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ABSTRACT ARTICLE HISTORY
Regions of anomalous spatial co-locations (ROASCs) are regions Received 4 October 2019
where co-locations between two different features are significantly Accepted 27 September 2020
stronger or weaker than expected. ROASC discovery can provide

. - . L KEYWORDS
useful insights for studying unexpected spatial associations at Spatial data mining;
regional scales. The main challenges are that the ROASCs are spa- anomalous spatial co-

tially arbitrary in geographic shape and the distributions of spatial locations; region detection;
features are unknown a priori. To avoid restrictive assumptions pattern reconstruction;
regarding the distribution of data, we propose a distribution-free multiple significance tests
method for discovering arbitrarily shaped ROASCs. First, we present

a multidirectional optimization method to adaptively identify the

candidate ROASCs, whose sizes and shapes are fully endogenized.

Furthermore, the validity of the candidates is evaluated through

significance tests under the null hypothesis that the expected

spatial co-locations between two features occur consistently across

space. To effectively model the null hypothesis, we develop

a bivariate pattern reconstruction method by reconstructing the

spatial auto- and cross-correlation structures observed in the data.

Synthetic experiments and a case study conducted using Shanghai

taxi datasets demonstrate the advantages of our method, in terms

of effectiveness, over an available alternative method.

1. Introduction

Geographers have long considered and quantified spatial relationships between different
features (He et al. 2020). One of the most fundamental relationships is the spatial
association between locations of different features, denoted by the term spatial co-
location, which refers to instances of different features that co-occur in close spatial
proximity (Huang et al. 2004, Leslie and Kronenfeld 2011, Zhou et al. 2019). Spatial co-
locations can be commonly observed in real life. For example, in transportation, taxi
supply tends to co-locate with trip demand (Wang et al. 2013, Pei et al. 2015); in ecology,
emerald ash borers usually co-exist with ash trees (Xie et al. 2018).

Because of spatial heterogeneity, spatial co-locations between different features are
usually inconsistent across a geographical space (Deng et al. 2017). Thus, regions of
anomalous spatial co-locations (ROASCs) in which the spatial co-locations are significantly
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Figure 1. Example of ROASCs between features A and B.

stronger or weaker than the expected level exhibited by the dataset as a whole may occur.
Consider the dataset presented in Figure 1 as an example. The lines represent the
neighbor relation between features A and B. On average, each instance of A co-occurs
with one instance of B across the entire study area. However, in region HR;, A co-occurs
with three or four instances of B, and in regions LR; and LR,, A does not co-occur with any
instances of B. Thus, HR;, LR, and LR, may be considered as ROASCs. ROASC detection can
reveal unforeseen spatial associations at regional scales; thus, it is of substantial interest to
domain experts. For example, the presence of ROASCs between the supply of and
demand for taxi services indicates that there is a mismatch between the two; furthermore,
it can provide insights to help cities improve their transportation systems (Tang et al.
2019).

Previous research on analyzing spatial co-locations at regional scales generally falls into
two categories, namely regional co-location discovery and spatial cross-outlier detection.
The former aims to discover regions where spatial co-locations are prevalent, whereas the
latter focuses on identifying anomalous instances of a feature with respect to co-occurring
instances of another feature. These approaches, generally, cannot directly support the
detection of ROASCs targeted in this study. In addition, with regard to making decisions,
previous methods (Papadimitriou and Faloutsos 2003, Wang et al. 2013) usually necessi-
tate a priori restrictive assumptions regarding the distribution of features, which may
cause false or missing detections if assumptions are inconsistent with the underlying
distribution. Consequently, this paper proposes a method without restrictive assumptions
regarding the distribution of data, i.e. a distribution-free method. This method can
endogenously discover arbitrarily shaped ROASCs that are exhibited by the data; it can
also effectively establish the statistical significance of results by reconstructing spatial
auto- and cross-correlation structures observed in the data.

The remainder of this paper is organized as follows: Section 2 reviews related work on
detecting the spatial co-locations at regional scales. Section 3 outlines the proposed
distribution-free strategy for ROASC detection. Section 4 details the techniques involved
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in our method. Section 5 presents the synthetic experiments and a case study of Shanghai
taxi datasets to compare and evaluate the performance of our method with that of an
existing method. Section 6 offers closing comments on the advantages and limitations of
the research.

2. Literature review
2.1. Regional co-location discovery

Initially, the problem of discovering spatial co-locations was defined for mining subsets of
spatial features whose instances were frequently located together across an entire study
area (Shekhar and Huang 2001, Bao and Wang 2019, Cai et al. 2020). However, global
methods fail to discover hidden co-locations occurring in individual regions, which are
common in spatial datasets where most relationships are geographically regional, rather
than global (Ding et al. 2011). Thus, research on the discovery of regional co-locations has
received increasing attention in recent years (Xie et al. 2017). It updates the problem of
discovering global spatial co-locations to regional scales through space-partitioning or
region-detection strategies.

Methods that employ space-partitioning first partition the study area into smaller
regions, thereby allowing the reuse of global discovery methods in each region to extract
co-locations. Space can be partitioned using quad-tree structures (Celik et al. 2007), multi-
resolution grids (Ding et al. 2011), or k-nearest neighbor graphs (Qian et al. 2014).
However, these user-specified schemes for partitioning are independent of the endogenic
distribution of co-locations; furthermore, they may impair the discovery of the true
regions with co-locations (Mohan et al. 2011).

The second strategy, region detection, attempts to overcome this limitation by identi-
fying co-location regions in a data-driven manner. Generally, regions of co-locations are
determined based on the co-location instances of different features (e.g. minimum
orthogonal bounding rectangles of all subsets of co-location instances (Li and Shekhar
2018)). Furthermore, regions of co-location can be understood as the concentration of co-
location instances, which can be identified using a neighbor graph (Mohan et al. 2011),
the prototype-based clustering method (Eick et al. 2008), or the adaptive pattern cluster-
ing method (Deng et al. 2017); this interpretation may be of substantial interest to
geographers. To further reduce subjectivity in the evaluation, Cai et al. (2018) developed
non-parametric significance tests to validate the co-location regions.

All of the aforementioned methods can determine where the co-locations among
features are prevalent; however, they cannot identify the regions where the co-
locations are anomalous. Taking the dataset in Figure 1 as an example, all the aforenoted
methods will report R; and R, as co-location regions because features A and B always
occur together in these two regions (Figure 2(a)). However, some normal co-locations are
also included in these regions, and regions with weak co-locations cannot be identified.

Recently, the ability of spatial scan methods (e.g. the spatial scan statistic (Kulldorff
1997)) has been exploited in bivariate and multivariate cases to detect statistically sound
clusters of multiple features. For example, Jung et al. (2010) proposed a multinomial
spatial scan statistic to detect clusters where the proportions of at least one of the features
are significantly different from those expected. However, co-locations among different
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Figure 2. lllustration of existing methods for regional co-location discovery: (a) adaptive pattern
clustering method and (b) scan-statistic-based method.

features cannot always be guaranteed in multinomial clusters (Leibovici et al. 2014).
Leibovici et al. (2011) developed an exploratory scan approach to visualize and test
clusters of multivariate associations using statistics based on local co-occurrences. The
clustered associations imply local spatial dependence among features (i.e. significantly
prevalent co-locations in sub-regions); thus, they do not necessarily point out anomalous
co-locations. In addition, the pre-defined geometric shapes (e.g. circle) cannot well
represent the natural shapes of clusters (Xie and Shekhar 2019). Wang et al. (2013) noticed
that the scan-statistic-based method has the potential to discover co-location regions of
arbitrary shapes by comparing the co-location probability of two features inside and
outside a region represented by connected grid cells. However, the method treats the
occurrence of both many and few co-location instances of a feature equally in the
estimation of co-location probability; thus, it may also include some normal co-
locations in the identified region (see HR, in Figure 2(b)). Although the method can easily
be modified to detect a single region with a minimal co-location probability ratio (see LR,
in Figure 2(b)), other valid regions may be missed (see LR, in Figure 1). In addition, to
perform the significance tests, the data are assumed to follow a bivariate Poisson dis-
tribution. This assumption could be invalid in some instances.

2.2. Spatial cross-outlier detection

The second category of related work, spatial cross-outlier detection, is an extension of
spatial outlier detection for a single type of feature, which aims to find anomalous
instances of a single feature that deviate significantly from their neighborhoods
(Shekhar et al. 2003). Anomalous instances of a single feature can be determined based
on the values of their spatial attributes (locations) (e.g. density-based method (Breunig
et al. 2000) and Delaunay-triangulation-based method (Shi et al. 2016)) or both their
spatial and nonspatial attributes (e.g. distance-based method (Lu et al. 2003) and graph-
based method (Lu et al. 2011)). However, the presence of extra features may cause these
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methods to misidentify normal instances as anomalous (Papadimitriou and Faloutsos
2003). Therefore, some typical methods, designed for a single type of feature, are
modified to discover spatial cross-outliers between two types of features.

In the detection of spatial cross-outliers, the spatial attributes of a primary feature are
used to define the neighbor relation, and the number of co-occurring instances of another
feature (called a reference feature) serves as the nonspatial attribute for evaluating the
outlier instances of the primary feature. Typically, spatial cross-outliers can be identified
using the 'k times the standard deviation’ criterion (Papadimitriou and Faloutsos 2003),
constrained Delaunay triangulation (Shi et al. 2018), or statistical tests (Deng et al. 2018).
However, these methods cannot directly evaluate statistically anomalous regions of co-
occurring features. Furthermore, the determination of spatial cross-outliers commonly
involves subjective assumptions regarding the distribution of features, such as the assump-
tion of a normal distribution underlying the cross-outlier criterion (Papadimitriou and
Faloutsos 2003) and the complete spatial randomness process used to define the null
distribution of a feature (Deng et al. 2018), in which the spatial auto- and cross-correlation
characteristics of the observed datasets are ignored.

3. A novel strategy for ROASC detection

As discussed above, discovering ROASCs remains challenging because the nature of the
distribution underlying the data is unknown a priori. ROASCs are usually spatially irregular
owing to the complex distribution of features inside the regions. To reveal the arbitrarily
shaped ROASCs that are fully encapsulated in the data, we propose a detection strategy
that is independent of distribution assumptions.

First, we develop a multidirectional optimization method that frees the generation of
candidate ROASCs from implicit assumptions regarding the size and shape of regions. For
two input spatial features, one is designated as the primary feature pf and the second is
designated the reference feature rf with respect to which we investigate the co-locations
(Papadimitriou and Faloutsos 2003). The designation of pf and rf depends on the semantics
of the application domain. The method adaptively constructs a spatial neighbor relation
among instances of pf and measures the co-location intensity with respect to rf. The
collection of neighboring instances of pf that exhibit a higher-than-average (or lower-than-
average) co-location intensity with rf and their co-located instances of rf is then considered
a candidate high-value (or low-value) ROASC. Using this protocol, candidate ROASCs are
discovered in a bottom-up manner by iteratively searching for interesting instances of pf
from each seed instance, in all directions specified by the spatial neighbor relation.

Second, when determining ROASCs, we eliminate the need for restrictive assumptions
regarding the distribution forms of features. To ensure that the discovered ROASCs are
unlikely to occur by chance, the determination of a ROASC is modeled as a significance
test problem under a null hypothesis Hy which says that the co-location intensity between
two features inside a candidate region is consistent with that expected in the entire study
area, i.e. the expected co-locations exhibited by the observed dataset are spatially uni-
form across the whole geographical space. To model the Hy, we need to randomize the
distribution of spatial co-locations constrained by all other characteristics of the observed
data. In practice, this means that the null model must be conditioned on the observed
auto- and cross-correlation structures of the two features, and only questions regarding
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Figure 3. Framework of the distribution-free strategy for detecting arbitrarily shaped ROASCs.

the uniformity of expected co-locations are explored. Although the distribution forms of
two features are unknown a priori, their spatial structures can be described using several
summary characteristics. Considering this, a bivariate pattern reconstruction method is
developed as a Monte Carlo simulator of Hy for the significance tests by reconstructing the
observed univariate and bivariate summary characteristics.

Figure 3 presents the framework of the proposed three-part strategy: (1) generation of
the candidate ROASCs; (2) construction of the null hypothesis; and (3) implementation of
the significance tests. The techniques involved in these three phases are detailed in the
following section.

4. A distribution-free method
4.1. Multidirectional optimization for identifying candidate ROASCs

We first present a multidirectional optimization method to identify candidate ROASCs,
whose sizes and shapes are fully endogenized. Fundamental to this method is a well-
established spatial statistic tool, AMOEBA (Aldstadt and Getis 2006), that is used to
identify spatial clusters of related areal units with high or low attribute values. The
AMOEBA procedure starts with one or more seed units and then, defines a high-value
(or low-value) cluster by iteratively adding neighboring units until the local spatial
autocorrelation statistic is maximized (or minimized). We take advantage of its ability to
guide our method toward an optimal solution with regard to ROASCs at the finest scale.
However, AMOEBA is not immediately extensible to the ROASC discovery for two main
reasons. First, the spatial neighbor relation, defined based on the contiguity of spatial
units, is not applicable to spatial points that are usually unevenly distributed in contin-
uous space. Second, it is designed for spatial units with one type of continuous variable,
but here is for spatial points of two Boolean spatial features. Our method upgrades the
original AMOEBA so that it can be used for two types of point data through an adaptive
neighborhood definition and a co-location intensity measurement.

A prerequisite for this method is the definition of the spatial neighbor relation among
instances of the primary feature pf. Here, we employ the multi-level constrained Delaunay
triangulation-based method (Deng et al. 2011) because it provides an adaptive concept of
neighborhood that can better reflect the characteristics of data. With regard to Delaunay
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triangulation (DT) performed among instances of pf, the global and local long edges
linked to each instance If?f are successively removed if their length is larger than the global

and local constraint statistics, GC(lf’f) and LC(lff), respectively, which are represented as:

Mean(DT)

GC(F")= Mean(DT)+ ————~— . SD(DT 1

()= Mean( " veanie 7y 0O7 M
Lc(/ff) = Mean(E2,(IP")) + Mean(SD(EL,)) @)

where Mean(DT) and SD(DT) are the mean and standard deviation of the lengths of all
edges in DT, respectively, Mean(EgT(Iff)) is the mean length of edges directly linked to If’f
in DT, SG is the sub-graph containing Iff, obtained by removing global edges from DT,
Mean(E%, (")) is the mean length of the edges linked to /" within two paths in SG, and
Mean(SD(Esg)) is the mean of the standard deviations of edges directly linked to each
instance in SG. In Figure 4(a), the connected instances are identified as neighbors after
removing the global and local long edges.

Given a distance threshold r that reflects the scale-level of interest at which one wants
to investigate the spatial co-locations (termed as co-location distance), an instance of the
reference feature rf, l}f, is considered to co-occur with an instance of pf, lf’f, if the distance

between them, d(lff, /j’f), is not larger than r. The co-location intensity of pf with respect to

rf at the location of If"r is then measured using the number of co-occurring instances of rf,
represented as:

_pf pf yrf
Cli= {7 1d(F", 1) < r}| 3

For a region R, we employ the G* statistic (Getis and Ord 1992, Duque et al. 2011) as the
interest measure, represented as:

/BN -
[ ]
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Figure 4. Preliminaries for the multidirectional optimization method: (a) neighbor relation constructed
for the primary feature A and (b) spatial co-locations defined between the primary feature A and the
reference feature B.
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where n is the number of instances of pfincluded in the region R, N is the total number of
instances of pf, Cl is the mean of all the CJ; values, and
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A positive (or negative) G* value indicates that the co-location intensity of pf and rfin R is
higher (or lower) than the average level exhibited by the dataset as a whole. Consider the
primary feature A and reference feature B in Figure 4(b) as an example. The average co-
location intensity Cl is the average number of instances of B that co-occur with an instance
of A; furthermore, it equals (4 + 3+ ... +0)/20 = 20/20 = 1. The G* value of the region that
contains four high-value instances of A (represented by red points) is
(4+3+4+3)—4-1)/(/(#+32+...+0) /20 12 \/(20-4 —42)/(20 — 1)) ~ 4.06
, which indicates the stronger-than-average co-locations between A and B in that region.

Based on the above definitions, the multidirectional optimization method starts by
considering each instance of the primary feature (called the primary instance) as a seed
instance and iteratively expands the region from each seed instance to its neighboring
primary instances in a constructive manner (Duque et al. 2011). This is an efficient and
equivalent alternative to exhaustive evaluations on all possible neighbor combinations
(Widener et al. 2012). The process is detailed as follows:

(1) For a region R! with a positive G*, its neighboring primary instances outside R; are
sorted according to their G* values, in descending order. The variable t is the
number of primary instances included in the current region and its value starts

from 1, i.e. the initial region R,-’ consists of only the seed instance If’f.

(2) The sorted neighbors are tested one-by-one. If G*(R""") > G*(R!), i.e. the region R
that contains R} and a neighbor is more interesting than R according to the G*
value, the region is expanded by adding that neighbor so that t becomes t + 1.

(3) If any neighbor is added, the neighbors that are not included are eliminated from
further consideration, and step (1) is followed to test the neighbors of newly added
neighbors. The process is terminated if no new neighbors are added, and R} is

outputted as the high-value region with the maximal G* value, with respect to lf’f.

Figure 5(a—d) illustrates the process starting from the seed instance A;. For regions with
negative G*, the process followed is the same, except that the goal is to minimize the
value of G*. After each seed instance is examined, non-overlapping regions with the
maximal absolute G* values are reported. The collection of primary instances in each
reported region and their co-located reference instances is then identified as a candidate
ROASC for the significance test (see the high-value region HR; and the low-value regions
LR, and LR, in Figure 5(e)).
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Figure 5. Multidirectional optimization method for identifying candidate ROASCs: (a) seed instance;
(b) the first expansion; (c) the second expansion; (d) the third expansion and (e) candidate high- and
low-value ROASCs.

4.2. Bivariate pattern reconstruction method for constructing the null hypothesis

At the outset of the significance test, we need to model the null hypothesis Hy such that
no regions with unexpected co-locations exist, i.e. the expected co-locations between two
features are uniformly distributed in the study area. As analyzed in Section 3, the
permutations under H, should consider the following properties: (1) consistent co-
location intensity across space; (2) similar univariate spatial structures of each feature;
and (3) similar bivariate spatial structures between two features as in the observed
dataset. The first two properties are used to randomize the distribution of the co-
locations between two spatially autocorrelated features. However, the potential spatial
cross-correlation between features is likely to be disrupted. Therefore, the third property
should also be maintained, so that the expected co-locations in the observation can be
guaranteed in permutations. To generate such permutations, we propose a bivariate
pattern reconstruction method, that translates a reconstruction technique in materials
science (Rintoul and Torquato 1997) into the bivariate point pattern analysis. Instead of
assuming the distribution forms of features, the proposed method generates permuta-
tions by fitting several univariate and bivariate summary characteristics of the observa-
tions, thus allowing subjectivity to be reduced in the modeling of H,.

The first step is to determine a proper combination of summary characteristics because
different summary characteristics usually describe different aspects of spatial structures and
may also capture redundant information. To comprehensively characterize the univariate
spatial structures, we select three summary characteristics, namely, the pair-correlation
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function g(r), nearest-neighbor distribution function D(r), and spherical contact distribution
function H,(r), based on the systematic comparison conducted by Wiegand et al. (2013). Figure
6(a) shows the schematic representation of these univariate summary characteristics. The g(r)
function captures the average neighborhood properties of points; furthermore, it is the most
informative characteristic when used in isolation. D(r) is valuable because of its up-close view
of the nearest neighbor that can quantify subtle variations in local structures that are lost by g
(n). Finally, Hy(r) can provide important additional information on the size of gaps, especially for
non-stationary patterns. Similarly, the bivariate forms of g(r) and D(r), namely, the cross pair-
correlation function gq,(r) and cross nearest-neighbor distribution function D,(r), are also
recommended for describing the bivariate spatial structures. The computation is analogous to
that in the case of univariate functions, except that bivariate functions summarize the
neighborhood properties of one feature with respect to another feature (Figure 6(b)). Unlike
point-centered g(r) and D(r), the Hs(r) function characterizes the spatial structures from the
viewpoint of arbitrary locations; thus, it is difficult to present in a bivariate form to measure the
cross-correlation between points of two features. Details regarding the five selected summary
characteristics, g(r), D(r), Hy(r), g12(r), and D;5(r), can be found in Wiegand and Moloney (2013).

Based on the selected summary characteristics F,,,(r) (where m =1, 2, ..., M), the bivariate
pattern reconstruction pattern method produces permutated datasets with fixed instances of
the primary feature pf, while reconstructing the instances of the reference feature rf. The
reconstruction of rf starts with a random pattern that has the same number of instances of rf
as in the observed dataset w. The permutated dataset w is, then, iteratively modified to
minimize the deviations of F,() values between w and <, calculated as

M 1 Imax M
AF<w>=n;km- mz [Fe.(r) — Fﬁ(f)}z/n;km ©)

where |r| is the number of distances r (rmin < r < rma) at which the F,(r) values are
evaluated, and k,, is the weight of F,,,(r) that is used to balance the importance of different

Nearest Point of B
i withinaring m
neighbor
| e - - |
| I | Test mE N
es
] s n e [ ]
dr &) D) point o T o oo ©
L ° ¢
- Test [ J
Test point [}
P fin ¢ point 8ulr) ® dr of 4
i [ u m
within
aring Dyy(r)
H(r) ™ Nearest —,
® P neighbor of B
w. Nearest o N Test
Test neighbor L B ° poeiflt ®
location [ ] | of A ® B
(a) (b)

Figure 6. Schematic representation of univariate and bivariate summary characteristics: (a) g(r), D(r),
and H,(r) and (b) g1,(r) and Dq,(r).
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summary characteristics. Note that the univariate F,,(r) (e.g. g(r), D(r), and H(r)) is calcu-
lated for rf and the bivariate F,,(r) (e.g. g,2(r) and D;,(r)) is calculated by considering rf as
the reference feature. In each modification step t, a randomly selected instance of rfin the
last permutated dataset w;_; is tentatively replaced with a new point with random
coordinates. The modified dataset w; is accepted only if w; is more similar to w than
w1, i.e. AF (wwy) < AF (o). Otherwise, another modification is considered. This process
proceeds until the AF(w;) value becomes smaller than a tiny value (0.01 in this study) or
a sufficient number of steps (40, 000 in this study) is reached.

Figure 7(b) shows a permutated dataset of the dataset in Figure 7(a), produced using
the bivariate pattern reconstruction pattern method. Figure 7(c—g) displays the curves of g
(), D(r), Hs(r), g12(r), and D,,(r) values calculated for feature B in the observed dataset and
99 permutated datasets. Clearly, the method randomizes the distribution of spatial co-
locations between two features while maintaining the observed univariate and bivariate
spatial structures.

4.3. Monte Carlo tests for ROASCs adjusted for the multiple testing problem

In the decision-making step, tests of ROASCs employ the G* statistic as the test statistic. G*
is asymptotically distributed as a standard normal variate (Duque et al. 2011). However,
the normality of G* maybe lost in practice, in which case tests based on the normal
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Figure 7. Bivariate pattern reconstruction pattern method for modeling the null hypothesis of
consistent co-locations: (a) observed dataset; (b) an example of the permutated datasets; (c)-(e)
curves of the g(r), D(r), Hy(r), g12(r) and Ds,(r).



INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE . 985

approximation will be inappropriate (Getis and Ord 1992). To obtain more objective
decisions with regard to ROASCs, G* is assessed via its empirical distribution estimated
using Monte Carlo permutations, wherein a priori assumptions on the null distribution are
not required.

For a high-value (or low-value) ROASC, HR (or LR), we rank the observed G* value, G° in
descending (or ascending) order amongst a corresponding set of values,
G™'(n=1,2,...,N), calculated for a large number N of Monte Carlo permutated datasets.
The p-value of HR (or LR) is, then, calculated as the rank divided by N + 1, represented as

p — value(HR)= (|G™"(HR) > G°*(HR)| +1)/(N+ 1) 7)

p — value(LR)= (|GI*"(LR) < G°*(LR)| 4+ 1)/(N + 1) ®)

where |G""(HR) > G°*(HR)| is the number of G/ values of HR that exceed the observed

value and |G™(LR) < G°*(LR)| is analogous.

In practice, the dataset usually has more than one ROASC. The unguarded use of
multiple tests will result in an increased false-positive rate (i.e. the probability of falsely
identifying a region as a significant ROASC). To alleviate the multiple testing problem, we
adjust the given significance level a (a cutoff value of p-value which is 0.01 or 0.05 by
convention) using the false discovery rate method (Benjamini and Hochberg 1995). Let p-
value(R;) < p-value(R,) < --- < p-value(Rx) be the ordered p-values of K candidate
ROASCs. The adjusted significance level aqq; is p-value(R), where i is the largest index in {1,
2, ... K} for which

p — value(R;) < % -a 9)

If the p-value for an HR (or LR) is not larger than a,g;, we reject the null hypothesis and
conclude that the spatial co-locations between features in HR (or LR) are significantly
stronger (or weaker) than expected; moreover, the HR (or LR) is identified as a significant
ROASC of high (or low) value.

4.4. Implementation and analysis of the distribution-free method

Given (1) an observed dataset containing instances of two spatial features (primary
feature pf and reference feature rf; (2) a distance threshold r for defining spatial co-
locations; and (3) a significance level a, the distribution-free method detects all non-
overlapping ROASCs with maximal absolute G* values and qualified p-values, using the
following steps:

(1) Construct the spatial neighbor relation among n instances of pf. The multi-level
constrained Delaunay triangulation-based method approximately requires O(n -
logn) time.

(2) Calculate co-location intensity and G* for each instance of pf. This requires approxi-
mately O(n - logm) time, where m is the number of instances of rf.

(3) Identify candidate ROASCs with maximal absolute G* values using the multidirec-
tional optimization method. This requires a maximum of O(n?) time when the
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neighbor graph of primary instances is completely connected and the entire set of
primary instances is explored, for each seed instance.

(4) Generate a set of N permutated datasets using the bivariate pattern reconstruction
method. Because each candidate permutation differs only by one point from that of
the last iteration, only the part of an estimator of a summary characteristic that is
affected by the exchange needs to be updated. This process requires O(m) time for
functions g(r) and D(r), O(t) time for Hy(r), and O(n) time for g,,(r) and D,,(r) at each
distance. This whole step requires a maximum of approximately
O(N-R-S-(n+ m +t) time when all the permutated datasets are modified for the
maximum number S of times. Here, t is the number of test locations used in the H,(r)
function, and R is the number of distances at which summary characteristics are
evaluated.

(5) Conduct the Monte Carlo tests and report the statistically significant ROASCs. This
requires approximately O(N - n - logm) time.

As discussed above, the time complexity of the distribution-free method mainly
depends on Steps 3-5, which require a maximum time
of O(n?) + O(N-R-S-(n+m+t))+O(N - n - logm).

5. Experimental evaluation and case study

We evaluated the performance of the distribution-free method using both synthetic and
real-world taxi datasets. For comparison, the scan-statistic-based method (Wang et al.
2013) was also applied because of its similarity to our method in the problem formulation.
For both methods, the co-location distance was predefined in the synthetic experiments
and estimated as 500 m in the case study, in accordance with the spatial auto-correlation
method (Yoo and Bow 2012) which recommends the use of a distance at which spatial
processes substantially promote clustering. The significance level was set to 0.05, and the
number of permutated datasets was set to 99. For better visualization, the a-shape
algorithm (Edelsbrunner et al. 1983) was used to delineate the boundary of the ROASCs
identified using our method.

5.1. Experiments using synthetic data

5.1.1. Data generation

Figure 8 illustrates the synthetic data generator designed to predefine the ROASCs. The
generator first produced the instances of primary feature A, including nphign high-value
instances, Ny low-value instances, and npoma Normal instances. The high- and low-value
instances were divided into several groups, and the normal instances were randomly dis-
tributed. Instances of reference feature B were, then, randomly located within the predefined
distance r of instances of A. The mean number of instances of B that co-occurred with each
high-value, low-value, and normal instance of A is Uyigh, Hiow: @ Hnomals f€SPectively. Here,
Mnormal = (uhigh * Nhigh+Miow * Mow)/ (Nhigh+Niow), SO that the average co-location intensity
between A and B can be controlled to Upomal- The region formed by each group of high-
value (low-value) instances of A and the corresponding co-occurring instances of B is known
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Figure 8. Experimental setup of the synthetic dataset: (a) generate instances of the primary feature; (b)
generate instances of the reference feature and (c) predefined ROASCs.

as a high-value (low-value) ROASC. Using this generator, we obtained a synthetic dataset
containing four predefined ROASCs, of which two were high-value and two were low-value, in
a study area S=10, 10012 (Figure 9(a)). The total number of instances of primary feature A and
reference feature B was 160 and 800, respectively. Here,
Nhigh=Now= 30,Mnormai= 100, = 2, Upigh= 9, tiow= 1, aNd poma= 5. Thus, in the synthetic
dataset, each primary instance has an average of nine, one, and five neighboring reference
instances in the high-value ROASCs, low-value ROASCs, and the entire study area, respectively.

5.1.2. Performance metrics

We evaluated two aspects of the detection methods: (1) the extent to which each method
can correctly find the known ROASCs and (2) the extent to which the known ROASCs can
be completely uncovered by each method. Since a ROASC is determined by the instances
of the primary feature A inside it, the predefined groups of high-value and low-value
instances of A were employed to serve as the benchmark for assessing the performance of
both methods, using the metrics of precision, recall, and F1 score, defined as

precision =|TP|/(|TP|+-|FP]) (10
recall =|TP|/(|TP|-+|FN|) ()

p-value =0.01 p-value =0.01

CPR~1.04
p-value =1

r © high-value A

@ low-value A
CPRe onormal A
G 673 8 6" ~ 6.41 i1 oB
i p-value =0.01 [ high-value ROASC
B low-value ROASC

p-value =001

(a) (b) (©

Figure 9. Synthetic data and discovered ROASCs: (a) predefined high- and low-value primary
instances; (b) our method; and (c) scan-statistic-based method.
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F1score = 2 - precision - recall /(precision + recall) (12)

where |TP|, |FP|, and |FN| are the number of true positive, false positive, and false negative
instances of A, respectively. Precision is also referred to as the positive predictive value;
moreovetr, it represents the fraction of detections that are truly positive, indicating the
correctness of results. Recall is also referred to as sensitivity; furthermore, it represents the
fraction of true cases that are successfully detected, indicating the completeness of
results. The F1 score is a comprehensive metric that takes both correctness and complete-
ness into account. The larger the values of these metrics, the better the results.

5.1.3. Comparison and analysis

Figure 9(b) displays the ROASCs detected by our method and reports their G* values and
p-values. The precision, recall, and F1 score of the results are all equal to 100%. These
results demonstrate that our method detected all the predefined ROACSs without any
false-positive or false-negative errors in the synthetic dataset. It was able to do this
because the shapes and sizes of ROASCs are adaptively determined using the multi-
directional optimization method, and the casual ROASCs that occur by chance can be
effectively removed using the significance tests.

By contrast, Figure 9(c) shows the regions with maximal and minimal co-location
probability ratio (CPR) obtained by the scan-statistic-based method. As discussed in
Section 2.1, the high-value region incorrectly includes some normal instances of A near
the predefined ROASCs. In addition, the low-value region omits some predefined low-
value instances of A. This happened because the minimal CPR of the regions in this dataset
was zero. Thus, adding any instances of A that co-occurred with B would increase the CPR
of the reported region, even though the number of co-occurring instances of B was
significantly smaller than the average. Furthermore, both regions are reported as statis-
tically insignificant by the significance tests on the observed CPR. This was because the co-
location probability embedded in the CPR only considers whether the instances of A are
co-located with instances of B; that is, it cannot capture the co-location intensity between
the two features. In this synthetic dataset, almost all instances of A (154 out of 160) co-
occur with instances of B. Thus, it is not surprising to observe a higher or equal CPR in the
replicas of the bivariate Poisson distribution, where the co-location rate of two features is
learned from observations. Similarly, we can commonly detect one region with a CPR of
zero in the replicates. Therefore, the scan-statistic-based method is not suitable for
datasets where two features frequently co-occur across the entire study area.

5.1.4. Effect of co-location distance

Figure 10 shows the effect of co-location distance on the performance of our distribution-
free method. As can be seen, co-location distances somewhat smaller or larger than the
preset distance (r = 2) will result in undesirable performance in terms of precision, recall,
and F1 score. Some meaningful co-location instances of the reference feature may be
missed at a smaller distance, which will, then, lead to the underestimation of co-location
intensity. Similarly, ROASCs discovered at a larger distance could include certain distant
reference instances that are weakly correlated to the primary feature.
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Figure 10. Effect of co-location distance on the performance of our distribution-free method: (a)
precision; (b) recall and (c) F1 score.

5.2. Case study: detecting regions of taxi demand-supply mismatch in Shanghai

5.2.1. Data description

We assessed the practicality and effectiveness of the distribution-free method via a case
study of taxi data pertaining to Shanghai, China. Shanghai is one of the most densely
populated Chinese cities, with more than 24 million permanent residents. However, only
approximately 50,000 taxis are registered in the city. A report from the Didi Media
Research Institute and CBNData (2016) concluded that Shanghai is the most challenging
regarding hailing taxis among all the cities in the Yangtze Delta area. The background
population is one of the most apparent factors influencing the demand for taxis (Qian and
Ukkusuri 2015). The built environment (e.g. residential and commercial buildings) is a key
determinant of the daily activities of individuals (Sung and Oh 2011), and this causes
dynamic variation in population size and density across space and time. Thus, the
distribution of taxi demand is usually uneven in space and varies with time, making it
difficult for taxis to satisfy the demand. Detecting regional mismatches of taxi demand
and supply is of critical importance to the provision of responsive taxi services and the
facilitation of passenger commutes.

The taxi data used in this case study were collected once every 10 seconds from 48,806
taxis in Shanghai on Monday, 2 December 2013. These taxis, mostly registered with five
taxi companies (Dazhong, Jinjiang, Bashi, Qiangsheng, and Haibo), account for more than
97% of all the taxis registered. The data recorded regarding each taxi included the time,
location, and status (0 for empty and 1 for occupied). We investigated the supply of and
demand for taxi services at 8:00 a.m., 6:00 p.m., 8:00 p.m., and 11:00 p.m. (Figure 11). For
each time t that we investigated, the locations corresponding to taxi demand are
indicated by the pick-up locations (i.e. the locations where the taxi status switches from
0 to 1) within 10 minutes before t, and the locations of taxi supply are represented by the
locations of empty taxis at t. It is noteworthy that we only considered the satisfied
demand here, as unmet demand cannot be revealed from these taxi data. In the context
of taxi services, we want to know whether the supply of taxis can adequately match the
demand. Thus, the demand for taxis is considered as the primary feature and the supply is
the reference feature. High-value ROASCs indicate regions of oversupply of taxi services
and low-value ROASCs indicate regions of undersupply. Figure 12 shows the distribution
of 10 places of interest in Shanghai, which are used to explain the distribution of
discovered ROASCs.
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Figure 11. Distribution of taxi data in Shanghai: (a)-(d) demand at 8:00 a.m., 6:00 p.m., 8:00 p.m., and

11:00 p.m., respectively and (e)-(h) supply at 8:00 a.m., 6:00 p.m., 8:00 p.m., and 11:00 p.m.,
respectively.

5.2.2. ROASCs detected using different methods

Figure 13 presents the spatial distribution of ROASCs discovered by the two methods for
the taxi data at 8:00 a.m. Table 1 summarizes the numerical results of the distribution-free
method, which include 19 ROASCs (eight high-value regions and eleven low-value
regions), sorted in descending order according to their absolute G* values. By contrast,
the scan-statistic-based method only identified one high-value ROASC, where the co-
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Figure 12. Places of interest in Shanghai.
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Figure 13. ROASCs at 8:00 a.m. detected by different methods: (a) our method and (b) scan-statistic-
based method.
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Table 1. Numerical results of ROASCs at 8:00 a.m. detected by

our method.
Region ID Region type G* value p-value
1 high-value 15.80 0.01
2 high-value 11.40 0.01
3 low-value -9.22 0.01
4 low-value -7.84 0.01
5 high-value 7.65 0.01
6 high-value 7.46 0.01
7 high-value 6.68 0.01
8 high-value 6.29 0.01
9 high-value 4.45 0.01
10 low-value —4.35 0.01
1 low-value —-4.13 0.01
12 low-value -3.83 0.01
13 high-value 3.47 0.01
14 low-value -3.44 0.01
15 low-value -2.55 0.01
16 low-value -2.28 0.01
17 low-value -2.22 0.01
18 low-value -2.21 0.01
19 low-value -2.21 0.01

location probability ratio (CPR) was maximized. This region also covered some normal and
weak co-locations identified by our method because spatial co-locations weaker than or
equal to the average can also help increase the CPR. In addition, no significant low-value
ROASCs were identified because the CPR of the low-value region was zero, i.e. no taxi
supply co-occurred with demand. This phenomenon can also be regularly observed in
a sub-region under the null hypothesis.

5.2.3. ROASCs detected at different times

In this subsection, we explored the variations in ROASCs discovered by our method at
other times (6:00 p.m., 8:00 p.m. and 11:00 p.m.) during the day. Figure 14 shows the taxi
travel flows among 10 places of interest listed in Figure 12 and other regions in Shanghai
leaving at four different times. Figure 16 overlaps the detected ROASCs with these places.
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Figure 14. Travel flows among places of interest and other regions (OR) in Shanghai at different times:
(a) 8:00 a.m.; (b) 6:00 p.m.; (c) 8:00 p.m. and (d) 11:00 p.m. (For better visualization, flows between
other regions are not displayed.).

Some common phenomena can be observed at these times. For example, a high-value
ROASC can always be detected near Pudong International Airport (see region 8 in Figure
13(a), region 2 in Figure 15(a), and region 13 in Figure 15(b)), except at 11 p.m., when the
airport system is about to terminate its schedule. Figure 16 shows the time and distance
distributions of taxis that traveled from Pudong Airport at different times. Although the
travel times at 8:00 a.m. and 6:00 p.m. (working hours) tend to be higher than those at 8:00
p.m. and 11:00 p.m. (non-working hours), the distributions of travel distances at these
times are similar. In particular, the peak distances at these times are between 36 km and
39 km (Table 2), which may reflect travel to downtown Shanghai (e.g. Nanjing Road). Such
long-distance trips can make taxi services more profitable. At these four times, an average
of 35.2% of the taxis carrying passengers to Pudong Airport did not leave within 15 min-
utes, suggesting that these taxis may have waited to pick up customers in the airport
queue, thus creating an oversupply at the airport. Furthermore, high-value ROASCs were
usually found in the center of the city (see region 7 in Figure 13(a), region 8 in Figure 15(a),
region 2 in Figure 15(b), and region 1 in Figure 15(c)). This is because alternative
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Figure 15. ROASCs detected at different times: (a) 6:00 p.m.; (b) 8:00 p.m. and (c) 11:00 p.m. (Regions
are numbered in descending orders of absolute G* values. For better visualization, some numbers are
not displayed.).
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Figure 16. Distribution of the time and distance traveled from Pudong Airport at different times: (a)
time distribution and (b) distance distribution.

Table 2. Peak distances and concentrative destinations traveled from
Pudong Airport at different times.

Time Peak distance (km) Destinations around peak distance
8:00 a.m. 38.93 Nanjing Road, Wujiaochang

6:00 p.m. 36.46 Nanjing Road, Lujiazui

8:00 p.m. 38.67 Nanjing Road

11:00 p.m. 37.79 Nanjing Road, Xujiahui

transportation services, including subways, buses, and shared bicycles, are accessible in
these commercial areas (e.g. the Nanjing Road Pedestrian Street and the Xujiahui district).
The convenient accessibility of other transportation services likely increases the risk of
oversupply of taxis in these areas.

Some interesting temporal dynamics in the attributes, locations, and shapes of ROASCs
are apparent. For example, at 8:00 a.m., low-value ROASCs tend to occur in residential
areas (see regions 3 and 19 in Figure 13(a)), whereas at 6:00 p.m., the low-value ROASCs
shift to workplaces, such as the Jingiao Industrial Park and Zhangjiang Hi-Tech Park (see
regions 9 and 10 in Figure 15(a)). Such a phenomenon likely results from the fact that the
importance of residential areas and workplaces with regard to taxi demand differs across
the day. During the morning rush hour, the demand for taxis is mainly associated with
residential areas, whereas during the evening rush hour, the demand is more substantial
at workplaces. During non-working hours, the proportion of travel flows starting from the
two workplaces, Jingiao and Zhangjiang, decreased (Figure 14(c)-(d)). Therefore, smaller
or even no low-value ROASCs were identified in these places (Figure 15(b-c)). At 8:00 p.m.,
low-value ROASCs were usually observed outside of business districts (e.g. region 7
around Lujiazui in Figure 15(b)). The reason for this could be the increasing number of
taxi departures in these areas for leisure activities, such as dinner, shopping, and sightsee-
ing. At 11:00 p.m., a few new low-value ROASCs were identified in busy nightlife areas (e.g.
region 5 near the Bund, a famous attraction in Shanghai, in Figure 15(c)). The main reasons
for this are twofold: first, the metro system is closed during this period, suggesting more
demand for taxis (Wu et al. 2017); second, most people in these regions need to return
home or to hotels, owing to their daily schedule. Factors related to the generation of
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Figure 17. ROASCs detected at 8:00 a.m. using different co-location distances: (a) 750 m; (b) 1000 m
and (c) 1250 m. (Regions are numbered in descending orders of absolute G* values.).

demand may further trigger the undersupply of taxis (Tang et al. 2019), thereby con-
tributing to the formation of low-value ROASCs.

5.2.4. ROASCs detected using different co-location distances

In a real-world dataset, there may be no single correct co-location distance. Thus, we
further implemented our method at multiple co-location distances (750 m, 1000 m, and
1250 m) for the taxi data at 8:00 a.m. With increasing co-location distances, some ROASCs
may become smaller or even disappear (e.g. regions 17 and 18 in Figure 17(a) cannot be
identified in Figure 17(b—c)), while some are likely to become larger (e.g. region 10 in
Figure 17(a) gradually becomes larger in Figure 17(b-c)). A larger distance may or may not
associate more reference instances with primary instances; furthermore, both the number
of high- and low-value primary instances may increase or decrease at a larger distance,
leading to diverse changes in the spatial scope of ROASCs. However, some ROASCs were
relatively stable across different distances, such as the two regions in Zhangjiang. These
ROASCs are more valid according to the popular belief in the multi-scale analysis (Witkin
1984, Leung et al. 2000); furthermore, they should be considered as typical regions of
mismatched taxi demand and supply that will require substantial efforts to improve the
efficiency of the taxi network in these regions.

6. Conclusions and future work

In this paper, we define a novel problem of ROASC discovery. ROASCs are different from
regional co-locations, which represent prevalent co-locations occurring in sub-regions,
and differ from spatial cross-outliers, which are points of a feature that arouse suspicions
with respect to points of another feature. By comparison, ROASCs refer to regions with
unexpected co-locations between different features, thus providing new and valuable
insights for studying surprising spatial associations at regional scales. ROASC discovery is
of significant practical interest in many domains, including detecting mismatching
regions of taxi demand and supply in transportation and identifying areas of high crime
risk in criminology.

With regard to the discovery of ROASCs, this paper presents a distribution-free method
that does not entail restrictive assumptions regarding the distribution of data. The main
advantages of the method are twofold: first, the method is capable of adaptively
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determining the sizes and shapes of ROASCs based on endogenous spatial neighbor
relations; second, a bivariate pattern reconstruction technique enables the method to
objectively establish the statistical significance of the results by reconstructing the spatial
auto- and cross-correlation structures observed in the data. Experiments, with both
synthetic and real-world taxi datasets, revealed that the distribution-free method can
discover valid ROASCs more effectively in sharp contrast to the existing method.

The distribution-free method has several limitations to be considered in the
future. First, this approach does not allow the identification of ROASCs having
more than two spatial features. It is important to generalize the approach to
multivariate cases where the spatial structures among more than two features
need to be explored. Second, analysis based on the assumption of Euclidean
space could be ill-suited for human-mobility-related phenomena as these are
commonly constrained by road networks (Yu et al. 2017, Cai et al. 2019). The
proposed method will be extended by using network distance to identify network-
constrained ROASCs. Third, the computational performance of the distribution-free
method is significantly constrained by Monte Carlo-type permutation tests. Parallel
computational implementations will be studied to improve the scalability of the
method to large datasets (Prasad et al. 2017).
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