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Highlights 

 Daily temperature fluctuations are inversely correlated with virus lifetimes. 

 This work provides a physical explanation for the observed correlation. 

 Chemical kinetics describes the temperature-dependent rate of virus inactivation. 

 Higher daily temperature range (DTR) results in shorter virus lifetimes. 

 The effects of daily mean temperature and DTR are shown for SARS-CoV-2. 
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Abstract 1 

Epidemiological studies based on statistical methods indicate inverse correlations 2 

between virus lifetime and both (i) daily mean temperature and (ii) diurnal temperature range 3 

(DTR). While thermodynamic models have been used to predict the effect of constant-4 

temperature surroundings on virus inactivation rate, the relationship between virus lifetime and 5 

DTR has not been explained using first principles. Here, we model the inactivation of viruses 6 

based on temperature-dependent chemical kinetics with a time-varying temperature profile to 7 

account for the daily mean temperature and DTR simultaneously. The exponential Arrhenius 8 

relationship governing the rate of virus inactivation causes fluctuations above the daily mean 9 

temperature during daytime to increase the instantaneous rate of inactivation by a much greater 10 

magnitude than the corresponding decrease in inactivation rate during nighttime. This asymmetric 11 

behavior results in shorter predicted virus lifetimes when considering DTR and consequently 12 

reveals a potential physical mechanism for the inverse correlation with DTR reported in statistical 13 

epidemiological studies. In light of the ongoing COVID-19 pandemic, a case study on the effect 14 

of daily mean temperature and DTR on the lifetime of SARS-CoV-2 was performed for the five 15 

most populous cities in the United States. In Los Angeles, where mean monthly temperature 16 

fluctuations are low (DTR ≈ 7 °C), accounting for DTR decreases predicted SARS-CoV-2 lifetimes 17 

by only 10%; conversely, accounting for DTR for a similar mean temperature but larger mean 18 

monthly temperature fluctuations in Phoenix (DTR ≈ 15 °C) decreases predicted lifetimes by 50%. 19 

The modeling framework presented here provides insight into the independent effects of mean 20 

temperature and DTR on virus lifetime, and a significant impact on transmission rate is expected, 21 

especially for viruses that pose a high risk of fomite-mediated transmission. 22 

 23 

Keywords: Diurnal Temperature Range, Thermal Inactivation, Coronavirus, WAVE Model, 24 

SARS-CoV-2, COVID-19  25 
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Main Text 26 

1. Introduction 27 

Epidemiologists incorporate environmental effects when modeling the spread of diseases 28 

by applying statistical methods to determine whether environmental variables correlate with 29 

transmission rates (Malki et al., 2020; Rahman et al., 2020; Sajadi et al., 2020). Environmental 30 

temperature is often considered; however, most models only account for the daily mean 31 

temperature (Anver Sethwala, Mohamed Akbarally, Nathan Better, Jeffrey Lefkovits, Leeanne 32 

Grigg, 2020; Merow and Urban, 2020; Pirouz et al., 2020; Sajadi et al., 2020), despite studies 33 

reporting that the diurnal temperature range (DTR) also plays a significant role in forecasting the 34 

transmission of diseases (Islam et al., 2020; Liu et al., 2020; Luo et al., 2013; Ma et al., 2020; 35 

Merow and Urban, 2020). One recent study on the mosquito’s (Aedes aegypti) ability to transmit 36 

dengue virus showed that an increase in DTR reduces transmission rates at mean temperatures 37 

above 18 °C (Lambrechts et al., 2011). This work studied the importance of considering both (i) 38 

daily mean temperatures and (ii) temperature fluctuations; the pathogen was transmitted by an 39 

active vector, where the virus lifetime may be less significant than in the case of a passive vector 40 

(e.g., fomite-mediated transmission), but DTR nevertheless played a role. Meanwhile, 41 

thermodynamic models built on first principles have been used to predict the lifetime of viruses 42 

based on constant-temperature surroundings (Yap et al., 2020), but a framework describing the 43 

relationship between virus inactivation rate and DTR has not been established.  44 

The ongoing COVID-19 pandemic represents a critical area where such a fundamental 45 

physical model could find use. Recent literature describes epidemiological studies based on 46 

statistical analyses that document an inverse correlation between DTR and relative risk (RR), 47 

where RR represents the ratio of the probability of infection under a given condition to the 48 

probability of infection in a control group. For example, studies by Islam et al. and Liu et al. present 49 

statistical analyses accounting for DTR, and they both report a correlation coefficient between RR 50 

and DTR of less than one for COVID-19 (Islam et al., 2020; Liu et al., 2020), indicating lower 51 
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infection rates at higher values of DTR. A study conducted during the onset of the pandemic in 52 

China seemingly showed the opposite relationship, reporting a positive correlation of DTR with 53 

number of deaths due to COVID-19; however, higher DTR is also known to increase the overall 54 

risk of mortality (Kim et al., 2016), and as such, mortality can be a poor indicator for the rate of 55 

transmission in this context. More recent studies in India, Indonesia, and Russia report negative 56 

correlations between DTR and COVID-19 infection rates or number of cases (Pramanik et al., 57 

2020; Pratim, 2020; Supari et al., 2020), which is likely attributable, at least in part, to shorter virus 58 

lifetimes outside of a host because fomites have served as a mode of transmission for other 59 

viruses (Abdelrahman et al., 2020; Boone and Gerba, 2007; Xiao et al., 2017). Although fomite-60 

mediated transmission is not likely the primary mode of transmission for SARS-CoV-2, it still 61 

poses a risk (Bouchnita and Jebrane, 2020; Gao et al., 2021; Kampf et al., 2020; van Doremalen 62 

et al., 2020; Xiao et al., 2017; Zhao et al., 2020). These studies consider the aggregated statistical 63 

effects of environmental conditions to correlate DTR to number of cases, but they do not provide 64 

a fundamental understanding of the virus inactivation behavior. 65 

Prior work introduced an analytical model that uses the rate law for a first-order reaction 66 

and the Arrhenius equation to predict the lifetime of coronaviruses as a function of constant 67 

temperature (Yap et al., 2020). This model treats viruses as macromolecules that are inactivated 68 

by thermal denaturation of the proteins comprising each virion to predict the time required to 69 

achieve an n-log inactivation, which is defined as the ratio of final viable concentration of a 70 

pathogen to its initial concentration in terms of 10 raised to the nth power ([C]/[C0] = 10–n). For 71 

consistency throughout this work, we define the “lifetime” of a virus as the time required to achieve 72 

a 3-log reduction in concentration of that virus (i.e., n = 3) based on guidance from the US Food 73 

and Drug Administration (FDA); specifically, the FDA recommends a 3-log (99.9%) reduction in 74 

virus concentration for decontamination of non-enveloped viruses (CDC, 2008; FDA, 2020a, 75 

2020b; Oral et al., 2020), which are typically more resistant to thermal inactivation than enveloped 76 
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viruses (Firquet et al., 2015; Yeo et al., 2020), allowing a conservative prediction of lifetime for 77 

both types of viruses.  78 

The lifetime of a virus has an exponential dependence on temperature, fundamentally 79 

underpinning our hypothesis that accounting for environmental temperature fluctuations will 80 

decrease virus lifetimes compared to relying only on daily mean temperature data. To further 81 

explore this hypothesis, we introduced a numerical model to incorporate environmental 82 

temperature fluctuations, enabling predictions of the lifetime of viruses and showing the disparities 83 

between the computed virus lifetime when using (i) daily mean temperature only (i.e., a constant 84 

daily temperature profile) and (ii) accounting for both daily mean temperature and DTR (i.e., a 85 

time-varying temperature profile). Figure 1 shows a graphical illustration of the difference 86 

between models of virus lifetime based on these two profiles. The inactivation rate constant, k, 87 

varies exponentially with temperature (Figure 1(a)), and this exponential dependence results in 88 

temperature fluctuations above the mean influencing the instantaneous rate of inactivation to a 89 

greater extent than fluctuations below the mean. Figure 1(b) shows the difference in inactivation 90 

rate between the two temperature profiles. The plot on the right shows a greater increase in 91 

magnitude of the instantaneous value of k as a result of temperature fluctuations above the daily 92 

mean temperature (i.e., daytime) compared to the corresponding decrease in inactivation rate for 93 

temperatures below the mean (i.e., nighttime), resulting in a shorter overall virus lifetime. The 94 

illustration shows how incorporation of DTR generates shorter predicted virus lifetimes compared 95 

to daily mean temperature alone. We also show that the virus lifetime will always decrease when 96 

considering fluctuations in temperature in the Supplementary Material to provide a quantitative 97 

fundamental understanding of the phenomenon. We compare the change in concentration at the 98 

mean temperature to the change in concentration when considering temperature fluctuations  99 
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 100 

Figure 1 (Single Column). The rate of inactivation of a virus depends on temperature following 101 

the rate law and Arrhenius equation (a). The effect of a time-varying temperature profile about the 102 

mean temperature influences the rate constant, k, for inactivation of a virus and, consequently, 103 

the concentration of a virus over time (b). The exponential dependence of the rate constant on 104 

temperature results in a higher net rate of inactivation of a virus when incorporating environmental 105 

temperature fluctuations about the mean temperature. 106 

 107 

while accounting for both symmetric and asymmetric time-varying temperature profiles. This 108 

physical behavior could explain the inverse correlation between DTR and RR observed in 109 

statistical epidemiological studies (Islam et al., 2020; Lambrechts et al., 2011; Lin et al., 2020; Liu 110 

et al., 2020; Pramanik et al., 2020; Pratim, 2020; Supari et al., 2020). We go on to present a case 111 

study on SARS-CoV-2 in the five most populous cities in the United States to illustrate the 112 

difference in virus lifetime when accounting for DTR. In this work, we model the inactivation rate 113 
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of viruses based on temperature-dependent chemical kinetics with a time-varying environmental 114 

temperature profile to account for the daily mean temperature and DTR simultaneously. This 115 

physical model of the effect of DTR on virus lifetime will elucidate the role of environmental 116 

temperature and the spread of viruses. We also show that this physical model can be applied to 117 

a range of coronaviruses, as well as influenza, which exhibits similar temperature-dependent 118 

inactivation behavior and seasonality (McDevitt et al., 2010). This work may provide an 119 

explanation as to why regions with similar daily mean temperatures may have starkly different 120 

virus transmission rates. Our model may also explain—at least in part—the surge of COVID-19 121 

that has been observed in winter, as temperatures dropped and the virus lifetime increased by 122 

orders of magnitude. 123 

 124 

2. Material and Methods 125 

2.1 Theoretical Framework 126 

The rate law for a first-order reaction (Eq. 1) can be used to determine the inactivation of 127 

viruses (Yap et al., 2020). 128 

   129 

𝑑[𝐶]

𝑑𝑡
=  −𝑘(𝑇) ∙ [𝐶]                                                                     [1] 130 

 131 

The rate constant, k, is governed by the Arrhenius equation, and can be determined for a given 132 

temperature. Previous models have considered only a constant temperature profile: 133 

temperature, T, did not vary with time, t. In this work, we calculate a time-varying rate constant 134 

as a function of a time-varying temperature profile using the Arrhenius equation (Eq. 2): 135 

 136 

                                                        𝑘(𝑇) = 𝐴𝑒
−

𝐸𝑎
𝑅𝑇(𝑡)                                                                    [2] 137 

 138 
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where R is the gas constant, Ea is the activation energy associated with inactivation of the virus 139 

(i.e., the energy barrier that must be overcome for protein denaturation), and A is the frequency 140 

factor. The Ea and ln(A) values for SARS-CoV-2, SARS-CoV-1, and MERS-CoV were determined 141 

in prior work (Yap et al., 2020) and are reported in Table 1. The model can also be used to 142 

determine the lifetime of other viruses, including influenza viruses (responsible for the seasonal 143 

flu); we calculated values of Ea and ln(A) for Influenza A based on existing literature (McDevitt et 144 

al., 2010) to highlight the versatility of the model (primary data included in the Supplementary 145 

Material). These four enveloped viruses affect the respiratory system (Abdelrahman et al., 2020), 146 

and the corresponding results could be relevant to understanding the current pandemic 147 

(Abdelrahman et al., 2020; Zhu et al., 2020).  148 

Environmental temperatures vary continuously with time, and this time-varying 149 

temperature profile can be used to determine the rate constant as a function of time. The daily 150 

temperature maximum, Tmax, and minimum, Tmin, are available for most regions with weather 151 

stations, while daily hourly temperature data are not often reported; therefore, we chose the 152 

WAVE diurnal temperature model introduced by de Wit, based on maximum and minimum 153 

temperature values, to represent the continuous daily temperature profile for a given location 154 

(Baker et al., 1988; Cesaraccio et al., 2001; Reicosky et al., 1989). Two half-cosine functions 155 

were used to estimate this diurnal temperature profile. For the first half-cosine function, the period, 156 

p1, was calculated as the time between sunrise, when the minimum temperature occurs, and 1400 157 

hours solar noon, when the maximum temperature occurs. The second half-cosine function 158 

continues from 1400 hours solar noon throughout the remainder of the 24-hour day for the second 159 

period, p2, and joins with the first half-cosine function of the following day, d+1, at sunrise, where 160 

d represents the day for which the temperature used in the model is obtained. The sunrise times 161 
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in each city were obtained to determine the periods for the WAVE model. The temperature profile 162 

is defined by a piecewise function, given by Eq. 3: 163 

 164 

𝑇(𝑡) = {
−

𝑇𝑚𝑎𝑥,𝑑−𝑇𝑚𝑖𝑛,𝑑

2
𝑐𝑜𝑠 (

𝜋

𝑝1
𝑡)  +

𝑇𝑚𝑎𝑥,𝑑+𝑇𝑚𝑖𝑛,𝑑

2
, 𝑠𝑢𝑛𝑟𝑖𝑠𝑒𝑑 ≤ 𝑡 < 1400  ℎ𝑟𝑑

−
𝑇𝑚𝑎𝑥,𝑑−𝑇𝑚𝑖𝑛,𝑑+1

2
𝑐𝑜𝑠 (

𝜋

𝑝2
𝑡 −

𝜋

𝑝2
𝑝1)  +

𝑇𝑚𝑎𝑥,𝑑+𝑇𝑚𝑖𝑛,𝑑+1

2
,  1400 ℎ𝑟𝑑 ≤ 𝑡 < 𝑠𝑢𝑛𝑟𝑖𝑠𝑒𝑑+1

        [3] 165 

The expression for the daily temperature profile (Eq. 3) is substituted into Eq. 2, which is then 166 

combined with Eq. 1. Separation of variables is applied to yield the final expression used to 167 

determine the virus concentration after a given period of time: 168 

 169 

      ∫ 𝑑[𝐶]

[𝐶]

[𝐶]

[𝐶]0

=  ∫ −𝐴 exp (−
𝐸𝑎

𝑅𝑇(𝑡)
) 𝑑𝑡

𝑡

𝑡0

                                            [4] 170 

 171 

Due to the cumbersome temperature profile function, analytical integration of the right-hand side 172 

of Eq. 4 was not possible; we solved it numerically using Euler’s method (details included in the 173 

Supplementary Material).  174 

 175 

2.2 Data Collection 176 

The daily sunrise times and maximum and minimum temperature data for the five cities 177 

with the highest populations in the United States were obtained from the National Oceanic and 178 

Atmospheric Administration (NOAA) solar calculator and climate data online search. A sinusoidal 179 

temperature profile that takes into account each city’s maximum and minimum temperature was 180 

created for the period of January through December of 2020. The temperature profile, T(t), was 181 

then used to solve for the reduction in concentration of virus as a function of time. The lifetime of 182 

the virus starting from sunrise on each calendar day was determined by calculating the 183 

concentration of viable virions as a function of the continuous temperature distribution over time, 184 

and then determining the time required to achieve a 3-log reduction in concentration. The 185 
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maximum cutoff point of the predicted lifetime was taken to be 30 days for two reasons: (i) to 186 

correspond approximately to one month, after which other the uncertainty in predictions becomes 187 

large due to other potential inactivation mechanisms (Yap et al., 2020); and (ii) to include the virus 188 

lifetime for the colder winter months through the end of November 2020 (the predicted virus 189 

lifetimes in some cities span more than one month, thus requiring temperature data from the 190 

subsequent month; at the time of preparing the results in this manuscript, only data through 191 

December 2020 were available). The n values were determined by taking the logarithm of the 192 

ratio of concentration at a given time, [C], to the initial concentration, [C]0. 193 

 194 

2.3 Model Development: Activation Energy and Frequency Factor 195 

The relevant physical parameters governing thermal inactivation of viruses were quantified 196 

from primary data reported in the literature. The log of concentration reported in primary 197 

experimental data on temperature-based inactivation of viruses, ln([C)], was plotted as a function 198 

of time, t. According to the rate law for a first-order reaction (Eq. 1), we determined the rate 199 

constant, k, for inactivation of a virus at a given temperature, T, by applying a linear regression 200 

and calculating the slope, k = –∆ln([C])/∆t, as detailed in prior work (Yap et al., 2020). Each pair 201 

of k and T determined for a given virus was plotted; according to the Arrhenius equation (Eq. 2), 202 

these data points yield a linear relationship between ln(k) and 1/T. From the linear fit, the activation 203 

energy, Ea, and natural log of frequency factor, ln(A), can be obtained from the slopes and 204 

intercepts, respectively, of the fitted curves for each virus. These values were used in our analysis 205 

to determine the lifetimes of viruses in different regions as a function of daily mean temperature 206 

and daily temperature fluctuations using the numerical model presented in this work. The 207 

activation energy and frequency factor used here for SARS-CoV-2, SARS-CoV-1, and MERS-208 

CoV were already determined in prior work (Yap et al., 2020), whereas the procedure used to 209 

determine the thermodynamic parameters used in this work for Influenza A is detailed in the 210 

Supplementary Material. 211 
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3. Results 212 

The degree of inactivation of a virus, defined by the n-log reduction, is used to describe 213 

the order of magnitude decrease in virus concentration. The degree of inactivation is plotted 214 

against time to show the amount of time needed to achieve an n-log reduction, where Figure 2 215 

shows the lifetime (i.e., time until 3-log reduction) of three different coronaviruses and Influenza 216 

A computed using the time-varying temperature profile versus the daily mean temperature profile.  217 

 For illustration, temperature data for Houston starting on May 7 was used to determine the 218 

lifetime using the time-varying temperature profile versus the daily mean temperature profile. 219 

Figure 2 shows the disparity in predicted lifetime when using the two different temperature 220 

profiles. In this case, when computing the lifetime of SARS-CoV-2 using daily mean temperatures 221 

(Figure 2(a)), it took approximately 3 days to achieve a 3-log reduction, whereas the more realistic 222 

time-varying environmental temperature profile (Figure 2(b)) showed that decontamination would 223 

require less than 1.5 days. The reduction in predicted virus lifetime across all four viruses when 224 

accounting for the DTR was approximately 50%, highlighting the importance of DTR when 225 

modeling virus lifetime. All four of the viruses described in Table 1 are modeled in Figure 2; 226 

however, due to the ongoing pandemic, only SARS-CoV-2 is emphasized throughout the 227 

remainder of this work.  228 

For the top five most populous cities in the United States (New York City, Los Angeles, 229 

Chicago, Houston, and Phoenix), the lifetime of SARS-CoV-2 was calculated using the mean 230 

temperature profile and the time-varying temperature profile, with results plotted as blue and 231 

purple lines, respectively, in Figure 3(a-e). The percentage difference in lifetime predictions for 232 

these two temperature profiles was also determined and plotted in red. The daily mean 233 

temperature and DTR values were averaged by month for each city and plotted in Figure 3(f) to       234 

show the monthly variation in temperature and provide a comparison between the cities. During 235 

the winter months with low daily mean temperatures, the virus lifetime can be greater than one 236 
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month; as the temperature increases during the summer, the lifetime of the virus becomes several 237 

orders of magnitude shorter. Cities like Los Angeles, which have relatively low variations                       238 

 239 

Figure 2 (Single Column). Comparison of the degree of inactivation of three coronaviruses and 240 

Influenza A between (a) a simple daily mean temperature profile and (b) a time-varying 241 

temperature profile (temperature data shown for Houston starting on May 7). SARS-CoV-2 would 242 

require approximately 3 days to reach decontamination to a 3-log reduction in concentration 243 

according to the simple daily mean temperature model, whereas the more realistic time-varying 244 

environmental temperature profile showed that decontamination would require less than 1.5 days. 245 

The percentage difference in predicted lifetime across all four viruses when accounting for the 246 

DTR was approximately 50%.  247 

(a)

(b)
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 248 

Figure 3 (Double Column). Lifetime of SARS-CoV-2 and percentage difference between 249 

predictions using the simple daily mean temperature profile (blue line) versus the time-varying 250 

temperature profile (purple line) for the five most populous cities in the U.S. as reported by the 251 

U.S. Census Bureau: (a) New York City, (b) Los Angeles, (c) Chicago, (d) Houston, and (e) 252 

Phoenix. The plots show the predicted lifetime of SARS-CoV-2 for the months of January 2020 253 

through November 2020. The mean temperature and DTR pertaining to each city averaged by 254 

month are plotted in (f) to illustrate climate trends in each city. The symbols correspond to (a)-(e). 255 

The lifetime axis is scaled to reflect 30 days (7.2x103 min = 5 days); predicted values for lifetimes 256 

greater than one month are not reported, and the corresponding periods of time are shaded in 257 

gray. 258 

 259 

in mean temperature throughout the year, exhibit correspondingly small variations in SARS-CoV-260 

2 lifetime, whereas cities like New York City and Chicago show large variations in virus lifetime 261 

due to large variations in mean temperature throughout the year. We also observed that the 262 

percentage difference in lifetime predictions between the time-varying temperature profile and 263 
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daily mean temperature profile is relatively low for Los Angeles when compared to Phoenix, in 264 

this case due to the higher typical DTR experienced by Phoenix (2x the DTR of Los Angeles).  265 

 We studied the generalized effect of DTR on the lifetime of SARS-CoV-2 (for applicability 266 

to any city) by implementing a parametric sweep across both daily mean temperature and DTR 267 

(Figure 4), showing the predicted lifetime of the virus in Figure 4(b) and the percentage difference 268 

between the lifetimes calculated using the two different temperature profiles (simple daily mean 269 

versus time-varying) in Figure 4(c). The time-varying temperature profile used to calculate the 270 

virus lifetime in Figure 4(b) maintains a fixed sunrise time at 0600 hours; a comparison of virus 271 

lifetime computed between varied and fixed sunrise time showed an average percentage 272 

difference of 0.68% across all five cities discussed above (Figure S6 in the Supplementary 273 

Material). The lifetime at each point on the heat map was computed by holding the daily mean 274 

temperature and DTR constant in the WAVE temperature profile. The computed lifetime becomes 275 

dependent on the starting time of the temperature profile at high mean temperature and high DTR 276 

due to shorter virus lifetimes (i.e., less than one day); modeling the virus lifetime starting from 277 

solar noon (at the maximum temperature) versus sunrise (at the minimum temperature) can yield 278 

an order of magnitude higher initial rate constant due to the exponential dependence on 279 

temperature. To overcome this issue and accommodate generalized results, the values presented 280 

in the heat maps are provided on an averaged basis, determined by taking the geometric mean 281 

of lifetimes starting every hour for a full diurnal temperature cycle; i.e., the values shown in the 282 

plots represent an average of 24 predicted lifetimes, each offset by one hour in starting time 283 

throughout a diurnal cycle. The percentage difference is then calculated by comparing the 284 
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averaged lifetimes determined using the time-varying temperature profile with those from the 285 

simple daily mean temperature profile. 286 

 287 

Figure 4 (Single Column). The lifetime of SARS-CoV-2 varies with both the mean environmental 288 

temperature and the DTR. The lifetime of the virus is plotted against DTR for mean temperatures 289 

of 15, 20, and 25 °C to show that an increased DTR results in a shorter lifetime (a). A parametric 290 

sweep shows the lifetime of SARS-CoV-2 versus mean temperature and DTR (b), where 291 

increasing mean temperature and DTR both result in shorter virus lifetime. The percentage 292 

difference between predicted lifetime of SARS-CoV-2 calculated with the simple mean 293 

temperature profile versus lifetime calculated with the time-varying temperature profile accounting 294 

for DTR (c) shows that disparities between the two models are larger for higher values of DTR, 295 

with up to 50% deviation in lifetime due to DTR in some climates considering monthly averaged 296 

temperatures. The mean monthly DTR and mean temperatures for each city are overlaid to 297 

highlight trends of virus lifetime in cities with disparate climates. City-specific data points for 298 

months corresponding to mean temperatures less than 10 °C are not included.  299 
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4. Discussion  300 

As shown in Figure 4(a), for a given daily mean temperature, the virus lifetime is shorter 301 

for regions with higher DTR. Cities like Los Angeles with relatively small temperature variations 302 

throughout the year see correspondingly small effects on virus lifetime, whereas cities like 303 

Phoenix, with both high DTR and large variations in mean temperature, exhibit a wider range of 304 

virus lifetimes spanning across the contour lines on the lifetime heat map throughout a year 305 

(Figure 4(b)). Cities like New York City and Chicago experience extreme cold temperatures in 306 

winter, resulting in virus lifetimes greater than one month, but as the environmental temperatures 307 

become warmer, virus lifetime drastically decreases. Figure 4(c) shows the percentage difference 308 

between predictions based on daily temperature fluctuations and those only considering daily 309 

mean temperatures. At DTR = 0, this plot shows predictions based only on the mean temperature; 310 

in this case, the percentage difference between the two models is effectively 0%. This heat map 311 

also shows where daily temperature fluctuations become important. For example, Phoenix 312 

typically has a high average monthly mean temperature and a large DTR, resulting in a high 313 

percentage difference (35–50%) between the two models. On the other hand, Los Angeles, with 314 

lower monthly mean temperatures and DTR, exhibits a relatively small percentage difference (10–315 

20%). We also note that the day-to-day temperature variations could yield percentage differences 316 

as high as 120% (Figure 3b-d), further highlighting the influence DTR has on the prediction of 317 

virus lifetime across regions and illustrates that, as the DTR increases, the difference in predicted 318 

virus lifetime becomes more pronounced. For a given mean temperature, as the magnitude of 319 

DTR increases, the percentage difference between the two models becomes monotonically 320 

larger, signifying the importance of accounting for fluctuating environmental temperatures. This 321 

knowledge of how DTR influences virus lifetime becomes crucial when comparing policy decisions 322 

for cities or regions with similar daily mean temperatures but different DTR because they may 323 

experience disparate virus lifetimes. 324 
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The model presented in this work elucidates the independent effects of the magnitude of 325 

DTR and mean temperature on virus lifetime. This information could be of use when predicting 326 

the spread of the COVID-19 pandemic by providing a physical understanding of the effects of 327 

DTR, allowing epidemiologists to treat the environmental temperature variables independently. 328 

We note that reports in the literature using statistical analyses to study the correlation between 329 

various meteorological variables have considered DTR, and have found a negative correlation 330 

between the magnitude of DTR and number of cases of COVID-19. In one instance, Islam et al. 331 

studied the COVID-19 cases in seven climatic regions of Bangladesh from March to May 2020, 332 

and reported mean relative risk (RR) values of 0.95–0.97 as a function of increased DTR (with 333 

RR < 1 indicating that the risk of transmission is decreased) (Islam et al., 2020). Another study by 334 

Liu et al. reported a pooled RR of 0.9 for each 1 °C increase in the DTR for 30 cities in China from 335 

January 2020 to March 2020, and suggested that the viruses thrive in regions with low DTR or 336 

constant temperature (Liu et al., 2020). Recent studies on the number of COVID-19 cases in 337 

Indonesia, India, and Russia (the sub-arctic region) also reported negative correlations with DTR, 338 

all showing a similar trend despite representing vastly different regions of the world (Pramanik et 339 

al., 2020; Pratim, 2020; Supari et al., 2020). Prior work studying the dengue virus—an endemic 340 

virus in more than 100 countries—found that mosquitoes, the primary vector for transmission of 341 

the disease, are less susceptible to infection at high DTR, resulting in a lower rate of transmission 342 

of the disease (Ehelepola and Ariyaratne, 2016; Lambrechts et al., 2011); further investigation of 343 

the specifics of this vector of transmission in the context of DTR may be possible using our 344 

modeling framework. We also included Influenza A in Figure 2 because Influenza A exhibits 345 

temperature-dependent inactivation (see Figure S6 in Supplementary Material). Several studies 346 

indicate a positive correlation between Influenza A transmission and DTR, but these studies also 347 

mention that large temperature fluctuations tend to lower the immune system and consequently 348 

increase the risk of infections (Park et al., 2020; Zhang et al., 2019), suggesting that a more 349 
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detailed statistical analysis would be needed to determine the isolated effect of DTR on 350 

transmission of Influenza A.  351 

In the context of these findings, we emphasize that the purpose of the model presented 352 

here is to provide a fundamental understanding of the impact of realistic environmental 353 

temperature fluctuations on virus lifetime as compared to only considering mean daily 354 

temperatures. The model does not consider relative humidity, fomite material (i.e. the surface 355 

contaminated with a virus), or solar irradiation on exposed outdoor surfaces, all of which are 356 

known to affect virus lifetime (Carleton et al., 2021; Ficetola and Rubolini, 2021; McDevitt et al., 357 

2010; van Doremalen et al., 2020; Zhang et al., 2020; Zhao et al., 2020). Relative humidity and 358 

fomite material can be treated as catalytic effects (Morris et al., 2020; Roduner, 2014) (among 359 

other mechanisms (Lin and Marr, 2020)), and adjustments to the activation energy could allow for 360 

additional predictive capabilities. Varying non-pharmaceutical intervention methods and social 361 

structures also play a role in the transmission of diseases and must be carefully accounted for 362 

when modelling the site-specific spread of the current pandemic (Bouchnita and Jebrane, 2020; 363 

Ficetola and Rubolini, 2021; Lin et al., 2020; Thu et al., 2020; Zhao et al., 2020). For simplicity 364 

and ease of comparison between the environmental temperatures of different cities, the 365 

temperature profiles used in this work are assumed to follow a smooth sinusoidal profile as 366 

described by the WAVE model; in reality, the actual temperature profiles are not smooth, and 367 

deviations from a sinusoidal profile may occur. Fortunately, specific regional environmental 368 

temperature can easily be incorporated into Eq. 4 in future work as T(t). Finally, we note that there 369 

are different methods to express time-varying temperature profiles; the WAVE profile was utilized 370 

in this study due to its simple, yet accurate, depiction of the diurnal temperature cycle, where prior 371 

work has shown that the WAVE model had an R2 value of 0.95 compared to actual observed 372 

hourly temperature data and exhibited an absolute error of less than 3 °C (Baker et al., 1988; 373 

Cesaraccio et al., 2001; Reicosky et al., 1989). The lifetimes presented in Figure 3 have been 374 

limited to a maximum of one month due to inherent uncertainties in predictions at colder 375 
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temperatures and longer times. In Figure 4, the lower limit of the daily mean temperature was 376 

chosen as 10 °C because the lifetime at lower temperatures is greater than one month.  377 

 378 

5. Conclusions 379 

This study presents an analytical framework to understand the effects of temperature 380 

fluctuations on virus lifetime. We show that regions with similar mean temperatures can potentially 381 

exhibit a difference in virus lifetimes of greater than 50% when accounting for DTR, and day-to-382 

day temperature variations in a city could result in differences as large as 120%. Our model allows 383 

for incorporation of realistic temperature profiles to predict the transmission of viruses, and could 384 

therefore play a role in mitigating the spread of COVID-19. In addition, an array of mean 385 

environmental temperature and DTR values were used to determine the virus lifetime and 386 

highlight, for a given mean temperature, the magnitude of DTR at which temperature fluctuations 387 

become significant in predicting virus lifetime. Finally, we show that the model can be adapted to 388 

predict lifetimes and seasonal trends for other viruses—including, potentially, novel viruses that 389 

have not yet been encountered—and used as a tool based on lab-scale experimental 390 

characterization or simulation, rather than statistical analysis of transmission after a virus has 391 

already become widespread. Ultimately, this work describes how time-varying environmental 392 

temperature profiles result in shorter virus lifetime with a thermodynamic framework to bridge the 393 

gap between statistical analyses and physical understanding.  394 
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Graphical Abstract 395 
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Table 1. Activation energy and frequency factor values used to determine virus lifetime. Values 

for coronaviruses were determined in prior work (Yap et al., 2020). Primary datasets used to 

obtain activation energy and frequency factor for Influenza A are provided in the Supplementary 

Material. 
 

 Activation Energy, Ea [kJ/mol] Frequency Factor, ln(A) [1/min] 

SARS-CoV-2 135.7 48.6 

SARS-CoV-1 142.6 51.9 

MERS-CoV 135.4 49.5 

Influenza A 41.0 12.2 
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Supplementary Text 
 

Numerical Analysis 
 

Due to the dependence of temperature on time following the WAVE profile, the integral 

shown in Eq. 4 in the main text cannot be solved analytically. Euler’s method is used to determine 

the concentration of virus at a given time for a given temperature profile, T(t). Eq. S1 through S3 

show the steps used to solve for the concentration after a given time step: 
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[𝐶]𝑖+1 = −𝐴 exp (−
𝐸𝑎

𝑅𝑇(𝑡)
) [𝐶]𝑖  𝑑𝑡 + [𝐶]𝑖                                   [Eq. S3] 

 

 

where i represents the number of time steps needed to determine the viable virus concentration. 

At t = 0, i = 0, corresponding to the initial virus concentration, [C]0. The vertical axis in Figure 2 in 

the main text is plotted in terms of an n-log reduction. This value is determined by taking the ratio 

between the concentration at a given time, [C], and the initial concentration, [C]0, in terms of orders 

of magnitude (the base-10 logarithm of the ratio): 

 

𝑛 = 𝑙𝑜𝑔10
[𝐶]

[𝐶]0
                                                         [Eq. S4] 

 

Quantitative Understanding of the Effects of DTR 

We show that the virus concentration will always be lesser when taking into account the 

diurnal temperature range (DTR) compared to the case considering only mean temperature 

(Figure S1(A)). By evaluating the change in concentration over an infinitesimally small timestep 
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(Figure S1(B)), we can treat the local time-varying temperature profile as a step function, with 

ΔT representing an arbitrary temperature variation from the mean. To prove that the change in 

concentration, Δ[C] (i.e., the final concentration minus the initial concentration) when accounting 

for DTR will be lesser (more negative) than when only considering the mean temperature over a 

given timestep, we start by assigning an inequality corresponding to our hypothesis: 

 

∆[𝐶]𝑚𝑒𝑎𝑛 > ∆[𝐶]𝐷𝑇𝑅                                                     [Eq. S5] 

 

The Δ[C] is more negative for a greater magnitude of decrease in concentration, so the 

Δ[C] considering DTR will be less than the Δ[C] based on the mean temperature if temperature 

fluctuations result in a larger decrease in concentration. Based on the rate law for a first-order 

reaction, d[C]/dt = C’, which is also a function of temperature, T, the change in concentration is 

over an infinitesimally small timestep is:  

 

∆[𝐶] = 𝐶′(𝑇)∆𝑡                                                         [Eq. S6] 

                                      

Substituting Eq. S6 into Eq. S5 and multiplying by the relevant timesteps shown in Figure 
S1(B) to determine the concentration, we obtain: 

 

𝐶′(𝑇)(𝑝 + 𝑞)∆𝑡 > 𝐶′(𝑇 + 𝑝∆𝑇)(𝑞∆𝑡) + 𝐶′(𝑇 − 𝑞∆𝑇)(𝑝∆𝑡)                          [Eq. S7] 

 

where p and q are numbers between 0 and 1 that sum to 1 (i.e., p + q = 1). We assign 

these p and q parameters to allow for a more general consideration of any asymmetric 

temperature profile for which the average of the temperature variations over a given timestep is 

equal to the mean temperature (Figure S1(C)). At the limiting case where p = 1 and q = 0 (or 

vice versa), the profile is equivalent to the mean temperature case.  

 

Any arbitrary time-varying temperature profile T(t) can be constructed from a sum of many 

of these timesteps; therefore, by showing that this temperature profile with temperature 

fluctuations always results in a larger decrease in concentration than the mean temperature 

profile at every timestep, the result can be extended to any time-varying temperature profile T(t), 

including the temperature profile accounting for DTR in this work. 
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We take a second-order Taylor series expansion for a case with small temperature 

variations above and below the mean: 

 

   𝐶′(𝑇 + 𝑝∆𝑇) =  𝐶′(𝑇) +
𝑑𝐶′(𝑇)

𝑑𝑇
(𝑝∆𝑇) +

1

2

𝑑2𝐶′(𝑇)

𝑑𝑇2
(𝑝∆𝑇)2                            [Eq. S8] 

        

𝐶′(𝑇 − 𝑞∆𝑇) =  𝐶′(𝑇) −
𝑑𝐶′(𝑇)

𝑑𝑇
(𝑞∆𝑇) +

1

2

𝑑2𝐶′(𝑇)

𝑑𝑇2  (𝑞∆𝑇)2                            [Eq. S9] 

 

We substitute the second-order Taylor series expansion into Eq. S7 to obtain: 

 

𝐶′(𝑇)∆𝑡 > 𝐶′(𝑇)∆𝑡 +
𝑑2𝐶′(𝑇)

𝑑𝑇2

𝑝𝑞∆𝑡∆𝑇2

2
                                        [Eq. S10] 

 

When ΔT = 0, we see that the both sides of the inequality are equal, recovering the original 

form when only considering mean temperatures. In order for this inequality to hold true, the 

second term on the right-hand side must always be negative.  

                                                                                                                                                                                                                                                                             
𝑑2𝐶′(𝑇)

𝑑𝑇2

𝑝𝑞∆𝑡∆𝑇2

2
 < 0                                                      [Eq. S11] 

 

Since p, q, ΔT, and Δt are always positive, we focus on expanding the second order 

differential equation for C’ by substituting the Arrhenius equation (Eq. S18): 

 
𝑑2

𝑑𝑇2 (−𝐴𝑒𝑥𝑝 (−
𝐸𝑎

𝑅𝑇
) 𝐶0) < 0                                               [Eq. S12] 

 

Taking the first derivative with respect to temperature:  

 
𝑑

𝑑𝑇
(−

𝐴𝐶0𝐸𝑎

𝑅
𝑒𝑥𝑝 (−

𝐸𝑎

𝑅𝑇
)

1

𝑇2 ) < 0                                            [Eq. S13] 

 

Taking the second derivative with respect to temperature:  

 

−
𝐴𝐶0𝐸𝑎

2

𝑅2 𝑒𝑥𝑝 (−
𝐸𝑎

𝑅𝑇
)

1

𝑇4 +
2𝐴𝐶0𝐸𝑎

𝑅
𝑒𝑥𝑝 (−

𝐸𝑎

𝑅𝑇
)

1

𝑇3  < 0                               [Eq. S14] 

 

After simplifying Eq. S14, the criterion for ∆[𝐶]𝑚𝑒𝑎𝑛 > ∆[𝐶]𝐷𝑇𝑅 is: 
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1

2

𝐸𝑎

𝑅𝑇
> 1                                                             [Eq. S15] 

 

In order to demonstrate that the inequality holds true for all relevant temperature 

conditions, we determined “worst-case scenario” values for the left-hand side of the inequality 

for the viruses studied in this work at the highest environmental temperature ever recorded on 

Earth (58 °C in El Azizia, Libya (Mildrexler et al., 2006)) to obtain conservative estimates (Table 

S1). We show that these values are always much greater than 1, demonstrating that fluctuating 

temperatures will always reduce virus lifetime compared to the corresponding mean 

temperature for the viruses studied here at any environmentally relevant conditions.  

 

In fact, considering the case for Influenza A, the absolute temperature would need to be 

7.5 times greater than the current characteristic environmental temperature (i.e., greater than 

~2500 K) for the inequality to break down. Under all relevant environmental temperatures, the 

activation energy is much greater than the thermal energy. When comparing the Arrhenius 

equation with the Eyring equation, we also observe that the activation energy is approximately 

equal to the activation enthalpy, ∆𝐻‡, at environmental temperatures (i.e., the RT term is 

negligible in Eq. S16):  

 

𝐸𝑎 = ∆𝐻‡ + 𝑅𝑇                                                        [Eq. S16] 

 

We plotted the concentration of virus (Eq. S3) after a given timestep and compared the 

relative degree of inactivation when considering a fluctuating temperature profile to the case 

considering only the mean temperature to illustrate that the magnitude of change in 

concentration is always greater for the case of the fluctuating temperature profile (Eq. S5). The 

relative n-log reduction (where the value of n corresponds to the order-of-magnitude degree of 

inactivation) is defined as: 

 

 𝑛𝐷𝑇𝑅

𝑛𝑚𝑒𝑎𝑛
=

𝑙𝑜𝑔10
[𝐶]𝐷𝑇𝑅

[𝐶]𝑖

𝑙𝑜𝑔10
[𝐶]𝑚𝑒𝑎𝑛

[𝐶]𝑖

                                                     [Eq. S17] 

 

We plotted the relative n-log reduction against the value of p at a mean temperature of     

20 °C for ΔT values of 5, 10, 15, and 20 °C (Figure S1(D)); the plot shows that considering 
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fluctuations in temperature (such as DTR) will always serve to increase degree of inactivation, in 

turn resulting in a lower virus concentration. This trend illustrates that the inequality 

hypothesized in Eq. S5 holds true. Figure S1(D) also shows that for a higher ΔT, a higher rate 

of inactivation can occur when temperature fluctuations above the mean are higher, but for a 

shorter time period (i.e., p > q). At ΔT = 20 °C, we observe a fourfold increase in the relative n-

log reduction of virus (i.e., 10,000x decrease in concentration) as compared to the mean 

temperature case when p ≈ 0.8, highlighting the exponential dependence of virus lifetime on 

temperature. From this quantitative approach, the duration and magnitude of temperature 

variations from the mean are shown to play a critical role in the degree of virus inactivation. 

 

Temperature Profile 
 

In Figures 3 and 4 in the main text, the WAVE temperature profile is used to model daily 

environmental temperature fluctuations. In Figure 3, the sunrise time (Dataset S2) used to 

generate the temperature profile corresponds to each city shown. However, for the heat map 

shown in Figure 4, a more general temperature profile is used, in which the sunrise time is fixed 

at 0600 hours. Fixing the sunrise time has a negligible effect on the resulting computed virus 

lifetimes. The virus lifetimes in the five major cities studied in this work were determined using 

both city-specific sunrise times and an 0600 fixed sunrise time, with the average percentage 

difference for all cities between these two methods being 0.68% (Figure S8). 

 

Influenza A Inactivation Data 
 

Data on the inactivation of influenza virus (A/Puerto Rico/8/34/H1N1 strain) in terms of 

time required to achieve n-log reduction for a given temperature were obtained from Greatorex et 

al. (Greatorex et al., 2011). The data presented in their work corresponds to the inactivation of 

H1N1 on a fomite of stainless steel. The authors report experimental conditions with temperatures 

ranging from 17–21 °C; we used an intermediate value of 19 °C in our work. The relative humidity 

reported in their work was 23 – 24 %. The natural logarithm of 10-n was plotted against time 

following the linearized rate law for a first-order reaction (Eq. 1), and the time scale was converted 

to minutes according to convention. A linear fit for the data at 19 °C is presented in Figure S2. 

The resulting slope was used to determine the rate constant at this temperature, reported in Table 
S2. 
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We followed the same procedure to homogenize data on influenza virus (A/PR/8/34 H1N1 

strain) reported by McDevitt et al. (McDevitt et al., 2010) for H1N1 on a fomite of stainless steel. 

Linear fits for data at 55, 60, and 65 °C at a relative humidity of 25% are presented in Figures S3 
through S5. The resulting slopes were used to determine the rate constants at these 

temperatures, reported in Table S2. 

Influenza A Temperature-Dependent Inactivation 
 

According to the rate law for a first-order reaction (Eq. 1), the rate constant, k, can be 

determined for the inactivation of a virus at a given temperature, T, by applying a linear regression 

and calculating the slope, k = –∆ln([C])/∆t. Each pair of k and T determined from the primary data 

is plotted according to the linearized Arrhenius equation (Eq. S7) and yields a linear relationship 

between ln(k) and 1/T (Figure S6). The slope and intercept of the linear fit correspond to the 

activation energy, Ea, and log of frequency factor, ln(A). The log of frequency factor, ln(A), is 

plotted against activation energy, Ea, for the viruses considered in this work; the linear correlation 

between ln(A) and Ea indicates that the viruses undergo a thermal denaturation process following 

the Meyer-Neldel rule, supporting our hypothesis that the viruses are inactivated due to the 

thermal denaturation of proteins that comprise each virion (Figure S7). The linear regression 

calculated in this work after including influenza A, [ln(A) = 0.394Ea – 5.63], is similar to the linear 

regression tabulated in previous work for only coronaviruses (Yap et al., 2020), and is nearly 

identical to those calculated in two prior studies on the denaturation of tissues and cells, which 

report [ln(A) = 0.380Ea – 5.27] (Qin et al., 2014) and [ln(A) = 0.383Ea – 5.95] (Wright, 2003).  

 

ln(𝑘) = –
𝐸𝑎

𝑅𝑇
+  ln(𝐴) [Eq. S18] 

 

Temperature Data 
 

The temperature data for the five most populous cities in the United States from January 

1, 2020, to December 29, 2020, were obtained from the National Oceanic and Atmospheric 

Administration (NOAA) climate data online search database. Temperature data from weather 

stations located at the major airports in each city were used in this work, i.e., JFK International 

Airport (New York City), Los Angeles International Airport (Los Angeles), Chicago O’Hare 

International Airport (Chicago), George Bush Intercontinental Airport (Houston), and Phoenix Sky 

Harbor Airport (Phoenix). The complete temperature dataset is included as Dataset S1.  
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Sunrise Time Data 
 

The sunrise times used to determine the time periods of the half-cosine functions in the 

temperature profiles for the five most populous cities in the United States from January 1, 2020, 

to December 29, 2020, were obtained from the National Oceanic and Atmospheric Administration 

(NOAA) solar calculator. The complete dataset is included as Dataset S2; the highlighted rows 

and columns were adjusted for daylight saving time (note that Phoenix does not observe daylight 

saving time).   

 

Fixed Sunrise Time (0600 hours) versus City-Specific Sunrise Time 

 

The percentage difference in results when fixing the sunrise time at 0600 hours in the 

model versus assigning the actual sunrise time for each specific region is plotted in Figure S9. 

The low percentage difference (0.68% on average) allowed us to neglect the effect of region-

specific sunrise time, and a fixed sunrise time at 0600 hours was used in the model to calculate 

the lifetimes displayed in the parametric sweep shown in Figure 4 of the main text.  
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Fig. S1. (A) Sinusoidal temperature profile used to model temperature variations around the 

mean temperature. (B) Considering the temperature profile at a small timestep, the temperature 

profile can be approximated as a step function. The variables p and q are introduced to analyze 

cases where the temperature profile is not symmetric, but the average of this temperature 

profile is always equal to the mean temperature; p and q are positive numbers and p + q = 1. 

(C) Illustration of potential temperature profiles for different values of p. (D) The n-log reduction 

of virus inactivation when considering DTR, nDTR, relative to the n-log reduction of virus when 

only considering mean temperatures, nmean, against an array of p values varying from 0 to 1. 

The graph is plotted for a mean temperature of 20 °C and ΔT values of 5, 10, 15, and 20 °C to 

demonstrate the importance of considering DTR.  

B D

A C
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Fig. S2. Primary data from Greatorex et al. (Greatorex et al., 2011) for inactivation of H1N1 at 

19 °C after converting the n-log reduction values from base-10 logarithm to natural log. We fit a 

line to the data to determine the rate constant at 19 °C.  
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Fig. S3. Primary data from McDevitt et al. (McDevitt et al., 2010) for inactivation of H1N1 at 55 

°C after converting the n-log reduction values from base-10 logarithm to natural log. We fit a line 

to the data to determine the rate constant at 55 °C.  
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Fig. S4. Primary data from McDevitt et al. (McDevitt et al., 2010) for inactivation of H1N1 at 60 

°C after converting the n-log reduction values from base-10 logarithm to natural log. We fit a line 

to the data to determine the rate constant at 60 °C.  
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Fig. S5. Primary data from McDevitt et al. (McDevitt et al., 2010) for inactivation of H1N1 at 65 

°C after converting the n-log reduction values from base-10 logarithm to natural log. We fit a line 

to the data to determine the rate constant at 65 °C.  
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Fig. S6. From the Influenza A virus dataset, the rate constant, k, for a given temperature was 

found using linear regression according to Eq. S5. The slope and intercept of the linear fit 

correspond to the activation energy, Ea, and frequency factor, ln(A), for Influenza A.  
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Fig. S7. Thermal inactivation parameters governing the inactivation behavior of SARS-CoV-2, 

SARS-CoV-1, MERS-CoV, and Influenza A. The frequency factor, ln(A), is plotted against the 

activation energy, Ea, according to the linearized Arrhenius equation; the linear correlation 

indicates protein denaturation following the Meyer-Neldel rule.  
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Fig. S8. The predicted lifetimes (7.2x103 min = 5 days) of SARS-CoV-2 for the months of 

January 2020 to November 2020, along with the percentage difference using city-specific and 

fixed (0600 hours) sunrise times, are plotted for (a) New York City, (b) Los Angeles, (c) 

Chicago, (d) Houston, and (e) Phoenix. The average percentage difference between these 

methods for all cities is 0.68%. Phoenix experiences the highest percentage difference of 

5.55%. The region with this high percentage difference, from April to September 2020, is 

magnified to show the difference in lifetimes, which is likely due to a higher rate of inactivation at 

the higher overall temperatures in Phoenix during these months, highlighting the importance of 

the period of time between sunrise and solar noon during high environmental temperatures. 
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Table S1: Values for the left-hand side of Eq. S13 to prove the inequality. Temperature was 
chosen as a conservative estimate for the maximum temperature attainable on Earth. 

Activation Energy, Ea [kJ/mol] Ea/2RT (Eq. S13) 
SARS-CoV-2 135.7 24.7 >> 1 
SARS-CoV-1 142.6 25.9 >> 1 
MERS-CoV 135.4 24.6 >> 1 
Influenza A 41.0 7.5 >> 1 

Table S2. Data for Influenza A obtained from Figures S2-5 and plotted in Figure S6 and data for 
SARS-CoV-2, SARS-CoV, and MERS-CoV from prior work (Yap et al., 2020) 

Dataset SI Ref. 
  T 
[°C] 

1/T•104 
[104/K] 

k = -d(ln[C])/dt 
[1/min] 

ln(k) 
[1/min] 

Influenza A (Greatorex et al., 2011) 19 34.25 0.0092 -4.689
Influenza A (McDevitt et al., 2010) 55 30.49 0.0522 -2.953
Influenza A (McDevitt et al., 2010) 60 30.03 0.0618 -2.784
Influenza A (McDevitt et al., 2010) 65 29.59 0.1083 -2.223

SARS-CoV-2 (Chin et al., 2020) 4 36.10 0.0000597 -9.726
SARS-CoV-2 (Chin et al., 2020) 22 33.90 0.000696 -7.270
SARS-CoV-2 (van Doremalen et al., 2020) 22 33.90 0.00166 -6.401
SARS-CoV-2 (Chin et al., 2020) 37 32.36 0.00557 -5.190
SARS-CoV-2 (Chin et al., 2020) 56 30.39 0.724 -0.323
SARS-CoV-2 (Chin et al., 2020) 70 29.15 3.36 1.212 
SARS-CoV-1 (van Doremalen et al., 2020) 22 33.90 0.00191 -6.261
SARS-CoV-1 (Darnell and Taylor, 2006) 56 30.40 0.9077 -0.097
SARS-CoV-1 (Darnell and Taylor, 2006) 65 29.59 2.869 1.054 
MERS-CoV (van Doremalen et al., 2013) 20 34.13 0.0027 -5.914
MERS-CoV (Leclercq et al., 2014) 56 30.40 0.16 -0.999
MERS-CoV (Leclercq et al., 2014) 65 29.59 3.62 2.121 
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Table S3. Experimental conditions at which Ea and ln(A) are determined for the viruses 
analyzed in this work. 

 

 
 

 

  

Dataset Ref. T [°C] Fomite RH 

SARS-CoV-2 (Chin et al., 2020) 4 Virus transport 
Medium 

Not reported 

SARS-CoV-2 (Chin et al., 2020) 22 
Virus transport 

medium Not reported 

SARS-CoV-2 (van Doremalen et al., 2020) 22 Plastic 40% 

SARS-CoV-2 (Chin et al., 2020) 37 Virus transport 
medium Not reported 

SARS-CoV-2 (Chin et al., 2020) 56 Virus transport 
medium Not reported 

SARS-CoV-2 (Chin et al., 2020) 70 Virus transport 
medium 

Not reported 

SARS-CoV-1 (van Doremalen et al., 2020) 22 Plastic 40% 

SARS-CoV-1 (Darnell and Taylor, 2006) 56 Human serum Not reported 

SARS-CoV-1 (Darnell and Taylor, 2006) 65 Human serum Not reported 

MERS-CoV (van Doremalen et al., 2013) 20 Plastic 40% 

MERS-CoV (Leclercq et al., 2014) 56 Modified 
Eagle’s medium Not reported 

MERS-CoV (Leclercq et al., 2014) 65 Modified 
Eagle’s medium Not reported 

Influenza A (Greatorex et al., 2011) 19 Stainless steel 23-24% 

Influenza A (McDevitt et al., 2010) 55 Stainless steel 25% 

Influenza A (McDevitt et al., 2010) 60 Stainless steel 25% 

Influenza A (McDevitt et al., 2010) 65 Stainless steel 25% 
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Supplementary Datasets  
 

Dataset S1 (separate file). Temperature data corresponding to the five most populous cities in 

the United States.   
 

Dataset S2 (separate file). Sunrise time data corresponding to the five most populous cities in 

the United States. Highlighted cells are adjusted for daylight saving time (note that Phoenix 

does not observe daylight saving time).   
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