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Abstract

Two dimensional (2D) materials have emerged as promising functional materials

with many applications such as semiconductors and photovoltaics because of their

unique optoelectronic properties. While several thousand 2D materials have been

screened in existing materials databases, discovering new 2D materials remains to

be challenging. Herein we propose a deep learning generative model for composition

generation combined with random forest based 2D materials classifier to discover new

hypothetical 2D materials. Furthermore, a template based element substitution structure

prediction approach is developed to predict the crystal structures of a subset of the newly

predicted hypothetical formulas, which allows us to confirm their structure stability

using DFT calculations. So far, we have discovered 267,489 new potential 2D materials

compositions, where 1,485 probability scores are more then 0.95. Among them, we

have predicted 101 crystal structures and confirmed 92 2D/layered materials by DFT

formation energy calculation. Our results show that generative machine learning models

provide an effective way to explore the vast chemical design space for new 2D materials

discovery.
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1 Introduction

Two dimensional materials such as graphene and hexagonal boron nitride have the potential

to create new electronics and technologies such as spintronics, catalysis, and membranes

owing to their exotic vibrational, electronic, optical,1 magnetic, and topological behaviors.2–5

Using density functional theory (DFT) based screening, Mounet et al.6 have found 1,825

compounds with requisite geometric and bonding criteria that should make them relatively

easy to exfoliate and so produce novel 2D materials with potentially interesting physical and

electromagnetic properties. They discovered 56 ferromagnetic and antiferromagnetic systems,

including half-metals and half-semiconductors. This greatly expands the list of predicted

2D materials and could fill the gaps in the characteristics and properties of the likes of

graphene, phosphorene, and silicene. Zhou et al.7 proposed a high-throughput computational

materials design framework, which screened 5,000 compounds from the Materials Project

Database (MP), and found 205 layered materials for water splitting photocatalysts and

validated 36 kinds of 2D monolayers stability. One can also expand the list of 2D materials by

chemical substitutions, alternative site decorations, crystal structure prediction and so on.8

Several screening approaches have been proposed to find 2D materials from known layered

bulk materials.9 A simple criterion of comparing experimental lattice constants and lattice

constants mainly obtained from Materials-Project DFT calculation repository is used to

find potential 2D materials:9 a relative difference between the two lattice constants for a

specific material is greater than or equal to 5% is used to identify good candidates for 2D

materials. Haastrup et al.10 developed the Computational 2D Materials Database (C2DB),
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which contains a variety of structural, thermodynamic, elastic, electronic, magnetic, and

optical properties of around 1500 2D materials distributed over more than 30 different crystal

structures. More recently, Zhou et al.11 developed 2DMatPedia, an open computational

database of 6351 two-dimensional materials by screening all bulk materials in the database

of Materials Project for layered structures by a topology-based algorithm and theoretically

exfoliating them into monolayers. New 2D materials have also been generated by chemical

substitution of elements in known 2D materials by others from the same group in the periodic

table. These databases of experimental or hypothetical 2D materials have made it possible

for discovering novel function materials.12–16

Despite these efforts, the scale of experimental and hypothetical 2D materials is still

limited because of long experimental period and high cost.17 For example, computational

generation of novel new materials have been proposed in the name of inverse materials

design,18 in which new materials are to be searched to achieve a given specific function,

most of these methods involve a global optimization or search/sampling procedure to explore

the search space.19 However, most of such inverse design research is based on screening

known materials. Suleyman Er et al.20 proposed an elemental substitution based approach

and applied it to known 2D materials structural prototypes to generate a large number of

hypothetical 2D materials, and then filtered those materials based on several criteria. They

deposited their predicted 2D materials in their V2DB database.

To expand the scope of 2D materials, we propose to design a generative deep learning

method to discover novel 2D materials in uncharted composition space. Our approach is based

on a high-accuracy composition based 2D materials classifier, which is used to screen millions

of hypothetical materials compositions generated using our MatGAN, a generative adversarial

network (GAN) based model21 that learns to generate chemically valid hypothetical materials.

Based on 2.65 million generated samples, we have identified 267,489 hypothetical 2D materials.

Furthermore, we use element substitute method to predicted the crystal structures, and then

confirm their structure stability using DFT calculations.
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Our contributions can be summarized as follows:

• We propose a composition based 2D materials classifier model which achieves high

prediction accuracy when trained with known 2D materials.

• We combine the 2D materials classifier and the composition based generative machine

learning to discover new 2D materials, which greatly expand the space of 2D materials.

• We apply a template based element substitution based structure prediction approach

to get the structures of hypothetical 2D materials and verify them using DFT forma-

tion energy calculations, exfoliation energy calculation and phonon thermostability

verification.

2 Materials and Methods

2.1 2D materials discovery framework

The schematic diagram of our 2D materials discovery framework includes the following

four modules (Figure1): a GAN based hypothetical materials generator, a composition

based 2D materials classifier, a template based structure predictor, and a DFT confirmation

procedure. The hypothetical materials generator is trained with known inorganic materials

in the Materials Project database to learn the composition rules of forming stable chemically

valid materials compositions. Then, we use the generative module to breed a large number

of hypothetical formulas (two million in our study). These formulas are then subjected to

chemical validity tests including charge neutrality check and electronegativity check. After

that, the remaining samples will be screened by the 2D materials classifier using composition

alone. To verify the predicted 2D materials compositions, we apply template based element

substitution to generate their hypothetical structures for a subset of 624 predicted 2D materials

compositions. Using DFT calculations, the stability of these structures is calculated to verify
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the existence of these candidate 2D materials from which we identified twelve potentially

stable materials.
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Figure 1: Framework for generation and prediction of 2D materials. It comprises four
components. The green part: a GAN based composition generation module for breeding
chemically valid materials. The blue part: a composition based random forest 2D materials
classifier. The orange part: a template based element substitution structure predictor, as
well as yellow part: DFT validation.

2.2 Generative deep learning for hypothetical inorganic materials

In the material design research area, one core task is to explore chemical space for searching

new materials. In our previous work, a generative machine learning model (MatGAN)21 is

designed to efficiently generate new hypothetical inorganic materials composition based on

generative adversarial network (GAN).22 There are two main tasks of MatGAN: one is how

to suitably represent material composition; the other one is how to design the generative

adversarial network for generating new materials.

When exploring the representation of inorganic materials, we found that there totally are

85 elements in ICSD dataset; and there are no more than 8 atoms per element in any specific

compound. Therefore, each material could be represented as a sparse matrix M of dimension
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8 × 85 with 0/1 cell values, where Mi,j = 1 means the number of atoms of the element at

column j is i+ 1. Figure 2 shows the encoding matrix for PuP2H6CO8.

Figure 2: One hot representation of material composition PuP2H6CO8. Brown color indicates
the atom number of corresponding element in the specific material.

The architecture of MatGAN is shown in Figure 3. In this generative adversarial network

training, a generator is trained from existing real material representations to generate new

samples. Meanwhile, the discriminator tries to differentiate real samples from generated

samples; as the feedback, the discrimination loss is then used to guide the training of the

generator and the discriminator’s parameters to reduce this difference. These two training

processes are repeated until good performances of both the generator and the discriminator

are achieved. In order to avoid the gradient vanishing issue of standard GAN, we adopt the

Wasserstein GAN,23 which replaces the JS divergence distance with the Wasserstein distance.

The generator loss and discriminator loss are defined in the following equations:

LossG = −Ex:Pg [fw(x)] (1)

LossD = Ex:Pg [fw(x)]− Ex:Pr [fw(x)] (2)

where, Pg and Pr are the distributions of generated materials and real materials; fw(x) is

the discriminant network. Equation (1) and (2) are used to guide the training process. The

smaller the LossD, the smaller the Wasserstein distance between the generated samples and

the real samples and the better the GAN is trained.
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We have generated 2,650,623 hypothetical materials compositions, and 1,940,209 of them

satisfy both charge neutrality and electronegativity balance criteria via Semiconducting

Materials from Analogy and Chemical Theory (SMACT)24 tool. The charge neutrality

check means that the total charge in a compound should be 0, namely
∑︁

i Qini = 0, where i

are the elements in the compound and Q are the charges. Electronegativity is often used

in high-throughput screening, Ginley25 presented how the simple geometric mean of the

electronegativities of a compound, SMACT tool has a built in function to calculate this

property for a given composition.
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Figure 3: Architecture of MatGAN. Generator (G) learns from known material compositions
to generate realistic samples while discriminator (D) learns to determine whether a sample is
a real one or generated one. Alternative training of D and G will improve the performance of
both G and D.

2.3 Composition based classifiers for predicting 2D materials

Predicting whether a material is 2D structure can be regarded as a binary classification

problem. Our goal is to screen unknown 2D materials from MatGAN-generated materials by

training a random forest classifier with verified 2D and non-2D materials, and then predicting

the probability of being a 2D material of each new material.

Specifically, we employ the Random Forest (RF)26 as the surrogate model for predicting

the 2D probability given a material’ Magpie composition features. Magpie feature set27is

a well-known descriptor set for composition based machine learning models, those features
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are calculated by the matminer library28 which is a Python-based platform that facilitates

data-driven methods for analyzing and predicting material properties by calculating a variety

of descriptors from material compositions or crystal structures. Basically, magpie feature

set calculate the mean, mean absolute deviation, range, minimum, maximum and mode for

22 different elemental properties for all the elements contained in a formula (132 features in

total). This elemental property category includes attributes such as the maximum row on

periodic table, average atomic number and the range of atomic radii between all elements

present in the material. Those 132 features of each material will be calculated and used in

our random forest model training.

RF is a supervised bagging ensemble learning algorithm. The idea behind random forests

is to exploit the wisdom of the group. RF builds many decision trees in a random way with

low correlation among them. After building the forest, when a new sample needs to be

classified, each decision tree makes a judgment separately to vote which category the sample

belongs to. Random forest improves the prediction accuracy without significantly increasing

the amount of computation, and it is relatively robust to unbalanced data.

In the data preparation stage, we first collect known 2D and non-2D materials, as well as

MatGAN generated new materials. Then, we calculate the Magpie features for all of them. In

training the random forest model, known 2D materials and non-2D materials are treated as

positive and negative samples to train the RF classifier with 10-fold cross-validation. The RF

hyper-parameters are tuned to achieve good prediction performance with detailed settings

explained in Section 3.2.2. Afterward, the trained RF model is utilized to predict the labels

and probability scores of 2D for generated hypothetical new materials.

2.4 Template based structure prediction

Although we have predicted the 2D probability scores of the hypothetical new materials

generated by our MATGAN algorithm and the candidates with their probability scores greater

than 95% are likely to be 2D materials, it is not enough to verify their existence by DFT
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calculation of their formation energy or phonon calculation based stability check. However,

crystal structure prediction of complex compositions using current ab initio crystal structure

prediction algorithms are not feasible.29 To address this issue, we propose to use the template

based or element substitution based structure prediction method, which is shown in Figure 4.

Firstly, for each predicted 2D formula, we use the Crystal Structure Prediction Network

(CRYSPNet)30 tool to predict its space group that the formula most likely belongs to. This

method consists of many neural network models to predict the material’s space group, Bravais

lattice, and lattice constants. As CRYSPNet only needs chemical composition information as

input, we use it to estimate the top 3 potential space groups for each new hypothetical 2D

material.

Next, we try to find similar template materials from known 2D materials in the 2dMatpedia

database. Specifically, For each new 2D formula with three potential space groups, we search

the target 2D material that has the same number of elements and the same space group.

However, one formula may lead to many potential target 2D material template. To identify the

most similar template material, we use Element Movers Distance (ElMD)31 machine learning

model to calculate and sort similarities between the candidate materials and potential template

materials. ElMD is a similarity measure for chemical compositions, which is measured Earth

Mover’s Distance (EMD)32 between two compositions from the ratio of each of the elements

and the absolute distance between the elements on the modified Pettifor scale.

Finally, we select the top 10 most similar known 2D materials as the structure templates

according to the ElMD values. New 2D material’s structures could be then predicted by

one to one element substitution from those pairs. For example, as shown in Figure 4, the

structure of XY is predicted from the structure of AB by using X to replace A (gray atom)

and Y to replace B (yellow atom).
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Figure 4: The framework of template based structure prediction. The main parts are:
predicting new formula’s space group; finding candidate template formulas according to the
same element number and the same space group; calculating and sorting ElMD between the
new formula and template formulas; selecting top n templates to do element substitution to
get the new formula’s structure.

2.5 DFT calculation for verification

The density functional theory (DFT) calculations were performed based on the Vienna ab

initio simulation package (VASP).33–36 The electron-ion interactions were considered by using

the projected augmented wave (PAW) method.37,38 The energy cutoff value was set as 500

eV. The generalized gradient approximation (GGA) based on the Perdew-Burke-Ernzerhof

(PBE) pseudopotentials39,40 represented the exchange-correlation potentials. The energy

convergence criterion was set as 10−7 eV, while the force convergence criterion of the ionic

steps was considered as 10−2 eV/Å. The Γ-centered Monkhorst-Pack k-meshes were considered

to perform the Brillouin zone integration for the unit cells. The van der Waals interactions

were considered using DFT+D3 with Becke-Jonson damping.41,42 Formation energy per atom

(Eform) of a material were calculated based on Eq.3. Here, E[Layered] is the total energy per
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unit formula of the corresponding material, E[Ai] is the energy of ith element of the material,

xi represents the number of atoms of ith element in a unit formula, and N indicates the total

number of atoms in a unit formula of the material (e.i., N=
∑︁

i xi). Exfoliation energies were

determined using Eq. 4. In this eqaution, E[Monolayer] is the total energy per unit formula

of the monolayer exfoliated from a 2D layered material. S is the area of the layered material’s

surface, which is perpendicular to out-of-plane direction of the monolayer.

Eform =
1

N
(E[Layered]− xi

∑︂
i

E[Ai]) (3)

Eexf =
−1

2S
(E[Layered]− E[Monolayer]) (4)

3 Experiments

3.1 2D materials Dataset

All the 2D materials are collected from 2DMatPedia,11 an open computational database of

two-dimensional materials, which is constructed by a topology based screening algorithm and

element substitutions. There are 6,351 2D materials in total, they are regarded as positive

training samples in our work. We also collect all existing materials from the materials project

database with 126,356 materials in total. After removing known 2D materials, there are

115,498 negative samples. We use the MatGAN model to generate 2,650,264 new materials

as candidates for 2D materials prediction.

Table 1: Datasets

Dataset Amount Role
2dMaterials 6,351 positive training sample

MaterialProject 126,356 negative training sample (exclude 2D materials)
ICSD_2M 2,650,624 potential new material

V2DB 294,077 comparative dataset
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3.2 Results

3.2.1 Generation of candidate inorganic materials

Trained with 291,840 inorganic materials compositions in Material Project database, a

generative deep learning model (MATGAN) is used to generate 2,650,623 new compositions,

and then charge neutrality and balanced electronegativity are used to screen out 1,947,792

formulas, among which 1,940,209 are not in the training set.

The number of generated 2-element materials, 3-element, 4-element, ≥5-element are 1217,

18946, 36827, 78639, respectively. There are two reasons to explain why binary materials

account for the least proportion: one is the diversity of the combination of two elements is

much less than that of five elements. The other is many binary materials have already been

discovered. The generated 2-element materials play an important role in subsequent research

because most known 2D materials are binary materials.

In order to better display the generated materials distribution information, we draw a line

chart (as shown in Figure 5) to show the frequencies of 112 elements ordered by atomic number

in three datasets: generated ICSD-2M candidate materials by MatGAN, the published 2D

material dataset and the predicted 2D materials. From these three curves, we can see that the

top 5 crests positions basically overlap, the number ranges are 7-9, 15-17, 32-35, 50-53, and

80-83. It proves that the space of candidate materials generated by MatGAN is consistent

with the real 2D materials. Furthermore, it provides a solid candidate range for the following

2D new material prediction.

3.2.2 Performance of the 2D materials classifier

The hyper-parameter configuration for training 2D random forest classifier is set as follows:

we set the maximum tree depth (max_depth) to be 20 and the number of decision trees

(n_estimators) as 250. There are 6351 2D material samples and 15,959 non-2D samples. In

order to mitigate the imbalanced positive and negative samples, we randomly select 1.5 times
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Figure 5: Element frequency distribution. The abscissa represents 112 chemical elements
arranged according to the atomic number from hydrogen (H) to Copernicium (Cn), vertical axis
indicates the frequency of each element. The red curve denotes the distribution information
of 2dMaterials dataset. The green curve shows our generated candidate materials. The blue
line represents our predicted 2D materials.

the number of positive samples as negative samples. Besides, the class weight parameter

is set to be balanced. With these settings tuned per feature iteration, we train the RF 2D

materials prediction models and evaluate their performance. Our algorithm is implemented

using the Scikit-Learn library in Python 3.6.

To evaluate the prediction performance of our model, precision, recall, accuracy, F1 score,

and receiver operating characteristic area under the curve ROC are used as performance

metrics. ROC is plotted with TPR and FPR as the vertical and horizontal axes under

different threshold settings.

TPR =
TP

TP + FN
(5)

FPR =
FP

FP + TN
(6)

The accuracy, precision, recall, and F1-measure of the RF classifier with 10 fold cross-
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validation is 88.97%, 88.98%, 88.96%, and 88.96%. Figure 6(a) shows the ROC curve of the

classifier with an AUC score reaching 96%.

We also use a series of thresholds to differentiate 2D and non-2D materials to evaluate

the performance of the RF classifier, as shown in Figure 6(b). The abscissa represents the

the predicted probability threshold to declare a 2D materials when its probability is higher

than this threshold value; the y coordinate indicates the corresponding false-positive rate.

As the threshold increases, the higher the probability score is required to be judged as a 2D

material leading to lower false-positive rate.

(a) ROC curve of our RF classifier (b) False-positive curve of our RF classifier.

Figure 6: performance of random forest classifier. (a) shows the performance of the trained 2D
materials Random Forest classifier by ROC curve and AUC score; (b) shows the false-positive
rates of the trained 2D materials Random Forest classifier with different thresholds

3.2.3 Finding new 2D materials using our framework

To identify interesting hypothetical new 2D materials, we applied our RF-based 2D materials

classifiation model to screen the 2.6 million hypothetical materials generated by our Generative

Adversarial Network (GAN) based on new materials composition generator.21 After predicting

the probability of each candidate belonging to 2D materials, we sort them by the probability

scores. The statistics of the predicted 2D materials with different probability thresholds are

shown in Table2. With a stringent probability threshold of 0.95, our algorithm has identified

1,485 hypothetical 2D material formulas with 266 binary, 361 ternary, 327 quartenary
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candidates. When the threshold is lowered to 0.9, the number of candidate 2D formulas

increases to 5,034 or to 18,451 with threshold of 0.8.

To demonstrate how the newly predicted 2D materials are distributed in the composition

space, we apply t-sne dimension reduction tool43 to map the normalized Magpie features

of the 6351 2D materials in the 2Dmatpedia database and the predicted 2D materials, and

then plot their distribution in Figure 7. In Figure 7(a), We apply the same dimension

reduction transformation to both the training set and the newly predicted 2D materials and

visualize their distribution where red points are training samples, and blue points are the 1485

predicted 2D materials with the highest probability scores. Similarly, top 20,0000 predicted

2D materials are drawn as blue points in Figure 7(b) together with known 2D materials used

for training. We found that in Figure 7(a) the majority of blue points are located in the

dense red point areas in the bottom left corner (which can be seen also from Figure 7(c)),

indicating that our predicted 2D materials have similar composition distribution with regard

to known 2D materials. Figure 7(b) further confirms this composition distribution match, in

which we find that the blue points in general only appear in areas with red points. The areas

with sparse red points also contain few blue points. Figure 7(c) shows the distribution of

20,000 hypothetical 2D materials in the V2DB dataset against the known 2D materials. It is

found these candidate 2D materials have different composition distribution as regard to the

known 2D materials: many yellow points appear in areas without red points. Quite many

yellow points reach out of the boundary defined by the red points. For better comparison,

top 6000 predicted samples by our method and the V2DB are drawn in Figure 7(d) together

with 6351 known 2D materials. It can be seen that the majority of the overlapped blue and

yellow points (117 as shown in Table 3) are located in the lower-left corner, which means

there are new 2D materials that are jointly predicted by both methods.

To screen out top candidate materials, we use the Roost algorithm44 for formation energy

prediction, which is a graph network based machine learning model for materials property

prediction using only composition information. After predicting the formation energies of
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all candidates, we draw a histogram of formation energy distribution, as shown in Figure 5.

Furthermore, we filter out those with probability scores greater than 0.95 and then sort them

by the formation energy in ascending order and pick the top 40 candidates with 2, 3, and 4

elements respectively. The results are in Table 4.

Furthermore, we analyze the 2DMatPedia dataset, 2-element materials occupy 65%,

3-element materials, and 4-element materials account for 25% and 9%, therefore, from the

perspective of the probability distribution, our prediction is meaningful. We also find that

the predicted 2D probabilities of 2-element materials are in general higher than those of

3-element materials and 4-element materials, corresponding to the fact that the majority of

known 2D materials (65%) are binary materials. We also count the number of our predicted

new 2D materials with 2D probability greater than 0.5 that overlap with those in V2DB and

117 hypothetical 2D materials are found to be predicted by both methods. Table 3 shows the

overlapped candidate 2D materials in five parts according to their 2D probability scores. It

is found the overlapped materials with 2D probability greater than 0.8 account for nearly

50% of all overlapped candidates.

Table 2: Statistics of predicted 2D materials

2D Prob # of Predicted 2D formula # 2 element # 3 element # 4 element # ≥ 5 element
0.95 1,485 266 861 327 31
0.9 5,034 439 2,617 1,695 283
0.8 18,451 729 8,123 7,316 2,283
0.7 48,592 942 16,827 21,430 9,393
0.6 119,489 1,146 28,172 51,998 38,173
0.5 267,489 1,340 40,382 99,943 125,824

3.2.4 Structure prediction and verification

To verify the predicted 2D materials, we pick 1485 predicted material formulas with the

highest probability scores (≥ 0.95) and use the template based structure prediction method

to find their structures. With the result that we find 101 materials’ templates of known

layered materials or 2D materials in the 2DMatPedia database. We then predict the space
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(a) New 2D materials (Probability > 0.95) vs.
known ones

(b) 20,000 2D materials in the whole MP com-
position space

(c) 20,000 2D materials in the V2DB (d) 6,000 2D materials in MP and V2DB vs.
known ones

Figure 7: Distribution of the new and old 2D materials using t-sne visualization. Red ones are
known 2D materials, blue ones are our predicted 2D materials while yellow ones are predicted
2D materials from V2DB. Figure (a) shows 1485 points with the highest 2D probability scores.
(b) and (c) display distribution of 20,000 predicted samples from our model and from V2DB
respectively. For better visual comparison, 6,000 predicted 2D materials from our model and
from V2DB are shown together in (d).
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Table 3: Predicted hypothetical 2D materials that overlap with V2DB

Formula Prob Formula Prob Formula Prob Formula Prob Formula Prob
>0.9 >0.8 >0.7 >0.6 >0.5

AgS 0.9999 ZrClS 0.8997 TiSeCl 0.7913 VISe 0.6879 NiF 0.5998
AlS 0.9982 AlIS 0.8926 ZrSeF 0.7900 NiSeCl 0.6830 ZrTeN 0.5993
ScI 0.9840 VClF 0.8917 SbSeO 0.7856 CoBrF 0.6797 MnSeS 0.5872

InTeS 0.9753 FeClS 0.8909 ZrTeSe 0.7802 NiSF 0.6794 SrSF 0.5840
SnTeSe 0.9748 PbTeS 0.8884 MnBr 0.7793 RhSeS 0.6759 YSeS 0.5709
SnTeS 0.9737 GeSF 0.8852 MnIS 0.7782 CoTeS 0.6740 NbSeO 0.5669
PbTeSe 0.9465 BiSF 0.8830 CuTeO 0.7647 CrSeO 0.6732 CoF 0.5638
SbSeF 0.9421 TiClF 0.8800 CoCl 0.7602 CoSF 0.6714 NbTeO 0.5636
SbClS 0.9418 ZnBrS 0.8777 GeSO 0.7588 RhTeS 0.6710 TaSO 0.5604
GeClS 0.9409 MnClS 0.8757 ZnSF 0.7579 MnBrN 0.6697 TaTeS 0.5506
AsClS 0.9374 SnSeO 0.8727 ZnSO 0.7579 AlSeO 0.6609 NiSO 0.5474
SbSF 0.9224 ZnClS 0.8725 AgSO 0.7557 PbTeO 0.6540 NiSeO 0.5419
NbSe 0.9221 AgIS 0.8670 CuSeF 0.7546 MnSeO 0.6473 YTeS 0.5249
AlSeS 0.9197 PbSeO 0.8535 MnSF 0.7518 VSeS 0.6451 TiSeN 0.5186
SnSO 0.9181 AsSF 0.8532 MnSeF 0.7466 NbSeF 0.6367 SrClS 0.5120
BiTeS 0.9102 AgTeS 0.8524 AsSO 0.7422 RuTeS 0.6310
AlTeS 0.9060 PbSO 0.8494 AgSeO 0.7406 TaSeO 0.6217

YClS 0.8471 ZrSeS 0.7392 FeSeF 0.6190
BiTeF 0.8462 CoClF 0.7362 TaTeSe 0.6077
NiClS 0.8457 PdFO 0.7319 CrTeO 0.6066
YTeF 0.8457 ZrTeO 0.7317 ZrSeN 0.6014
CoClS 0.8433 MnI 0.7312
VClS 0.8397 CuSF 0.7245
VSF 0.8395 AlSO 0.7239

AlTeCl 0.8285 TiTeS 0.7230
NiBr 0.8254 NiClO 0.7077
SbSeS 0.8220 NiTeCl 0.7056
AgSeS 0.8217 NbSO 0.7005
BiSO 0.8201
ZnClF 0.8176
TiSeF 0.8155
MnCl 0.8077
FeI 0.8074

AlSeF 0.8017
AlTeF 0.8015
CoI 0.8002
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Table 4: Hypothetical 2D materials sorted by predicted formation energy(only top 120 are
listed here)

2 Elements 3 Elements 4 Elements

Formula Prob Eform[Layered-ML]
(eV/atom) Formula Prob Eform[Layered-ML]

(eV/atom) Formula Prob Eform[Layered-ML]
(eV/atom)

ZrF3 0.9876 -3.8661 ScYF3 0.9760 -3.3429 NbMoCl5S2 0.9757 -1.5188
YF2 0.9880 -3.7549 NbMoF6 0.9720 -3.0069 CrNbMoCl8 0.9638 -1.4547
TaF4 0.9990 -3.4457 ZnTaF5 0.9755 -2.9848 CrNbRuCl8 0.9598 -1.3912
SiF3 0.9607 -3.3363 NbRuF7 0.9665 -2.7521 NbRuCl5S2 0.9753 -1.3857
ZrF2 0.9997 -3.1413 InSnF5 0.9519 -2.7437 NbRuCl4S2 0.9712 -1.3826
ScF 0.9760 -2.7647 TaIrF7 0.9794 -2.7379 NbRuCl6S 0.9673 -1.3719
YF 0.9640 -2.747 NbRuF6 0.9708 -2.7165 NbRuCl6S2 0.9633 -1.3688

GeF3 0.9705 -2.6997 TaWO5 0.9732 -2.6845 CrMoCl5S 0.9517 -1.3163
NbF2 0.9671 -2.5717 ScYCl6 0.9677 -2.6222 NbMoRuCl6 0.9676 -1.2988
YCl2 0.9919 -2.4657 NbMoO5 0.9816 -2.6101 Ga3AsCl6S2 0.9514 -1.2548
ZrF 0.9720 -2.4356 TaWF5 0.9760 -2.5844 InSn3SeCl6 0.9513 -1.2127
WF3 0.9999 -2.4182 TaIrF5 0.9511 -2.5832 SnSbAsCl8 0.9593 -1.205
TaF2 0.9880 -2.4126 ScYCl4 0.9679 -2.527 MoRuCl5S2 0.9633 -1.171
AlF 0.9999 -2.4107 YZrCl6 0.9598 -2.4481 Sn2AsCl6S 0.9550 -1.1705

ScCl2 0.9799 -2.338 ScZrCl6 0.9518 -2.3783 InSn3Cl4S2 0.9907 -1.1704
GaF 0.9995 -2.0765 MoRuF6 0.9708 -2.352 MoRuCl6S2 0.9633 -1.1499
FB 0.9880 -2.0746 TaOsF5 0.9640 -2.3308 Sb2BrAsCl8 0.9671 -1.1406
F3C 0.9800 -2.0634 ScTiCl4 0.9600 -2.2386 InSnCl2S2 0.9745 -1.1381
InF 0.9880 -1.9397 VTc2F7 0.9661 -2.2366 InSnCl4S2 0.9709 -1.1229

Tc2O5 0.9650 -1.9029 VZrCl6 0.9560 -1.9388 SnSbAsCl4 0.9514 -1.1043
ErBr3 0.9674 -1.8561 YLaBr6 0.9547 -1.9262 Sn2AsCl4S 0.9628 -1.0983
OsF3 0.9837 -1.7279 TbDyBr6 0.9729 -1.8741 Sn2AsCl8S2 0.9627 -1.0955
NbCl3 0.9959 -1.7273 TiVCl6 0.9519 -1.8074 Sn3SeCl6S2 0.9509 -1.0928
S2O5 0.9859 -1.7237 Nb3Cl8S 0.9919 -1.7429 Sn2AsCl7S2 0.9587 -1.0901
NbCl2 0.9799 -1.7137 NbCl2S 0.9599 -1.6969 SnPb2Br2Cl2 0.9573 -1.0892
OB 0.9600 -1.7046 AlClS 0.9596 -1.6887 Sn2AsCl6S2 0.959 -1.0838

TaCl2 0.9950 -1.6658 TaRe2F6 0.9640 -1.6724 InSn2Cl2S2 0.9755 -1.0789
RuF2 0.9864 -1.5312 CrNbCl7 0.9677 -1.6054 Sn2As2Cl6S 0.9511 -1.0705
SF 0.9798 -1.4954 CrNbCl6 0.9758 -1.602 InSnClS2 0.9820 -1.0414

MnCl3 0.9997 -1.4641 CrNbCl8 0.9637 -1.5821 Sn2AsCl4S2 0.9628 -1.0387
CrCl4 0.9838 -1.4529 TiYBr6 0.9538 -1.5738 CuRuAgCl6 0.9629 -1.0133
SeF 0.9795 -1.436 SnPbCl6 0.9577 -1.5723 Sn2AsCl6S3 0.9587 -1.011

O3C2 0.992 -1.3673 VMnCl4 0.96 -1.5719 Sn2SeCl6S2 0.9509 -1.0109
GeCl3 0.9988 -1.3663 CrNbCl5 0.9598 -1.5622 Sn2SeCl5S2 0.9549 -1.0048
YS3 0.9618 -1.3661 Te2SO5 0.9508 -1.5303 AsGeCl6S 0.9590 -1.0045
V2S3 0.9661 -1.3311 InSnCl6 0.9795 -1.5166 AsGe2Cl6S2 0.9636 -0.9982
TiCl 0.9599 -1.3269 SnTlCl5 0.9507 -1.5121 Sn2As2Cl6S3 0.9547 -0.9832
HoS3 0.9755 -1.3082 TaWCl6 0.9794 -1.5067 Sn2SeCl4S2 0.9549 -0.9821
SmS3 0.9555 -1.3041 NbMoCl6 0.9839 -1.5054 Sn2AsCl6S4 0.9590 -0.977
YI2 0.9999 -1.2846 Cl6SSi2 0.9877 -1.5012 SnPb2Se2Cl2 0.9538 -0.9457
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Figure 8: Formation energy distribution of predicted 2D materials.

group of our predicted 2D materials and choose the templates with the same or similar space

groups. Next, element substitution method has been used to get their crystal structures.

Some of the predicted 2D materials structures are shown in Figure 11. In total, 101 predicted

materials with structures have been obtained.

To further verify whether these hypothetical materials are thermodynamically stable, we

applied DFT first principle calculation to compute the formation energies per atom for the

101 2D-layered materials which have template structures. In total we found 92 hypothetical

materials with negative formation energy (see Supplementary Table S1), there are 79 binary

2D materials, 10 ternary 2D materials and 3 quaternary 2D materials. The materials with

high formation energies like TaF4 (-2.9431 eV/atom) and SiF3(-2.1204 eV/atom) imply that

the proposed method in this research is able to discover 2D layered materials which are highly

thermodynamically stable against the parent compounds of their elements.

Furthermore, we studied the exfoliation possibility of 2D-layered materials using exfoliation

energy based on Eq. 4. Modeling monolayers from around 100 2D-layered materials is

computationally expensive. Thus, here we modeled only 31 monolayers to show that the

proposed computational technique can find 2D materials with very low exfoliation energies
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(see Supporting Information Table S2). The 12 materials with lowest exfoliation energies

are mentioned in Table 5. The formation energies of those monolayers are also negative

indicating they are stable relative to the compounds of respective elements.

In order to demonstrate that our predicted compositions and structures can be used to

discover stable layered materials, we computed the elastic constants using density functional

perturbation theory (DFPT)45 and phonon bands using Phonopy code46 for V2S3. Our

DFT calculations show that V2S3 is a stable 2D-layered material. The structure of this

material is shown in Figure 9. V2S3 has Triclinic crystal symmetry with P-1 (2) space group

symmetry. The lattice parameters were found as a = 3.072 Å, b = 7.130 Å, c = 9.216 Å,

α = 87.06, β = 80.40, and γ = 77.59. The formation energy calculated based on Eq. 3 is

around −0.618 eV/atom. The enthalpy difference between competitive phases determined

based on the expression ∆H = E[Material]− E[competitive phases] using the total energy

E of the material and its competitive phases. The competitive phases were found from the

Material Project database.47 The computed maximum enthalpy difference for V2S3 is 0.046

eV/atom against the stable phases V5S8 and V3S4.

Based on the Hill approach, we found the Bulk modulus, Shear modulus, and Young’s

modulus as 26.29, 18.88, 45.69 GPa, respectively.48 The total energy of a material can be

denoted by E = E0 +
1
2
V0

∑︁6
i,j=1Ci,jϵiϵj +O(ϵ3), when an infinitesimal strain (ϵ) is applied.

Here, C is the matrix of second-order elastic constants. The Born elastic stability criteria

require that the matrix be definite positive, and all eigenvalues of C and all the principal

components should be positive. The relationships between the elastic constants of Born

criteria of P-1 (2) crystal symmetry are very complicated since the triclinic systems have 21

independent elastic constants.49 Therefore, VASPKIT50 code was employed to calculate the

elastic properties. It confirms that V2S3 is mechanically stable. The all phonon frequencies

in Figure 10 are positive, implying the material is dynamically stable at 0 K temperature.

Moreover, we performed phonon calculations for V2S3 monolayer as shown in the Sup-

porting Information Figure S1. It is clear that this nanosheet also dynamically stable at 0
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K temperature. The exfoliation energy and formation energy of the monolayer are negative

suggesting that V2S3 nanosheet can be exfoliated from the parent layered-material (see Table

5).
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Figure 9: Structure of V2S3 2D-layered material
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Figure 10: Phonon bands of V2S3 2D-layered material
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Table 5: The 12 compositions with lowest exfoliation energies found using DFT are mentioned
in the table. The formation energies of layered materials using DFT (Eform[Layered-DFT])
and using the machine learning model (Eform[Layered-ML]), and the formation energies of
monolayers using DFT (Eform[Monolayer]) are also stated.

Formula Eform[Layered-DFT] Eform[Layered-ML] Eexf Eform[Monolayer]
(eV/atom) (eV/atom) (meV) (eV/atom)

S2O5 -0.6417 -1.7237 -87.8131 -1.4659
V2S3 -0.6830 -1.3311 -11.7012 -0.8130
CoCl3 -0.2434 -1.0299 -2.4151 -1.8472
YI2 -1.1979 -1.2846 -1.1606 -1.2315
OB -2.0188 -1.7046 -0.6184 -2.0268

TaF4 -2.9431 -3.4457 -0.1287 -2.8880
YCl2 -1.9251 -2.4657 0.5745 -3.3604
ScS3 -0.9223 -1.1463 1.6923 -0.8984
WS3 -0.2765 -0.4336 2.3043 -0.1630
SiF3 -2.1204 -3.336 2.5126 -2.0726
GaCl -0.6627 -1.0418 2.5508 -1.6550
PBr4 -0.2054 -0.3209 2.6124 -0.0463
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(a) 2D material YI2 by element substitution
with formation energy -1.260 eV

(b) 2D materials MnClYI3 by element substi-
tution with formation energy -1.45 eV

(c) 2D material V2S3 by element substitution
with formation energy -0.680 eV

(d) 2D materials WF3 by element substitution
with formation energy -2.092 eV

(e) 2D material TaWO5 by element substitu-
tion with formation energy -2.747 eV

(f) 2D materials SnAsClS2 by element substi-
tution with formation energy -0.360eV

Figure 11: Selected structures of the discovered new 2D materials with DFT validation. (a)
displays the predicted crystal structure for YI2, and its DFT calculated formation energy
is -1.260 eV. The predicted crystal structures and DFT calculated formation energies for
MnClYI3 V2S3, WF3, TaWO5, SnAsClS2 are shown in (b),(c),(d),(e),(f), respectively.
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4 Conclusion

We propose a generative inverse design approach for finding hypothetical new 2D materials.

It includes a GAN based composition generation model for generating chemically valid

materials formulas, a composition based random forest 2D materials classifier, a template

based element substitution structure predictor, and DFT verification. Using this pipeline, we

have generated 1485 hypothetical 2D material compositions with probability scores greater

95%. We computationally verified that 92 materials have negative formation energies using

DFT. We also modeled 31 monolayers from the proposed structures and found that the

all 31 materials provide exfoliation energies less than 200 meV showing high possibility of

exfoliating nanosheets from their layered materials. These new hypothetical materials can be

used to guide the screening of 2D materials for special functions using materials property

prediction models. The experiments demonstrate the effectiveness of the proposed approach

for discovering new 2D materials and can be used as a complement of the prototype based

element substitution based generation approach. Currently, our method is constrained by

the limited capability of the crystal structure prediction step, which is an unsolved problem.

More powerful crystal structure prediction methods are needed to identify 2D materials

of novel structural prototypes, which cannot be identified using template-based structure

modeling approach as we use here.
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