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Gravitational wave bursts with memory (BWMs) can generate measurable, long-lived frequency shifts
and permanent angular deflections in distant sources of light. These perturbations vary across the sky with a
characteristic spatial pattern and evolve slowly over long periods of time. In this work, we develop
formalism that can be used to describe how a BWM influences the spatial pattern of temperature
fluctuations in the cosmic microwave background (CMB). We limit our attention to planar gravitational
wave fronts—this assumption dramatically simplifies the necessary calculations. Using toy models of the
CMB’s primary temperature variation pattern, we demonstrate that a BWM can mix power from a spherical
harmonic mode of a certain degree into modes of various other degrees with vastly different / values. In
other words, BWM-induced perturbations to the CMB at any angular scale depend in detail on the
unperturbed character of the CMB on all angular scales. The tools developed herein will greatly facilitate
future analyses of BWM-induced temperature perturbations that incorporate all of the important physics

underlying the CMB.
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I. INTRODUCTION

In their wake, gravitational waves (GWs) leave lasting
strains in space commonly called “memory.” Memory is
generated over the entire past history of gravitationally
radiating systems, whether they be slowly inspiralling
binaries, merging galaxies, or cosmic strings. But rapid
growth of memory is tied to luminous GW events like the
final mergers of binary black holes. These events are called
GW bursts with memory (BWMs) [1-6]. The very exist-
ence of GW memory is a consequence of the field-theoretic
properties of general relativity and the asymptotic sym-
metries of spacetime. Observations of memory and an
improved understanding of it could have bearing on the
long-standing black hole information paradox and could
open windows onto necessary modifications to our under-
standing of gravity [7-14].

Unfortunately detecting memory with well-known meth-
ods may prove difficult. Ground-based detectors will likely
only be able to infer the presence of memory in a statistical
sense after thousands of GW events are detected [15-17].
Pulsar timing arrays could certainly detect a BWM gen-
erated by the merger of supermassive black holes [18-22],
but such a merger would have to involve among the most
massive black holes thought to exist, occur quite close to
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Earth, and happen during the decadal time span of the
pulsar timing array project—such events are anticipated to
occur only once per few million years [23].

In a recent paper, we discussed a possible new path
forward in the pursuit of GW memory that has substantial
crossover with precision cosmological studies [24]. GWs
produce both redshifts and angular deflections in distant
sources of light (see, e.g., [25] and references therein). In
[24], we described the pattern of deflections generated by a
planar BWM and demonstrated that those deflections last
indefinitely. As such, the cosmological history of BWMs
will induce deflections in distant sources of light that grow
in the fashion of a random walk as more and more GW
events occur. The largest possible manifestation of this
signal is encoded in the distribution of the oldest light in the
Universe: the cosmic microwave background (CMB).
When applying memory considerations to the CMB, the
redshifts induced by a BWM must also be taken into
account; though the redshifts are not strictly permanent in
the same way the deflections are, every BWM that has
occurred since recombination is still causing a small
redshift over some potentially large part of the CMB.
These redshifts must be accounted for along with the
deflections.

In this paper, we have begun the task of describing how a
BWM, both the redshifts and deflections that it causes,
influences observable features of the CMB. We continue to
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operate in the planar limit that we employed in [24]. The
need to eventually move beyond the planar approximation
is clear as the sources producing BWMs lie between us and
the surface of last scattering for the CMB. But the planar
approximation is a mathematical expediency, acts as a
useful tool for developing intuition pertaining to this
problem, and should closely mimic the results of a full
spherical wave front treatment in all but a region of sky
subtending the BWM source (see [26] for a treatment of
memory-induced redshifts from spherical wave fronts).

In Sec. II, we present the deflection and redshift effects
of a BWM in a way that facilitates our further analysis. In
Sec. III, we recapitulate some well-known formalism
describing the spatial pattern of temperature fluctuations
in the CMB and adapt it to our purposes. In Sec. IV, we
describe how the effects of a BWM introduced in Sec. II
influence the CMB observables discussed in Sec. III and
explicitly derive how BWM-induced redshifts affect the
projection of the CMB’s temperature fluctuation pattern
onto spherical harmonics; a similar treatment of the
deflection effects is reserved to a series of appendixes.
Finally, in Sec. V, we provide some straightforward,
informative demonstrations of our formalism and discuss
forthcoming applications of this framework.

II. EFFECTS OF A BWM

The observed changes in a frequency induced by a planar
GW were first described by Estabrook and Wahlquist [27].
Their result is at the heart of all searches for GWs with
pulsar timing arrays. Specific consideration of BWMs in
the pulsar timing array context began with Seto and van
Haasteren and Levin [28,29]. The redshift pattern for a “+”
polarized BWM of strain amplitude /), propagating in the
positive z direction can be expressed as

2(1,0,¢) = }%M (e72? + &%) (1 —cos0)0(0, — 0), (1)

where cos @, = f — 1, f = ct/d, and d is the distance to the
source of light being redshifted when it emitted the light.
We limit our attention to 0 < f < 2, the span of times over
which BWM-induced perturbations evolve. When f = 0,
the redshift pattern influences the entire sky. As f grows
with time, the redshift pattern shuts off for values of 6 > 6,.
When 8 = 2, 8, = 0 and the redshift perturbation will have
shut off over the entire sphere. However, we note that f = 2
implies that an amount of time equal to twice the light travel
time to the redshifted source has elapsed since the BWM
first encountered the observer. As we are talking about the
CMB and surface of last scattering, we are in reality
concerned with f < 2 for most BWM sources.

The redshift signal model in Eq. (1) is appropriate if the
memory can be treated as having turned on or built up over
a short timescale. In [24], we modeled memory signatures
with a more sigmoidlike function that was parametrized by
a timescale over which the memory signal developed. With
that, we demonstrated that the details of the development of
the signal do not matter once the rising edge of the signal
has surpassed the observer. In other words, the Heaviside
unit step function, ®, provides an adequate functional
description of the signal if we do not care to resolve the
actual buildup of the memory. We use it here as it
dramatically simplifies the necessary calculations.

A rigorous description of both the redshifts and astro-
metric deflections induced by a GW can be found in [25] by
Book and Flanagan. In [24], we built on the work of Book
and Flanagan to describe the specific pattern of astrometric
deflections from a planar BWM propagating in the positive
z direction. A source of light that is initially in the direction
n with angular coordinates 6 and ¢ will appear deflected by
a small angle

. A .. [pOO, -0
on(t, ) = hM{V@(n) -V, (n) [’(Bli;osei +0(0 - 9,)} } where (2)
1 . A . A
Vo = = Sin6l(e™ + )9 + i(e¥ — )], and ()
1 A oA , RN
vV, = —Zsin O[(1 + cos 0) (e + e7219)0 + 2i(e*? — e72i9) ). (4)

Again, this is the result of a “+” polarized BWM of
amplitude /), moving in the positive z direction. The term
proportional to Vg describes a prompt deflection produced
as the memory wave front passes over the observer. The
term proportional to V, describes secular evolution in the
deflection angle over a time as long as 2d/c¢ depending on

|
the location of the deflected light source relative to the

BWM source.
III. TEMPERATURE OF THE CMB

The CMB resembles a near-perfect black body along
each line of sight with a temperature of approximately
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2.73 K. But the temperature varies slightly as a function of
sky direction fi. We define a “primary” observed temper-
ature pattern 7°(f). For our purposes, “primary” simply
means “not yet perturbed by a BWM.” We assume that
T°(fi) is constant in time, though in reality it evolves over
cosmological time. We decompose this primary pattern of
temperature fluctuations as a linear combination of spheri-
cal harmonics:

0 1
TOh) =Y > af, Y1 (h), (5)
=0 m=-I

where

&, = / T (8) Y7 ()dC (6)

It will often prove useful for us in this work to express the
spherical harmonics as the products of associated Legendre
functions, P}, and complex exponentials that they are

(Zl+ )

Y(6.¢) = y(Lm)e™? P (cosd),  (7)

where we have defined

(I—m)!

rm) =\

(8)

We use the notations Y7"(fi) and Y}*(0, ¢) interchangeably
and sometimes drop the argument altogether. Since 7°(f)
is real valued, the parity properties of spherical har-
monics—that Y™ = (—=1)"Y;"—demand that a% =
(=1)"a?_,. The average sky temperature can be readily
expressed in terms of the monopole of this expansion,
e.g., ayy/(4n)V? ~2.73 K.

The primary temperature fluctuation pattern is usually
assumed to be spatially isotropic, at least in a statistical
sense. In the language of this spherical harmonic decom-
position, this means that

(@i, @)

where the angled brackets imply an ensemble average. An
ensemble average is physically unrealizable since there is
only one instance of the CMB in nature. But, different
values of m for a certain / can be treated as statistically
independent in an isotropic universe, so a finite average
over the various m values offers a useful estimator for V.
We call this finite average estimator

= C?] 511125m1m2’ (9)

. 1 !
0 — § 0 0% 1
Cl (21 -+ 1) — A Ay ( 0)

We use the tilde to emphasize that this is a finite estimator
for the ensemble average quantity C(l). This estimator suffers
from inescapable “noise” due to the finite number of modes
in a particular order /. This noise scales as (2/ + 1)~!/? and
is commonly referred to as cosmic variance.

From the physics underlying the CMB, @? scales as
1/[I(1 + 1)] for small values of I. To offset this scaling, a
related quantity is often studied:

Dl - C[. (11)

Itis f)(,) that is usually referred to as the CMB temperature
power spectrum. See, e.g., Fig. 13 from a recent paper from
the Atacama Cosmology Telescope Collaboration [30] or
Fig. 57 (and others) from the Planck Collaboration [31].
It is common practice to subtract out and rescale by the
monopole before carrying out a spherical harmonic decom-
position of the CMB temperature fluctuations. We do not
do this because, as we will show, a BWM mixes power
from the monopole into moments of the spatial temperature
fluctuation with higher degree /. When one rescales the
temperature fluctuations by the monopole value, the coef-
ficients a!), are dimensionless. Since we do not do this, our
expansion coefficients have dimensions of temperature. For
this discussion, we have adapted the treatment of this
material from the text by Maggiore [32] to our purposes.

IV. MANIFESTATIONS OF A BWM IN THE CMB

As we discussed, a BWM induces time-variable patterns
of redshifts and angular deflections that are proportional to
the memory amplitude /,,. They prevent us from directly
measuring the primary temperature fluctuation pattern of
the CMB. Instead of 7°(fi), we observe

T(a) = A tron(n)) (12)

We expand this expression to linear order in the memory
amplitude:

TO(f) —z(t,R)T°(R) +on(2,A) - rVTO(h) +O(h3)),
TO(f) + 6T (¢,0) +6T+(1,8) + O(h3,), (13)

T(h)=

where we have defined
ST!(¢,h) = —z(¢,A)T°(h), and (14)
5Tl(t, n) =oén(s, 1) - rVTO(ﬁ). (15)

We then decompose these perturbations into spherical
harmonics as
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o We have introduced the superscript “V”” as a placeholder for
6T (1.1) Z Z Say,, (1)Y]'(R), (16)  either || or L.
1=0 m=- Analytic calculations of the perturbations da)/, () are the
here key results of this work. These perturbations are directly
W proportional to the amplitude of a BWM, h,,, and they
enter at linear order in the power spectrum of CMB
day, (1) = / STY (1, h) Y] (h)dQ. (17)  temperature fluctuations:
|
7 LI+ § H L [ JIpOeS )
Dl(t) - E(2l + 1) n;l[ + 561 ( ) + 5alm(t)][alm + 561 ( ) + 5alm(t)] + O(hM)’
DY + 6D (1) + D (1) + O(h3). (18)
where
5”’7( ) \/* +al*6alm( ) (19)
|
where
A. Temperature perturbation from . .
memory-induced redshifts @i (1) = / Z(t, B) Y7 (R)d2. (21)

We now turn our focus to computing sal (1). It is useful

to write m From the form of the redshift pattern in Eq. (1), it is clear

that integration over the azimuthal coordinate ¢ is trivial,

o that w;, 1is nonzero only when m = %2, and that
z(t,n) = Z Z 01, (Y0, D), (20) @, 42 = w;_,. Focusing on the case where m = +2 and
1=0 m=-I doing the integration over ¢, we are left with
|
ﬂ'hM 4
Wi 12(1 y(l, —|—2 " sin 0(1 —cos0)O(0, — 0) P, (cos 0)db, (22)

where, as a reminder, cos@, = f— 1, = ct/d, and we limit our focus to 0 < < 2. The effect of the Heaviside step
function is to truncate the integration interval. After changing the integration variable to x = cos @, this becomes

Wy 12(1 y(L+2)[Zg,(p—-1,1)=Zy,(p—1,1)] forl>2, (23)

where 7, and Z; are given explicitly in Appendix B—they are straightforward combinations of associated Legendre
functions.
Inserting this decomposition of the BWM-induced redshift pattern and the decomposition of 7°(fi) from Eq. (6) into our

expression for 5a‘l‘m( 1) yields

© lp 0
=730 3 > o) [ V@I @Y @ 24

Integrals over the sphere of products of three spherical harmonics can be written in terms of Clebsch-Gordan coefficients:

M3 ANy (A v * (A <2l2+1)(213+1) i l,m
/Yl; (n)YJQZ(n)Yzll (0)dQ = \/ 4z(20, + 1) CZ;OI;OCl;,m;;I3,m3‘ (25)
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The Clebsch-Gordan coefficients are symmetric under

interchange of the lower two pairs of indices, i.e.,

ly,my o C11~m1
lr,mysly,my l3,m33l5,my "

for Clebsch-Gordan coefficients, i.e.,

“Bra-ket” notation is often used

Cg::ﬁ;;l_;,m_; = (L, my, I3, ms|ly, my). (26)

We avoid bra-ket notation for compactness and to facilitate
related notation introduced in Appendix C. For a Clebsch-
Gordan coefficient to not vanish, the “/”” values must satisfy
a triangle inequality: |/, — l3| < [} < [, + ;. Additionally,
the Clebsch-Gordan coefficients vanish unless m; =
m, + ms, enforcing the selection rule that arises from
carrying out the integral over ¢. In the context of our

expression for 5a‘l‘m(t), this fact allows us to eliminate the
summation over m,:

Sl (0 == 3" o1, 1) \/ (yi:(zlz)l(zf; .

To compute Sai (1), we follow very much the same steps
followed here, but the calculation is sufficiently more
complicated that we reserve the details for the appendixes.

V. DISCUSSION

The framework we have developed can be used to
compute day, (1), 6T (t,fi), and 8D) (¢), for any values
of a?m out to arbitrarily large values of /. In practice, the
infinite summations in Egs. (16), (27), and (D21) need to be
truncated at some value of [, [,,.. Important structure in the
CMB temperature power spectrum from baryon acoustic
oscillations extends up to values of /=x~?2000, so any
reasonable choice for [, for real-world applications
should exceed 2000. In that case, Eqs. (27) and (D21)
involve the calculation of several million terms. Many of
those terms vanish. Judicious exploitation of the triangle
inequalities that Clebsch-Gordan coefficients must satisfy
in order to not vanish can greatly reduce the number of
terms that actually need to be computed. But even without
exploiting these triangle inequalities, this is not an espe-
cially onerous numerical problem. We have analytically
carried out all of the difficult integration and reduced the
problem to computation of Clebsch-Gordan coefficients
and evaluation of associated Legendre functions, both
things with efficient numerical implementations.
Nonetheless, we reserve a detailed application of these
tools to the full CMB power spectrum and the pheno-
menological investigation such a project merits for
later work.

Here, we consider greatly simplified toy models of the
CMB primary that still allow us to straightforwardly
demonstrate many of the implications of the analysis we
have done. First, we consider a CMB where af) , = 3 K and
a _; = —a, = 1 K—otherwise, a, = 0. This is a sky
where the temperature is real and positive everywhere. The
primary has a dipolar asymmetry but no additional struc-

ture. With this simple primary, we plot sa (7) in Fig. 1 and

Im
Sai (t) in Fig. 2 for a selection of / and m values. The first

1,0 0 l,m 0 ly,m

e 1 1 1 1

CL0:0.0 [alz,ml+2clz,m1+2;l3.—2 + alz.m1—2clz,m1—2;l3,+2]' (27)
|
nonvanishing perturbations are da) () shown in

blue in Figs. 1 and 2 [note that da)_,(t) = —da;,(1)].
Perturbations with m = +1 (see the blue, orange, and red
curves in Figs. 1 and 2) are nonzero because of terms in the
summations of Egs. (27) and (D21) proportional to a(ijl.
This means power in the dipole is being coupled to modes

say (1) /ha K]

T
1.25

FIG. 1. Multipolar perturbations from BWM-induced redshifts
versus time for a small sample of / and m values. We started with
a toy version of the CMB primary temperature pattern where
ag.o =3K, a?’_l = —a?’l = 1K, and all other values of
a?m = 0. These curves were all computed using Eq. (27). The
dimensionless time variable f = ct/d ranges from 0, when the
BWM wave front first encounters the observer, to 2, twice the
light travel time to the source of light being observed—since we
are concerned with the CMB, d is the distance to the surface of
last scattering. All of the redshift perturbations go to zero as f
goes to 2. Even with this toy CMB primary where all power is
confined to [ < 1, BWM-induced redshifts produce perturbations
of some amplitude up to arbitrarily-large values of I—we include
the [ = 20, m = 1 curve to indicate this. The curves with m =1
are nonzero because of coupling to the dipole of the CMB. The
curve with m =2 is nonzero because of coupling to the
monopole.
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— =1, m=1
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B

FIG. 2. Multipolar perturbations from BWM-induced deflec-
tions with a toy CMB primary identical to what was used in
Fig. 1. These curves were all computed using Eq. (D21). Unlike
the redshift-induced perturbations from Fig. 1, these deflection-
induced perturbations do not all go to zero as f goes to 2,
indicating the permanence of BWM deflection distortions dis-
cussed in [24]. In this case, the [ = 2, m = 2 curve is identically
zero because unlike the redshift perturbations, the deflection
perturbations do not couple to the CMB’s monopole.

with [ > 1. Perturbations with arbitrarily large values of /
can be nonzero (see the red curves in Figs. 1 and 2
associated with [ = 20) though the amplitude of the
perturbation falls with increasing /. This pumping of power
into high values of [ is tied, at least in part, to the sharp
transition edges from the step functions appearing in
Eqgs. (1) and (2). For CMB surveys that focus on a particular
window of the sky rather than the full sphere (like the one
done by the Atacama Cosmology Telescope [30]) the
transition edge for a particular BWM may not appear in
the window being observed. Additional steps must be
applied to our framework in order to directly apply it to

such windowed surveys. The green curve in Fig. 1 depict-

ing 5ag.2(t) is nonzero because of terms in Eq. (27)

proportional to a8‘0, i.e., this perturbation is sourced by
the monopole of the primary. Such terms never appear in
Eq. (D21) so ay,(t) = 0. An additional stark difference
between Figs. 1 and 2 is that unlike in Fig. 2, all of the
curves in Fig. 1 go to zero as f goes to 2. This speaks to the
fact that BWM-induced redshift perturbations do eventu-
ally vanish completely, but deflection perturbations are
actually persistent [24]. With this simple toy primary CMB,
it is straightforward to compute D) (¢). Because we
have set a) =0 for all [ > 1, 8D} can only be non-
zero (or, more accurately, linear in hj)—tiny quadratic
contributions that we ignore may be present) for / = 0 or 1.
Since Sag,(t) =0, 6Dy(f) =0. We can then show
that 6DY(t) = (4/37)day,(1)a),, i.e., the redshift and

deflection perturbations to the dipolar power are propor-
tional to the blue curves in Figs. 1 and 2, respectively.

Figures 1 and 2 demonstrate the time evolution of
various BWM-induced perturbations éay), (¢) for a specific,
simple primary CMB temperature pattern. As a second
demonstration of this formalism, in Fig. 3 we show fixed
time snapshots of the spatial temperature perturbation
patterns 67" (¢, 1) produced by a BWM acting on different
spherical harmonic contributions to the CMB temperature
primary. Figure 3(a) shows real-valued versions of the
spherical harmonics representing possible contributions
to the CMB primary: Y7 when m =0 and [Y}" +
(=1)"Y;™]/2 when m > 0. Different rows are associated
with different values of [ and different columns are
associated with different values of m as labeled. The
spherical projections have been oriented so as to improve
the reader’s view of the southern pole into which a BWM is
propagating in our formalism. Figures 3(b) and 3(c) depict
the BWM-induced redshift perturbation to the primary
CMB temperature pattern, 5Tl (f), at values of time f =
0.0 and p = 0.25, respectively. We divided out the memory
amplitude, h;,. We used Eqgs. (16) and (27) to compute
these patterns. Looking to Figs. 1 and 2 where the scale of
day, is much smaller at / = 20 than at lower values of /, we
have truncated the infinite summations in Egs. (16) and
(27) at Iy, = 20 for computational expediency. Of par-
ticular note, a monopolar contribution to the CMB primary
leads to nonvanishing values of 671 (f) as indicated by the
uppermost sphere in Figs. 3(b) and 3(c). As time progresses
from g = 0.0 to = 0.25, a polar cap develops around the
direction from which the BWM came where the redshift
perturbations turn off. Lingering low-amplitude structure
visible in this polar cap region results from our truncation
of the infinite summations. Figures 3(d) and 3(e) are the
same as 3(b) and 3(c) but for the BWM-induced deflection
perturbation to the primary CMB temperature pattern,
ST+(fi). Notably, when the primary CMB temperature
pattern is just a monopole, the deflection perturbation
vanishes. As time progresses from f = 0.0 to f = 0.25,
the deflection perturbation does not vanish in an expanding
polar cap—the deflection perturbations persist.

Possible next steps for this line of research are myriad.
We have mentioned that this framework should be applied
to realistic models of the CMB primary and the influence to
the temperature power spectrum should be scrutinized.
However, before such work is belabored, or perhaps in
parallel with such work, the way in which spherical wave
fronts influence the results presented here should be
investigated; we have started to look at this with colleagues.
We should compare the effects of BWMs on the CMB with
other phenomena that undermine our ability to probe the
true primordial CMB primary—things like dust extinction
and lensing from foreground structure. One may wish to
extend this type of analysis to non-Einsteinian types of
memory with nontransverse polarizations that may arise in
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FIG. 3. (a) Different temperature patterns equal to the real-valued spherical harmonics (i.e., Y}" form = 0 and [Y}" 4 (—1)"Y;™]/2 for
m > 0) that may contribute to the primary CMB temperature pattern. (b), (c) Temperature perturbations from redshifts (divided by the
memory amplitude /,,) to the spherical harmonic modes from (a) caused by a BWM propagating into the displayed southern pole at
times # = 0.0 and f = 0.25, respectively. We computed these using Eqgs. (16) and (27) and truncated the infinite summations therein at
Liune = 20. (d), (e) Perturbations from BWM-induced deflections to the spherical harmonic modes of the primary at times = 0.0 and
p = 0.25, respectively. These were computed using Egs. (16) and (D21) with the infinite summations again truncated at /;,,. = 20.

modified theories of gravity [13,14]; this may require  superposition of redshift and deflection effects from a
revisiting some of the work of Book and Flanagan [25]  cosmological population of BWM sources occurring all
that our results are built upon. Ultimately, since the effects  over the sky and at a range of times in the past. This will
of BWMs are so long-lasting, we will care about the  prove to be a rich line of enquiry that is necessary to assess
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the detectability of BWM signatures in the CMB. The
entire GW history of the Universe contributes to the signal
we are pursuing.
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1 : , N
L = |5cos (e L. +eL_)—sinfL_|0 —

where the operators L. and L, act on spherical harmo-
nics as

L:I:Ylln(gv ¢) = Ai(l’m)Yllnil (67 ¢)7 and (Az)
L.Y7'(0,$) = mY[' (0, 9). (A3)

We introduced the coefficients

@'(0,¢) = LY]'(0, ),

APPENDIX A: VECTOR SPHERICAL
HARMONICS

For the calculations in these appendixes we make
extensive use of so-called “vector spherical harmonics.”
There are a variety of conventions in use for them, so here
we lay out in detail the conventions we use. First, we define
the angular momentum operator L = —ir x V, a vector
differential operator that acts on functions of the angular
spherical coordinates. For application to spherical harmo-
nics Y7'(0,¢), a useful form of the angular momentum
operator is

i

5 (e L, — L )¢, (A1)

Ac(l,m) =/ I Fm)(I+m+1). (A4)

Next, we define another operator K =1t x L = irV.
With these two operators, we define the vector spherical
harmonics:

1 . ‘ .
= |5c0s O(AL (1, m)e™ Y10, ¢p) + A_(I,m)e Y= (0, ) — msinOY (0, ¢) | O

— AL m)e YT 0,9) = A(L )Yy (0,4)).  and

W) (6.¢) = KY7'(6. ).

1

=2 (A (Lm)e Y7 (0.9) = A_(Lm)e Y7~ (6.4))0

2

The two types of vector spherical harmonics are spatially
orthogonal when they are of the same degree [ and order m,
ie, " -W” =0if [, =1, and m; = m,. Under inte-
gration over the sphere, they have additional orthogonality

(AS)
1 : ' ‘
+ |50 O(AL(Lm)e™ Y10, §) + A_(1,m)e Y71 (0, ) — msin 6Y]' (0. ) | & (A5)
/(I)le . (I)le*dQ = 11(11 + 1)5111257”1"12’ (AS)
/\I’Z“ W dQ = 1 (1 + 18,0, m,-  (A9)

properties:

[arwraao. (A7)

It is these orthogonality properties that make the vector
spherical harmonics a convenient basis for multipolar
decompositions of vector fields on the sphere.
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APPENDIX B: USEFUL IDENTITIES AND
INTEGRALS INVOLVING ASSOCIATED
LEGENDRE FUNCTIONS

Much of the mathematical work in this paper boils down
to carrying out integrals involving associated Legendre
functions. Here, we list a few identities that allowed us to
carry out the integrals we encountered and explicitly write
out the results of the integrals used in this paper. First, two
useful integral identities:

b
[ a=ymppas = =1 =2yt 2pp )

a

(®1)
and
b . . B (1 _x2)(m+l)/2 -
J R e e L
(82

These indefinite integral identities can be found in the
Digital Library for Mathematical Functions’ section on
Legendre functions [33], specifically Sec. 14.17. All of the
integrals we will face can be made to resemble one of the
two integrals listed above through use of the following
common recurrence relations:

1

xP}'(x) :m

[(=m+ 1P, (x) + (I m) PP (x)],
(B3)

and

(1=x%)12P1(x) :;[(l—m+ D(I=m+2)P/5 (x)

is what we require for our purposes,

b
Tyila,b) = / (1—22)~V2P} (x)d.

a

= —Pi(x)[;. (B5)

b
Tg,(a,b) —/ (1 —x2)~12xP " (x)dx,

a

= ﬁ IZ411(a,b)+ (L+ 1)Ly (a,b)].

(B6)

b
Zc(a,b) :/ (1 —=x2)712x2P /1 (x)dx,

1
- @2I+1) Zgi1(a,b) + (I+1)Tp 1 (a b))
(B7)
b
Ipi(a,b)= / (1 —Xz)l/zpfl(x)dx,

{éx(x2—3)|2 =1
R ' . (B8)

i PR s> 1

b
Tgi(a,b) :/ (1 —x2)V2xP /! (x)dx,

N (21£r1) [(Zp11(a.b) + (I+1)Ip 1 (a, b)].

(B9)

b
Tr(a,b) :/ (1 —x)2x2P ! (x)dx,

(21+1) o
—(I+m=1)(I+m)Pr71]. (B4) = m Zgi(a,b)+ (1+1)Zg;(a,b).
The following integrals are utilized in this work. These
expressions are correct at least for all values of / > 1 which
|
b
Zgi(a.b) = / P2 (x)dx,
1
=~ VP () = 4+ DU+ 2P ()]l (B11)
b
Zyi(a,b) = / xP;%(x)dx,
1
ROFSY [(1=1)Zgi(ab)+ (1+2)Lg(a,b)]. (B12)
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b
Tu(a.b) = [ PPxar
1

= = DTns @)+ (14 DT (. )] (B13)
T, b) = / " SPP(x)dx,
- (2zl+ 0= DT 0s(a.b) + (1 DT (0. b). (B14)
Tx.(a,b) /b K)12P 3 (x)dx,
=) +2)(1+3)  (1=2) (1= DI +2)(1+3)
{ (20 + 1)(21 + 3) Q-2+ 1) 1)
LD p () - DL o (B15)
T, = / "(1 = 21253 (1),
- (ylﬂ) (1= 2T 11 (a.b) + (1 + 3)T s (. B)]. (B16)
Tos = / "(1 = )122P 3 (x)dx,
- (211 10 =D L @.6) 4 (1 3) T (0. B) (B17)
Iy = / b%P#(x)dx
U -2 vp e - 204 9P W
- e + (4377 ()
C -2 @+ e vpielf | (B18)
To,= / b(l(l_ji)cl)ﬂxPlH(x)dx
= =Ty b) + (14 3Ty (b)), (B19)

20+1)

The bounds of integration, a and b, are assumed to be
between —1 and 1, inclusive. Both Zy, and Z,; are
proportional to (1 — x?)~!/2, so evaluating them at exactly
+1 will lead to division by zero. However, evaluating them
at +(1 — ¢) and taking the limit as ¢ goes to zero leads to
well-behaved, convergent results.

APPENDIX C: VECTOR EXTENSIONS
OF THE CLEBSCH-GORDAN
COEFFICIENTS

To complete our description of the way that a BWM-
induced deflection pattern influences the CMB, we will
need to know

083515-10
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1y ,my ms (A my [ A my* A
M = 100 @)Y (R)d0 and (€
M, = [ 0@ W2 G a2 (C2)

These integrals are similar in form to Eq. (25) where we
first encountered the Clebsch-Gordan coefficients but now
involve the vector spherical harmonics. We will see, with
some effort, that these integrals can be expressed entirely as
J

2
-{2+ 3});

PP —
I I

combinations of Clebsch-Gordan coefficients. Note that
V" W) =@ @, so the above two expressions
exhaust the possibilities for what we call “vector exten-
sions” of the Clebsch-Gordan coefficients.

First, we expand out the inner products of the vector
spherical harmonics. For compactness, we are going to
drop the argument of the spherical harmonics and their
vector counterparts:

(A+(12, mz)A_(l3, m3) COS HY;T_I YZZJFI + my sin 6[A+(l3, I’)’l3)€_i¢YZl3+1Y7;2 - A_(l3, Wl3)€i¢Y;r;3_1YZZ]

(C3)

1 . , - _
- = —Z[A+(Z3,m3)A+(lz,mz)sinzee‘z’d’Y}?-’HYZﬁl + A_(l3, m3)A_(Ly, my)sin*0e* P Y} IY;'Z’Z :

- (A+(l3, m3)A_(12, mz)(l + COSZG)Y’;“‘HYIW;Z_I + {2 <> 3})]

3

1 . ) _ .
- ESineCOS 0<M3A+<lz, m2)6_1¢Y;Z3 Y;'212+1 + m3A_(lz, m2)€l¢Y;23 YZIZ ! + {2 <> 3}) + I’I’EQM3SIII20YZL3 Y;Zz

We made use of the notation “{2 <> 3}” to indicate a copy
of the preceding part of the parenthetically grouped
expression with the indices 2 and 3 swapped; it only ever
appears within a set of parentheses where it is clearly paired
with a preceding expression.

In order to mold these into a more desirable form, a form
where all of the angular variation is encoded entirely in
spherical harmonics, we make use of the recurrence
|

(C4)

relations in Egs. (B3) and (B4) and the additional recur-
rence relation

1 n n
(1 —xz)l/zP;”(x) = — G [P1++11 — Pl_tl].

(C5)

With these recurrence relations, we can derive the follow-
ing helpful identities:

w (U+m+1)(I=m+1)
COSQYI_\/ Qi+ @i+

e~ sin gyt = (= m){l—m+ 1)Y’“
20+ 1)(20 + 3)

i mel (+m)(l+m+1) (l=m)(l-m+1)_ .
€'’ sin 0Y" 1_\/ SIS Y1+1+\/ =)@+ 1) Y.

(Il+m)(l—m) .
iy mm, (Co)
(+m(l+m+1)
’+1_\/ 20-1)(21+ 1) Vit (7)
(C8)

083515-11



DUSTIN R. MADISON PHYS. REV. D 103, 083515 (2021)

Incorporating these into the inner products of vector spherical harmonics, we arrive at

Iym i (2L +3)2L+1) 40 (L+my+2)(L=m3) 4w
Al;,m;;l3.m3 ) \/ 47(2l, + 1) Cz;+1,0;13.0 Ay (L, my)A_(l3, m3) 2L, + 1) (2L, + 3) Cl;+ll,m2+l;l3,m3—l

(L =my)(l—my +1) (L+my) (L +my+ 1) | tym
— AL (1, A_(L, (Or
ms +( 2 mZ)\/ (212+ 1)(212+3) + (2 m2) (212+ 1)(2[2 _|_3) bL+1,my;l5,my

(2L -1D2L+1) 40 (b+tm+1D)(h=—my=1) 4
C' o A , A_(l5, c P
' \/ axl + 1) Chotono | Al ma)A(lsms) 2L —-1)2L+1)  hrlmetlbmsd

(b+m)(l+m+1) (L=m)(b=my+1) | 4m

23} (C9)

For FZ Z' 1y.my 1t 18 helpful to break it into smaller pieces, i.e.,

rhm =X, +X, + X5+ X4 + X, (C10)

Iy my;ly,my
where

1 *
Xl = —Z/A (13,m3)/\+(12,m2)81n Oe 2’¢sz+1YZl2+1 ml dQ

1.0 1y
Jls =ms + 1)l —=my) (L —my + 1D)CL 00 410C 0 ity 1,

4420, + D)2 + )25 + 1
+ /(5 + ma) (s + my + D)y + mo)( + my + DCL 0t im,
=V (I3 =m3)(l5 = ms + 1) (L + my) (I + my + )Czif)l,o;z3+1,0C5;ﬁ1n12;13+1,m3
my) (L —my + )Cgfl.o;z;—l,ocﬁzfl myily— 1m3j|’ (C11)

A (L3, m3)A, (L, m;) {\/
2)

=V (I3 + m3)(Is + my + 1)(1;

1 ) _ _ N
X2 = —1/A_(l3,m3)A_(lz,m2)sin2962’¢YZ'3 IYZZ IYZLI dQ,

_ A_(l3,m3)A_(ly, my)
44 (2l + 1)(21, + 1) (203 + 1)
l,m

+ V(I3 = m3)(ls = my + 1)(ly = my) (I, — my + 1)C1 21.0:0-1.0C . 1 myits—1.ms

0 1y ,m
[\/(13 +m3)(l3 +m3 + 1) (L + my) (L + my + 1)C12+1 054+ 1.0C i+ Lmyils+1.ms

=V (I +m3) (s + my + 1)(1l, = my) (L, — my + I)Cﬁzf)l.o;lfrl,Ocﬁiﬁl,m2;l3+],m3
— V(I3 = m3)(ly = ms + 1) (L + my) (L, + my + 1)Cgfl,0;13—1,0C2f11,m2;13_1,m3}7 (C12)
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1

X, = —/(A+(l3,m3)/\_(lz,m2)(l +eoO)Y Y 1 (2 o 31y,

4 3
_ l ( A+(l3’m3)A—(lz,m2)
4\\4n(2l, + 1)2L + 1)(21; + 1)

1,0 I

+ /(I + m3y +2) (15 — m3) (L + my) (1, — my + 2)C1;+1,o;z3+1,0C1;f11,mz—1;13+1,m3+1

+ \/(13 +my+ 1)(l3 =my = 1)(ly + my— 1)(l —my + 1)Cgf)l,0;13—1,0C§;;r'111,m2—1;13—1,m3+1
1,0 ly.m

+ (s + my +2)(ls —m3) (L + my — 1) (1, —my + DCLZ 0,41.0C0 21 iy =1ty 4 Ly 1

(20, + 1)(2L + 1)C) 5, Clm

ly,my—1;l3,m3+1

+ V(4 my+ 1)l —my = 1) (L +my) (L —my + 2>C2£l,O;l;—l,chfllﬁmz—l;lg—l;m3+l] {2« 3}>’

1 i i - my*
X4 = —5/SineCOSH(m3A+(12,mZ)e_l(/)YZl3 Y;ZZJF] -+ m3A_(12,m2)e’¢Y73'3 YZZ ! + {2 <> 3})Yl]l dQ,

1

(C13)

T 2\/A22L + )2hL + )25 + 1)
x /(I3 +ms+1)(I5 — my + 1)Cgf)l.O;Z3+l,chfil,ln2;13+l,m3
+ (AL (L m)V/ (L +mo) (L A+ my + 1) = AL (L, mp) /(I = my) (I — my + 1)]
x /(I3 +m3) (13 — m3>Cgﬂ,0;13—1,0C2’—m11,m2;13—1.m3
— (A (lymo) /(L = ma) (b = my + 1) = A_(Lp, my)/ (I + mo) (I + my + 1)]
X \/(13 +m3)(l3 - ms)Cﬂfl,0;13_1,0C§;f1'.m2;13_1.m3
— (A (L o)/ (L = ma) (b = my + 1) = A_(Lp, my)/ (I + my) (I + my + 1)
X /(I +my +1)(l = my + 1)C5;£1,0;13+1.ocgff,mz;gﬂ.m;h.ml }+{2<3)).

and

&zwm/m%fWﬁwg
mpns
T a2h + )2 + D)2 1 1)
+ V(4 my = 1) (I +m3) (L +my + 1) (L +my + 2)C2f1,o;l3—1,ocgf1
— (s =my+ 1) (5 =m3 +2) (L + my + 1) (I, + my + 2)Cgfl,0;l3+1.chfll,m2+1;l3+1.m3—l

=V (+ms = 1) (I +m3) (L, —my = 1)(1, - m2)cgf)l,0;l3—l,chiir;l,m2+lgl3—l,m3—l}'

1
a1l —1,ms—1

(m3{[Ay (L. mo)\/ (L 4+ my) (L + my + 1) = A_ (L. mp)\/ (I — ma) (1, — my + 1)]

(C14)

1,0 1.
[V (13 =my+ 1) (I3 = m3 +2) (L, —my — 1) (1, — m2)Cl;—l.0;13+I,OCl;—nl],mﬁ»1;l3+1,m3—1

(C15)

We note that just like standard Clebsch-Gordan coefficients ~ decomposition is formed by the vector spherical harmonics
—or, rather, because of this pro}perty of Clebch-Gordan  @}"(0, ¢) and W}" (0, ¢p) which we describe in Egs. (A5) and
coefﬁcients—Af;ﬁ; Lm, and TP, o vanish unless  (A6). In terms of these vector spherical harmonics, we can

my = my + ms. expand én(¢, 1) as

APPENDIX D: TEMPERATURE PERTURBATION
FROM MEMORY-INDUCED DEFLECTIONS . S
niem) =30

As we did with the BWM-induced redshift perturbation, =1 m=—
we will carry out a multipolar decomposition of the BWM-
induced deflection pattern. Since the deflection pattern is a
vector field on the sphere, an appropriate basis for such a ~ where

[plm<t)(l);” (ﬁ> + O-Im(t)\ll?n (ﬁ)]7

083515-13
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(1) :z(lel) / sn(r.h) - ®P(A)dQ  and  (D2)
om(t) = l(li 1)/6n(t,ﬁ) -Wr(h)dQ. (D3)

We note that the summations in Eq. (D1) begins at [ = 1
because @Y(A) = W)(A) = 0. From our expressions for
Vg and V, in Eqgs. (3) and (4) and the form of the vector
spherical harmonics given in Egs. (A5) and (A6), it is clear
that p;,,, and o, will vanish from the azimuthal integration
unless m = +2.

Here we compute p; ., and o, ,. It is helpful to break
these calculations into manageable chunks. To that end, we
write

Ry(t) = — mv*(ﬁ)m#(ﬁ)dg (D7)
R5(t) = —/@(9—9,)V*(ﬁ) - ®?(R)dQ,  (DS)

S = / Vg (i) - ¥, % (f)dQ, (D9)

S,(t) =— wv (A) W, %(A)dQ, and (DI10)

(1+cosf) *
S3(t) = —/@(9—9,)V*(ﬁ) ‘W2(h)dQ.  (DI11)

With the tools developed in these appendixes, these

praalt) = l(lhr 3 Ry + Ry(t) + R4(1)], and (D4) integrals can be worked out explicitly:
1
Ri==-/m2l+ 1){4y([,+2)|Z5,(-1,1) =Z;,(—-1,1
o11(1) = l(lhfl)[sl +8,(1)+ Ss(1)],  (DS) 3 21+ D{4r (1, +2)[Zg.( ) a( )]
A (LA2)y(LA3)[Lp(-1,1) = Tk (-1, 1)]
where —A_(L2)y(L+D)[Zp (=1,1) + Zg, (=1, 1)]};
(D12)
Ri = [ V(i) (a0, (D6)
|
Ra(t) = =5 V/TF D71, +2) T = 1.1) = Ty, (f = 1.1)]
= AL (LA2)y(L+3)[ T (B —1.1) =2y, (B = 1. 1)]
—A_(LA2)y(LAD) [T (p - 1L1) +2L,,(p - 1.1) = 2Zp,( - 1 1)] 1 (D13)
Ra(1) = = VA + DAL D Tou(-1.8 = 1) + T~ p = 1) = Tyy=1. = 1) = T, (~1.p = 1)
= A (LA (L AL (-1 = 1) + Ty (1.5 = 1) = 2T (-1, = 1)]
= AL A2y (LANTe (=1 =1) + Tp (=1, = 1) + 2Ip,(=1. 5 = 1)]}; (D14)
S, = —iR, (D15)
$2(1) = BT+ DL 4D T, (p=1.1) = Ty~ 1. 1)
F AL A2 A3 Ty (B = 1) = Tou(B—1,1)]
—A_(LA2)y(LAD[Tay(B=1.1) +2Lp,(f = 1.1) = 3L (- 1. 1)]} (D16)
S3(1) = /a2 + {87(1.+2)[Ta (1.5 = 1) = Ty (=15~ 1)
F AL A2 (L +3)[Zg (1. = 1) =Ty y(-1.5 - 1)]
—A_(L,+2)y(L, -I—])[ID,[(—l,ﬂ —1)+3Zg,(-1,p-1)]. (D17)
We see that p; ,,() is entirely real and that o, ,(¢) is entirely imaginary. It can be shown that p; , = —p; , and

6y = 0; 1, allowing us to write Eq. (D1) as
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ZPI ()@ () -

It can further be shown that ®;2 = —®,* and ¥;? =

8) = pra (0@ (8) +
=2

D77 (R)] + 042 (1) [¥)? (R) + W (i)]. (D18)
—‘I’l”*. With this, we can again rewrite Eq. (D1) as
+ @ ()] + 0142 () ¥ (R) — ¥ (R)]. (D19)

This form makes it clear that én(z,1i) is entirely real, an important consistency check.

Using the form of én(z, 1) in Eq. (D18), we can now write

éaﬁml :—zi Z 12m72/{pl3,+2(t)

L=1 my=-1I,

(@72 () — @ 2(R)] + 0y, 4 (1) ¥ ()

+W(R)]} - R (R) Y] (R)dQ.

(D20)

Here we make use of our earlier calculation of what we referred to as vector extensions of the Clebsch-Gordan coefficients,

All,ml and 1'*11 m

lz,mz;l3,m3 1,my;ly,ms3°

over m, in Eq. (D20):

50#, m —i Z z:‘{ﬂl3 4a(t

L=11,—

ly,my

+0'13,+2<t)[a?2 m =24 Lomy =205 4

This result, by construction, closely mirrors the form of
Eq. (27). Everything in it has been computed in these
appendixes. One meaningful departure from Eq. (27) in this
expression is that the summation over [, begins at [, = 1
rather than [, = 0. This means the redshift perturbation

0 ly,my
)+ alz.ml+2Flz,m1+2;l3,—2]}‘

The fact that these quantities vanish unless m, = m, + m5 allows us to eliminate the summation

ly,m 0 ly,m
a12m1 2A/2,m1—2;13.+2 ]

a, m1+2A12 my+2;05,—2

(D21)

[

from a BWM is capable of transferring power from the
monopole of the CMB into higher degree modes but the
deflection perturbation is not. This fact is demonstrated in
Figs. 1-3 and discussed in Sec. V.
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