectively set as follows:

Epax = 80 mmy/s, Apay = 8m/s?, and Jpq, = 1,000 m/s3.  (14)

The physics-based model, Gps, is obtained from Eq. (11) with
Hy, =0, i.e, not capturing the nonlinearity. It is used to
determine Xp,;,. To obtain the hybrid model (Gr), the actual position
x of Eq. (13) is wused, with some Gaussian noise
e~ (0 mm, 0.005?> mm?) added. The parameter q of G is set as 3
so that it implicitly includes up to the jerk information of the
desired trajectory. The parameter p is set to 50, as half of the look
ahead window size N, = 100. The sampling interval is Tg = 1 ms.
For each batch j of x; (), the hybrid model is used to
determine X0, the N, time steps ahead prediction of x0).
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Fig. 4 (a) Desired staircase trajectory; and (b) comparison of servo
position prediction errors of Gpb (green line) and Gn (black line).

Fig. 4 (b) compares the prediction errors of the physics-based
and the hybrid models. Note that during the initialization period
marked in the figure, which is arbitrarily set as 5% of the whole
trajectory, X, = £pp, to give the hybrid model some time to get
trained before being used for prediction. Otherwise, the

performance of G in early batches may be worse than that of Gps.
Beyond the initialization period, the proposed hybrid model is
more accurate than the physics-based model because of its ability
to approximate Hn. from data. The root mean squares (RMS) of the
servo position prediction error of the hybrid model is 14.7 um,
which is 56.4% smaller than that of the physics-based model (33.7
um).

4. Experimental Validation on Precision Feed Drive

Experimental results are presented in this section to compare
the accuracy of the proposed hybrid model to a physics-based
model in predicting servo errors of a feed drive.

4.1. Experimental Setup and Physics-based Modeling
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Fig. 5 Experimental sJetuE) - biaxial motion stage with a flexible fixture [9].

The biaxial linear motor-driven stage (Aerotech ALS 25010)
shown in Fig. 5 is used for the experiments. The same stage was
used in [9] to demonstrate SEP using the filtered basis functions
(FBS) method. The stage is controlled using a traditional P/PI
feedback controller, augmented with velocity and acceleration
feedforward and feedforward friction compensation. The
controller is implemented on a dSPACE 1103 real-time control
board with 1 kHz sampling frequency (i.e., Ts = 1 ms). As shown in
Fig. 5, the stage is equipped with a fixture consisting of a block
mounted on a rod. The block is assumed to represent an apparatus
(e.g., aworkpiece or measurement device) whose X and Y positions
are expected to track their respective desired trajectories, x; and
yq accurately, despite inherent structural flexibilities. The
acceleration of the fixture is measured using two unidirectional
accelerometers (PCB Piezotronics 393B05) shown in Fig. 5.
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Fig. 6 Measured and modeled frequency response functions of X and Y
axes of the experimental setup [9].

Fig. 6 shows the frequency response function (FRF) of the servo
dynamics of each axis of the stage, generated by applying swept
sine acceleration commands to the stage and measuring the
accelerations of the fixture using the accelerometers. As discussed
in [9], the linear servo dynamics of the stage with fixture for each
axis is represented by the following physics-based model of a
vibrating system
A a,+ps

pr(s) = z

s+ 2,5+ a):,i ' (15)

where M = 4 represents the number of vibration modes and the



other system parameters, identified by curve fitting the FRFs, are
presented in Table 1 for each axis. More details are available in [9].
In addition to the identified linear dynamics, the stage has
unmodeled nonlinear dynamics, like the stiffness of the stage’s
cable carriers and accelerometer cables, and residual nonlinear
friction that was uncancelled by the friction compensation.

Tab. 1. Model parameters of Gps(s) for X and Y axes of stage [9].

Axis-Mode# wni [Hz] i ai Bi
X-1 20.52 0.092 15797.5 54.3
X-2 34.94 0.540 -135160.6 -587.7
X-3 42.53 0.029 189225.5 -60.5
X-4 42.60 0.007 14633.4 -67.9
Y-1 17.86 0.120 6709.0 310.4
Y-2 25.70 0.021 42872.2 169.4
Y-3 30.66 0.440 -43178.2 -1260.2
Y-4 43.10 0.036 -966.3 7.5
4.2. Experimental Results
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Fig. 8 Prediction errors of of Gpp (green line) and Gn (black line) for the
circular spiral.

The stage is commanded to track the spiral path shown in Fig. 7
by following jerk-limited position commands x; and y,; having
velocity, jerk and acceleration limits given in Eq. (14). The
identified Gpb(s) is used to determine the predicted position X,
and J,, for the X and Y axes, respectively, of the physics-based
model. To obtain the data-driven model (Gaq) used in the hybrid
model (Gnr), the actual position of the flexible fixture is estimated
from measured acceleration signals using an observer. For Gn, a
look-ahead window length of N, = 100, together with g =3 and p =
50, are used, as also employed and described in Section 3.

Fig. 8 shows the X and Y axes servo position prediction errors
using the physics-based model and the proposed hybrid model for
the spiral path shown in Fig. 7. As discussed in Section 3, during
the initialization period, X5, = X, is used to give the hybrid model
some time to warm up before being used for prediction. The RMS
of the X and Y axes prediction errors of the proposed hybrid model
are 13.7 um and 94.5 um, which are respectively 38% and 27%
more accurate than those of the physics-based model (i.e.,, 22 pm
and 130.2 pm). However, Fig. 8 also shows that the hybrid model
does not perform as well at the end of the motion when the stage
is decelerating. This is because the hybrid model has not seen nor
been trained by similar motion earlier. Also, for the Y axis, the

hybrid model does not capture the error spikes very well. This is
because the spikes occur sparsely throughout the trajectory,
meaning that the weights of the spikes in the training objective are
relatively low. Nonetheless, the hybrid model is never overall less
accurate than the physics-based model throughout the trajectory.

5. Conclusion and Future Work

This paper has proposed a linear hybrid model that combines
physics-based and data-driven models to capture unmodeled
nonlinearity in feed drive servo dynamics. The input to the
proposed hybrid model is first filtered through the physics-based
model to give a rough prediction, which is then refined by a linear
data-driven model using past data acquired from the feed drive.
Accordingly, the proposed hybrid model significantly improves the
predictions of the physics-based model when the trajectory shows
similar nonlinearity, as demonstrated analytically, numerically,
and experimentally in this paper.

The accuracy of the hybrid model can be further improved by
having weights that vary for different regions of a trajectory, e.g.,
different weights at locations of spikes in Fig. 8 than the rest of the
trajectory. This would require an intelligent approach for
segmenting the trajectory into portions with similar features
during the training process. Such an approach will be explored in
future work. Moreover, future work will also include a
determination of the uncertainty of G, and optimization of the
initialization period as a function of the uncertainty. Lastly, the
proposed linear hybrid model will be integrated into online SEP
methods in future work.
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