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Abstract

We asked how genetic diversity of Spartina alterniflora (smooth cordgrass) partitions
across multiple spatial scales in mid-Atlantic salt marshes. Samples from five marshes, spanning
~ 35 km of coastline, were analyzed using microsatellite markers to examine genetic diversity
and genotype clustering. In a single marsh, nested spatial analysis of the genotypes allowed
indirect evaluation of colonization dynamics. Samples collected > 10 m apart had clonal and
allelic diversity levels similar to those of other geographic locations; however, genotypic
richness and evenness of samples collected 0.2 and 1.0 m apart were reduced. Sampling scale
had little effect on allelic diversity. Expected heterozygosity exceeded observed heterozygosity
values at all sites and spatial scales, suggesting smooth cordgrass inbreeding is common in these
marshes. We hypothesize that the observed spatial patterns indicate the genetic dominance of a
few, well-adapted clones and is balanced by sexual reproduction and recruitment, especially after

disturbance, thereby creating genetically diverse and potentially resilient marshes.
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Introduction

The genetic diversity of foundational plant species are critical for structuring the broader
community, enhancing species resilience, and maintaining ecosystem processes (Hughes et al.
2008, Kettenring et al. 2019, Tumas et al. 2019). For example, the genetic diversity of
foundational plants, such as seagrasses, can have significant effects on primary productivity,
community structure, and ecosystem functioning (Reusch and Hughes 2006, Hughes et al. 2008).
Spartina alterniflora Loisel (smooth cordgrass) is a clonal, foundation species that is the
dominant plant in salt marshes along the North American Atlantic coast from Newfoundland to
Florida and the Gulf of Mexico coast (Godfrey and Wooten 1979). Along these coastlines,
smooth cordgrass structures the environment by creating habitat, determining local and regional
biodiversity, and controlling ecosystem dynamics (Seliskar et al. 2002, Gedan and Bertness
2010, Ellison 2019). While smooth cordgrass salt marshes provide valuable ecosystem services
(Costanza et al. 1997, 2007), hydrodynamic alteration, coastal development, poor water quality
and invasive species have led to widespread salt marsh decline and degradation (Gedan et al.
2009). Assessing genetic diversity of smooth cordgrass can improve our understanding of salt
marsh colonization dynamics and may provide insight into how these marshes might adapt to
climate change and other anthropogenic stressors.

Understanding how genetic diversity impacts the structure and function of salt marsh
communities requires detailed information about how clones are spatially arranged at multiple
scales — biogeographic/regional, among populations, and within populations. Studies examining
the genetic diversity and spatial structure of smooth cordgrass have measured diversity across
sites spanning large geographic areas (O’Brien and Freshwater 1999, Richards et al. 2004, Travis

and Hester 2005, Blum et al. 2007, Novy et al. 2010, Guo et al. 2015). Most of these studies
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examined population genetic diversity within the southern (south of Georgia, USA; Travis et al.
2002, Richards et al. 2004, Gaynor et al. 2019) and northern (north of New Jersey, USA; Novy et
al. 2010) extent of the native range of smooth cordgrass, with few studies examining the genetic
diversity of smooth cordgrass in the mid-Atlantic (but see Blum et al. 2007). Because the
Virginia coast is the boundary between the Virginian and Carolinian marine biogeographic
regions (Hayden et al. 1984, Ray 1988), we hypothesize that the strong latitudinal variation in
climate and physical environments observed here may lead to regional differences in vegetation
processes and patterns (Pennings and Bertness 1999, Pennings and Silliman 2005, Duffy 2009,
Marczak et al. 2011) that could influence within-population genetic diversity (Schmidt et al.
2008).

In previous studies, sampling schemes were designed to minimize resampling the same
clone(s); samples were collected ~1 m or farther apart (Utomo et al. 2009, Guo et al. 2015,
Gaynor et al. 2019; Supplemental Information, Table S-1). Fine-scale spatial structure was
typically ignored (but see Edwards et al. 2005, Hughes and Lotterhos 2014, Proffitt et al. 2005,
Travis et al. 2004), however, the scale at which diversity is assessed is important (Vallejo-Marin
et al. 2010, Binks et al. 2015). Within-site, fine spatial scales are more likely relevant to intra-
species (Vallejo-Marin et al. 2010, Binks et al. 2015), plant-plant (Proffitt et al. 2005), plant-
animal (Hughes et al. 2008, Noto and Hughes 2020), and plant-microbe interactions (Zogg et al.
2018, Hughes et al. 2020, Lumibao et al. 2020). Systematic measurement of genetic diversity at
fine scales (i.e., < 1 m?) can provide more information on the spatial distribution of clones from
which marsh plant colonization strategies can be inferred (Vallejo-Marin et al. 2010).
Understanding genetic diversity at all spatial scales is important within foundational species,

including salt marsh plants, because genetic diversity influences population persistence,
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ecosystem function, and restoration and conservation outcomes (Seliskar et al. 2002, Booth and
Grime 2003, Reusch and Hughes 2006, Hughes et al. 2008, Kettenring et al. 2014).

We present a case study from the U.S. mid-Atlantic asking how genetic diversity
partitions across multiple spatial scales along the seaside of the Eastern Shore of Virginia. Using
microsatellite markers, we analyzed samples from five marshes spanning ~ 35 km of coastline to
compare genetic diversity levels in smooth cordgrass from Virginia to levels throughout its
native range and to assess genotype clustering across the Eastern Shore of Virginia. We then
measured genetic diversity and examined the spatial positions of genotypes in a single marsh at
multiple scales (0.2 m, 1 m, 5 m) to indirectly evaluate smooth cordgrass colonization dynamics.
Assessing genetic diversity in smooth cordgrass at multiple scales will shed light on genetic
variation and colonization strategies, both of which may be critical for long-term persistence of
populations (Broadhurst et al. 2008, Vallejo-Marin et al. 2010).

Methods
Field-site description

Our study sites were located along the Eastern Shore of Virginia (Fig. 1) at Upper
Phillips Creek (UPC: 37° 27' 35.0244" N, 75° 50' 3.966" W), Lower Phillips Creek (LPC: 37° 27'
12.6504" N, 75° 50' 1.6512" W), Indiantown (ITM: 37° 20" 45.6972" N, 75° 54' 5.6952" W),
Oyster Harbor (OHM: 37° 17' 16.7532" N, 75° 55' 45.4872" W), and Cushman’s Landing (CLM:
37°10'29.892" N, 75° 56' 38.2164" W) salt marshes. Smooth cordgrass is the dominant plant
species on the Eastern Shore (Christian and Blum 2017) as it is for most of the southeastern
Atlantic coastline (Wiegert and Freeman 1990). There are two ecotypes of smooth cordgrass, a

tall and a short growth form; in this study, we sampled the short-form ecotype because it is the
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most common growth form on the ocean-side of the Eastern Shore. All study sites experienced
similar hydrologic regimes with semi-diel tides and a tidal range of approximately 1.2 m.
Sample collection

In June 2013, we laid out a 100-m transect parallel to the tidal creek at each of the five
study sites (i.e., at similar elevation and hydroperiod). At 10-m intervals along each transect, we
collected a single smooth cordgrass stem, yielding a total of 50 samples to assess genetic
diversity levels on the Eastern Shore. In June 2014, we used a nested approach to explore genetic
diversity at multiple spatial scales (0.2 m, 1 m, 5 m) in UPC marsh (as shown in Fig. 3). At the
largest scale, we sampled plant stems at 5-m intervals along a 50-m transect extending from the
corner of a 10 x 10-m sampling grid. Within the 10 x 10-m sampling grid, we collected plant
stems at 1-m intervals and subsampled within two randomly selected 1 x 1-m grids, where we
collected plant stems at 0.2-m intervals. We collected a total of 204 samples during the 2014
sampling effort.
Genotyping

We extracted DNA from leaf tissue from the apex of each stem (3 to 5 cm in length)
using QTAGEN DNeasy Mini Plant Kits (Valencia, CA) and amplified nine microsatellite loci
(Blum et al. 2004; Spar0O1 - Spar09) using fluorescently labeled primers. We pooled ~1 pl of
template DNA (consisting of 10-50 ng of total genomic DNA) in 15-pul reactions with 7.5 pul
TypelT (QIAGEN, Valencia, CA), 0.48 ul of primer mix (10uM) and 6.02 pul of molecular grade
water. PCR began with a denaturing stage at 95°C (5 min) and 30 cycles of 95°C (30 s), 60°C
(90 s), and 72°C (30 s), followed by a final extension stage at 60°C (30 min).

We visualized PCR products via capillary electrophoresis. Samples collected in 2013

were analyzed on a MegaBACE 1000 (GE Biosciences) with an internal ET-ROX 400 size
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standard while samples collected in 2014 were analyzed on a 3730x]1 DNA Analyzer (Applied
Biosystems) with an internal ET-ROX 500 size standard at the Georgia Genomics Facility
(University of Georgia, GA). We determined fragment lengths using Fragment Profiler version
1.2 (GE Biosciences) for the 2013 samples and Geneious version 7.1 for the 2014 samples. To
ensure there were no differences in fragment length due to genotyping method, we analyzed a
subset of samples on both instruments for comparison and found no discrepancies.

Data analysis

We analyzed the data collected at 10-m intervals from the five study sites in 2013
separately from the data collected at three spatial scales at UPC in 2014 (UPC-0.2m, UPC-1m,
UPC-5m). Several markers exhibited polyploidy (Spar02, Spar03, Spar04, Spar0O5 and Spar06),
so we used population genetics software compatible with polyploid data. For each dataset, we
assigned clonal identity to each sample in GenoDive version 3.04 (Meirmans 2020), assuming an
infinite allele model with the threshold of maximum genetic distance between two individuals set
to one. For each site and spatial scale, we generated the following clonal diversity measures:
number of unique genotypes (num), effective number of genotypes (eff = inverse of the summed
squared genotype frequencies; Legendre and Legendre 1998), evenness (evenness = eff/num;
Meirmans and Van Tienderen 2004), and genotypic richness (R = num-1/n-1; Dorken et al.
2002).

For allelic diversity analyses, we removed replicate genotypes from each site to avoid
allele frequency bias due to the presence of clones. We calculated observed heterozygosity,
expected heterozygosity and deviation from Hardy-Weinberg equilibrium as measured by the
inbreeding coefficient in GenoDive version 3.04 (Meirmans 2020) and average allelic richness

per locus standardized by smallest sample size in the package ‘diveRsity’ (Keenan et al. 2013) in
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R version 4.0.3 (R-Core-Team 2020). To investigate patterns of genotype clustering across all
marshes, we performed principal component analysis (PCA) on the 2013 dataset in GenoDive.
We plotted all samples from the 2014 dataset with their genotypic identity to visually assess
patterns in the spatial distribution of clones within UPC.

Results

The five marshes sampled in 2013 contained 37 unique genotypes out of 50 samples.
Each site contained a high number of genotypes relative to sample size (> 8 out of 10) with
slightly fewer effective genotypes (> 6.25), except for ITM (Table 1). Genotypic evenness and
richness were similarly high at all sites except for ITM. Across all sites and sampling schemes,
allelic richness ranged from 3.68 to 6.10 (Table 1). Expected heterozygosity consistently
exceeded observed heterozygosity, resulting in positive inbreeding coefficients, which are
indicative of inbreeding. The PCA revealed that genotypes did not cluster according to
geographic origin (Fig. 2), and the first two principal component axes accounted for a small
proportion of the total variance, 8.6% and 7.5%, respectively.

Allelic diversity patterns for all scales sampled in UPC in 2014 were similar to those
observed for UPC in 2013, but clonal diversity measures varied widely across scales (Table 1).
Across the entire area sampled in UPC in 2014, there were 67 unique genotypes and 37
singletons (exclusive members of a given genotype) of the 202 samples analyzed. Genotypic
richness at the 5-m scale was comparable to marshes sampled in 2013 (0.70) but was
considerably lower at the 1-m and 0.2-m scales (0.35 and 0.31, respectively). Genotypic
evenness was higher at the 5-m and 0.2-m scales (0.93 and 0.60, respectively) than at the 1-m

scale (0.34). At all spatial scales, singletons and nondominant clones were interspersed within
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aggregations of dominant clones, with nearly 50 stems belonging to just two clones detected
several meters apart (clones 2 and 26; Fig. 3).
Discussion

Along the seaside of the Eastern Shore of Virginia, we found clonal and allelic diversity
levels similar to diversity levels reported from other geographic locations; however, spatial scale
influenced some measures of genetic diversity. At the 10-m sampling scale, genotypic richness at
four of the five sites exceeded 0.78 and was comparable to richness found in Gulf Coast marshes
and other Atlantic marshes (Blum et al. 2007; Supplemental Information, Table S-1). However,
we found that finer scale sampling (1 m and 0.2 m) reduced measures of genotypic richness and
evenness. Allelic diversity remained relatively consistent at all spatial scales. Although patterns
indicated that at smaller spatial scales clonal diversity decreased, we found both clustering and
intermingling of genotypes at all spatial scales, with several genotypes detected within a 1-m?
plot (Fig. 3). Additionally, expected heterozygosity values exceeded observed heterozygosity
values, suggesting smooth cordgrass inbreeding is common in Eastern Shore marshes. We
hypothesize that the spatial pattern of few dominant clones interspersed with several rarer
genotypes and singletons could indicate that in mid-Atlantic marshes, the dominance of few,
well adapted clones is balanced by sexual reproduction and recruitment. The presence of several
unique genotypes and relatively high genetic diversity found for this foundation species at fine
spatial scales could influence intra- and inter-species interactions, thereby impacting ecological
communities and their functioning (Hughes and Lotterhos 2014, Zogg et al. 2018, Hughes et al.
2020).

Consistent with other studies examining smooth cordgrass genetic diversity at large

spatial scales, genotypic richness was high at four of the five sites (> 0.78; Table 1). At these
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four sites, genotypic richness was similar to Gulf Coast (0.62 — 0.95; calculated as the proportion
of unique genotypes from Travis and Hester 2005), southeastern (0.88 — 1.00; calculated as
genotypic richness from Gaynor et al. 2019) and mid-Atlantic and northeastern marshes (0.96 —
1.00; calculated as the proportion of unique genotypes from Blum et al. 2007). Richness and
evenness were particularly low at one of our sites (ITM, 0.22) because a single clone accounted
for 8 out of 10 samples along the sampling transect and extended over at least 70 m. Allelic
richness at all five sites fell within the range observed for smooth cordgrass in Gulf Coast (3.09 —
4.63; Hughes and Lotterhos 2014) and southeastern (3.58 — 4.87; Gaynor et al. 2019) marshes.
Our results suggest that mid-Atlantic smooth cordgrass marshes on Virginia’s Eastern Shore
have similar levels of genetic variation as populations throughout other parts of its native range.
Although species richness is typically greater along the Eastern Shore due to the ecotone
between Virginian and Carolinian marine regions, our findings do not reflect greater clonal or
allelic diversity, as we had hypothesized.

The spatial scale of sampling influenced clonal diversity but not allelic diversity.
Sampling at higher resolutions in UPC (at 0.2-m and 1-m intervals rather than 5-m or 10-m
intervals) increased the rate of encountering stems belonging to the same genotypes, thus
reducing measures of genotypic diversity and evenness (Table 1). We found both clustering (e.g.,
clones 1, 2, 26 and 27) and intermingling (e.g., clone 13) of dominant genotypes at all spatial
scales (Fig. 3). Singletons comprised over half of the unique genotypes detected and were
present at each spatial scale, indicating high rates of sexual recruitment may produce novel
genotypes at UPC. In contrast, allelic diversity was robust to sampling schemes and similar
across all five sites. Given that the marshes we sampled may be thousands of years old (Oertel et

al. 1989a, 1989b, Brinson et al. 1995) with the exception of OHM (NOAA-NOS-NGS 2018),
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similar allele frequencies across a broad area (~ 35 km) suggests there were historically few
barriers to dispersal across seaside marsh populations on the Eastern Shore.

The spatial pattern of large clones interspersed with several rarer genotypes and
singletons could result from vegetative expansion by dominant clones, sexual reproduction
between closely related individuals, and occasional long-distance pollen or seedling dispersal.
The following results support this hypothesis: we found 1) two clones with several stems
distributed across the 100-m? sampling grid, 2) evidence of inbreeding at all sites, yet 3) no
evidence of genetic differences across the five marshes. The presence of large clones indicates
vegetative expansion is a successful reproductive strategy in Eastern Shore marshes, but
inbreeding and genetic similarities across sites suggest sexual reproduction and rafting of clonal
fragments between marshes does occur.

At all sites and spatial scales, observed heterozygosity was lower than expected
heterozygosity, leading to inbreeding coefficient values ranging from 0.22 to 0.34 (Table 1).
Positive inbreeding coefficients indicate this population of smooth cordgrass exhibits inbreeding
and, therefore, hosts lower heterozygosity than would otherwise be expected under random
mating conditions. In a range-wide survey, Blum et al. (2007) similarly found that observed
heterozygosity was lower than expected for smooth cordgrass in Chesapeake Bay. Given the
presence of dominant clones and evidence of inbreeding yet high genotypic diversity, we suspect
seedling recruitment occurs most often from plants selfing and perhaps mating with proximal,
closely related individuals. Inbreeding in marshes could result from biparental inbreeding,
meaning mating between close relatives (Nuortila et al. 2006), in addition to geitonogamous
selfing (Travis et al. 2004). While further analyses would be required to confirm that selfing and

biparental inbreeding occur in the marshes, the highly intermingled genotypes in the UPC
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provide opportunity for sexual reproduction among closely related individuals. Though we
allowed a single allele mismatch within individual members of a clone to account for somatic
mutations, we cannot exclude the possibility that somatic mutation — where somatic cells of
clones acquire mutations as they propagate vegetatively, generating novel genotypes over time —
may have contributed to the relatively high genotypic richness observed even at small spatial
scales (Rogstad et al. 2002, Yu et al. 2020).

On the basis of the principal component analysis, we found little evidence of genotype
clustering among smooth cordgrass from the five marshes, indicating that there is sufficient
pollen or fragment dispersal across populations to prevent genetic divergence (Fig. 2). The lack
of clustering within marshes studied here suggests gene flow occurs along the Eastern Shore, at
least across the maximum distance between sites we sampled (~ 35 km). In northeastern
marshes, smooth cordgrass genotypes from marshes spanning a much greater area encompassing
New York, New Jersey, Connecticut and Rhode Island also did not cluster by site (Novy et al.
2010). Wind-driven pollen dispersal and, to a lesser extent, seed dispersal and vegetative rafting
have likely contributed to the genetic similarities we observed across sites. While clonal
reproduction may be a successful strategy in these marshes, occasional long-distance dispersal, at
least over time scales relevant to gene flow, and inbreeding may also be important modes of
reproduction in smooth cordgrass marshes.

Our cumulative findings provide support for both ‘repeated seedling recruitment’
(Eriksson 1989) and ‘recruitment windows of opportunity’ (Jelinski and Cheliak 1992) strategies
for smooth cordgrass colonization, where novel genotypes are continuously created via sexual
reproduction under stable conditions and sporadic disturbance enhances recruitment and

establishment of novel genotypes. The intermingling of rare genotypes with dominant genotypes
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at UPC and the genetic similarities across sites indicate recruitment may occur often.
Disturbances such as drought (Porter et al. 2014), salt marsh die-back (Marsh et al. 2016), deer
trampling (Keusenkothen 2002), and wrack deposition (Brinson et al. 1995, Tolley and Christian
1999) frequently occur and could provide opportunities for seeds to establish in the UPC marsh.
For example, in Louisiana, genetic diversity of smooth cordgrass was promoted by drought-
induced disturbance (Edwards et al. 2005). Additionally, in other regions, there is experimental
evidence that disturbance caused by burrowing crabs can stimulate sexual reproduction in marsh
plants (Xiao et al. 2015) and crab herbivory can increase genotypic richness in smooth cordgrass
(Noto and Hughes 2020). Burrowing and herbivory by crabs are common in Eastern Shore
marshes (Thomas and Blum 2010, Michaels and Zieman 2013) and also may contribute to the
high clonal diversity we observed.

These findings have important implications for salt marsh management along the Eastern
Shore because smooth cordgrass clonal and trait diversity interact to affect plant performance,
community interactions, and ecosystem function. For example, genotypic diversity can influence
plant performance metrics, such as stem density, spatial spread, and percent cover (Hughes
2014), and genotype identity can affect consumer activity (Zerebecki et al. 2017). Similarly,
plant genotype in part determines microbial community composition and diversity in smooth
cordgrass marshes (Zogg et al. 2018, Lumibao et al. 2020), which can indirectly affect ecosystem
functions, such as nutrient cycling. Bernik et al. (2018) found that heritable trait variation in
smooth cordgrass directly affects ecosystem function by influencing soil shear strength, which is
a proxy for erosion resistance (Amer et al. 2017).

Our findings suggest that, if other marshes exhibit similar spatial patterns of smooth

cordgrass genetic diversity, then managers restoring marshes and aiming to maximize diversity
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may source several unique genotypes within a limited spatial extent. Further, there is minimal
risk of mixing differentiated populations if source materials are collected/propagated from
nearby sites because the populations are already well mixed in this region. High genetic diversity
and potentially high recruitment rates in smooth cordgrass may bolster the success of marshes
adapting and migrating in response to sea level rise and other stressors. A continuous supply of
rarer genotypes intermingling with large, established clones can provide a form of biological
insurance (Yachi and Loreau 1999), where the high number of genetically unique individuals
present in a given marsh may increase the likelihood that some will be able to successfully

respond to environmental change.
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Table 1. Summary genetic diversity statistics: sample size (n), number of unique genotypes

(num), effective number of genotypes (eff), genotypic evenness (eve), genotypic richness (R),

allelic richness (A;), observed heterozygosity (H,), expected heterozygosity (He) and inbreeding

coefficient (Gis). Average values are presented for results from the two grids sampled at the 0.2

m scale, with standard error of the mean included in parentheses. UPC: Upper Phillips Creek,

LPC: Lower Phillips Creek, ITM: Indiantown, OHM: Oyster Harbor, CLM: Cushman’s Landing.

Population n num eff eve R Ar Ho He Gis
2013

UPC 10 8 6.25 0.78 0.78 4.09 0.56 0.85 0.34
LPC 10 9 8.33 0.93 0.89 3.89 0.61 0.83 0.27
IT™ 10 3 1.52 0.51 0.22 3.68 0.59 0.83 0.29
OHM 10 9 8.33 0.93 0.89 4.02 0.64 0.83 0.23
CLM 10 8 7.14 0.89 0.78 4.24 0.58 0.87 0.33
2014

UPC-5m* 11 8 6.25 0.93 0.70 4.64 0.60 0.76 0.22
UPC-1m* 121 43 14.58 0.34 0.35 6.10 0.59 0.80 0.27
UPC-0.2m 36 (11.%1) (Z)ég) ((266(?2) (8;(1)) (?)(1)?) ((?5‘298) ((8.()6071) (8(2)471)

*Loci for one sample failed to amplify.
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Figure 1. Sampling sites on the Eastern Shore of Virginia. Left panel: sampling locations. Right

panel: LiDAR-generated elevation map of UPC and LPC marsh sites (created by J.H. Porter with

data from USGS Eastern Shore, VA 2015 QL2 LiDAR, Contract: G10PC00013). UPC: Upper

Phillips Creek, LPC: Lower Phillips Creek, ITM: Indiantown, OHM: Oyster Harbor, CLM:

Cushman’s Landing.
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514  Figure 3. Nested spatial arrangement of the UPC genotypes (not drawn to scale). Each unique
515  genotype is numbered so that samples with shared genotypes share the same number. The ‘X’
516  symbol indicates missing data (meaning loci for samples failed to amplify).
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Supplemental 1

Walker, J.B., A. Bijak, and L. Blum. Genetic Diversity and Clonal Structure of Spartina
alterniflora in a Virginia Marsh. Northeastern Naturalist.

Table S-1. Spartina alterniflora genetic papers reporting measures of genetic diversity: Clonal
diversity (R or g), allelic richness (A;), observed heterozygosity (H,), and expected
heterozygosity (He).

Methods: In March 2021, we used the reference data base, Web of Science/Web of Knowledge,
using the key words “Spartina alterniflora” and “genetic” to search for journal articles published
between 1991 and 2021 that reported measures of genetic diversity for Spartina alterniflora.
That search yield 181 papers. We further limited the search to native range of S. alterniflora
(North American Atlantic and Gulf Coasts). We included only papers that reported measures of
population-level genetic diversity (i.e., clonal diversity, allelic richness, or observed and
expected heterozygosity) and reported the spatial scale at which individual plant stems were
collected. This left only the 9 papers cited in Table S-1. Not all papers included in Table S-1
used simple sequence repeats (SSR or microsatellites, the genetic markers we used) and so may
not be directly comparable to our results. We included results based on other types of genetic
markers (e.g., allozymes, amplified fragment length polymorphisms or AFLP, random amplified
polymorphic DNA or RAPD) for the sake of completeness.

No. of Clonal | Allelic Observed Expected Sa.mplmg Type of
. ° . hetero- hetero- distance . .
plants diversity | richness it it int 1 genetic Location
sampled (R) (Ar) “ysasity yeosty ervd markers
(Ho) (He) (m)

Mosquito

35 0.676 3.83 nr 0.551 10 SSR Lagoon, FLI!
Mosquito

34 0.606 3.70 nr 0.543 10 SSR Lagoon, FL1!
Mosquito

29 0.679 4.26 nr 0.563 10 SSR Lagoon, FLI!
Mosquito

33 0.688 4.40 nr 0.608 10 SSR Lagoon, FLI!
Mosquito

35 0.765 428 nr 0.586 10 SSR Lagoon, FLV
Mosquito

33 1 4.08 nr 0.643 10 SSR Lagoon, FL!
Mosquito

34 1 422 nr 0.568 10 SSR Lagoon, FL!
Mosquito

35 1 4.87 nr 0.678 10 SSR Lagoon, FL!
Mosquito

34 0.879 3.58 nr 0.476 10 SSR Lagoon, FL!
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541

Mosquito

33 4.03 nr 0.597 10 SSR Lagoon, FLU
12 nr 1.79¢ 0.49 0.42 10 SSR Emerald Isle,
NC
12 nr 1.89¢ 0.46 0.43 10 SSR Sapeg’ [iiland’
8 nr 177 0.63 0.42 10 SSR | Cedar Key, FL?
104 0.07* 3.95 nr nr sagim | ssg | SvlowPnBan
105 0.09* 4.24 nr nr sagims | ssr | StIowPRBu
102 | 0.17¢ 3.63 nr nr sagims | ssr | StIowPRBu
103 0.14* 3.83 nr nr sagims | ssr | StIowPRBu
106 0.05* 3.09 nr nr sagim® | ssr | StIowPRBu
106 0.10% 4.63 nr nr sagims | ssr | StIowPRBu
9 0.05* 3.80 nr nr gagim | ssg | SvovPnBan
102 | 007 351 nr nr gagim | ssg | SvovPnBan
105 0.06* 3.73 nr nr gagim | ssg | SvovPnBan
106 0.18% 412 nr nr 84.81 m?$ SSR StJ O;e{’? Bay,
107 0.26% 4.60 nr nr 84.81 m?$ SSR St.J O;e{’? Bay,
103 0.23% 3.84 nr nr 84.81 m?$ SSR St.J O;e{’? Bay,
106 0.17% 3.64 nr nr 84.81 m?$ SSR St JO‘:‘{’? Bay,
104 0.35% 458 nr nr 84.81 m? SSR St JO‘:‘{’? Bay,
102 0.26% 441 nr nr 84.81 m? SSR St JO‘:‘{’? Bay,
135 0.08* 3.79 nr nr 84.81 m® SSR StJ OSFe{’? Bay,
Narragansett
i
5 nr 3.03 0.61 0.53 >5 SSR Bay, RI'
6 nr 5.01* 0.73 0.65 >5 SSR Stoningont, CT*
. Jamaica Bay,
10 nr 6.63 0.67 0.7 55 SSR \
NY
9 nr 621 0.67 0.62 >5 SSR Jamaica Bay,
NY
9 nr 3.47¢ 0.72 0.75 55 SSR ! amiﬁfay’
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542

Jamaica Bay,

5 nr 6.78% 0.64 0.75 >5 SSR N+
8 nr 4.71% 0.67 0.68 >5 SSR Mattawan, NJ*
3 ar 2.06! 0.62 0.46 55 gsr | TomsRiver, NJ'
20 0.997 nr 0.35 0.44 2-5 SSR ME?
8 14 nr 0.37 0.59 2-5 SSR MA’
14 0.99% nr 0.51 0.51 2-5 SSR MAS
12 1t nr 0.34 0.5 2-5 SSR MAS
6 0.967 nr 0.29 0.61 2-5 SSR MA’
11 0.99% nr 0.3 0.54 2-5 SSR MAS
20 0.997 nr 0.5 0.59 2-5 SSR RE
3 1t nr 0.31 0.79 2-5 SSR CT
19 0.99% nr 0.44 0.59 2-5 SSR CT
20 0.99% nr 0.5 0.56 2-5 SSR NY?
20 1t nr 0.49 0.65 2-5 SSR NJ3
18 1% nr 0.5 0.65 2-5 SSR DE’
16 0.997 nr 0.52 0.69 2-5 SSR VA
18 1t nr 0.45 0.58 2-5 SSR VAS
18 0.99% nr 0.42 0.61 2-5 SSR NCS
17 0.997 nr 0.51 0.66 2-5 SSR NC?
6 1% nr 0.59 0.7 2-5 SSR SC’
18 nr 62.8 0.22 nr >200 AFLP Blf:‘trj::‘r&(s
18 nr 57.6 0.20 nr >200 AFLP Te“il;oénne’
18 nr 55.2 0.19 nr >200 AFLP Mergz?ta“’
18 nr 60.8 0.20 nr >200 AFLP Calcasieu, LA®
170 0.82 45.46 nr nr 05-1 AFLP Red Pass, LA’
101 0.84 57.58 nr nr 0.5-1 AFLP Sabi‘f AIEIWR’
129 0.95 66.67 nr nr 0.5 AFLP &I:f;be{%
101 0.82 75.76 nr nr 1 AFLP 11\{41152:352)71
152 0.82 48.48 nr nr 1-2 AFLP Nairn, LA
60 0.68 57.58 nr nr 2 AFLP Bay Junop, LA’
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131 0.62 66.67 nr nr 25-5 ApLp | Breen Asf’““d’
75 0.70 14.10 nr nr 5 AFLP Marsﬁgand’
0.52 - AFLP/ Sabine NWR,
166 0.201 nr nr nr 6.28 RAPD LA
194 r r or nr 0.52 - AFLP Sabine NWR,
6.28 /RAPD LAgs
0.52 - AFLP/ Sabine NWR,
206 0.772 nr nr nr 6.28 RAPD LA
0.52 - AFLP/ Sabine NWR,
240 0.618 nr nr nr 6.28 RAPD LA
29 nr 31.14 0.1153 nr <40ha' | AFLP Sabine NWR
LAgs
29 nr 32.02 0.1148 nr 127 ha' |  AFLP Sabine NWR,
LAgs
35 nr 32.02 0.1256 nr 117 ha' AFLP Sabine NWR,
LAgs
19 nr 27.63 0.1059 nr 20 ha' AFLP Sabine NWR,
LAgs
96 nr 65.4 nr 0.220 1-4 | Allozymes Sapelg/iiland’
96 nr 65.4 nr 0.209 1-4 | Allozymes Sapelg/iiland’
9 nr 61.5 nr 0.189 1-4 | Allozymes Sapeg’;iland’
9 0.88 61.5 nr 0.197 1-4 | Allozymes Sapeg’;iland’
96 0.97 615 nr 0.192 1-4 | Allozymes Sapeg’;iland’
543 * R was not reported but calculated from sample size and number of genotypes as G-1/N-1
544 1 clonal diversity was reported as g = G/N
545 + allelic diversity was reported as N, (effective number of alleles)
546 § area sampled was provided but inter-sample distance was not reported
547 Ireported data are from restored populations
548 ! Gaynor, M. L., L. J. Walters, and E. A. Hoffman. 2019. Ensuring effective restoration efforts with salt
549 marsh grass populations by assessing genetic diversity. Restoration Ecology 27:1452-1462.
550 2 Guo, W., S. Qiao, Y. Wang, S. Shi, F. Tan, and Y. Huang. 2015. Genetic diversity, population structure,
551 and genetic relatedness of native and non-native populations of Spartina alterniflora (Poaceae, Chloridoideae).
552 Hydrobiologia 745:313-327.
553 3 Hughes, A. R., and K. E. Lotterhos. 2014. Genotypic diversity at multiple spatial scales in the foundation
554 marsh species, Spartina alterniflora. Marine Ecology Progress Series 497:105-117.
555 4 Novy, A., P. E. Smouse, J. M. Hartman, L. Struwe, J. Honig, C. Miller, M. Alvarez, and S. Bonos. 2010.
556 Genetic variation of Spartina alterniflora in the New York metropolitan area and its relevance for marsh
557 restoration. Wetlands 30:603-608.
558 5 Blum, M. J., K. Jun Bando, M. Katz, and D. R. Strong. 2007. Geographic structure, genetic diversity and
559 source tracking of Spartina alterniflora. Journal of Biogeography 34:2055-2069.
560 6 Utomo, H. S., I. Wenefrida, M. D. Materne, and S. A. Harrison. 2009. Genetic diversity and population
561 genetic structure of saltmarsh Spartina alterniflora from four coastal Louisiana basins. Aquatic Botany 90:30-36. 7
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