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Gravitational wave bursts with memory (BWMs) can generate measurable, long-lived frequency shifts
and permanent angular deflections in distant sources of light. These perturbations vary across the sky with a
characteristic spatial pattern and evolve slowly over long periods of time. In this work, we develop
formalism that can be used to describe how a BWM influences the spatial pattern of temperature
fluctuations in the cosmic microwave background (CMB). We limit our attention to planar gravitational
wave fronts—this assumption dramatically simplifies the necessary calculations. Using toy models of the
CMB’s primary temperature variation pattern, we demonstrate that a BWM can mix power from a spherical
harmonic mode of a certain degree into modes of various other degrees with vastly different l values. In
other words, BWM-induced perturbations to the CMB at any angular scale depend in detail on the
unperturbed character of the CMB on all angular scales. The tools developed herein will greatly facilitate
future analyses of BWM-induced temperature perturbations that incorporate all of the important physics
underlying the CMB.
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I. INTRODUCTION

In their wake, gravitational waves (GWs) leave lasting
strains in space commonly called “memory.” Memory is
generated over the entire past history of gravitationally
radiating systems, whether they be slowly inspiralling
binaries, merging galaxies, or cosmic strings. But rapid
growth of memory is tied to luminous GW events like the
final mergers of binary black holes. These events are called
GW bursts with memory (BWMs) [1–6]. The very exist-
ence of GWmemory is a consequence of the field-theoretic
properties of general relativity and the asymptotic sym-
metries of spacetime. Observations of memory and an
improved understanding of it could have bearing on the
long-standing black hole information paradox and could
open windows onto necessary modifications to our under-
standing of gravity [7–14].
Unfortunately detecting memory with well-known meth-

ods may prove difficult. Ground-based detectors will likely
only be able to infer the presence of memory in a statistical
sense after thousands of GW events are detected [15–17].
Pulsar timing arrays could certainly detect a BWM gen-
erated by the merger of supermassive black holes [18–22],
but such a merger would have to involve among the most
massive black holes thought to exist, occur quite close to

Earth, and happen during the decadal time span of the
pulsar timing array project—such events are anticipated to
occur only once per few million years [23].
In a recent paper, we discussed a possible new path

forward in the pursuit of GW memory that has substantial
crossover with precision cosmological studies [24]. GWs
produce both redshifts and angular deflections in distant
sources of light (see, e.g., [25] and references therein). In
[24], we described the pattern of deflections generated by a
planar BWM and demonstrated that those deflections last
indefinitely. As such, the cosmological history of BWMs
will induce deflections in distant sources of light that grow
in the fashion of a random walk as more and more GW
events occur. The largest possible manifestation of this
signal is encoded in the distribution of the oldest light in the
Universe: the cosmic microwave background (CMB).
When applying memory considerations to the CMB, the
redshifts induced by a BWM must also be taken into
account; though the redshifts are not strictly permanent in
the same way the deflections are, every BWM that has
occurred since recombination is still causing a small
redshift over some potentially large part of the CMB.
These redshifts must be accounted for along with the
deflections.
In this paper, we have begun the task of describing how a

BWM, both the redshifts and deflections that it causes,
influences observable features of the CMB. We continue to*dustin.madison@mail.wvu.edu
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operate in the planar limit that we employed in [24]. The
need to eventually move beyond the planar approximation
is clear as the sources producing BWMs lie between us and
the surface of last scattering for the CMB. But the planar
approximation is a mathematical expediency, acts as a
useful tool for developing intuition pertaining to this
problem, and should closely mimic the results of a full
spherical wave front treatment in all but a region of sky
subtending the BWM source (see [26] for a treatment of
memory-induced redshifts from spherical wave fronts).
In Sec. II, we present the deflection and redshift effects

of a BWM in a way that facilitates our further analysis. In
Sec. III, we recapitulate some well-known formalism
describing the spatial pattern of temperature fluctuations
in the CMB and adapt it to our purposes. In Sec. IV, we
describe how the effects of a BWM introduced in Sec. II
influence the CMB observables discussed in Sec. III and
explicitly derive how BWM-induced redshifts affect the
projection of the CMB’s temperature fluctuation pattern
onto spherical harmonics; a similar treatment of the
deflection effects is reserved to a series of appendixes.
Finally, in Sec. V, we provide some straightforward,
informative demonstrations of our formalism and discuss
forthcoming applications of this framework.

II. EFFECTS OF A BWM

The observed changes in a frequency induced by a planar
GW were first described by Estabrook and Wahlquist [27].
Their result is at the heart of all searches for GWs with
pulsar timing arrays. Specific consideration of BWMs in
the pulsar timing array context began with Seto and van
Haasteren and Levin [28,29]. The redshift pattern for a “þ”
polarized BWM of strain amplitude hM propagating in the
positive z direction can be expressed as

zðt; θ;ϕÞ ¼ hM
4

ðe−2iϕ þ e2iϕÞð1 − cos θÞΘðθt − θÞ; ð1Þ

where cos θt ¼ β − 1, β ¼ ct=d, and d is the distance to the
source of light being redshifted when it emitted the light.
We limit our attention to 0 ≤ β ≤ 2, the span of times over
which BWM-induced perturbations evolve. When β ¼ 0,
the redshift pattern influences the entire sky. As β grows
with time, the redshift pattern shuts off for values of θ > θt.
When β ¼ 2, θt ¼ 0 and the redshift perturbation will have
shut off over the entire sphere. However, we note that β ¼ 2
implies that an amount of time equal to twice the light travel
time to the redshifted source has elapsed since the BWM
first encountered the observer. As we are talking about the
CMB and surface of last scattering, we are in reality
concerned with β < 2 for most BWM sources.
The redshift signal model in Eq. (1) is appropriate if the

memory can be treated as having turned on or built up over
a short timescale. In [24], we modeled memory signatures
with a more sigmoidlike function that was parametrized by
a timescale over which the memory signal developed. With
that, we demonstrated that the details of the development of
the signal do not matter once the rising edge of the signal
has surpassed the observer. In other words, the Heaviside
unit step function, Θ, provides an adequate functional
description of the signal if we do not care to resolve the
actual buildup of the memory. We use it here as it
dramatically simplifies the necessary calculations.
A rigorous description of both the redshifts and astro-

metric deflections induced by a GW can be found in [25] by
Book and Flanagan. In [24], we built on the work of Book
and Flanagan to describe the specific pattern of astrometric
deflections from a planar BWM propagating in the positive
z direction. A source of light that is initially in the direction
n̂with angular coordinates θ and ϕ will appear deflected by
a small angle

δnðt; n̂Þ ¼ hM

!
V⊕ðn̂Þ − V⋆ðn̂Þ

"
βΘðθt − θÞ
ð1þ cos θÞ

þ Θðθ − θtÞ
#$

; where ð2Þ

V⊕ ¼ − 1

4
sin θ½ðe2iϕ þ e−2iϕÞθ̂ þ iðe2iϕ − e−2iϕÞϕ̂&; and ð3Þ

V⋆ ¼ −
1

4
sin θ½ð1þ cos θÞðe2iϕ þ e−2iϕÞθ̂ þ 2iðe2iϕ − e−2iϕÞϕ̂&: ð4Þ

Again, this is the result of a “þ” polarized BWM of
amplitude hM moving in the positive z direction. The term
proportional to V⊕ describes a prompt deflection produced
as the memory wave front passes over the observer. The
term proportional to V⋆ describes secular evolution in the
deflection angle over a time as long as 2d=c depending on

the location of the deflected light source relative to the
BWM source.

III. TEMPERATURE OF THE CMB

The CMB resembles a near-perfect black body along
each line of sight with a temperature of approximately
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2.73 K. But the temperature varies slightly as a function of
sky direction n̂. We define a “primary” observed temper-
ature pattern T0ðn̂Þ. For our purposes, “primary” simply
means “not yet perturbed by a BWM.” We assume that
T0ðn̂Þ is constant in time, though in reality it evolves over
cosmological time. We decompose this primary pattern of
temperature fluctuations as a linear combination of spheri-
cal harmonics:

T0ðn̂Þ ¼
X∞

l¼0

Xl

m¼−l
a0lmY

m
l ðn̂Þ; ð5Þ

where

a0lm ¼
Z

T0ðn̂ÞYm'
l ðn̂ÞdΩ: ð6Þ

It will often prove useful for us in this work to express the
spherical harmonics as the products of associated Legendre
functions, Pm

l , and complex exponentials that they are

Ym
l ðθ;ϕÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ

4π

r
γðl; mÞeimϕPm

l ðcos θÞ; ð7Þ

where we have defined

γðl; mÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl −mÞ!
ðlþmÞ!

s

: ð8Þ

We use the notations Ym
l ðn̂Þ and Ym

l ðθ;ϕÞ interchangeably
and sometimes drop the argument altogether. Since T0ðn̂Þ
is real valued, the parity properties of spherical har-
monics—that Ym'

l ¼ ð−1ÞmY−m
l —demand that a0'lm ¼

ð−1Þma0l;−m. The average sky temperature can be readily
expressed in terms of the monopole of this expansion,
e.g., a000=ð4πÞ1=2 ≈ 2.73 K.
The primary temperature fluctuation pattern is usually

assumed to be spatially isotropic, at least in a statistical
sense. In the language of this spherical harmonic decom-
position, this means that

ha0l1m1
a0'l2m2

i ¼ C0l1δl1l2δm1m2
; ð9Þ

where the angled brackets imply an ensemble average. An
ensemble average is physically unrealizable since there is
only one instance of the CMB in nature. But, different
values of m for a certain l can be treated as statistically
independent in an isotropic universe, so a finite average
over the various m values offers a useful estimator for C0l .
We call this finite average estimator

C̃0l ¼
1

ð2lþ 1Þ
Xl

m¼−l
a0lma

0'
lm: ð10Þ

We use the tilde to emphasize that this is a finite estimator
for the ensemble average quantity C0l . This estimator suffers
from inescapable “noise” due to the finite number of modes
in a particular order l. This noise scales as ð2lþ 1Þ−1=2 and
is commonly referred to as cosmic variance.
From the physics underlying the CMB, C̃0l scales as

1=½lðlþ 1Þ& for small values of l. To offset this scaling, a
related quantity is often studied:

D̃0
l ¼

lðlþ 1Þ
2π

C̃0l : ð11Þ

It is D̃0
l that is usually referred to as the CMB temperature

power spectrum. See, e.g., Fig. 13 from a recent paper from
the Atacama Cosmology Telescope Collaboration [30] or
Fig. 57 (and others) from the Planck Collaboration [31].
It is common practice to subtract out and rescale by the

monopole before carrying out a spherical harmonic decom-
position of the CMB temperature fluctuations. We do not
do this because, as we will show, a BWM mixes power
from the monopole into moments of the spatial temperature
fluctuation with higher degree l. When one rescales the
temperature fluctuations by the monopole value, the coef-
ficients a0lm are dimensionless. Since we do not do this, our
expansion coefficients have dimensions of temperature. For
this discussion, we have adapted the treatment of this
material from the text by Maggiore [32] to our purposes.

IV. MANIFESTATIONS OF A BWM IN THE CMB

As we discussed, a BWM induces time-variable patterns
of redshifts and angular deflections that are proportional to
the memory amplitude hM. They prevent us from directly
measuring the primary temperature fluctuation pattern of
the CMB. Instead of T0ðn̂Þ, we observe

Tðn̂Þ ¼ T0ðn̂þ δnðt; n̂ÞÞ
ð1þ zðt; n̂ÞÞ

: ð12Þ

We expand this expression to linear order in the memory
amplitude:

Tðn̂Þ¼T0ðn̂Þ−zðt;n̂ÞT0ðn̂Þþδnðt;n̂Þ ·r∇T0ðn̂ÞþOðh2MÞ;

¼T0ðn̂ÞþδTkðt;n̂ÞþδT⊥ðt;n̂ÞþOðh2MÞ; ð13Þ

where we have defined

δTkðt; n̂Þ ¼ −zðt; n̂ÞT0ðn̂Þ; and ð14Þ

δT⊥ðt; n̂Þ ¼ δnðt; n̂Þ · r∇T0ðn̂Þ: ð15Þ

We then decompose these perturbations into spherical
harmonics as
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δT∨ðt; n̂Þ ¼
X∞

l¼0

Xl

m¼−l
δa∨lmðtÞYm

l ðn̂Þ; ð16Þ

where

δa∨lmðtÞ ¼
Z

δT∨ðt; n̂ÞYm'
l ðn̂ÞdΩ: ð17Þ

We have introduced the superscript “∨” as a placeholder for
either k or ⊥.

Analytic calculations of the perturbations δa∨lmðtÞ are the
key results of this work. These perturbations are directly
proportional to the amplitude of a BWM, hM, and they
enter at linear order in the power spectrum of CMB
temperature fluctuations:

D̃lðtÞ ¼
1

2π
lðlþ 1Þ
ð2lþ 1Þ

Xl

m¼−l
½a0lm þ δaklmðtÞ þ δa⊥lmðtÞ&½a0lm þ δaklmðtÞ þ δa⊥lmðtÞ&' þOðh2MÞ;

¼ D̃0
l þ δD̃k

l ðtÞ þ δD̃⊥
l ðtÞ þOðh2MÞ; ð18Þ

where

δD̃∨
l ðtÞ ¼

1

2π
lðlþ 1Þ
ð2lþ 1Þ

Xl

m¼−l
a0lmδa

∨'
lm ðtÞ þ a0'lmδa

∨
lmðtÞ: ð19Þ

A. Temperature perturbation from
memory-induced redshifts

We now turn our focus to computing δaklmðtÞ. It is useful
to write

zðt; n̂Þ ¼
X∞

l¼0

Xl

m¼−l
ωlmðtÞYm

l ðθ;ϕÞ; ð20Þ

where

ωlmðtÞ ¼
Z

zðt; n̂ÞYm'
l ðn̂ÞdΩ: ð21Þ

From the form of the redshift pattern in Eq. (1), it is clear
that integration over the azimuthal coordinate ϕ is trivial,
that ωlm is nonzero only when m ¼ (2, and that
ωl;þ2 ¼ ωl;−2. Focusing on the case where m ¼ þ2 and
doing the integration over ϕ, we are left with

ωl;þ2ðtÞ ¼
πhM
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ

4π

r
γðl;þ2Þ

Z
π

0
sin θð1 − cos θÞΘðθt − θÞPþ2

l ðcos θÞdθ; ð22Þ

where, as a reminder, cos θt ¼ β − 1, β ¼ ct=d, and we limit our focus to 0 ≤ β ≤ 2. The effect of the Heaviside step
function is to truncate the integration interval. After changing the integration variable to x ¼ cos θ, this becomes

ωl;þ2ðtÞ ¼
πhM
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ

4π

r
γðl;þ2Þ½IG;lðβ − 1; 1Þ − IH;lðβ − 1; 1Þ& for l ≥ 2; ð23Þ

where IG;l and IH;l are given explicitly in Appendix B—they are straightforward combinations of associated Legendre
functions.
Inserting this decomposition of the BWM-induced redshift pattern and the decomposition of T0ðn̂Þ from Eq. (6) into our

expression for δaklmðtÞ yields

δakl1m1
ðtÞ ¼ −

X∞

l2¼0

Xl2

m2¼−l2

a0l2m2

X∞

l3¼2

ωl3;þ2ðtÞ
Z

½Y−2
l3
ðn̂Þ þ Yþ2

l3
ðn̂Þ&Ym2

l2
ðn̂ÞYm1'

l1
ðn̂ÞdΩ: ð24Þ

Integrals over the sphere of products of three spherical harmonics can be written in terms of Clebsch-Gordan coefficients:

Z
Ym3

l3
ðn̂ÞYm2

l2
ðn̂ÞYm1'

l1
ðn̂ÞdΩ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l2 þ 1Þð2l3 þ 1Þ

4πð2l1 þ 1Þ

s

Cl1;0
l2;0;l3;0

Cl1;m1

l2;m2;l3;m3
: ð25Þ
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The Clebsch-Gordan coefficients are symmetric under
interchange of the lower two pairs of indices, i.e.,
Cl1;m1

l2;m2;l3;m3
¼ Cl1;m1

l3;m3;l2;m2
. “Bra-ket” notation is often used

for Clebsch-Gordan coefficients, i.e.,

Cl1;m1

l2;m2;l3;m3
¼ hl2; m2; l3; m3jl1; m1i: ð26Þ

We avoid bra-ket notation for compactness and to facilitate
related notation introduced in Appendix C. For a Clebsch-
Gordan coefficient to not vanish, the “l” values must satisfy
a triangle inequality: jl2 − l3j ≤ l1 ≤ l2 þ l3. Additionally,
the Clebsch-Gordan coefficients vanish unless m1 ¼
m2 þm3, enforcing the selection rule that arises from
carrying out the integral over ϕ. In the context of our
expression for δaklmðtÞ, this fact allows us to eliminate the
summation over m2:

δakl1m1
ðtÞ ¼ −

X∞

l2¼0

X∞

l3¼2

ωl3;þ2ðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l2 þ 1Þð2l3 þ 1Þ

4πð2l1 þ 1Þ

s

Cl1;0
l2;0;l3;0

½a0l2;m1þ2C
l1;m1

l2;m1þ2;l3;−2 þ a0l2;m1−2C
l1;m1

l2;m1−2;l3;þ2&: ð27Þ

To compute δa⊥lmðtÞ, we follow very much the same steps
followed here, but the calculation is sufficiently more
complicated that we reserve the details for the appendixes.

V. DISCUSSION

The framework we have developed can be used to
compute δa∨lmðtÞ, δT∨ðt; n̂Þ, and δD̃∨

l ðtÞ, for any values
of a0lm out to arbitrarily large values of l. In practice, the
infinite summations in Eqs. (16), (27), and (D21) need to be
truncated at some value of l, ltrunc. Important structure in the
CMB temperature power spectrum from baryon acoustic
oscillations extends up to values of l ≈ 2000, so any
reasonable choice for ltrunc for real-world applications
should exceed 2000. In that case, Eqs. (27) and (D21)
involve the calculation of several million terms. Many of
those terms vanish. Judicious exploitation of the triangle
inequalities that Clebsch-Gordan coefficients must satisfy
in order to not vanish can greatly reduce the number of
terms that actually need to be computed. But even without
exploiting these triangle inequalities, this is not an espe-
cially onerous numerical problem. We have analytically
carried out all of the difficult integration and reduced the
problem to computation of Clebsch-Gordan coefficients
and evaluation of associated Legendre functions, both
things with efficient numerical implementations.
Nonetheless, we reserve a detailed application of these
tools to the full CMB power spectrum and the pheno-
menological investigation such a project merits for
later work.
Here, we consider greatly simplified toy models of the

CMB primary that still allow us to straightforwardly
demonstrate many of the implications of the analysis we
have done. First, we consider a CMBwhere a00;0 ¼ 3 K and
a01;−1 ¼ −a01;1 ¼ 1 K—otherwise, a0lm ¼ 0. This is a sky
where the temperature is real and positive everywhere. The
primary has a dipolar asymmetry but no additional struc-
ture. With this simple primary, we plot δaklmðtÞ in Fig. 1 and
δa⊥lmðtÞ in Fig. 2 for a selection of l and m values. The first

nonvanishing perturbations are δa∨1;1ðtÞ shown in
blue in Figs. 1 and 2 [note that δa∨l;−1ðtÞ ¼ −δa∨l;1ðtÞ].
Perturbations with m ¼ (1 (see the blue, orange, and red
curves in Figs. 1 and 2) are nonzero because of terms in the
summations of Eqs. (27) and (D21) proportional to a01;∓1.
This means power in the dipole is being coupled to modes

FIG. 1. Multipolar perturbations from BWM-induced redshifts
versus time for a small sample of l and m values. We started with
a toy version of the CMB primary temperature pattern where
a00;0 ¼ 3 K, a01;−1 ¼ −a01;1 ¼ 1 K, and all other values of
a0lm ¼ 0. These curves were all computed using Eq. (27). The
dimensionless time variable β ¼ ct=d ranges from 0, when the
BWM wave front first encounters the observer, to 2, twice the
light travel time to the source of light being observed—since we
are concerned with the CMB, d is the distance to the surface of
last scattering. All of the redshift perturbations go to zero as β
goes to 2. Even with this toy CMB primary where all power is
confined to l ≤ 1, BWM-induced redshifts produce perturbations
of some amplitude up to arbitrarily-large values of l—we include
the l ¼ 20, m ¼ 1 curve to indicate this. The curves with m ¼ 1
are nonzero because of coupling to the dipole of the CMB. The
curve with m ¼ 2 is nonzero because of coupling to the
monopole.
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with l ≥ 1. Perturbations with arbitrarily large values of l
can be nonzero (see the red curves in Figs. 1 and 2
associated with l ¼ 20) though the amplitude of the
perturbation falls with increasing l. This pumping of power
into high values of l is tied, at least in part, to the sharp
transition edges from the step functions appearing in
Eqs. (1) and (2). For CMB surveys that focus on a particular
window of the sky rather than the full sphere (like the one
done by the Atacama Cosmology Telescope [30]) the
transition edge for a particular BWM may not appear in
the window being observed. Additional steps must be
applied to our framework in order to directly apply it to
such windowed surveys. The green curve in Fig. 1 depict-
ing δak2;2ðtÞ is nonzero because of terms in Eq. (27)
proportional to a00;0, i.e., this perturbation is sourced by
the monopole of the primary. Such terms never appear in
Eq. (D21) so δa⊥2;2ðtÞ ¼ 0. An additional stark difference
between Figs. 1 and 2 is that unlike in Fig. 2, all of the
curves in Fig. 1 go to zero as β goes to 2. This speaks to the
fact that BWM-induced redshift perturbations do eventu-
ally vanish completely, but deflection perturbations are
actually persistent [24]. With this simple toy primary CMB,
it is straightforward to compute δD̃∨

l ðtÞ. Because we
have set a0lm ¼ 0 for all l > 1, δD̃∨

l can only be non-
zero (or, more accurately, linear in hM—tiny quadratic
contributions that we ignore may be present) for l ¼ 0 or 1.
Since δa∨0;0ðtÞ ¼ 0, δD̃∨

0 ðtÞ ¼ 0. We can then show
that δD̃∨

1 ðtÞ ¼ ð4=3πÞδa∨1;1ðtÞa01;1, i.e., the redshift and

deflection perturbations to the dipolar power are propor-
tional to the blue curves in Figs. 1 and 2, respectively.

Figures 1 and 2 demonstrate the time evolution of
various BWM-induced perturbations δa∨lmðtÞ for a specific,
simple primary CMB temperature pattern. As a second
demonstration of this formalism, in Fig. 3 we show fixed
time snapshots of the spatial temperature perturbation
patterns δT∨ðt; n̂Þ produced by a BWM acting on different
spherical harmonic contributions to the CMB temperature
primary. Figure 3(a) shows real-valued versions of the
spherical harmonics representing possible contributions
to the CMB primary: Ym

l when m ¼ 0 and ½Ym
l þ

ð−1ÞmY−m
l &=2 when m > 0. Different rows are associated

with different values of l and different columns are
associated with different values of m as labeled. The
spherical projections have been oriented so as to improve
the reader’s view of the southern pole into which a BWM is
propagating in our formalism. Figures 3(b) and 3(c) depict
the BWM-induced redshift perturbation to the primary
CMB temperature pattern, δTkðn̂Þ, at values of time β ¼
0.0 and β ¼ 0.25, respectively. We divided out the memory
amplitude, hM. We used Eqs. (16) and (27) to compute
these patterns. Looking to Figs. 1 and 2 where the scale of
δa∨lm is much smaller at l ¼ 20 than at lower values of l, we
have truncated the infinite summations in Eqs. (16) and
(27) at ltrunc ¼ 20 for computational expediency. Of par-
ticular note, a monopolar contribution to the CMB primary
leads to nonvanishing values of δTkðn̂Þ as indicated by the
uppermost sphere in Figs. 3(b) and 3(c). As time progresses
from β ¼ 0.0 to β ¼ 0.25, a polar cap develops around the
direction from which the BWM came where the redshift
perturbations turn off. Lingering low-amplitude structure
visible in this polar cap region results from our truncation
of the infinite summations. Figures 3(d) and 3(e) are the
same as 3(b) and 3(c) but for the BWM-induced deflection
perturbation to the primary CMB temperature pattern,
δT⊥ðn̂Þ. Notably, when the primary CMB temperature
pattern is just a monopole, the deflection perturbation
vanishes. As time progresses from β ¼ 0.0 to β ¼ 0.25,
the deflection perturbation does not vanish in an expanding
polar cap—the deflection perturbations persist.
Possible next steps for this line of research are myriad.

We have mentioned that this framework should be applied
to realistic models of the CMB primary and the influence to
the temperature power spectrum should be scrutinized.
However, before such work is belabored, or perhaps in
parallel with such work, the way in which spherical wave
fronts influence the results presented here should be
investigated; we have started to look at this with colleagues.
We should compare the effects of BWMs on the CMB with
other phenomena that undermine our ability to probe the
true primordial CMB primary—things like dust extinction
and lensing from foreground structure. One may wish to
extend this type of analysis to non-Einsteinian types of
memory with nontransverse polarizations that may arise in

FIG. 2. Multipolar perturbations from BWM-induced deflec-
tions with a toy CMB primary identical to what was used in
Fig. 1. These curves were all computed using Eq. (D21). Unlike
the redshift-induced perturbations from Fig. 1, these deflection-
induced perturbations do not all go to zero as β goes to 2,
indicating the permanence of BWM deflection distortions dis-
cussed in [24]. In this case, the l ¼ 2, m ¼ 2 curve is identically
zero because unlike the redshift perturbations, the deflection
perturbations do not couple to the CMB’s monopole.
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modified theories of gravity [13,14]; this may require
revisiting some of the work of Book and Flanagan [25]
that our results are built upon. Ultimately, since the effects
of BWMs are so long-lasting, we will care about the

superposition of redshift and deflection effects from a
cosmological population of BWM sources occurring all
over the sky and at a range of times in the past. This will
prove to be a rich line of enquiry that is necessary to assess

(a)

(b) (c)

(d) (e)

FIG. 3. (a) Different temperature patterns equal to the real-valued spherical harmonics (i.e., Ym
l form ¼ 0 and ½Ym

l þ ð−1ÞmY−m
l &=2 for

m > 0) that may contribute to the primary CMB temperature pattern. (b), (c) Temperature perturbations from redshifts (divided by the
memory amplitude hM) to the spherical harmonic modes from (a) caused by a BWM propagating into the displayed southern pole at
times β ¼ 0.0 and β ¼ 0.25, respectively. We computed these using Eqs. (16) and (27) and truncated the infinite summations therein at
ltrunc ¼ 20. (d), (e) Perturbations from BWM-induced deflections to the spherical harmonic modes of the primary at times β ¼ 0.0 and
β ¼ 0.25, respectively. These were computed using Eqs. (16) and (D21) with the infinite summations again truncated at ltrunc ¼ 20.
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the detectability of BWM signatures in the CMB. The
entire GW history of the Universe contributes to the signal
we are pursuing.
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APPENDIX A: VECTOR SPHERICAL
HARMONICS

For the calculations in these appendixes we make
extensive use of so-called “vector spherical harmonics.”
There are a variety of conventions in use for them, so here
we lay out in detail the conventions we use. First, we define
the angular momentum operator L ¼ −ir ×∇, a vector
differential operator that acts on functions of the angular
spherical coordinates. For application to spherical harmo-
nics Ym

l ðθ;ϕÞ, a useful form of the angular momentum
operator is

L ¼
"
1

2
cos θðe−iϕLþ þ eiϕL−Þ − sin θLz

#
θ̂ −

i
2
ðe−iϕLþ − eiϕL−Þϕ̂; ðA1Þ

where the operators L( and Lz act on spherical harmo-
nics as

L(Ym
l ðθ;ϕÞ ¼ Λ(ðl; mÞYm(1

l ðθ;ϕÞ; and ðA2Þ

LzYm
l ðθ;ϕÞ ¼ mYm

l ðθ;ϕÞ: ðA3Þ

We introduced the coefficients

Λ(ðl; mÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl ∓ mÞðl(mþ 1Þ

p
: ðA4Þ

Next, we define another operator K ¼ r̂ ×L ¼ ir∇.
With these two operators, we define the vector spherical
harmonics:

Φm
l ðθ;ϕÞ ¼ LYm

l ðθ;ϕÞ;

¼
"
1

2
cos θðΛþðl; mÞe−iϕYmþ1

l ðθ;ϕÞ þ Λ−ðl; mÞeiϕYm−1
l ðθ;ϕÞÞ −m sin θYm

l ðθ;ϕÞ
#
θ̂

−
i
2
ðΛþðl; mÞe−iϕYmþ1

l ðθ;ϕÞ − Λ−ðl; mÞeiϕYm−1
l ðθ;ϕÞÞϕ̂; and ðA5Þ

Ψm
l ðθ;ϕÞ ¼ KYm

l ðθ;ϕÞ;

¼ i
2
ðΛþðl; mÞe−iϕYmþ1

l ðθ;ϕÞ − Λ−ðl; mÞeiϕYm−1
l ðθ;ϕÞÞθ̂

þ
"
1

2
cos θðΛþðl; mÞe−iϕYmþ1

l ðθ;ϕÞ þ Λ−ðl; mÞeiϕYm−1
l ðθ;ϕÞÞ −m sin θYm

l ðθ;ϕÞ
#
ϕ̂ ðA6Þ

The two types of vector spherical harmonics are spatially
orthogonal when they are of the same degree l and orderm,
i.e., Φm1

l1
·Ψm2

l2
¼ 0 if l1 ¼ l2 and m1 ¼ m2. Under inte-

gration over the sphere, they have additional orthogonality
properties:

Z
Φm1

l1
·Ψm2'

l2
dΩ ¼ 0; ðA7Þ

Z
Φm1

l1
·Φm2'

l2
dΩ ¼ l1ðl1 þ 1Þδl1l2δm1m2

; ðA8Þ
Z

Ψm1

l1
·Ψm2'

l2
dΩ ¼ l1ðl1 þ 1Þδl1l2δm1m2

: ðA9Þ

It is these orthogonality properties that make the vector
spherical harmonics a convenient basis for multipolar
decompositions of vector fields on the sphere.
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APPENDIX B: USEFUL IDENTITIES AND
INTEGRALS INVOLVING ASSOCIATED

LEGENDRE FUNCTIONS

Much of the mathematical work in this paper boils down
to carrying out integrals involving associated Legendre
functions. Here, we list a few identities that allowed us to
carry out the integrals we encountered and explicitly write
out the results of the integrals used in this paper. First, two
useful integral identities:
Z

b

a
ð1 − x2Þ−m=2Pm

l ðxÞdx ¼ −ð1 − x2Þ−ðm−1Þ=2Pm−1
l ðxÞjba;

ðB1Þ

and

Z
b

a
ð1 − x2Þm=2Pm

l ðxÞdx ¼ ð1 − x2Þðmþ1Þ=2

ðl −mÞðlþmþ 1Þ
Pmþ1
l jba:

ðB2Þ

These indefinite integral identities can be found in the
Digital Library for Mathematical Functions’ section on
Legendre functions [33], specifically Sec. 14.17. All of the
integrals we will face can be made to resemble one of the
two integrals listed above through use of the following
common recurrence relations:

xPm
l ðxÞ ¼

1

ð2lþ 1Þ
½ðl−mþ 1ÞPm

lþ1ðxÞ þ ðlþmÞPm
l−1ðxÞ&;

ðB3Þ

and

ð1−x2Þ1=2Pm
l ðxÞ¼

1

ð2lþ1Þ
½ðl−mþ1Þðl−mþ2ÞPm−1

lþ1 ðxÞ

− ðlþm−1ÞðlþmÞPm−1
l−1 &: ðB4Þ

The following integrals are utilized in this work. These
expressions are correct at least for all values of l ≥ 1 which

is what we require for our purposes,

IA;lða; bÞ ¼
Z

b

a
ð1 − x2Þ−1=2Pþ1

l ðxÞdx;

¼ −PlðxÞjba: ðB5Þ

IB;lða; bÞ ¼
Z

b

a
ð1 − x2Þ−1=2xPþ1

l ðxÞdx;

¼ 1

ð2lþ 1Þ
½lIA;lþ1ða; bÞ þ ðlþ 1ÞIA;l−1ða; bÞ&:

ðB6Þ

IC;lða; bÞ ¼
Z

b

a
ð1 − x2Þ−1=2x2Pþ1

l ðxÞdx;

¼ 1

ð2lþ 1Þ
½lIB;lþ1ða; bÞ þ ðlþ 1ÞIB;l−1ða; bÞ&:

ðB7Þ

ID;lða; bÞ ¼
Z

b

a
ð1 − x2Þ1=2Pþ1

l ðxÞdx;

¼

( 1
3 xðx

2 − 3Þjba ; l ¼ 1

ð1−x2Þ
ðl−1Þðlþ2ÞP

þ2
l ðxÞjba ; l > 1

: ðB8Þ

IE;lða; bÞ ¼
Z

b

a
ð1 − x2Þ1=2xPþ1

l ðxÞdx;

¼ 1

ð2lþ 1Þ
½lID;lþ1ða; bÞ þ ðlþ 1ÞID;l−1ða; bÞ&:

ðB9Þ

IF;lða; bÞ ¼
Z

b

a
ð1 − x2Þ1=2x2Pþ1

l ðxÞdx;

¼ 1

ð2lþ 1Þ
½lIE;lþ1ða; bÞ þ ðlþ 1ÞIE;l−1ða; bÞ&:

ðB10Þ

IG;lða; bÞ ¼
Z

b

a
Pþ2
l ðxÞdx;

¼ −
1

ð2lþ 1Þ
½ðl − 1ÞlPlþ1ðxÞ − ðlþ 1Þðlþ 2ÞPl−1ðxÞ&jba: ðB11Þ

IH;lða; bÞ ¼
Z

b

a
xPþ2

l ðxÞdx;

¼ 1

ð2lþ 1Þ
½ðl − 1ÞIG;lþ1ða; bÞ þ ðlþ 2ÞIG;l−1ða; bÞ&: ðB12Þ
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I I;lða; bÞ ¼
Z

b

a
x2Pþ2

l ðxÞdx;

¼ 1

ð2lþ 1Þ
½ðl − 1ÞIH;lþ1ða; bÞ þ ðlþ 2ÞIH;l−1ða; bÞ&: ðB13Þ

IJ;lða; bÞ ¼
Z

b

a
x3Pþ2

l ðxÞdx;

¼ 1

ð2lþ 1Þ
½ðl − 1ÞI I;lþ1ða; bÞ þ ðlþ 2ÞI I;l−1ða; bÞ&: ðB14Þ

IK;lða; bÞ ¼
Z

b

a
ð1 − x2Þ1=2Pþ3

l ðxÞdx;

¼
"
ðl − 2Þðl − 1Þðlþ 2Þðlþ 3Þ

ð2lþ 1Þð2lþ 3Þ
þ ðl − 2Þðl − 1Þðlþ 2Þðlþ 3Þ

ð2l − 1Þð2lþ 1Þ

#
PlðxÞ

−
ðl − 2Þðl − 1Þlðlþ 1Þ
ð2lþ 1Þð2lþ 3Þ

Plþ2ðxÞ −
lðlþ 1Þðlþ 2Þðlþ 3Þ

ð2l − 1Þð2lþ 1Þ
Pl−2ðxÞjba: ðB15Þ

IL;l ¼
Z

b

a
ð1 − x2Þ1=2xPþ3

l ðxÞdx;

¼ 1

ð2lþ 1Þ
½ðl − 2ÞIK;lþ1ða; bÞ þ ðlþ 3ÞIK;l−1ða; bÞ&: ðB16Þ

IM;l ¼
Z

b

a
ð1 − x2Þ1=2x2Pþ3

l ðxÞdx;

¼ 1

ð2lþ 1Þ
½ðl − 2ÞIL;lþ1ða; bÞ þ ðlþ 3ÞIL;l−1ða; bÞ&: ðB17Þ

IN;l ¼
Z

b

a

ð1 − x2Þ1=2

ð1þ xÞ
Pþ3
l ðxÞdx

¼ −
ð1 − x2Þ−1=2

ð2lþ 1Þ

!
ðl − 2Þðl − 1ÞPþ1

lþ1ðxÞ − ðlþ 2Þðlþ 3ÞPþ1
l−1ðxÞ

−
ðl − 2Þðl − 1Þ

ð2lþ 3Þ
½lPþ1

lþ2ðxÞ þ ðlþ 3ÞPþ1
l ðxÞ&

þ ðlþ 2Þðlþ 3Þ
ð2l − 1Þ

½ðl − 2ÞPþ1
l ðxÞ þ ðlþ 1ÞPþ1

l−2ðxÞ&
$&&&&

b

a
: ðB18Þ

IO;l ¼
Z

b

a

ð1 − x2Þ1=2

ð1þ xÞ
xPþ3

l ðxÞdx

¼ 1

ð2lþ 1Þ
½ðl − 2ÞIN;lþ1ða; bÞ þ ðlþ 3ÞIN;l−1ða; bÞ&: ðB19Þ

The bounds of integration, a and b, are assumed to be
between −1 and 1, inclusive. Both IN;l and IO;l are
proportional to ð1 − x2Þ−1=2, so evaluating them at exactly
(1 will lead to division by zero. However, evaluating them
at (ð1 − ϵÞ and taking the limit as ϵ goes to zero leads to
well-behaved, convergent results.

APPENDIX C: VECTOR EXTENSIONS
OF THE CLEBSCH-GORDAN

COEFFICIENTS

To complete our description of the way that a BWM-
induced deflection pattern influences the CMB, we will
need to know
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Δl1;m1

l2;m2;l3;m3
¼
Z

½Φm3

l3
ðn̂Þ ·Ψm2

l2
ðn̂Þ&Ym1'

l1
ðn̂ÞdΩ; and ðC1Þ

Γl1;m1

l2;m2;l3;m3
¼

Z
½Ψm3

l3
ðn̂Þ ·Ψm2

l2
ðn̂Þ&Ym1'

l1
ðn̂ÞdΩ: ðC2Þ

These integrals are similar in form to Eq. (25) where we
first encountered the Clebsch-Gordan coefficients but now
involve the vector spherical harmonics. We will see, with
some effort, that these integrals can be expressed entirely as

combinations of Clebsch-Gordan coefficients. Note that
Ψm3

l3
·Ψm2

l2
¼ Φm3

l3
·Φm2

l3
, so the above two expressions

exhaust the possibilities for what we call “vector exten-
sions” of the Clebsch-Gordan coefficients.
First, we expand out the inner products of the vector

spherical harmonics. For compactness, we are going to
drop the argument of the spherical harmonics and their
vector counterparts:

Φm3

l3
·Ψm2

l2
¼ i

2
ðΛþðl2; m2ÞΛ−ðl3; m3Þ cos θY

m3−1
l3

Ym2þ1
l2

þm2 sin θ½Λþðl3; m3Þe−iϕY
m3þ1
l3

Ym2

l2
− Λ−ðl3; m3ÞeiϕY

m3−1
l3

Ym2

l2
&

− f2 ↔ 3gÞ; ðC3Þ

Ψm3

l3
·Ψm2

l2
¼ −

1

4
½Λþðl3; m3ÞΛþðl2; m2Þsin2θe−2iϕY

m3þ1
l3

Ym2þ1
l2

þ Λ−ðl3; m3ÞΛ−ðl2; m2Þsin2θe2iϕY
m3−1
l3

Ym2−1
l2

− ðΛþðl3; m3ÞΛ−ðl2; m2Þð1þ cos2θÞYm3þ1
l3

Ym2−1
l2

þ f2 ↔ 3gÞ&

−
1

2
sin θ cos θðm3Λþðl2; m2Þe−iϕY

m3

l3
Ym2þ1
l2

þm3Λ−ðl2; m2ÞeiϕY
m3

l3
Ym2−1
l2

þ f2 ↔ 3gÞ þm2m3sin2θY
m3

l3
Ym2

l2
:

ðC4Þ

We made use of the notation “f2 ↔ 3g” to indicate a copy
of the preceding part of the parenthetically grouped
expression with the indices 2 and 3 swapped; it only ever
appears within a set of parentheses where it is clearly paired
with a preceding expression.
In order to mold these into a more desirable form, a form

where all of the angular variation is encoded entirely in
spherical harmonics, we make use of the recurrence

relations in Eqs. (B3) and (B4) and the additional recur-
rence relation

ð1 − x2Þ1=2Pm
l ðxÞ ¼ −

1

ð2lþ 1Þ
½Pmþ1

lþ1 − Pmþ1
l−1 &: ðC5Þ

With these recurrence relations, we can derive the follow-
ing helpful identities:

cos θYm
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmþ 1Þðl −mþ 1Þ

ð2lþ 1Þð2lþ 3Þ

s

Ym
lþ1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmÞðl −mÞ
ð2l − 1Þð2lþ 1Þ

s

Ym
l−1; ðC6Þ

e−iϕ sin θYmþ1
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl −mÞðl −mþ 1Þ
ð2lþ 1Þð2lþ 3Þ

s

Ym
lþ1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmÞðlþmþ 1Þ
ð2l − 1Þð2lþ 1Þ

s

Ym
l−1; ðC7Þ

eiϕ sin θYm−1
l ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmÞðlþmþ 1Þ
ð2lþ 1Þð2lþ 3Þ

s

Ym
lþ1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl −mÞðl −mþ 1Þ
ð2l − 1Þð2lþ 1Þ

s

Ym
l−1: ðC8Þ
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Incorporating these into the inner products of vector spherical harmonics, we arrive at

Δl1;m1

l2;m2;l3;m3
¼ i

2

0

@
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l2 þ 3Þð2l3 þ 1Þ

4πð2l1 þ 1Þ

s

Cl1;0
l2þ1;0;l3;0

2

4Λþðl2; m2ÞΛ−ðl3; m3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 þm2 þ 2Þðl2 −m2Þ
ð2l2 þ 1Þð2l2 þ 3Þ

s

Cl1;m1

l2þ1;m2þ1;l3;m3−1

−m3

8
<

:Λþðl2; m2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 −m2Þðl2 −m2 þ 1Þ
ð2l2 þ 1Þð2l2 þ 3Þ

s

þ Λ−ðl2; m2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 þm2Þðl2 þm2 þ 1Þ

ð2l2 þ 1Þð2l2 þ 3Þ

s 9
=

;Cl1;m1

l2þ1;m2;l3;m3

3

5

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l2 − 1Þð2l3 þ 1Þ

4πð2l1 þ 1Þ

s

Cl1;0
l2−1;0;l3;0

2

4Λþðl2; m2ÞΛ−ðl3; m3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 þm2 þ 1Þðl2 −m2 − 1Þ

ð2l2 − 1Þð2l2 þ 1Þ

s

Cl1;m1

l2−1;m2þ1;l3;m3−1

þm3

8
<

:Λþðl2; m2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 þm2Þðl2 þm2 þ 1Þ

ð2l2 − 1Þð2l2 þ 1Þ

s

þ Λ−ðl2; m2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 −m2Þðl2 −m2 þ 1Þ
ð2l2 − 1Þð2l2 þ 1Þ

s 9
=

;Cl1;m1

l2−1;m2;l3;m3

3

5

− f2 ↔ 3g

1

A: ðC9Þ

For Γl1;m1

l2;m2;l3;m3
, it is helpful to break it into smaller pieces, i.e.,

Γl1;m1

l2;m2;l3;m3
¼ X1 þ X2 þ X3 þ X4 þ X5; ðC10Þ

where

X1 ¼ −
1

4

Z
Λþðl3; m3ÞΛþðl2; m2Þsin2θe−2iϕY

m3þ1
l3

Ym2þ1
l2

Ym1'
l1

dΩ;

¼ −
Λþðl3; m3ÞΛþðl2; m2Þ

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

p
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl3 −m3Þðl3 −m3 þ 1Þðl2 −m2Þðl2 −m2 þ 1Þ
p

Cl1;0
l2þ1;0;l3þ1;0C

l1;m1

l2þ1;m2;l3þ1;m3

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl3 þm3Þðl3 þm3 þ 1Þðl2 þm2Þðl2 þm2 þ 1Þ

p
Cl1;0
l2−1;0;l3−1;0C

l1;m1

l2−1;m2;l3−1;m3

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl3 −m3Þðl3 −m3 þ 1Þðl2 þm2Þðl2 þm2 þ 1Þ

p
Cl1;0
l2−1;0;l3þ1;0C

l1;m1

l2−1;m2;l3þ1;m3

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl3 þm3Þðl3 þm3 þ 1Þðl2 −m2Þðl2 −m2 þ 1Þ

p
Cl1;0
l2þ1;0;l3−1;0C

l1;m1

l2þ1;m2;l3−1;m3

i
; ðC11Þ

X2 ¼ −
1

4

Z
Λ−ðl3; m3ÞΛ−ðl2; m2Þsin2θe2iϕY

m3−1
l3

Ym2−1
l2

Ym1'
l1

dΩ;

¼ −
Λ−ðl3; m3ÞΛ−ðl2; m2Þ

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

p
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl3 þm3Þðl3 þm3 þ 1Þðl2 þm2Þðl2 þm2 þ 1Þ
p

Cl1;0
l2þ1;0;l3þ1;0C

l1;m1

l2þ1;m2;l3þ1;m3

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl3 −m3Þðl3 −m3 þ 1Þðl2 −m2Þðl2 −m2 þ 1Þ

p
Cl1;0
l2−1;0;l3−1;0C

l1;m1

l2−1;m2;l3−1;m3

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl3 þm3Þðl3 þm3 þ 1Þðl2 −m2Þðl2 −m2 þ 1Þ

p
Cl1;0
l2−1;0;l3þ1;0C

l1;m1

l2−1;m2;l3þ1;m3

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl3 −m3Þðl3 −m3 þ 1Þðl2 þm2Þðl2 þm2 þ 1Þ

p
Cl1;0
l2þ1;0;l3−1;0C

l1;m1

l2þ1;m2;l3−1;m3

i
; ðC12Þ
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X3 ¼
1

4

Z
ðΛþðl3; m3ÞΛ−ðl2; m2Þð1þ cos2θÞYm3þ1

l3
Ym2−1
l2

þ f2 ↔ 3gÞYm1'
l1

dΩ;

¼ 1

4

'
Λþðl3; m3ÞΛ−ðl2; m2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ
p ½ð2l2 þ 1Þð2l3 þ 1ÞCl1;0

l2;0;l3;0
Cl1;m1

l2;m2−1;l3;m3þ1

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl3 þm3 þ 2Þðl3 −m3Þðl2 þm2Þðl2 −m2 þ 2Þ

p
Cl1;0
l2þ1;0;l3þ1;0C

l1;m1

l2þ1;m2−1;l3þ1;m3þ1

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl3 þm3 þ 1Þðl3 −m3 − 1Þðl2 þm2 − 1Þðl2 −m2 þ 1Þ

p
Cl1;0
l2−1;0;l3−1;0C

l1;m1

l2−1;m2−1;l3−1;m3þ1

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl3 þm3 þ 2Þðl3 −m3Þðl2 þm2 − 1Þðl2 −m2 þ 1Þ

p
Cl1;0
l2−1;0;l3þ1;0C

l1;m1

l2−1;m2−1;l3þ1;m3þ1

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl3 þm3 þ 1Þðl3 −m3 − 1Þðl2 þm2Þðl2 −m2 þ 2Þ

p
Cl1;0
l2þ1;0;l3−1;0C

l1;m1

l2þ1;m2−1;l3−1;m3þ1& þ f2 ↔ 3g
(
; ðC13Þ

X4 ¼ −
1

2

Z
sinθ cosθðm3Λþðl2;m2Þe−iϕY

m3

l3
Ym2þ1
l2

þm3Λ−ðl2;m2ÞeiϕY
m3

l3
Ym2−1
l2

þ f2↔ 3gÞYm1'
l1

dΩ;

¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

p ðm3f½Λþðl2;m2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 þm2Þðl2 þm2 þ 1Þ

p
−Λ−ðl2;m2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 −m2Þðl2 −m2 þ 1Þ

p
&

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl3 þm3 þ 1Þðl3 −m3 þ 1Þ

p
Cl1;0
l2−1;0;l3þ1;0C

l1;m1

l2−1;m2;l3þ1;m3

þ ½Λþðl2;m2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 þm2Þðl2 þm2 þ 1Þ

p
−Λ−ðl2;m2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 −m2Þðl2 −m2 þ 1Þ

p
&

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl3 þm3Þðl3 −m3Þ

p
Cl1;0
l2−1;0;l3−1;0C

l1;m1

l2−1;m2;l3−1;m3

− ½Λþðl2;m2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 −m2Þðl2 −m2 þ 1Þ

p
−Λ−ðl2;m2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 þm2Þðl2 þm2 þ 1Þ

p
&

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl3 þm3Þðl3 −m3Þ

p
Cl1;0
l2þ1;0;l3−1;0C

l1;m1

l2þ1;m2;l3−1;m3

− ½Λþðl2;m2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 −m2Þðl2 −m2 þ 1Þ

p
−Λ−ðl2;m2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 þm2Þðl2 þm2 þ 1Þ

p
&

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl3 þm3 þ 1Þðl3 −m3 þ 1Þ

p
Cl1;0
l2þ1;0;l3þ1;0C

l1;m1

l2þ1;m2;l3þ1;m3;l1;m1
gþ f2↔ 3gÞ; ðC14Þ

and

X5 ¼m2m3

Z
sin2θYm3

l3
Ym2

l2
Ym1'
l1

dΩ;

¼ m2m3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

p ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl3 −m3 þ 1Þðl3 −m3 þ 2Þðl2 −m2 − 1Þðl2 −m2Þ

p
Cl1;0
l2−1;0;l3þ1;0C

l1;m1

l2−1;m2þ1;l3þ1;m3−1

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl3 þm3 − 1Þðl3 þm3Þðl2 þm2 þ 1Þðl2 þm2 þ 2Þ

p
Cl1;0
l2þ1;0;l3−1;0C

l1;m1

l2þ1;m2þ1;l3−1;m3−1

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl3 −m3 þ 1Þðl3 −m3 þ 2Þðl2 þm2 þ 1Þðl2 þm2 þ 2Þ

p
Cl1;0
l2þ1;0;l3þ1;0C

l1;m1

l2þ1;m2þ1;l3þ1;m3−1

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl3 þm3 − 1Þðl3 þm3Þðl2 −m2 − 1Þðl2 −m2Þ

p
Cl1;0
l2−1;0;l3−1;0C

l1;m1

l2−1;m2þ1;l3−1;m3−1&: ðC15Þ

We note that just like standard Clebsch-Gordan coefficients
—or, rather, because of this property of Clebch-Gordan
coefficients—Δl1;m1

l2;m2;l3;m3
and Γl1;m1

l2;m2;l3;m3
vanish unless

m1 ¼ m2 þm3.

APPENDIX D: TEMPERATURE PERTURBATION
FROM MEMORY-INDUCED DEFLECTIONS

As we did with the BWM-induced redshift perturbation,
we will carry out a multipolar decomposition of the BWM-
induced deflection pattern. Since the deflection pattern is a
vector field on the sphere, an appropriate basis for such a

decomposition is formed by the vector spherical harmonics
Φm

l ðθ;ϕÞ andΨm
l ðθ;ϕÞwhich we describe in Eqs. (A5) and

(A6). In terms of these vector spherical harmonics, we can
expand δnðt; n̂Þ as

δnðt; n̂Þ ¼
X∞

l¼1

Xl

m¼−l
½ρlmðtÞΦm

l ðn̂Þ þ σlmðtÞΨm
l ðn̂Þ&; ðD1Þ

where
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ρlmðtÞ ¼
1

lðlþ 1Þ

Z
δnðt; n̂Þ ·Φm

l ðn̂ÞdΩ; and ðD2Þ

σlmðtÞ ¼
1

lðlþ 1Þ

Z
δnðt; n̂Þ ·Ψm

l ðn̂ÞdΩ: ðD3Þ

We note that the summations in Eq. (D1) begins at l ¼ 1
because Φ0

0ðn̂Þ ¼ Ψ0
0ðn̂Þ ¼ 0. From our expressions for

V⊕ and V⋆ in Eqs. (3) and (4) and the form of the vector
spherical harmonics given in Eqs. (A5) and (A6), it is clear
that ρlm and σlm will vanish from the azimuthal integration
unless m ¼ (2.

Here we compute ρl;þ2 and σl;þ2. It is helpful to break
these calculations into manageable chunks. To that end, we
write

ρl;þ2ðtÞ ¼
hM

lðlþ 1Þ
½R1 þR2ðtÞ þR3ðtÞ&; and ðD4Þ

σl;þ2ðtÞ ¼
hM

lðlþ 1Þ
½S1 þ S2ðtÞ þ S3ðtÞ&; ðD5Þ

where

R1 ¼
Z

V⊕ðn̂Þ ·Φþ2
l ðn̂ÞdΩ; ðD6Þ

R2ðtÞ ¼ −
Z

βΘðθt − θÞ
ð1þ cos θÞ

V⋆ðn̂Þ ·Φþ2
l ðn̂ÞdΩ; ðD7Þ

R3ðtÞ ¼ −
Z

Θðθ − θtÞV⋆ðn̂Þ ·Φþ2
l ðn̂ÞdΩ; ðD8Þ

S1 ¼
Z

V⊕ðn̂Þ ·Ψþ2
l ðn̂ÞdΩ; ðD9Þ

S2ðtÞ ¼−
Z

βΘðθt− θÞ
ð1þ cosθÞ

V⋆ðn̂Þ ·Ψþ2
l ðn̂ÞdΩ; and ðD10Þ

S3ðtÞ ¼ −
Z

Θðθ − θtÞV⋆ðn̂Þ ·Ψþ2
l ðn̂ÞdΩ: ðD11Þ

With the tools developed in these appendixes, these
integrals can be worked out explicitly:

R1 ¼
1

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πð2lþ 1Þ

p
f4γðl;þ2Þ½IG;lð−1; 1Þ − I I;lð−1; 1Þ&

− Λþðl;þ2Þγðl;þ3Þ½IL;lð−1; 1Þ − IK;lð−1; 1Þ&
− Λ−ðl;þ2Þγðl;þ1Þ½ID;lð−1; 1Þ þ IE;lð−1; 1Þ&g;

ðD12Þ

R2ðtÞ ¼ −
β
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πð2lþ 1Þ

p
f4γðl;þ2Þ½IG;lðβ − 1; 1Þ − I I;lðβ − 1; 1Þ&

− Λþðl;þ2Þγðl;þ3Þ½IL;lðβ − 1; 1Þ − 2IN;lðβ − 1; 1Þ&
− Λ−ðl;þ2Þγðl;þ1Þ½IE;lðβ − 1; 1Þ þ 2IA;lðβ − 1; 1Þ − 2IB;lðβ − 1; 1Þ&g; ðD13Þ

R3ðtÞ ¼ −
1

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πð2lþ 1Þ

p
f4γðl;þ2Þ½IG;lð−1; β − 1Þ þ IH;lð−1; β − 1Þ − I I;lð−1; β − 1Þ − IJ;lð−1; β − 1Þ&

− Λþðl;þ2Þγðl;þ3Þ½IL;lð−1; β − 1Þ þ IM;lð−1; β − 1Þ − 2IK;lð−1; β − 1Þ&
− Λ−ðl;þ2Þγðl;þ1Þ½IE;lð−1; β − 1Þ þ IF;lð−1; β − 1Þ þ 2ID;lð−1; β − 1Þ&g; ðD14Þ

S1 ¼ −iR1 ðD15Þ

S2ðtÞ ¼
iβ
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πð2lþ 1Þ

p
f8γðl;þ2Þ½IG;lðβ − 1; 1Þ − IH;lðβ − 1; 1Þ&

þ Λþðl;þ2Þγðl;þ3Þ½IN;lðβ − 1; 1Þ − IO;lðβ − 1; 1Þ&
− Λ−ðl;þ2Þγðl;þ1Þ½IA;lðβ − 1; 1Þ þ 2IB;lðβ − 1; 1Þ − 3IC;lðβ − 1; 1Þ&g; ðD16Þ

S3ðtÞ ¼
i
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πð2lþ 1Þ

p
f8γðl;þ2Þ½IG;lð−1; β − 1Þ − I I;lð−1; β − 1Þ&

þ Λþðl;þ2Þγðl;þ3Þ½IK;lð−1; β − 1Þ − IL;lð−1; β − 1Þ&
− Λ−ðl;þ2Þγðl;þ1Þ½ID;lð−1; β − 1Þ þ 3IE;lð−1; β − 1Þ&: ðD17Þ

We see that ρl;þ2ðtÞ is entirely real and that σl;þ2ðtÞ is entirely imaginary. It can be shown that ρl;−2 ¼ −ρl;þ2 and
σl;−2 ¼ σl;þ2, allowing us to write Eq. (D1) as
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δnðt; n̂Þ ¼
X∞

l¼2

ρl;þ2ðtÞ½Φþ2
l ðn̂Þ −Φ−2

l ðn̂Þ& þ σl;þ2ðtÞ½Ψþ2
l ðn̂Þ þΨ−2

l ðn̂Þ&: ðD18Þ

It can further be shown that Φ−2
l ¼ −Φþ2'

l and Ψ−2
l ¼ −Ψþ2'

l . With this, we can again rewrite Eq. (D1) as

δnðt; n̂Þ ¼
X∞

l¼2

ρl;þ2ðtÞ½Φþ2
l ðn̂Þ þΦþ2'

l ðn̂Þ& þ σl;þ2ðtÞ½Ψþ2
l ðn̂Þ −Ψþ2'

l ðn̂Þ&: ðD19Þ

This form makes it clear that δnðt; n̂Þ is entirely real, an important consistency check.
Using the form of δnðt; n̂Þ in Eq. (D18), we can now write

δa⊥l1m1
ðtÞ ¼ −i

X∞

l2¼1

Xl2

m2¼−l2

a0l2m2

X∞

l3¼2

Z
fρl3;þ2ðtÞ½Φþ2

l3
ðn̂Þ −Φ−2

l3
ðn̂Þ& þ σl3;þ2ðtÞ½Ψþ2

l3
ðn̂Þ þΨ−2

l3
ðn̂Þ&g ·Ψm2

l2
ðn̂ÞYm1'

l1
ðn̂ÞdΩ:

ðD20Þ

Here we make use of our earlier calculation of what we referred to as vector extensions of the Clebsch-Gordan coefficients,
Δl1;m1

l2;m2;l3;m3
and Γl1;m1

l2;m2;l3;m3
. The fact that these quantities vanish unless m1 ¼ m2 þm3 allows us to eliminate the summation

over m2 in Eq. (D20):

δa⊥l1;m1
¼ −i

X∞

l2¼1

X∞

l3¼2

fρl3;þ2ðtÞ½a0l2;m1−2Δ
l1;m1

l2;m1−2;l3;þ2 − a0l2;m1þ2Δ
l1;m1

l2;m1þ2;l3;−2&

þ σl3;þ2ðtÞ½a0l2;m1−2Γ
l1;m1

l2;m1−2;l3;þ2 þ a0l2;m1þ2Γ
l1;m1

l2;m1þ2;l3;−2&g: ðD21Þ

This result, by construction, closely mirrors the form of
Eq. (27). Everything in it has been computed in these
appendixes. One meaningful departure from Eq. (27) in this
expression is that the summation over l2 begins at l2 ¼ 1
rather than l2 ¼ 0. This means the redshift perturbation

from a BWM is capable of transferring power from the
monopole of the CMB into higher degree modes but the
deflection perturbation is not. This fact is demonstrated in
Figs. 1–3 and discussed in Sec. V.
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