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Highlights

o Daily temperature fluctuations are inversely correlated with virus lifetimes.

This work provides a physical explanation for the observed correlation.

Chemical kinetics describes the temperature-dependent rate of virus inactivation.

Higher daily temperature range (DTR) results in shorter virus lifetimes.

The effects of daily mean temperature and DTR are shown for SARS-CoV-2.
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Abstract

Epidemiological studies based on statistical methods indicate inverse correlations
between virus lifetime and both (i) daily mean temperature and (ii) diurnal temperature range
(DTR). While thermodynamic models have been used to predict the effect of constant-
temperature surroundings on virus inactivation rate, the relationship between virus lifetime and
DTR has not been explained using first principles. Here, we model the inactivation of viruses
based on temperature-dependent chemical kinetics with a time-varying temperature profile to
account for the daily mean temperature and DTR simultaneously. The exponential Arrhenius
relationship governing the rate of virus inactivation causes fluctuations above the daily mean
temperature during daytime to increase the instantaneous rate of inactivation by a much greater
magnitude than the corresponding decrease in inactivation rate during nighttime. This asymmetric
behavior results in shorter predicted virus lifetimes when considering DTR and consequently
reveals a potential physical mechanism for the inverse correlation with DTR reported in statistical
epidemiological studies. In light of the ongoing COVID-19 pandemic, a case study on the effect
of daily mean temperature and DTR on the lifetime of SARS-CoV-2 was performed for the five
most populous cities in the United States. In Los Angeles, where mean monthly temperature
fluctuations are low (DTR =7 °C), accounting for DTR decreases predicted SARS-CoV-2 lifetimes
by only 10%; conversely, accounting for DTR for a similar mean temperature but larger mean
monthly temperature fluctuations in Phoenix (DTR = 15 °C) decreases predicted lifetimes by 50%.
The modeling framework presented here provides insight into the independent effects of mean
temperature and DTR on virus lifetime, and a significant impact on transmission rate is expected,

especially for viruses that pose a high risk of fomite-mediated transmission.

Keywords: Diurnal Temperature Range, Thermal Inactivation, Coronavirus, WAVE Model,

SARS-CoV-2, COVID-19
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Main Text
1. Introduction

Epidemiologists incorporate environmental effects when modeling the spread of diseases
by applying statistical methods to determine whether environmental variables correlate with
transmission rates (Malki et al., 2020; Rahman et al., 2020; Sajadi et al., 2020). Environmental
temperature is often considered; however, most models only account for the daily mean
temperature (Anver Sethwala, Mohamed Akbarally, Nathan Better, Jeffrey Lefkovits, Leeanne
Grigg, 2020; Merow and Urban, 2020; Pirouz et al., 2020; Sajadi et al., 2020), despite studies
reporting that the diurnal temperature range (DTR) also plays a significant role in forecasting the
transmission of diseases (Islam et al., 2020; Liu et al., 2020; Luo et al., 2013; Ma et al., 2020;
Merow and Urban, 2020). One recent study on the mosquito’s (Aedes aegypti) ability to transmit
dengue virus showed that an increase in DTR reduces transmission rates at mean temperatures
above 18 °C (Lambrechts et al., 2011). This work studied the importance of considering both (i)
daily mean temperatures and (ii) temperature fluctuations; the pathogen was transmitted by an
active vector, where the virus lifetime may be less significant than in the case of a passive vector
(e.g., fomite-mediated transmission), but DTR nevertheless played a role. Meanwhile,
thermodynamic models built on first principles have been used to predict the lifetime of viruses
based on constant-temperature surroundings (Yap et al., 2020), but a framework describing the
relationship between virus inactivation rate and DTR has not been established.

The ongoing COVID-19 pandemic represents a critical area where such a fundamental
physical model could find use. Recent literature describes epidemiological studies based on
statistical analyses that document an inverse correlation between DTR and relative risk (RR),
where RR represents the ratio of the probability of infection under a given condition to the
probability of infection in a control group. For example, studies by Islam et al. and Liu et al. present
statistical analyses accounting for DTR, and they both report a correlation coefficient between RR

and DTR of less than one for COVID-19 (Islam et al., 2020; Liu et al., 2020), indicating lower
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infection rates at higher values of DTR. A study conducted during the onset of the pandemic in
China seemingly showed the opposite relationship, reporting a positive correlation of DTR with
number of deaths due to COVID-19; however, higher DTR is also known to increase the overall
risk of mortality (Kim et al., 2016), and as such, mortality can be a poor indicator for the rate of
transmission in this context. More recent studies in India, Indonesia, and Russia report negative
correlations between DTR and COVID-19 infection rates or number of cases (Pramanik et al.,
2020; Pratim, 2020; Supari et al., 2020), which is likely attributable, at least in part, to shorter virus
lifetimes outside of a host because fomites have served as a mode of transmission for other
viruses (Abdelrahman et al., 2020; Boone and Gerba, 2007; Xiao et al., 2017). Although fomite-
mediated transmission is not likely the primary mode of transmission for SARS-CoV-2, it still
poses a risk (Bouchnita and Jebrane, 2020; Gao et al., 2021; Kampf et al., 2020; van Doremalen
etal., 2020; Xiao et al., 2017; Zhao et al., 2020). These studies consider the aggregated statistical
effects of environmental conditions to correlate DTR to number of cases, but they do not provide
a fundamental understanding of the virus inactivation behavior.

Prior work introduced an analytical model that uses the rate law for a first-order reaction
and the Arrhenius equation to predict the lifetime of coronaviruses as a function of constant
temperature (Yap et al., 2020). This model treats viruses as macromolecules that are inactivated
by thermal denaturation of the proteins comprising each virion to predict the time required to
achieve an n-log inactivation, which is defined as the ratio of final viable concentration of a
pathogen to its initial concentration in terms of 10 raised to the n' power ([C}/[Co] = 10™"). For
consistency throughout this work, we define the “lifetime” of a virus as the time required to achieve
a 3-log reduction in concentration of that virus (i.e., n = 3) based on guidance from the US Food
and Drug Administration (FDA); specifically, the FDA recommends a 3-log (99.9%) reduction in
virus concentration for decontamination of non-enveloped viruses (CDC, 2008; FDA, 2020a,

2020b; Oral et al., 2020), which are typically more resistant to thermal inactivation than enveloped
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viruses (Firquet et al., 2015; Yeo et al., 2020), allowing a conservative prediction of lifetime for
both types of viruses.

The lifetime of a virus has an exponential dependence on temperature, fundamentally
underpinning our hypothesis that accounting for environmental temperature fluctuations will
decrease virus lifetimes compared to relying only on daily mean temperature data. To further
explore this hypothesis, we introduced a numerical model to incorporate environmental
temperature fluctuations, enabling predictions of the lifetime of viruses and showing the disparities
between the computed virus lifetime when using (i) daily mean temperature only (i.e., a constant
daily temperature profile) and (ii) accounting for both daily mean temperature and DTR (i.e., a
time-varying temperature profile). Figure 1 shows a graphical illustration of the difference
between models of virus lifetime based on these two profiles. The inactivation rate constant, k,
varies exponentially with temperature (Figure 1(a)), and this exponential dependence results in
temperature fluctuations above the mean influencing the instantaneous rate of inactivation to a
greater extent than fluctuations below the mean. Figure 1(b) shows the difference in inactivation
rate between the two temperature profiles. The plot on the right shows a greater increase in
magnitude of the instantaneous value of k as a result of temperature fluctuations above the daily
mean temperature (i.e., daytime) compared to the corresponding decrease in inactivation rate for
temperatures below the mean (i.e., nighttime), resulting in a shorter overall virus lifetime. The
illustration shows how incorporation of DTR generates shorter predicted virus lifetimes compared
to daily mean temperature alone. We also show that the virus lifetime will always decrease when
considering fluctuations in temperature in the Supplementary Material to provide a quantitative
fundamental understanding of the phenomenon. We compare the change in concentration at the

mean temperature to the change in concentration when considering temperature fluctuations
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Figure 1 (Single Column). The rate of inactivation of a virus depends on temperature following
the rate law and Arrhenius equation (a). The effect of a time-varying temperature profile about the
mean temperature influences the rate constant, k, for inactivation of a virus and, consequently,
the concentration of a virus over time (b). The exponential dependence of the rate constant on
temperature results in a higher net rate of inactivation of a virus when incorporating environmental

temperature fluctuations about the mean temperature.

while accounting for both symmetric and asymmetric time-varying temperature profiles. This
physical behavior could explain the inverse correlation between DTR and RR observed in
statistical epidemiological studies (Islam et al., 2020; Lambrechts et al., 2011; Lin et al., 2020; Liu
et al., 2020; Pramanik et al., 2020; Pratim, 2020; Supari et al., 2020). We go on to present a case
study on SARS-CoV-2 in the five most populous cities in the United States to illustrate the

difference in virus lifetime when accounting for DTR. In this work, we model the inactivation rate
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of viruses based on temperature-dependent chemical kinetics with a time-varying environmental
temperature profile to account for the daily mean temperature and DTR simultaneously. This
physical model of the effect of DTR on virus lifetime will elucidate the role of environmental
temperature and the spread of viruses. We also show that this physical model can be applied to
a range of coronaviruses, as well as influenza, which exhibits similar temperature-dependent
inactivation behavior and seasonality (McDevitt et al., 2010). This work may provide an
explanation as to why regions with similar daily mean temperatures may have starkly different
virus transmission rates. Our model may also explain—at least in part—the surge of COVID-19
that has been observed in winter, as temperatures dropped and the virus lifetime increased by

orders of magnitude.

2. Material and Methods
2.1 Theoretical Framework
The rate law for a first-order reaction (Eq. 1) can be used to determine the inactivation of

viruses (Yap et al., 2020).

aic] _
at

—k(T) - [C] (1]

The rate constant, k, is governed by the Arrhenius equation, and can be determined for a given
temperature. Previous models have considered only a constant temperature profile:
temperature, T, did not vary with time, t. In this work, we calculate a time-varying rate constant

as a function of a time-varying temperature profile using the Arrhenius equation (Eq. 2):

E

k(T) = Ae RT® [2]
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where R is the gas constant, E, is the activation energy associated with inactivation of the virus
(i.e., the energy barrier that must be overcome for protein denaturation), and A is the frequency
factor. The E; and In(A) values for SARS-CoV-2, SARS-CoV-1, and MERS-CoV were determined
in prior work (Yap et al., 2020) and are reported in Table 1. The model can also be used to
determine the lifetime of other viruses, including influenza viruses (responsible for the seasonal
flu); we calculated values of E; and In(A) for Influenza A based on existing literature (McDevitt et
al., 2010) to highlight the versatility of the model (primary data included in the Supplementary
Material). These four enveloped viruses affect the respiratory system (Abdelrahman et al., 2020),
and the corresponding results could be relevant to understanding the current pandemic
(Abdelrahman et al., 2020; Zhu et al., 2020).

Environmental temperatures vary continuously with time, and this time-varying
temperature profile can be used to determine the rate constant as a function of time. The daily
temperature maximum, Tmax, @and minimum, Tmin, are available for most regions with weather
stations, while daily hourly temperature data are not often reported; therefore, we chose the
WAVE diurnal temperature model introduced by de Wit, based on maximum and minimum
temperature values, to represent the continuous daily temperature profile for a given location
(Baker et al., 1988; Cesaraccio et al., 2001; Reicosky et al., 1989). Two half-cosine functions
were used to estimate this diurnal temperature profile. For the first half-cosine function, the period,
p1, was calculated as the time between sunrise, when the minimum temperature occurs, and 1400
hours solar noon, when the maximum temperature occurs. The second half-cosine function
continues from 1400 hours solar noon throughout the remainder of the 24-hour day for the second
period, p2, and joins with the first half-cosine function of the following day, d+1, at sunrise, where

d represents the day for which the temperature used in the model is obtained. The sunrise times
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in each city were obtained to determine the periods for the WAVE model. The temperature profile

is defined by a piecewise function, given by Eq. 3:

_ Tmax,d=Tmind ) + Tmax,dtTmind

cos (plt , sunriseg <t < 1400 hry
T(t) = E (3]

_ Tmax,d_Tmin,d+1 Tmax,d+Tmin,d+1

s s .
> cos (gt - gm) + , 1400 hry <t < sunriseg;q
The expression for the daily temperature profile (Eq. 3) is substituted into Eq. 2, which is then

combined with Eq. 1. Separation of variables is applied to yield the final expression used to

determine the virus concentration after a given period of time:

[c] t
afel _ [ _ Eq
f[ T fto Aexp ( RT(t)) dt (4]

Clo

Due to the cumbersome temperature profile function, analytical integration of the right-hand side
of Eq. 4 was not possible; we solved it numerically using Euler's method (details included in the

Supplementary Material).

2.2 Data Collection

The daily sunrise times and maximum and minimum temperature data for the five cities
with the highest populations in the United States were obtained from the National Oceanic and
Atmospheric Administration (NOAA) solar calculator and climate data online search. A sinusoidal
temperature profile that takes into account each city’s maximum and minimum temperature was
created for the period of January through December of 2020. The temperature profile, T(t), was
then used to solve for the reduction in concentration of virus as a function of time. The lifetime of
the virus starting from sunrise on each calendar day was determined by calculating the
concentration of viable virions as a function of the continuous temperature distribution over time,

and then determining the time required to achieve a 3-log reduction in concentration. The
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maximum cutoff point of the predicted lifetime was taken to be 30 days for two reasons: (i) to
correspond approximately to one month, after which other the uncertainty in predictions becomes
large due to other potential inactivation mechanisms (Yap et al., 2020); and (ii) to include the virus
lifetime for the colder winter months through the end of November 2020 (the predicted virus
lifetimes in some cities span more than one month, thus requiring temperature data from the
subsequent month; at the time of preparing the results in this manuscript, only data through
December 2020 were available). The n values were determined by taking the logarithm of the

ratio of concentration at a given time, [C], to the initial concentration, [Clo.

2.3 Model Development: Activation Energy and Frequency Factor

The relevant physical parameters governing thermal inactivation of viruses were quantified
from primary data reported in the literature. The log of concentration reported in primary
experimental data on temperature-based inactivation of viruses, In([C)], was plotted as a function
of time, t. According to the rate law for a first-order reaction (Eq. 1), we determined the rate
constant, k, for inactivation of a virus at a given temperature, T, by applying a linear regression
and calculating the slope, k = -AIn([C])/At, as detailed in prior work (Yap et al., 2020). Each pair
of k and T determined for a given virus was plotted; according to the Arrhenius equation (Eq. 2),
these data points yield a linear relationship between In(k) and 1/T. From the linear fit, the activation
energy, Ea, and natural log of frequency factor, In(A), can be obtained from the slopes and
intercepts, respectively, of the fitted curves for each virus. These values were used in our analysis
to determine the lifetimes of viruses in different regions as a function of daily mean temperature
and daily temperature fluctuations using the numerical model presented in this work. The
activation energy and frequency factor used here for SARS-CoV-2, SARS-CoV-1, and MERS-
CoV were already determined in prior work (Yap et al., 2020), whereas the procedure used to
determine the thermodynamic parameters used in this work for Influenza A is detailed in the

Supplementary Material.
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3. Results

The degree of inactivation of a virus, defined by the n-log reduction, is used to describe
the order of magnitude decrease in virus concentration. The degree of inactivation is plotted
against time to show the amount of time needed to achieve an n-log reduction, where Figure 2
shows the lifetime (i.e., time until 3-log reduction) of three different coronaviruses and Influenza
A computed using the time-varying temperature profile versus the daily mean temperature profile.

For illustration, temperature data for Houston starting on May 7 was used to determine the
lifetime using the time-varying temperature profile versus the daily mean temperature profile.
Figure 2 shows the disparity in predicted lifetime when using the two different temperature
profiles. In this case, when computing the lifetime of SARS-CoV-2 using daily mean temperatures
(Figure 2(a)), it took approximately 3 days to achieve a 3-log reduction, whereas the more realistic
time-varying environmental temperature profile (Figure 2(b)) showed that decontamination would
require less than 1.5 days. The reduction in predicted virus lifetime across all four viruses when
accounting for the DTR was approximately 50%, highlighting the importance of DTR when
modeling virus lifetime. All four of the viruses described in Table 1 are modeled in Figure 2;
however, due to the ongoing pandemic, only SARS-CoV-2 is emphasized throughout the
remainder of this work.

For the top five most populous cities in the United States (New York City, Los Angeles,
Chicago, Houston, and Phoenix), the lifetime of SARS-CoV-2 was calculated using the mean
temperature profile and the time-varying temperature profile, with results plotted as blue and
purple lines, respectively, in Figure 3(a-e). The percentage difference in lifetime predictions for
these two temperature profiles was also determined and plotted in red. The daily mean
temperature and DTR values were averaged by month for each city and plotted in Figure 3(f) to
show the monthly variation in temperature and provide a comparison between the cities. During

the winter months with low daily mean temperatures, the virus lifetime can be greater than one

12



237 month; as the temperature increases during the summer, the lifetime of the virus becomes several

238  orders of magnitude shorter. Cities like Los Angeles, which have relatively low variations
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240  Figure 2 (Single Column). Comparison of the degree of inactivation of three coronaviruses and
241  Influenza A between (a) a simple daily mean temperature profile and (b) a time-varying
242 temperature profile (temperature data shown for Houston starting on May 7). SARS-CoV-2 would
243 require approximately 3 days to reach decontamination to a 3-log reduction in concentration
244  according to the simple daily mean temperature model, whereas the more realistic time-varying
245  environmental temperature profile showed that decontamination would require less than 1.5 days.
246  The percentage difference in predicted lifetime across all four viruses when accounting for the

247  DTR was approximately 50%.
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Figure 3 (Double Column). Lifetime of SARS-CoV-2 and percentage difference between
predictions using the simple daily mean temperature profile (blue line) versus the time-varying
temperature profile (purple line) for the five most populous cities in the U.S. as reported by the
U.S. Census Bureau: (a) New York City, (b) Los Angeles, (c) Chicago, (d) Houston, and (e)
Phoenix. The plots show the predicted lifetime of SARS-CoV-2 for the months of January 2020
through November 2020. The mean temperature and DTR pertaining to each city averaged by
month are plotted in (f) to illustrate climate trends in each city. The symbols correspond to (a)-(e).
The lifetime axis is scaled to reflect 30 days (7.2x10° min = 5 days); predicted values for lifetimes

greater than one month are not reported, and the corresponding periods of time are shaded in

gray.

in mean temperature throughout the year, exhibit correspondingly small variations in SARS-CoV-
2 lifetime, whereas cities like New York City and Chicago show large variations in virus lifetime
due to large variations in mean temperature throughout the year. We also observed that the

percentage difference in lifetime predictions between the time-varying temperature profile and
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daily mean temperature profile is relatively low for Los Angeles when compared to Phoenix, in
this case due to the higher typical DTR experienced by Phoenix (2x the DTR of Los Angeles).
We studied the generalized effect of DTR on the lifetime of SARS-CoV-2 (for applicability
to any city) by implementing a parametric sweep across both daily mean temperature and DTR
(Figure 4), showing the predicted lifetime of the virus in Figure 4(b) and the percentage difference
between the lifetimes calculated using the two different temperature profiles (simple daily mean
versus time-varying) in Figure 4(c). The time-varying temperature profile used to calculate the
virus lifetime in Figure 4(b) maintains a fixed sunrise time at 0600 hours; a comparison of virus
lifetime computed between varied and fixed sunrise time showed an average percentage
difference of 0.68% across all five cities discussed above (Figure S6 in the Supplementary
Material). The lifetime at each point on the heat map was computed by holding the daily mean
temperature and DTR constant in the WAVE temperature profile. The computed lifetime becomes
dependent on the starting time of the temperature profile at high mean temperature and high DTR
due to shorter virus lifetimes (i.e., less than one day); modeling the virus lifetime starting from
solar noon (at the maximum temperature) versus sunrise (at the minimum temperature) can yield
an order of magnitude higher initial rate constant due to the exponential dependence on
temperature. To overcome this issue and accommodate generalized results, the values presented
in the heat maps are provided on an averaged basis, determined by taking the geometric mean
of lifetimes starting every hour for a full diurnal temperature cycle; i.e., the values shown in the
plots represent an average of 24 predicted lifetimes, each offset by one hour in starting time

throughout a diurnal cycle. The percentage difference is then calculated by comparing the
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Figure 4 (Single Column). The lifetime of SARS-CoV-2 varies with both the mean environmental
temperature and the DTR. The lifetime of the virus is plotted against DTR for mean temperatures
of 15, 20, and 25 °C to show that an increased DTR results in a shorter lifetime (a). A parametric
sweep shows the lifetime of SARS-CoV-2 versus mean temperature and DTR (b), where
increasing mean temperature and DTR both result in shorter virus lifetime. The percentage
difference between predicted lifetime of SARS-CoV-2 calculated with the simple mean
temperature profile versus lifetime calculated with the time-varying temperature profile accounting
for DTR (c) shows that disparities between the two models are larger for higher values of DTR,
with up to 50% deviation in lifetime due to DTR in some climates considering monthly averaged
temperatures. The mean monthly DTR and mean temperatures for each city are overlaid to
highlight trends of virus lifetime in cities with disparate climates. City-specific data points for

months corresponding to mean temperatures less than 10 °C are not included.
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4. Discussion

As shown in Figure 4(a), for a given daily mean temperature, the virus lifetime is shorter
for regions with higher DTR. Cities like Los Angeles with relatively small temperature variations
throughout the year see correspondingly small effects on virus lifetime, whereas cities like
Phoenix, with both high DTR and large variations in mean temperature, exhibit a wider range of
virus lifetimes spanning across the contour lines on the lifetime heat map throughout a year
(Figure 4(b)). Cities like New York City and Chicago experience extreme cold temperatures in
winter, resulting in virus lifetimes greater than one month, but as the environmental temperatures
become warmer, virus lifetime drastically decreases. Figure 4(c) shows the percentage difference
between predictions based on daily temperature fluctuations and those only considering daily
mean temperatures. At DTR = 0, this plot shows predictions based only on the mean temperature;
in this case, the percentage difference between the two models is effectively 0%. This heat map
also shows where daily temperature fluctuations become important. For example, Phoenix
typically has a high average monthly mean temperature and a large DTR, resulting in a high
percentage difference (35-50%) between the two models. On the other hand, Los Angeles, with
lower monthly mean temperatures and DTR, exhibits a relatively small percentage difference (10—
20%). We also note that the day-to-day temperature variations could yield percentage differences
as high as 120% (Figure 3b-d), further highlighting the influence DTR has on the prediction of
virus lifetime across regions and illustrates that, as the DTR increases, the difference in predicted
virus lifetime becomes more pronounced. For a given mean temperature, as the magnitude of
DTR increases, the percentage difference between the two models becomes monotonically
larger, signifying the importance of accounting for fluctuating environmental temperatures. This
knowledge of how DTR influences virus lifetime becomes crucial when comparing policy decisions
for cities or regions with similar daily mean temperatures but different DTR because they may

experience disparate virus lifetimes.
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The model presented in this work elucidates the independent effects of the magnitude of
DTR and mean temperature on virus lifetime. This information could be of use when predicting
the spread of the COVID-19 pandemic by providing a physical understanding of the effects of
DTR, allowing epidemiologists to treat the environmental temperature variables independently.
We note that reports in the literature using statistical analyses to study the correlation between
various meteorological variables have considered DTR, and have found a negative correlation
between the magnitude of DTR and number of cases of COVID-19. In one instance, Islam et al.
studied the COVID-19 cases in seven climatic regions of Bangladesh from March to May 2020,
and reported mean relative risk (RR) values of 0.95-0.97 as a function of increased DTR (with
RR < 1 indicating that the risk of transmission is decreased) (Islam et al., 2020). Another study by
Liu et al. reported a pooled RR of 0.9 for each 1 °C increase in the DTR for 30 cities in China from
January 2020 to March 2020, and suggested that the viruses thrive in regions with low DTR or
constant temperature (Liu et al., 2020). Recent studies on the number of COVID-19 cases in
Indonesia, India, and Russia (the sub-arctic region) also reported negative correlations with DTR,
all showing a similar trend despite representing vastly different regions of the world (Pramanik et
al., 2020; Pratim, 2020; Supari et al., 2020). Prior work studying the dengue virus—an endemic
virus in more than 100 countries—found that mosquitoes, the primary vector for transmission of
the disease, are less susceptible to infection at high DTR, resulting in a lower rate of transmission
of the disease (Ehelepola and Ariyaratne, 2016; Lambrechts et al., 2011); further investigation of
the specifics of this vector of transmission in the context of DTR may be possible using our
modeling framework. We also included Influenza A in Figure 2 because Influenza A exhibits
temperature-dependent inactivation (see Figure S6 in Supplementary Material). Several studies
indicate a positive correlation between Influenza A transmission and DTR, but these studies also
mention that large temperature fluctuations tend to lower the immune system and consequently

increase the risk of infections (Park et al., 2020; Zhang et al., 2019), suggesting that a more
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detailed statistical analysis would be needed to determine the isolated effect of DTR on
transmission of Influenza A.

In the context of these findings, we emphasize that the purpose of the model presented
here is to provide a fundamental understanding of the impact of realistic environmental
temperature fluctuations on virus lifetime as compared to only considering mean daily
temperatures. The model does not consider relative humidity, fomite material (i.e. the surface
contaminated with a virus), or solar irradiation on exposed outdoor surfaces, all of which are
known to affect virus lifetime (Carleton et al., 2021; Ficetola and Rubolini, 2021; McDevitt et al.,
2010; van Doremalen et al., 2020; Zhang et al., 2020; Zhao et al., 2020). Relative humidity and
fomite material can be treated as catalytic effects (Morris et al., 2020; Roduner, 2014) (among
other mechanisms (Lin and Marr, 2020)), and adjustments to the activation energy could allow for
additional predictive capabilities. Varying non-pharmaceutical intervention methods and social
structures also play a role in the transmission of diseases and must be carefully accounted for
when modelling the site-specific spread of the current pandemic (Bouchnita and Jebrane, 2020;
Ficetola and Rubolini, 2021; Lin et al., 2020; Thu et al., 2020; Zhao et al., 2020). For simplicity
and ease of comparison between the environmental temperatures of different cities, the
temperature profiles used in this work are assumed to follow a smooth sinusoidal profile as
described by the WAVE model; in reality, the actual temperature profiles are not smooth, and
deviations from a sinusoidal profile may occur. Fortunately, specific regional environmental
temperature can easily be incorporated into Eq. 4 in future work as T{(t). Finally, we note that there
are different methods to express time-varying temperature profiles; the WAVE profile was utilized
in this study due to its simple, yet accurate, depiction of the diurnal temperature cycle, where prior
work has shown that the WAVE model had an R? value of 0.95 compared to actual observed
hourly temperature data and exhibited an absolute error of less than 3 °C (Baker et al., 1988;
Cesaraccio et al., 2001; Reicosky et al., 1989). The lifetimes presented in Figure 3 have been

limited to a maximum of one month due to inherent uncertainties in predictions at colder
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temperatures and longer times. In Figure 4, the lower limit of the daily mean temperature was

chosen as 10 °C because the lifetime at lower temperatures is greater than one month.

5. Conclusions

This study presents an analytical framework to understand the effects of temperature
fluctuations on virus lifetime. We show that regions with similar mean temperatures can potentially
exhibit a difference in virus lifetimes of greater than 50% when accounting for DTR, and day-to-
day temperature variations in a city could result in differences as large as 120%. Our model allows
for incorporation of realistic temperature profiles to predict the transmission of viruses, and could
therefore play a role in mitigating the spread of COVID-19. In addition, an array of mean
environmental temperature and DTR values were used to determine the virus lifetime and
highlight, for a given mean temperature, the magnitude of DTR at which temperature fluctuations
become significant in predicting virus lifetime. Finally, we show that the model can be adapted to
predict lifetimes and seasonal trends for other viruses—including, potentially, novel viruses that
have not yet been encountered—and used as a tool based on lab-scale experimental
characterization or simulation, rather than statistical analysis of transmission after a virus has
already become widespread. Ultimately, this work describes how time-varying environmental
temperature profiles result in shorter virus lifetime with a thermodynamic framework to bridge the

gap between statistical analyses and physical understanding.
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Table 1. Activation energy and frequency factor values used to determine virus lifetime. Values

for coronaviruses were determined in prior work (Yap et al., 2020). Primary datasets used to

obtain activation energy and frequency factor for Influenza A are provided in the Supplementary

Material.
Activation Energy, E. [kJ/mol] | Frequency Factor, In(A) [1/min]
SARS-CoV-2 135.7 48.6
SARS-CoV-1 142.6 51.9
MERS-CoV 135.4 49.5
Influenza A 41.0 12.2
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Supplementary Text
Numerical Analysis

Due to the dependence of temperature on time following the WAVE profile, the integral
shown in Eq. 4 in the main text cannot be solved analytically. Euler's method is used to determine
the concentration of virus at a given time for a given temperature profile, T(f). Eq. $1 through S3

show the steps used to solve for the concentration after a given time step:

[C] t
d[c] _ _ _ _Eg
f I f Aexp ( RT(t)) dt [Eq. $1]
[Clo to
[Clivs —[Cl; _ Eq
+611t = —Aexp (_ RT(t)) [C]; [Eq. S2]
[Cliy1 = —Aexp (—%‘&)) [C]; dt + [C]; [Eq. S3]

where i represents the number of time steps needed to determine the viable virus concentration.
Att=0,i=0, corresponding to the initial virus concentration, [Clo. The vertical axis in Figure 2 in
the main text is plotted in terms of an n-log reduction. This value is determined by taking the ratio
between the concentration at a given time, [C], and the initial concentration, [C]o, in terms of orders

of magnitude (the base-10 logarithm of the ratio):

n = logy, % [Eq. S4]

Quantitative Understanding of the Effects of DTR
We show that the virus concentration will always be lesser when taking into account the
diurnal temperature range (DTR) compared to the case considering only mean temperature

(Figure S1(A)). By evaluating the change in concentration over an infinitesimally small timestep

S-2



(Figure S1(B)), we can treat the local time-varying temperature profile as a step function, with
AT representing an arbitrary temperature variation from the mean. To prove that the change in
concentration, A[C] (i.e., the final concentration minus the initial concentration) when accounting
for DTR will be lesser (more negative) than when only considering the mean temperature over a

given timestep, we start by assigning an inequality corresponding to our hypothesis:

A[Clmean > AlClprr [Eq. S5]

The A[C] is more negative for a greater magnitude of decrease in concentration, so the
A[C] considering DTR will be less than the A[C] based on the mean temperature if temperature
fluctuations result in a larger decrease in concentration. Based on the rate law for a first-order
reaction, d[C]/dt = C’, which is also a function of temperature, T, the change in concentration is

over an infinitesimally small timestep is:

A[C] = C'(T)At [Eq. S6]

Substituting Eqg. S6 into Eq. $5 and multiplying by the relevant timesteps shown in Figure

S$1(B) to determine the concentration, we obtain:

C'(T)(p + q@)At > C'(T + pAT)(qAt) + C'(T — qAT)(pAt) [Eq. S7]

where p and g are numbers between 0 and 1 that sumto 1 (i.e., p + g = 1). We assign
these p and q parameters to allow for a more general consideration of any asymmetric
temperature profile for which the average of the temperature variations over a given timestep is
equal to the mean temperature (Figure S1(C)). At the limiting case where p=1and g =0 (or

vice versa), the profile is equivalent to the mean temperature case.

Any arbitrary time-varying temperature profile T(t) can be constructed from a sum of many
of these timesteps; therefore, by showing that this temperature profile with temperature
fluctuations always results in a larger decrease in concentration than the mean temperature
profile at every timestep, the result can be extended to any time-varying temperature profile T(t),

including the temperature profile accounting for DTR in this work.
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We take a second-order Taylor series expansion for a case with small temperature

variations above and below the mean:

C'(T +paT) = ') + 2D (par) + 125D (par)? [Eq. S8]
C'(T = qaT) = ¢'(1) — 250 (qa1) + 320 (qar)? [Eq. S9]

We substitute the second-order Taylor series expansion into Eq. S7 to obtain:

C'(T)AL > C'(T)A¢ + LEDPAUT [Eq. S10]
When AT = 0, we see that the both sides of the inequality are equal, recovering the original
form when only considering mean temperatures. In order for this inequality to hold true, the

second term on the right-hand side must always be negative.

d2C'(T) pqAtAT?
dT? 2

<0 [Eq. S11]

Since p, q, AT, and At are always positive, we focus on expanding the second order

differential equation for C’ by substituting the Arrhenius equation (Eq. S18):

2

d a
4 (—Aexp (— }f—T) co) <0 [Eq. S12]
Taking the first derivative with respect to temperature:

(- Aok gy (~E2) L) < g [Eq. S13]

ar R

Taking the second derivative with respect to temperature:

—Mexp( i)i 4 2250 exp( Ea)i <0 [Eq. S14]

R2 T RT) T* R

After simplifying Eq. $14, the criterion for A[Cl,ean > A[Clprr iS:
S-4



15 [Eq. S15]

In order to demonstrate that the inequality holds true for all relevant temperature
conditions, we determined “worst-case scenario” values for the left-hand side of the inequality
for the viruses studied in this work at the highest environmental temperature ever recorded on
Earth (58 °C in El Azizia, Libya (Mildrexler et al., 2006)) to obtain conservative estimates (Table
S$1). We show that these values are always much greater than 1, demonstrating that fluctuating
temperatures will always reduce virus lifetime compared to the corresponding mean

temperature for the viruses studied here at any environmentally relevant conditions.

In fact, considering the case for Influenza A, the absolute temperature would need to be
7.5 times greater than the current characteristic environmental temperature (i.e., greater than
~2500 K) for the inequality to break down. Under all relevant environmental temperatures, the
activation energy is much greater than the thermal energy. When comparing the Arrhenius
equation with the Eyring equation, we also observe that the activation energy is approximately
equal to the activation enthalpy, AH*, at environmental temperatures (i.e., the RT term is

negligible in Eq. S16):

E, = AH* + RT [Eq. S16]

We plotted the concentration of virus (Eq. 83) after a given timestep and compared the
relative degree of inactivation when considering a fluctuating temperature profile to the case
considering only the mean temperature to illustrate that the magnitude of change in
concentration is always greater for the case of the fluctuating temperature profile (Eq. S5). The
relative n-log reduction (where the value of n corresponds to the order-of-magnitude degree of

inactivation) is defined as:

0g10 {BLE
"DTR L Eq. S17
Nmean loglo[c]mean [ g. ]

We plotted the relative n-log reduction against the value of p at a mean temperature of
20 °C for AT values of 5, 10, 15, and 20 °C (Figure S1(D)); the plot shows that considering
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fluctuations in temperature (such as DTR) will always serve to increase degree of inactivation, in
turn resulting in a lower virus concentration. This trend illustrates that the inequality
hypothesized in Eqg. S5 holds true. Figure S1(D) also shows that for a higher AT, a higher rate
of inactivation can occur when temperature fluctuations above the mean are higher, but for a
shorter time period (i.e., p > q). At AT = 20 °C, we observe a fourfold increase in the relative n-
log reduction of virus (i.e., 10,000x decrease in concentration) as compared to the mean
temperature case when p = 0.8, highlighting the exponential dependence of virus lifetime on
temperature. From this quantitative approach, the duration and magnitude of temperature

variations from the mean are shown to play a critical role in the degree of virus inactivation.

Temperature Profile

In Figures 3 and 4 in the main text, the WAVE temperature profile is used to model daily
environmental temperature fluctuations. In Figure 3, the sunrise time (Dataset S2) used to
generate the temperature profile corresponds to each city shown. However, for the heat map
shown in Figure 4, a more general temperature profile is used, in which the sunrise time is fixed
at 0600 hours. Fixing the sunrise time has a negligible effect on the resulting computed virus
lifetimes. The virus lifetimes in the five major cities studied in this work were determined using
both city-specific sunrise times and an 0600 fixed sunrise time, with the average percentage

difference for all cities between these two methods being 0.68% (Figure S8).

Influenza A Inactivation Data

Data on the inactivation of influenza virus (A/Puerto Rico/8/34/H1N1 strain) in terms of
time required to achieve n-log reduction for a given temperature were obtained from Greatorex et
al. (Greatorex et al., 2011). The data presented in their work corresponds to the inactivation of
H1N1 on a fomite of stainless steel. The authors report experimental conditions with temperatures
ranging from 17—-21 °C; we used an intermediate value of 19 °C in our work. The relative humidity
reported in their work was 23 — 24 %. The natural logarithm of 10" was plotted against time
following the linearized rate law for a first-order reaction (Eq. 1), and the time scale was converted
to minutes according to convention. A linear fit for the data at 19 °C is presented in Figure S2.
The resulting slope was used to determine the rate constant at this temperature, reported in Table
S2.
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We followed the same procedure to homogenize data on influenza virus (A/PR/8/34 H1N1
strain) reported by McDevitt et al. (McDevitt et al., 2010) for H1IN1 on a fomite of stainless steel.
Linear fits for data at 55, 60, and 65 °C at a relative humidity of 25% are presented in Figures S3
through S5. The resulting slopes were used to determine the rate constants at these
temperatures, reported in Table S2.

Influenza A Temperature-Dependent Inactivation

According to the rate law for a first-order reaction (Eq. 1), the rate constant, k, can be
determined for the inactivation of a virus at a given temperature, T, by applying a linear regression
and calculating the slope, k = -AIn([C])/At. Each pair of k and T determined from the primary data
is plotted according to the linearized Arrhenius equation (Eq. 87) and yields a linear relationship
between In(k) and 1/T (Figure S6). The slope and intercept of the linear fit correspond to the
activation energy, Es, and log of frequency factor, In(A). The log of frequency factor, In(A), is
plotted against activation energy, E;, for the viruses considered in this work; the linear correlation
between In(A) and E;indicates that the viruses undergo a thermal denaturation process following
the Meyer-Neldel rule, supporting our hypothesis that the viruses are inactivated due to the
thermal denaturation of proteins that comprise each virion (Figure S7). The linear regression
calculated in this work after including influenza A, [In(A) = 0.394E, — 5.63], is similar to the linear
regression tabulated in previous work for only coronaviruses (Yap et al., 2020), and is nearly
identical to those calculated in two prior studies on the denaturation of tissues and cells, which
report [In(A) = 0.380E, — 5.27] (Qin et al., 2014) and [In(A) = 0.383E, — 5.95] (Wright, 2003).

In(k) = -g—“T + In(4) [Eq. S18]

Temperature Data

The temperature data for the five most populous cities in the United States from January
1, 2020, to December 29, 2020, were obtained from the National Oceanic and Atmospheric
Administration (NOAA) climate data online search database. Temperature data from weather
stations located at the major airports in each city were used in this work, i.e., JFK International
Airport (New York City), Los Angeles International Airport (Los Angeles), Chicago O’Hare
International Airport (Chicago), George Bush Intercontinental Airport (Houston), and Phoenix Sky

Harbor Airport (Phoenix). The complete temperature dataset is included as Dataset S1.
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Sunrise Time Data

The sunrise times used to determine the time periods of the half-cosine functions in the
temperature profiles for the five most populous cities in the United States from January 1, 2020,
to December 29, 2020, were obtained from the National Oceanic and Atmospheric Administration
(NOAA) solar calculator. The complete dataset is included as Dataset S2; the highlighted rows
and columns were adjusted for daylight saving time (note that Phoenix does not observe daylight

saving time).

Fixed Sunrise Time (0600 hours) versus City-Specific Sunrise Time

The percentage difference in results when fixing the sunrise time at 0600 hours in the
model versus assigning the actual sunrise time for each specific region is plotted in Figure S9.
The low percentage difference (0.68% on average) allowed us to neglect the effect of region-
specific sunrise time, and a fixed sunrise time at 0600 hours was used in the model to calculate

the lifetimes displayed in the parametric sweep shown in Figure 4 of the main text.
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Fig. S$1. (A) Sinusoidal temperature profile used to model temperapture variations around the
mean temperature. (B) Considering the temperature profile at a small timestep, the temperature
profile can be approximated as a step function. The variables p and g are introduced to analyze
cases where the temperature profile is not symmetric, but the average of this temperature
profile is always equal to the mean temperature; p and q are positive numbers and p + g = 1.
(C) lllustration of potential temperature profiles for different values of p. (D) The n-log reduction
of virus inactivation when considering DTR, nprr, relative to the n-log reduction of virus when
only considering mean temperatures, nmean, against an array of p values varying from 0 to 1.
The graph is plotted for a mean temperature of 20 °C and AT values of 5, 10, 15, and 20 °C to

demonstrate the importance of considering DTR.
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Fig. S2. Primary data from Greatorex et al. (Greatorex et al., 2011) for inactivation of H1IN1 at

19 °C after converting the n-log reduction values from base-10 logarithm to natural log. We fit a

line to the data to determine the rate constant at 19 °C.
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Fig. S3. Primary data from McDeuvitt et al. (McDevitt et al., 2010) for inactivation of H1N1 at 55

°C after converting the n-log reduction values from base-10 logarithm to natural log. We fit a line

to the data to determine the rate constant at 55 °C.
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Fig. S4. Primary data from McDevitt et al. (McDevitt et al., 2010) for inactivation of H1N1 at 60

°C after converting the n-log reduction values from base-10 logarithm to natural log. We fit a line

to the data to determine the rate constant at 60 °C.
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Fig. S5. Primary data from McDeuvitt et al. (McDevitt et al., 2010) for inactivation of H1N1 at 65

°C after converting the n-log reduction values from base-10 logarithm to natural log. We fit a line

to the data to determine the rate constant at 65 °C.
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Fig. $6. From the Influenza A virus dataset, the rate constant, k, for a given temperature was
found using linear regression according to Eq. $5. The slope and intercept of the linear fit

correspond to the activation energy, Ea, and frequency factor, In(A), for Influenza A.
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Fig. S7. Thermal inactivation parameters governing the inactivation behavior of SARS-CoV-2,
SARS-CoV-1, MERS-CoV, and Influenza A. The frequency factor, In(A), is plotted against the

activation energy, E,, according to the linearized Arrhenius equation; the linear correlation

indicates protein denaturation following the Meyer-Neldel rule.
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Fig. S8. The predicted lifetimes (7.2x10% min = 5 days) of SARS-CoV-2 for the months of
January 2020 to November 2020, along with the percentage difference using city-specific and
fixed (0600 hours) sunrise times, are plotted for (a) New York City, (b) Los Angeles, (c)
Chicago, (d) Houston, and (e) Phoenix. The average percentage difference between these
methods for all cities is 0.68%. Phoenix experiences the highest percentage difference of
5.55%. The region with this high percentage difference, from April to September 2020, is
magnified to show the difference in lifetimes, which is likely due to a higher rate of inactivation at
the higher overall temperatures in Phoenix during these months, highlighting the importance of

the period of time between sunrise and solar noon during high environmental temperatures.



Table S1: Values for the left-hand side of Eq. $13 to prove the inequality. Temperature was
chosen as a conservative estimate for the maximum temperature attainable on Earth.

Activation Energy, Es [kJ/mol] E./2RT (Eq. S$13)
SARS-CoV-2 135.7 24.7 >>1
SARS-CoV-1 142.6 25.9>>1
MERS-CoV 1354 24.6 >>1
Influenza A 41.0 7.5>>1

Table S2. Data for Influenza A obtained from Figures S2-5 and plotted in Figure S6 and data for
SARS-CoV-2, SARS-CoV, and MERS-CoV from prior work (Yap et al., 2020)

T | 1/T10* | k = -d(In[C])/dt | In(k)
Dataset S| Ref. [°C] | [10%K] [1/min] [1/min]
Influenza A (Greatorex et al., 2011) 19 34.25 0.0092 -4.689
Influenza A (McDevitt et al., 2010) 55 30.49 0.0522 -2.953
Influenza A (McDevitt et al., 2010) 60 30.03 0.0618 -2.784
Influenza A (McDevitt et al., 2010) 65 29.59 0.1083 -2.223
SARS-CoV-2 (Chin et al., 2020) 4 36.10 0.0000597 -9.726
SARS-CoV-2 (Chin et al., 2020) 22 | 33.90 0.000696 -7.270
SARS-CoV-2 | (van Doremalen et al., 2020) | 22 33.90 0.00166 -6.401
SARS-CoV-2 (Chin et al., 2020) 37 | 32.36 0.00557 -5.190
SARS-CoV-2 (Chin et al., 2020) 56 | 30.39 0.724 -0.323
SARS-CoV-2 (Chin et al., 2020) 70 | 29.15 3.36 1.212
SARS-CoV-1 | (van Doremalen et al., 2020) | 22 33.90 0.00191 -6.261
SARS-CoV-1 | (Darnell and Taylor, 2006) 56 | 30.40 0.9077 -0.097
SARS-CoV-1 | (Darnell and Taylor, 2006) 65 | 29.59 2.869 1.054
MERS-CoV | (van Doremalen et al., 2013) | 20 34.13 0.0027 -5.914
MERS-CoV (Leclercq et al., 2014) 56 30.40 0.16 -0.999
MERS-CoV (Leclercq et al., 2014) 65 29.59 3.62 2121




Table S3. Experimental conditions at which E; and In(A) are determined for the viruses
analyzed in this work.

Dataset Ref. T [°C] Fomite RH
SARS-CoV-2 (Chin et al., 2020) 4 Virus transport | o orted
Medium
SARS-CoV-2 (Chin et al., 2020) gp | Virustransport| \ i o orted
medium
SARS-CoV-2 | (van Doremalen et al., 2020) 22 Plastic 40%
SARS-CoV-2 (Chin et al., 2020) g7 | Virustransport| i o borted
medium
SARS-CoV-2 (Chin et al., 2020) 5g | Virustransport| i o oorted
medium
SARS-CoV-2 (Chin et al., 2020) 70 | Virustransport| i\ oorted
medium
SARS-CoV-1 | (van Doremalen et al., 2020) 22 Plastic 40%
SARS-CoV-1 (Darnell and Taylor, 2006) 56 Human serum | Not reported
SARS-CoV-1 (Darnell and Taylor, 2006) 65 Human serum | Not reported
MERS-CoV (van Doremalen et al., 2013) 20 Plastic 40%
MERS-CoV (Leclercq et al., 2014) 56 Modified |\t reported
Eagle’s medium
MERS-CoV (Leclercq et al., 2014) 65 Modified |\t reported
Eagle’s medium
Influenza A (Greatorex et al., 2011) 19 Stainless steel 23-24%
Influenza A (McDevitt et al., 2010) 55 Stainless steel 25%
Influenza A (McDevitt et al., 2010) 60 Stainless steel 25%
Influenza A (McDevitt et al., 2010) 65 Stainless steel 25%
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Supplementary Datasets

Dataset S1 (separate file). Temperature data corresponding to the five most populous cities in
the United States.

Dataset S2 (separate file). Sunrise time data corresponding to the five most populous cities in
the United States. Highlighted cells are adjusted for daylight saving time (note that Phoenix

does not observe daylight saving time).
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