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Abstract
While the process of meiosis is highly conserved across eukaryotes, the sexual systems that govern life cycle phase transi-
tions are surprisingly labile. Switches between sexual systems have profound evolutionary and ecological consequences, 
in particular for plants, but our understanding of the fundamental mechanisms and ultimate causes underlying these transi-
tions is still surprisingly incomplete. We explore here the idea that brown and green algae may be interesting comparative 
models that can increase our understanding of relevant processes in plant reproductive biology, from evolution of gamete 
dimorphism, gametogenesis, sex determination and transitions in sex-determining systems.
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Introduction

Sex is pervasive across eukaryotes and ensures the produc-
tion of new genetic combinations. Although meiotic sex 
was established at the root of eukaryotes (Goodenough and 
Heitman 2014), a remarkable diversity of sexual character-
istics has evolved in different lineages since then, including 
the way sexes or mating types are determined. Many spe-
cies have the traditional male versus female dichotomy, but 
hermaphrodites or some combination of hermaphroditic and 
male–female differentiation occurs in others; some species 
determine sex genetically, often with highly differentiated 
chromosomes, while in others sex is determined by the 
environment or through an epigenetic mechanism. Intrigu-
ingly, modes of sex or mating-type determination and their 
integration into life cycles are evolutionarily labile within 
many lineages where transitions occur between genetic and 
epigenetic sex determination and in the phase of the life 

cycle (e.g., haploid versus diploid) in which sexual differ-
entiation occurs (Box 1). Transitions among sexual systems 
have profound evolutionary and ecological consequences, 
influencing genetic diversity within populations, phenotypic 
evolution and patterns of diversification (Barrett 2010). For 
example, the switch from combined to separate sexes has 
occurred repeatedly in land plants and represents one of the 
major evolutionary transitions in their reproductive history. 
Understanding the proximate mechanisms, the ultimate 
causes and the consequences of transitions between sexual 
systems is major goals in evolutionary biology. However, 
we still know remarkably little about the diversity and evo-
lution of sexual systems among plant taxa and about the 
mechanisms underlying transitions between reproductive 
systems. What are the molecular bases and the genomic 
consequences of shifts in sexual systems? Why do transi-
tions occur more often in some groups than in others, and 
why do some sexual systems occur more frequently than 
others? What are the driving forces underlying transitions? 
These questions form a fascinating playground for current 
and future research. Communicated by Frederic Berger.
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The increasing availability of large-scale sequencing 
and new technologies for investigating gene function have 
enabled new opportunities to develop non-classical plant 
models. Gametophyte-dominant land plants such as the 
bryophytes Marchantia polymorpha, Ceratodon purpureus, 
Physcomitrella patens (Chang et al. 2016) and green algae 
such as volvocines, Closterium, Chara braunii, Ulva sp. 
(Nishiyama et al. 2018; De Clerck et al. 2018; Tsuchikane 
and Sekimoto 2019; Umen and Coelho 2019; Bringloe et al. 
2020) offer alternative systems to help answer questions 
on the mechanisms and evolution of sexual reproductive 
modes. In particular, some algae show comparable diver-
sity and frequency of shifts in reproductive modes as land 
plants (Hanschen et al. 2018; Heesch et al. 2019; Tsuchikane 
and Sekimoto 2019). The diversity of reproductive systems 
in algae frame is important topic in a complementary way, 
and their elucidation will help generate a more balanced 
perspective on the origins and evolution of plant reproduc-
tive modes and provide more data for testing evolutionary 
theories about sex. It is important to note that while algae 
is not a taxonomically meaningful term, members of differ-
ent algal groups circumscribe a large amount of eukaryotic 
diversity and, outside of fungi and metazoans, contain some 
of the best-studied sexual cycles among eukaryotes (Fig. 1). 
The green algae, specifically, are members of the Chloro-
plastida (green members of the Archaeplastida) and include 
Chlorophytes (e.g., volvocines, Ulva) as well as Streptophyte 
algae (e.g., Chara, Closterium).

Several recent reviews have addressed the details of 
sex and life cycles for different algal groups (Coelho et al. 
2018; Umen and Coelho 2019; Coelho and Cock 2020) so 
we specifically focus here on how volvocine and brown algal 
models may be used to tackle questions of importance to 
plant reproductive biology, from evolution of gamete dimor-
phism, gametogenesis, sex determination and transitions in 
sex-determining systems.

Volvocine algae

Volvocine green algae are members of the Chlorophyte 
algal lineage, a sister group to the Streptophytes (charo-
phyte algae + land plants) from which they diverged around 
1 billion years ago (Umen and Coelho 2019; Herron 2009). 
Moreover, they may offer insights into questions that are 
difficult to tackle in land plants such as the origins of ani-
sogamy and oogamy, and the presence of deep homology 
in genetic control mechanisms for gamete differentiation 
and life cycle transitions. As described below, volvocines 
are also emerging as models for understanding transitions 
in sexuality from genetically determined sexes governed 
by sex chromosomes (heterothallism) to epigenetic sex 

determination (homothallism) where mitotic clones from a 
single individual can produce male and/or female gametes.

The volvocines have unicellular members, such as the 
well-studied model alga Chlamydomonas reinhardtii, and 
dozens of larger multicellular or colonial forms that are 
organized into genera based on cell number, morphology 
and organismal size. The most complex volvocine species 
are in the genus Volvox where individuals can have thou-
sands of cells and exhibit full or partial germ-soma differen-
tiation (Umen 2020). Molecular phylogenetic analyses have 
revealed that several volvocine genera, including Volvox, are 
polyphyletic (Herron and Michod 2008). While polyphyly 
complicates nomenclature, it makes the volvocine algae 
excellent models for comparative evolutionary studies of 
multicellularity and sexual cycles (Hanschen et al. 2018; 
Umen and Coelho 2019; Umen 2020).

Like most green algae and gametophyte-dominant land 
plants (e.g., bryophytes, lycophytes), volvocine green algae 
have haplontic life cycles where sex or mating type is deter-
mined in the haploid stage. In volvocine algae, the diploid 
stage is limited to a thick-walled and environmentally resist-
ant zygotic spore. Key regulators of the haploid-to-diploid 
transition in Chlamydomonas and probably all volvocines 
are a pair of TALE-family homeobox transcription factors 
(TFs): KNOX-related Gsm1 and BELL-related Gsp1 which 
are expressed in minus (GSM1) or plus (GSP1) gametes, 
respectively. Upon fertilization, Gsm1 and Gsp1 heterodi-
merize, enter the nucleus and activate the zygotic (sporo-
phytic) differentiation program (Lee et al. 2008; Hamaji 
et al. 2016; Kariyawasam et al. 2019a). This mechanism 
may help ensure that the diploid or sporophytic differentia-
tion program is only activated upon fertilization (Haag 2007; 
Perrin 2012) and is conserved across a range of eukaryotes 
including bryophytes, brown algae, fungi and cellular slime 
molds (Bloomfield 2019).

Genetic mechanisms for mating-type or sex determina-
tion in volvocine algae have been investigated extensively 
and have yielded insights that may be applicable to under-
standing sex determination in other green algal taxa and land 
plants (Umen and Coelho 2019). In C. reinhardtii and other 
heterothallic (dioicous) volvocine algae, the master regula-
tory gene MID gene is present in the minus mating type 
locus (MTL) or male sex-determining region (SDR). Expres-
sion of MID is sufficient to cause minus or male gametic 
differentiation, while its absence results in the default state 
of plus or female differentiation (Umen and Coelho 2019). 
The Mid protein is an RWP-RK family TF, and relatives 
from this family are now known or suspected to play a role 
in mating type or sex determination in more distantly related 
green algal taxa (Yamazaki et al. 2017; Blanc-Mathieu et al. 
2017) as well as in land plants (Hisanaga et al. 2019). In the 
liverwort Marchantia polymorpha, an RWP protein encoded 
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by the MpRKD gene is required for both male and female 
gametogenesis (Koi et al. 2016; Rövekamp et al. 2016) while 
in the algae there is a single gene in one of the two sexes 
or mating type loci, prompting the question of whether the 
roles of RWP-RK TFs are conserved or there has been some 
modification and/or divergence between the streptophyte and 
chlorophyte lineages in their genetic circuitry for gamete 
differentiation.

The evolutionary histories and relatedness of MTL and 
SDRs in volvocine algae have been reviewed recently (Umen 
and Coelho 2019). These regions of heterothallic volvocine 
species can span > 1 Mbp and share several properties in 
common with each other including suppressed recom-
bination between the two MTL or SDR haplotypes, rear-
rangements that disrupt sequence collinearity, presence of 
gametologs (genes with an allele in both haplotypes) and 
sex-limited genes such as MID that are found in only one 
of the two haplotypes. In Volvox carteri, the SDR haplo-
types are highly differentiated and expanded in size with 
respect to MTL/SDR regions of other volvocine genera and 
have increased repeat content that is characteristic of non-
recombining heteromorphic sex chromosomes from other 

taxa including plants and some multicellular algae such as 
Ulva and Ectocarpus (Coelho et al. 2018). Unlike what has 
been found for other volvocine genera, the gametologs in V. 
carteri are also highly diverged due to absence of recom-
bination, and at least some of these SDR genes are likely 
to have undergone sexually antagonistic selection (Ferris 
et al. 2010; Geng et al. 2014; De Hoff et al. 2013; Hamaji 
et al. 2018).

Transitions between heterothallism and homothallism (or 
vice versa) have occurred in most volvocine genera, often 
multiple times (Fig. 2) (Hanschen et al. 2017) but until 
recently had not been investigated in detail. Hints about how 
such transitions could arise have come from studies in heter-
othallic species C. reinhardtii and V. carteri where mutations 
or genetic manipulations can cause a self-mating phenotype. 
In C. reinhardtii, the autosomal iso1 mutation caused gam-
etes to self-agglutinate when iso1 was in a MT- strain back-
ground, though the causative mutation has not been identi-
fied (Campbell et al. 1995). A C. reinhardtii MT + strain 
with an extra independently assorting and unstable copy of 
MID was also found to cause a self-agglutinating phenotype, 
presumably due to stochastic mitotic loss of the MID gene 

Fig. 1  Cladogram of eukaryotes 
based on Coelho et al. (2018), 
highlighting groups containing 
algae (indicated by colored text 
at branch tips). Polyphyletic 
taxa, which are grouped for 
simplicity, are indicated by gray 
dashed lines
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(Ferris and Goodenough 1997). In V. carteri males, a strong 
RNAi-mediated knockdown of MID caused differentiation 
of sperm precursor cells into partly functional and fertiliz-
able eggs, while a partial knockdown of MID led to a co-
sexual phenotype where a single sexually induced individual 
produced both sperm and eggs and displayed self-fertility 
(Geng et al. 2014). These studies highlight what appears to 
be an intrinsic bi-stability in volvocine algal gamete differen-
tiation. This is clearest in the case of V. carteri where gam-
ete precursor cells with a partial MID knockdown adopted 
either a male of female identity rather than showing some 
combination of the two sexes and/or infertility. Thus, by 
adding a stochastic component to MID expression or activ-
ity, the sex determination system in volvocine algae can be 
pushed toward its intrinsic bistable tipping point and result 
in a transition from a strictly male phenotype to homoth-
allism. Indeed, a study of the homothallic Volvox species 
V. africanus, which produces either male-only individuals 
bearing sperm packets or co-sexual individuals containing 
both eggs and sperm packets (Fig. 2), revealed that a MID 
gene was present and that its expression level was correlated 
with the degree of male differentiation in each of the two 
forms (Yamamoto et al. 2017).

The transition between heterothallic and homothallic 
mating in Volvox poses additional questions related to how 
sex chromosome differentiation and sex determination sys-
tems interact and the fitness consequences of going from 
outcrossing to selfing (Hanschen et al. 2017). In V. cart-
eri, Mid controls most of the gamete cell differentiation 
program, but there are some aspects of fertility and sexual 
differentiation that are under the control of the sex chro-
mosomes but not the Mid pathway, and these features are 
revealed when SDR haplotype and Mid pathway expression 
are mis-matched (Geng et al. 2014). Genes that control these 
additional male and female reproductive fitness traits may 
be gametologs that have undergone sexually antagonistic 
selection, or male-/female-specific SDR genes. This finding 
begs the question of how male-specific or female-specific 
functions that evolved as sex chromosome genes become 
resolved in a transition to homothallism? A recent study 
comparing the genomes of homothallic V. africanus to male 
and female SDRs of a heterothallic close relative, V. reticu-
liferus (~ 11 My divergence time), has begun to shed light on 
this question (Yamamoto et al 2021). Although V. africanus 
no longer possesses sex chromosomes, it retained a chro-
mosomal region that was very similar in size, gene content, 
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Fig. 2  Left side, cladogram of volvocine algae with unicellular out-
group species Chlamydomonas reinhardtii at top. Remaining species 
or groups are multicellular. Branches are colored based on degree 
of sexual dimorphism, with black for isogamy, orange for anisog-
amy and red for oogamy, with possible transitions noted by arrows 
or arrowheads. Branches terminating in triangles represent multiple 
independent isolates. Sex determination system is shown by colored 
squares with green for heterothallic, blue for homothallic, and mixed 
when both are found. Box in upper right depicts the male (V chromo-
some) and female (U chromosome) sex-determining regions (SDRs) 
of Volvox reticuliferus U and V sex chromosomes. Blue and red are 
the non-recombining heteromorphic portions of each haplotype with 
rearranged gametologs represented by gray connecting lines, and sex-

limited genes by triangles. Conserved genes MID, MTD1 and FUS1 
are marked. Cartoons show sperm packet bearing male or egg-bear-
ing female sexual phase spheroids whose development is governed by 
the male or female SDR. Lower box depicts chromosomal regions of 
homothallic species Volvox africanus with male and female SDR-like 
regions (SDLRs) colored dark blue and dark pink, respectively. SDR 
derived genes (former gametologs) that inserted into different autoso-
mal regions are shown below, with male SDR derived genes in blue 
and female derived SDR genes in pink. Cartoons depict the two types 
of sexual individuals produced from V. africanus clones—male sphe-
roids and monoicous spheroids containing eggs and sperm packets. 
This figure was based on previously published work (Umen and Coe-
lho 2019; Yamamoto et al. 2021)
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and sequence characteristics to the V. reticuliferus female 
SDR, revealing a past history of this SD-like region (SDLR) 
as a female sex chromosome (Fig. 2). Notably, while many 
of the female gametolog descendants were retained in the 
SDLR of V. africanus, no homologs of female sex-limited 
genes were retained, including the conserved FUS1 gene 
encoding a membrane-localized fertilization protein that was 
also lost in the V. carteri lineage. Importantly, as predicted 
from earlier work (Yamamoto et al. 2017), V. africanus had a 
separate chromosomal region that contained a tandem array 
of MID genes and an unlinked autosomal region containing 
another conserved male/minus gene, MTD1. Interestingly, 
three other autosomal regions had insertions of male-derived 
gametologs and one had a female gametolog. Moreover, 
there were no retained pairs of ancestral gametologs in V. 
africanus—most were derived from the ancestral female 
SDR and remained in the SDLR. Thus, it appears that the 
retention of male–female gametolog pairs was not tolerated 
or required for homothallic sex determination. However, 
the ancestral SDR haplotype for retained gametologs might 
still be important for sex determination or reproductive fit-
ness. Intriguingly, one of the three retained male ancestral 
gametologs in V. africanus, MOT41, encodes intraflagellar 
transport protein IFT43 with a predicted motility-related 
function (Taschner and Lorentzen 2016) hinting at a pos-
sible case of sexual antagonism where the male allele was 
required in V. africanus due to its adaptation for male fit-
ness in sperm. The converse may be true for some of the 
ancestrally female gametologs in the SDLR of V. africanus. 
While these hypotheses about selective gametolog retention 
remain to be tested, the genomic analysis of homothallism in 
V. africanus and sexuality in the genus Volvox have opened 
the door to answering these and others about how formerly 
male-adapted and female-adapted genes can be lost, gained 
and/or possibly reshaped by selection during a transition 
from genetically determined sexes to co-sexuality. At the 
same time, there are also opportunities for investigating 
the ecological significance of these transitions in volvocine 
algae and now they impact (or are impacted by) organismal 
size/complexity, population structure and the environment.

The brown algae: distant comparative 
models

The brown algae (Phaeophyceae) belong to the strameno-
pile (or heterokont) supergroup and have had a very differ-
ent evolutionary history than the green algae. The ancestor 
of stramenopiles diverged from the Archaeplastida lineage 
(Viridiplantae, Glaucophyta, Rhodophyta) and other eukary-
otic lineages near the base of the eukaryotic crown radia-
tion (Bringloe et al. 2020). Brown algae represent the third 

most complex multicellular lineage on the planet (Cock et al. 
2010).

Brown algae have been used for decades to investigate 
early embryogenesis (reviewed in Brownlee et al. 2001; Coe-
lho and Cock 2020) because fertilization is external, and 
therefore, zygotic development can be easily followed. In 
recent years, the development of filamentous brown algae 
from the genus Ectocarpus as a model has significantly con-
tributed to increase our understanding of the molecular bases 
for reproductive evolution in this group of eukaryotes. Sev-
eral sexual life cycle master regulators have been identified 
and characterized in Ectocarpus (Coelho et al. 2011; Arun 
et al. 2019), and the chromosomal basis of sex determina-
tion has been described (Ahmed et al. 2014; Luthringer et al. 
2015b; Coelho et al. 2018) (Lipinska et al. 2017, 2019). 
Ectocarpus has a U/V sex determination system where sexes 
are determined at meiosis, and expressed during the haploid 
(gametophyte) stage of the life cycle. The presence of a V 
(male) sex chromosome in spores triggers the male gameto-
phyte developmental program, whereas spores that inherit 
a U chromosome become female gametophytes. The U and 
V sex-specific regions of Ectocarpus stopped recombining 
at least 160 MY ago, and a group of genes was shown to 
be conservatively sex-linked across a range of brown algae 
(Lipinska et al. 2017), suggesting that brown algae share an 
ancestral U/V sex chromosome. The Ectocarpus V sex chro-
mosome is dominant over the U (Ahmed et al. 2014), and it 
is thought that maleness is determined by a masculinising 
factor located on the V-specific region. Female sex is deter-
mined in the absence of this factor. However, recent work 
using the giant kelp Macrocystis pyrifera has shown that 
although female morphological features can be expressed 
in the absence of the U chromosome, the U-specific region 
may be required to fully express the female developmental 
program (Müller et al. 2021).

The brown algae are fascinating comparative models for 
investigating the evolution and regulation of sexual life cycles 
and reproductive characters with relevance to other eukaryotic 
lineages (Coelho et al. 2018, 2020; Coelho and Cock 2020). 
Like some green algae (e.g., Ulva spp.) and land plants such as 
ferns, many brown algae have haplo-diplontic life cycles where 
sex is determined in the haploid stage (Luthringer et al. 2015a). 
Consistent with the inferred old age of the Ectocarpus, sup-
pression of recombination event between the U and the V, phy-
logenetic analysis and ancestral state reconstructions suggest 
that haploid genotypic sex determination is the ancestral state 
in this lineage (Heesch et al. 2019). These observations high-
light the deep evolutionary roots of genetic sex determination in 
this group of organisms and pose interesting questions on what 
leads to different degrees of conservation versus turnover for 
sex chromosomes in different eukaryotic lineages (Beukeboom 
and Perrin 2015).
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The use of correlative phylogenetic approaches to inves-
tigate the evolution of reproductive characters in the brown 
algae has revealed a complex evolutionary history of sexual 
and life cycle traits (Heesch et al. 2019). In this group, sex 
determination and sexual differentiation may occur during 
either the haploid or the diploid phase of the life cycle, by 
genetic or epigenetic mechanisms, and the level of sexual 
dimorphism varies considerably across species. The remark-
able diversity of sexual traits, including multiple transitions 
between sexual systems over a relatively short evolutionary 
time period (less than 200 my) (Coelho et al. 2018; Heesch 
et al. 2019), are exceptional among eukaryotes and make the 
brown algae of interest to study the mechanisms underlying 
transitions between sexual systems without being obscured 
by large evolutionary times (Fig. 3).

Box 1: Life cycle complexity and sexual reproduction
Sexual reproduction is inherently linked to life cycle. Meiosis and 

gamete fusion (fertilization) alternate during sexual life cycles. 
Several types of life cycles exist in nature (Coelho et al. 2007, 
2018). Animals have diplontic life cycles where sex is determined 
in the diploid phase and somatic development of a diploid zygote 
produces the adult organism. In diplontic life cycles, the only 
representatives of the haploid phase are the unicellular gametes. 
Many eukaryotic taxa such as many green algae have haplontic 
life cycles where cell divisions (somatic/vegetative development) 
and sex determination (or mating-type determination) occur dur-
ing the haploid phase and the diploid phase is reduced to a resting 
spore which eventually will undergo meiosis to produce new 
haploid progeny. In haplo-diplontic life cycles, mitotic cell divi-
sions occur during the haploid and the diploid stages to produce 
haploid or diploid adult forms that may be similar or different 
from each other in morphology. In haplo-diplontic systems, sex 
may be determined in either the haploid or diploid phase of the 
life cycle. Many plants and some algae have complex life cycles 
involving alternation between a gametophyte generation and a 
sporophyte generation. Usually, gametophytes are haploid and 
sporophytes are diploid, but this is not a strict rule, and many 
examples exist where ploidy and generation stage are uncoupled 
(Bothwell et al. 2010; Coelho et al. 2011). Recent work has shed 
some light on the genetic and epigenetic mechanisms regulating 
life cycle switches in organisms with complex life cycles (e.g., 
Sakakibara et al. 2013; Arun et al. 2019; Bourdareau et al. 2021; 
Borg et al. 2021). A consequence of variation in the types of life 
cycles is that genders may be determined both during the haploid 
stage (in haploid-diploid and haploid life cycles) or during the 
diploid stage (in organisms with diploid (or haploid-diploid life 
cycles) (Fig. 3). Moreover, sexes may be determined by genetic or 
epigenetic factors.

The transition from haploid to diploid sex determina-
tion represented a major event during the evolution of many 
eukaryotic lineages, being associated, for example, with the 
origin of vascular plants and diploid-dominant life cycles 
(Villarreal and Renner 2013). However, the underlying 
mechanisms and ultimate forces that drove this important 
evolutionary transition are elusive. It is believed that dip-
loid genetic sex determination systems (XY or ZW) did not 
evolve directly from haploid sex chromosome-based systems 

(U/V) but that this transition required intermediate stages 
with epigenetic (developmental) sex determination during 
which the timing of sexual differentiation shifted from the 
haploid to the diploid phase (Beukeboom and Perrin 2015). 
Although this idea is consistent with the phylogenetically 
based trends in the green and the brown lineages, there are 
currently no empirical studies addressing this key evolution-
ary question. Notably, in well-studied models such as the 
green alga Chlamydomonas reinhardtii, a vegetative diploid 
phase can be artificially intercalated into what is normally a 
dormant stage of the life cycle (Kariyawasam et al. 2019b), 
so this route may have been available in naturally occurring 
plant systems. Land plants also include species with both 
haploid and diploid sexual systems, but the events underly-
ing transitions are difficult to study because of the large evo-
lutionary distances (> 500 MY (Renner et al. 2017) between 
taxa with U/V systems [e.g., Ceratodon (McDaniel et al. 
2013b)] and taxa with diploid (XY or ZW) sexual systems 
(e.g., Silene (Charlesworth 2014, 2016; Bergero et al. 2015; 
Krasovec et al. 2018). The brown algae are attractive in this 
respect because the U/V > XY transition occurred within 
the last 175 MY (Silberfeld et al. 2010). On-going projects 
aimed at sequencing brown algal species across the whole 
phylogeny and, in particular, brown algae that have XY sys-
tems and outgroups with U/V systems will be instrumental 
to tackle the molecular events that underlie this transition 
and will illuminate the evolutionary trajectory of the transi-
tion from U/V toward XY/ZW sexual systems.

While much effort has been invested into study-
ing why and how dioecy/dioicy and sex chromosomes 
emerged repeatedly in land plants (McDaniel et  al. 
2013a; Charlesworth 2016), the questions of how and 
why dioecy evolves toward co-sexuality have been largely 
overlooked (Kafer et al. 2017). When brown algal sexual 
systems are mapped onto a phylogenetic tree, the distri-
bution indicates that there has been considerable switch-
ing between sexual systems during evolution (Silberfeld 
et al. 2010; Heesch et al. 2019). Dioicy (separate sexes 
during the haploid phase) appears to have been the ances-
tral state, but there are many extant co-sexual species 
with haploid sexual systems (i.e., monoicous species). 
Moreover, following the transition to diploid sex deter-
mination in the order Fucales, this order also diversi-
fied to include species with separate sexes (dioecious) 
and co-sexual (monoecious) species (Silberfeld et al. 
2010; Cánovas et al. 2011). The Fucales have undergone 
considerable turnover in terms of diploid sexual system 
states, with several independent switches between dioecy 
and monoecy having occurred in closely related species 
(Cánovas et al. 2011). The Fucales therefore represent 
interesting systems to elucidate the mechanistic and 
evolutionary bases of transitions between separate and 
combined sexes during the diploid phase of the life cycle 
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and the dynamics of diploid sex chromosome evolution. 
Note that analysis of the mechanisms underlying switches 
from dioecy to co-sexuality is challenging in plants 
because genomic information, including knowledge of 
sex chromosome and sex determination mechanisms for 
pairs of dioecious–monoecious species, is relatively lim-
ited. Models predict that the probability of breakdown 

of dioecy and transition to co-sexuality occurring will 
depend on the sexual system of the dioecious ancestor, 
specifically the age and extent of degeneration of the sex 
chromosomes, with transitions toward co-sexuality being 
more likely when the non-recombining sex chromosomes 
are not highly degraded [e.g., (Ehlers and Bataillon 2007; 
Crossman and Charlesworth 2014)]. These predictions 
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have the possibility to be tested by accessing to the fea-
tures of several XY or ZW systems and focusing on pairs 
of species that reverted to monoecy.

Conclusion and outlook

Volvocine algae have long been recognized as models for 
eukaryotic sexual cycles and the evolution of anisogamy. 
With growing numbers of sequenced volvocine genomes, 
including both homothallic and heterothallic species, it is now 
possible to begin reconstructing molecular events related to 
transitions in sexuality. Some promising avenues of investiga-
tion are how master regulatory gene MID expression is modu-
lated in homothallic species, and how formerly masculinized 
and feminized portions of heterothallic genomes respond to 
an altered selective landscape when they must coexist in the 
same genome after a transition to homothallism.

Although the brown algae have been evolving inde-
pendently from land plants for millions of years, they are 
interesting comparative models because both groups share 
common, convergent features in terms of their sexual sys-
tems, such as the presence of U/V sex chromosomes and 
the existence of many transitions between separate sexes 
and co-sexuality. Recent progress in the development of 
genetic and genomic tools provides a solid foundation for 
the future advances of brown algal developmental biology 
and comparative molecular biology. For example, on-going 
projects aimed at sequencing species across the whole 
brown algal phylogeny and, in particular, brown algae that 
have XY systems and outgroups with U/V systems will be 
instrumental to tackle the molecular events that underlie 
the transition U/V towards XY/ZW sexual systems.
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