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ABSTRACT 9 

The COVID-19 pandemic has stressed healthcare systems and supply lines, forcing medical doctors to risk 10 

infection by decontaminating and reusing single-use personal protective equipment. The uncertain future 11 

of the pandemic is compounded by limited data on the ability of the responsible virus, SARS-CoV-2, to 12 

survive across various climates, preventing epidemiologists from accurately modeling its spread. However, 13 

a detailed thermodynamic analysis of experimental data on the inactivation of SARS-CoV-2 and related 14 

coronaviruses can enable a fundamental understanding of their thermal degradation that will help model 15 

the COVID-19 pandemic and mitigate future outbreaks. This work introduces a thermodynamic model that 16 

synthesizes existing data into an analytical framework built on first principles, including a first-order 17 

reaction rate law and the Arrhenius equation, to accurately predict the temperature-dependent inactivation 18 

of coronaviruses. The model provides much-needed thermal decontamination guidelines for personal 19 

protective equipment, including masks. For example, at 70 °C, a 3-log (99.9%) reduction in virus 20 

concentration can be achieved, on average, in 3 minutes (under the same conditions, a more conservative 21 

decontamination time of 39 minutes represents the upper limit of 95% prediction interval) and can be 22 

performed in most home ovens without reducing the efficacy of typical N95 masks as shown in recent 23 

experimental reports. This model will also allow for epidemiologists to incorporate the lifetime of SARS-24 
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CoV-2 as a continuous function of environmental temperature into models forecasting the spread of the 25 

pandemic across different climates and seasons.   26 
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MAIN TEXT 27 

The COVID-19 pandemic has overwhelmed medical facilities worldwide and caused a shortage of 28 

typically-disposable personal protective equipment (PPE), forcing medical workers to reuse or work 29 

without proper PPE.1,2 Researchers have explored decontamination procedures that might allow PPE to be 30 

reused safely,3,4 and medical workers have begun implementing these procedures, including 31 

decontaminating disposable masks with ultraviolet (UV) irradiation.5 However, UV decontamination faces 32 

several drawbacks, including an inability to kill viruses trapped within crevices that are not illuminated and 33 

a lack of availability at clinics in low-income areas and in most peoples’ homes.6  Alternative methods of 34 

decontamination, namely steam sterilization, alcohol washing, and bleach washing, are useful for glassware 35 

and other durable materials, but have been reported to degrade single-use PPE.4,7,8 On the other hand, dry 36 

heat decontamination can be performed almost anywhere (including home ovens and rice cookers) and 37 

inactivates viruses within crevices without damaging delicate PPE.7,9,10 However, dry heat decontamination 38 

guidelines for SARS-CoV-2 remain limited to a few experimental measurements constrained to specific 39 

temperatures that do not apply to all heating devices.11 40 

 41 

Meanwhile, virus transmission has been linked to variations in outdoor climate, where colder atmospheric 42 

temperatures lead to longer virus lifetimes outside of hosts. This effect has been reported for influenza,12,13 43 

the common cold,14 SARS-CoV-2,11,15 SARS-CoV-1,16,17 and MERS-CoV.18,19 Even at a local scale, a 44 

recent resurgence of COVID-19 cases in a seafood market was linked to low temperatures.20 45 

Epidemiologists would benefit from knowledge of the lifespan of SARS-CoV-2 as a continuous function 46 

of atmospheric temperature to accurately model the spread of COVID-19. Furthermore, understanding the 47 

temperature-dictated inactivation time could help predict the resurgence of cases as colder weather returns 48 

to the Northern Hemisphere, following a similar trend to that of the seasonal flu.21  49 
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We introduce an analytical model based on a first-order reaction rate law and Arrhenius equation that 50 

enables prediction of the thermal inactivation rate and lifetime of coronaviruses, including SARS-CoV-2, 51 

as a function of temperature. These viruses are treated as macromolecules undergoing thermal denaturation; 52 

we confirm that coronaviruses undergo thermal denaturation because their inactivation behavior follows 53 

the Meyer-Neldel rule.22 The time required to achieve a desired log-scale reduction in viable virions (e.g. 54 

by a factor of 103 as typically used for viral decontamination23–26) was used to generate dry heat 55 

decontamination guidelines for SARS-CoV-2 relevant to temperature ranges accessible in commonly-56 

available heating devices. The model also predicts the lifetime of human coronaviruses as a continuous 57 

function of temperature in various climates, which will assist epidemiologists in understanding the 58 

regionally-dependent lifetime of the SARS-CoV-2 virus as well as the potential of a COVID-19 resurgence 59 

in autumn and winter.  60 

 61 

Reports in literature provide abundant data to construct a predictive analytical model capturing the thermal 62 

effects on virus inactivation. We focused specifically on the inactivation of coronaviruses, a group of 63 

enveloped viruses often responsible for respiratory or gastrointestinal diseases in mammals and birds.27 We 64 

compiled hundreds of data points for inactivation of five coronaviruses, with subdivisions based on (i) 65 

strains of each virus, (ii) environmental pH levels, and (iii) relative humidity conditions, resulting in 66 

fourteen datasets (Figure 1(a)). These viruses include: (i) Severe Acute Respiratory Syndrome Coronavirus 67 

(SARS CoV-1 and SARS-CoV-2);11,17,28–30 (ii) Middle East Respiratory Syndrome Coronavirus (MERS-68 

CoV);18,19 (iii) Transmissible Gastroenteritis Virus (TGEV);31 (iv) Mouse Hepatitis Virus (MHV);32,33 and 69 

(v) Porcine Epidemic Diarrhea Virus (PEDV).34  70 

 71 
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The rate law describes the inactivation behavior of microbes.35 Non-first-order rate laws have been applied 72 

to inactivation of some microbes,36–38 particularly bacteria with heterogeneous populations,39 but the 73 

inactivation of most viruses—including the coronaviruses considered in our analysis—follow a first-order 74 

reaction, with viable virions as reactants and inactivated virions as products (Eq. 1): 75 

 

 
[𝐶] = [𝐶!]𝑒"#$, (Eq. 1) 

The majority of primary experimental data for the inactivation of viruses is reported in plots of the log of 76 

concentration ln([C]) as a function of time, t, with C0 being the initial concentration of viable virions. We 77 

applied a linear regression to each set of primary data to determine the rate constant, k, for inactivation of 78 

a virus at a given temperature, T, determined by calculating the slope, k = –∆ln([C])/∆t. Each of these pairs 79 

of (k, T) yields one data point in Figure 1(a), with details in the supplementary material, Figures S1–S28. 80 

 81 

Virus inactivation occurs due to thermal denaturation of the proteins that comprise each virion. The 82 

temperature dependence of the thermal denaturation process is captured by the Arrhenius equation,40  which 83 

yields a linear relationship between ln(k) and 1/T (Eq. 2): 84 

 

 
ln(𝑘) =	–

𝐸%
𝑅𝑇

+ 	ln(𝐴),	 (Eq. 2) 

where R is the gas constant, Ea is the activation energy associated with inactivation of the virus (i.e., the 85 

energy barrier to be overcome for protein denaturation), and A is the frequency factor. In Figure 1(a), the 86 

ln(k) and 1/T are plotted according to the Arrhenius equation (Eq.2). The activation energy, Ea, and natural 87 

log of the frequency factor, ln(A), can be obtained by equating –Ea/R and ln(A) from Eq. 2 with the slopes 88 

and intercepts from the linear fits in Figure 1(a), respectively, and plotted in Figure 1(b). The linear 89 

correlation between ln(A) and Ea indicates that coronaviruses undergo a thermal denaturation process 90 

following the Meyer-Neldel rule,22 supporting our hypothesis that they are inactivated primarily by 91 

thermally-driven 92 
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  93 

Figure 1 (Single Column). Thermal inactivation behavior of coronaviruses. An Arrhenius plot (a) shows 94 

the dependence of inactivation rate constant on temperature for the coronaviruses. Each coronavirus 95 

dataset was fitted using linear regression (Eq. 2), where the inserted chart presents the R2 values for the 96 

linear fits. The resulting activation energy, Ea, and frequency factor, ln(A), were back-calculated from each 97 

ln(A) = 0.394Ea - 5.63
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linear fit according to Eq. 2 and plotted (b); the linear correlation between ln(A) and Ea indicates protein 98 

denaturation.22,41  99 

degradation of proteins. In fact, the linear regression calculated in this work, [ln(A) = 0.394Ea – 5.63], is 100 

nearly identical to those calculated in two prior studies on the denaturation of tissues and cells, which report 101 

[ln(A) = 0.380Ea – 5.27]22 and [ln(A) = 0.383Ea – 5.95].41  102 

 103 

The degree of inactivation of a pathogen is defined by the ratio of the concentration (amount) of a pathogen 104 

to its initial concentration, [C]/[C0], often in terms of orders of magnitude; an n-log inactivation refers to a 105 

reduction in concentration of 10 raised to the nth power ([C]/[C0] = 10–n). Equations 1 and 2 combine to 106 

yield an analytical model used in determining the time required to achieve an n-log reduction in a pathogen 107 

(Eq. 3): 108 

 

 
𝑡&"'() = −

1
𝐴
𝑒*

+!
,-. ln(10"&), (Eq. 3) 

The US Food and Drug Administration recommends a 3-log (99.9%) reduction in number of virions for 109 

decontamination of non-enveloped viruses (i.e. [C]/[C0] = 10–3).23–26,42,43 Since non-enveloped viruses are 110 

shown to be more resilient to elevated environmental temperatures than their enveloped counterparts 111 

(including coronaviruses),44,45 we refer to the time required to achieve a 3-log reduction as the coronavirus 112 

lifetime, indicative of a conservative prediction for both decontamination time and viable lifetime outside 113 

a host. The time required to achieve an n-log reduction is directly proportional to the n value; therefore, a 114 

more conservative decontamination time could be obtained by inserting a different value of n into Eq. 3, 115 

which would change the n-log reduction predictions by a multiplicative factor of ndesired/ncurrent, (e.g. in this 116 

work, ncurrent = 3; therefore, a 6-log reduction would require doubling of the times predicted in this work).  117 

Figure 2 reports the virus lifetimes generated from Eq. 3 as a function of temperatures ranging from room 118 

temperature to temperatures achievable using common heating devices. In Figure 2(a), all five types of 119 
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coronaviruses are plotted to show the variation across different environmental temperatures. The plot in 120 

Figure 2(b) shows similar data, with the exception of data from Casanova, et al.,16 due to possible 121 

experimental error in the primary data (see supplementary material, Section S3), and   122 

 123 

Figure 2 (Single Column). Virus lifetime as a function of temperature. Predictions are shown in (a) for all 124 

the coronaviruses analyzed in this work, with the average lifetime presented in black. All coronaviruses 125 
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excluding data sourced from Casanova, et al., are replotted in (b) with a linearly-scaled vertical axis (1440 126 

minutes = 1 day) to highlight the exponential dependence of lifetime on temperature. 127 

 128 

with the lifetime axis scaled linearly to highlight the exponential dependence of lifetime on temperature. 129 

The human coronaviruses SARS-CoV-2 and SARS-CoV-1 exhibit a similar trend in thermal degradation,  130 

in agreement with recent work.30 We observed that SARS-CoV-2 has a slightly longer mean lifetime than 131 

SARS-CoV-1 outside a host, potentially contributing to its relatively high reproduction number, R0. 132 

However, based on uncertainty analysis, Figure 3 indicates that the prediction intervals of SARS-CoV-1 133 

and SARS-CoV-2 overlap, suggesting that additional data would be needed to definitively support the 134 

conclusion that SARS-CoV-2 has a longer lifetime. The prediction interval is used to estimate variation in 135 

coronavirus lifetimes predicted by the analytical model. The prediction interval can account for 136 

uncertainties corresponding to different virus strains due to genetic mutations as well as variations in 137 

experimental conditions such as RH and fomites, and a conservative estimate of the maximum lifetime of 138 

a coronavirus given this uncertainty can be determined with different levels of confidence (90%, 95%, and 139 

97.5% prediction intervals are shown in Figure 3). The details of statistical uncertainty for all of the viruses 140 

are included in the supplementary material, Table S3. The average lifetime for the human coronaviruses 141 

SARS-CoV-2 and SARS-CoV-1 are shown in Table I. The temperature values displayed in the table 142 

illustrate both (i) common environmental conditions and (ii) temperatures appropriate for thermal 143 

decontamination.  144 

 145 
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 146 

Figure 3 (Single Column).The lifetime of SARS-CoV-2 (a) and SARS-CoV-1 (b) are highlighted, and 147 

90%, 95%, and 97.5% prediction intervals are used to illustrate uncertainties in the predicted lifetimes 148 

based on statistical analysis. 149 
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Table I. (Double Column). The average lifetimes for SARS-CoV-2 and SARS-CoV-1 across a range of 153 

environmental and decontamination temperatures. The upper limit of a 95% prediction interval based on 154 

statistical analysis of the data is included in parenthesis as a conservative estimate of the maximum lifetime 155 

across different mutations and environmental conditions. The mean lifetimes of all human coronaviruses 156 

considered in this work were greater than one month at temperatures below 10 °C. 157 

 Temperature SARS-CoV-2 lifetime, t3-log SARS-CoV-1 lifetime, t3-log 

E
nv
ir
on
m
en
ta
l 

C
on
di
tio
ns
 

10 °C              >1 month        29.8 d   (> 1 month) 
15 °C        15.5 d   (>1 month)        10.4 d   (> 1 month) 
20 °C          5.9 d   (>1 month)          3.8 d   (> 1 month) 
25 °C          2.3 d   (25.5 d)          1.4 d   (25.4 d) 
30 °C        22.5 h   (10 d)        13.1 h   (8.26 d) 
35 °C          9.4 h   (4.2 d)          5.2 h   (2.9 d) 
40 °C          4.0 h   (1.8 d)          2.1 h   (1.1 d) 

D
ec
on
ta
- 

m
in
at
io
n 
 60 °C    10.5 min   (2.3 h)      4.8 min   (1.1 h) 

70 °C      2.5 min   (38.6 min)      1.1 min   (18.4 min) 
80 °C      < 1 min   (11.9 min)      < 1 min   (6.1 min) 
90 °C      < 1 min   (4.0 min)       < 1 min   (2.3 min)  

 158 

We estimated the regional lifetime of SARS-CoV-2 based on climate temperatures in the United States. We 159 

used temperatures averaged over January to March, 2020, corresponding to the onset of the COVID-19 160 

pandemic (Figure 4(a)), and July to September, 2019, as a rough prediction of SARS-CoV-2 lifetimes in 161 

summer 2020 (Figure 4(b)). Summer weather in the Northern Hemisphere will reduce SARS-CoV-2 162 

outdoor-lifetime significantly, potentially slowing the transmission of COVID-19. The predictions in 163 

Figure 3 are based on a constant temperature profile and do not account for daily temperature fluctuations, 164 

which may result in shorter lifetimes than predicted due to the exponential dependence of reaction rate on 165 

temperature. Additional environmental effects, like UV from sunlight, may further reduce inactivation time; 166 

with these limitations in mind, Figure 4 represents a conservative prediction of SARS-CoV-2 lifetime 167 

across the United States, and lifetimes greater than one month are not reported. 168 
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Figure 4 (Single Column). Lifetime of SARS-CoV-2 outside of a host across the United States in winter 169 

and summer. Predictions are based on (a) average temperature data from January to March, 2020 170 

(corresponding to the onset of the COVID-19 pandemic), and (b) average temperature data from July to 171 

September, 2019 (to show characteristic lifetimes in summer). Temperatures are reported in Figures S34 172 

and S35.  173 

We tested the predictive ability of the thermodynamic model presented here by comparing the results to 174 

experimental data that had not been used to train the model. SARS-CoV-1 was reported to require 5 days 175 
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at room temperature to achieve a 5-log reduction;46 our model predicts an inactivation time of 4.2 days 176 

under the same conditions. In another report, SARS-CoV-1 was heated to 56 °C and required only 6 minutes 177 

to achieve a 6-log reduction;29 our model predicts a time of 17 minutes. A third report claimed that SARS-178 

CoV-1 required 30 minutes to achieve an approximately 6-log reduction at 60 °C; 47 our model predicts a 179 

time of 10 minutes. A more recent report shows that SARS-CoV-2 and SARS-CoV-1 both require 72 hours 180 

for a 3-log reduction on plastic surfaces maintained around 23 °C; our model predicts lifetimes of  80 hours 181 

and 50 hours, respectively, in good agreement with the reported data.30 All of these reported lifetimes were 182 

within the uncertainty bounds of the model predictions. Considering the similarity in inactivation behavior 183 

for SARS-CoV-1 and SARS-CoV-2,30 validation with SARS-CoV-1 suggests that this model will be a 184 

useful tool to estimate the lifetime of SARS-CoV-2.  185 

 186 

The model is limited to temperature-based predictive ability and does not consider relative humidity or the 187 

fomite (i.e. the surface material on which a virion rests), both of which appear to affect inactivation 188 

times.11,16,30,48 Variations in lifetime at a given temperature due to these environmental factors can be 189 

interpreted as catalytic effects;49 incorporating a corresponding adjustment to the activation energy might 190 

enable additional predictive capabilities. Another limitation of this model is its reliance on a limited set of 191 

primary data which may contain experimental error (all primary data are reproduced in the supplementary 192 

material); statistical prediction uncertainties are described in the supplementary material, section S5. In 193 

addition, this model assumes that the enthalpy and entropy of the inactivation reaction are constant as 194 

temperature changes. This assumption is typically valid for macromolecules like proteins.22 Some reports 195 

suggest multiple inactivation reaction pathways can occur near room temperature, but these reports are 196 

limited in scope do not agree with each other, and further work would need to be done before considering 197 

or implementing such effects.31,40 Finally, the extrapolation of our model to higher temperatures outside the 198 
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range of the primary data (e.g. above 100 °C) may be unfounded if new inactivation reaction pathways 199 

become available at these elevated temperatures.  200 

 201 

Fortunately, the results in Table I indicate that dry heat decontamination is feasible for inactivation of all 202 

types of coronaviruses, including SARS-CoV-2. The most common material used in surgical masks and 203 

N95 respirators is non-woven polypropylene,50,51 which can be decontaminated  with dry heat below its 204 

melting point (156 °C to 168 °C).52,53 Cui and colleagues show that thermal cycling (75 °C, 30 min heating, 205 

applied over 20 cycles) does not degrade the filtration efficiency of N95-level facemasks,9 and Lin, et al., 206 

report no significant degradation in the effectiveness of surgical masks after heating to 160 °C for 3 min.7 207 

Therefore, we expect that dry heat decontamination is an effective decontamination method, while also 208 

feasible within relatively short times (conservatively, less than 40 min at 70℃; Table I) and achievable by 209 

the majority of people with access to home ovens, rice cookers, or similar inexpensive heating devices.  210 

 211 

In summary, this work provides guidelines to medical professionals and the general public for the effective, 212 

safe thermal decontamination of PPE. In addition, the sensitivity of coronaviruses to environmental 213 

temperature variations, shown in Table I and Figure 4, indicates that the thermal inactivation of SARS-214 

CoV-2 must be considered in epidemiological studies predicting its global spread and, potentially, seasonal 215 

recurrence; our model can be incorporated into these studies due to its ability to predict virus lifetime as a 216 

continuous function of environmental temperature. Finally, the modeling framework presented here offers 217 

a new fundamental understanding of virus thermal inactivation that can help fight the COVID-19 pandemic 218 

as well as future outbreaks of other novel coronaviruses.  219 

 220 
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See the supplementary material for primary datasets for each virus studied in this work, tables of activation 221 

energy and frequency factor calculated from the data, temperature data in the United States corresponding 222 

to winter and summer, and details on the statistical analysis and uncertainty in predictions.  223 
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