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ABSTRACT

Regions of anomalous spatial co-locations (ROASCs) are regions 
where co-locations between two different features are significantly 
stronger or weaker than expected. ROASC discovery can provide 
useful insights for studying unexpected spatial associations at 
regional scales. The main challenges are that the ROASCs are spa-
tially arbitrary in geographic shape and the distributions of spatial 
features are unknown a priori. To avoid restrictive assumptions 
regarding the distribution of data, we propose a distribution-free 
method for discovering arbitrarily shaped ROASCs. First, we present 
a multidirectional optimization method to adaptively identify the 
candidate ROASCs, whose sizes and shapes are fully endogenized. 
Furthermore, the validity of the candidates is evaluated through 
significance tests under the null hypothesis that the expected 
spatial co-locations between two features occur consistently across 
space. To effectively model the null hypothesis, we develop 
a bivariate pattern reconstruction method by reconstructing the 
spatial auto- and cross-correlation structures observed in the data. 
Synthetic experiments and a case study conducted using Shanghai 
taxi datasets demonstrate the advantages of our method, in terms 
of effectiveness, over an available alternative method.
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1. Introduction

Geographers have long considered and quantified spatial relationships between different 

features (He et al. 2020). One of the most fundamental relationships is the spatial 

association between locations of different features, denoted by the term spatial co- 

location, which refers to instances of different features that co-occur in close spatial 

proximity (Huang et al. 2004, Leslie and Kronenfeld 2011, Zhou et al. 2019). Spatial co- 

locations can be commonly observed in real life. For example, in transportation, taxi 

supply tends to co-locate with trip demand (Wang et al. 2013, Pei et al. 2015); in ecology, 

emerald ash borers usually co-exist with ash trees (Xie et al. 2018).

Because of spatial heterogeneity, spatial co-locations between different features are 

usually inconsistent across a geographical space (Deng et al. 2017). Thus, regions of 

anomalous spatial co-locations (ROASCs) in which the spatial co-locations are significantly 
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stronger or weaker than the expected level exhibited by the dataset as a whole may occur. 

Consider the dataset presented in Figure 1 as an example. The lines represent the 

neighbor relation between features A and B. On average, each instance of A co-occurs 

with one instance of B across the entire study area. However, in region HR1, A co-occurs 

with three or four instances of B, and in regions LR1 and LR2, A does not co-occur with any 

instances of B. Thus, HR1, LR1 and LR2 may be considered as ROASCs. ROASC detection can 

reveal unforeseen spatial associations at regional scales; thus, it is of substantial interest to 

domain experts. For example, the presence of ROASCs between the supply of and 

demand for taxi services indicates that there is a mismatch between the two; furthermore, 

it can provide insights to help cities improve their transportation systems (Tang et al. 

2019).

Previous research on analyzing spatial co-locations at regional scales generally falls into 

two categories, namely regional co-location discovery and spatial cross-outlier detection. 

The former aims to discover regions where spatial co-locations are prevalent, whereas the 

latter focuses on identifying anomalous instances of a feature with respect to co-occurring 

instances of another feature. These approaches, generally, cannot directly support the 

detection of ROASCs targeted in this study. In addition, with regard to making decisions, 

previous methods (Papadimitriou and Faloutsos 2003, Wang et al. 2013) usually necessi-

tate a priori restrictive assumptions regarding the distribution of features, which may 

cause false or missing detections if assumptions are inconsistent with the underlying 

distribution. Consequently, this paper proposes a method without restrictive assumptions 

regarding the distribution of data, i.e. a distribution-free method. This method can 

endogenously discover arbitrarily shaped ROASCs that are exhibited by the data; it can 

also effectively establish the statistical significance of results by reconstructing spatial 

auto- and cross-correlation structures observed in the data.

The remainder of this paper is organized as follows: Section 2 reviews related work on 

detecting the spatial co-locations at regional scales. Section 3 outlines the proposed 

distribution-free strategy for ROASC detection. Section 4 details the techniques involved 

Figure 1. Example of ROASCs between features A and B.
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in our method. Section 5 presents the synthetic experiments and a case study of Shanghai 

taxi datasets to compare and evaluate the performance of our method with that of an 

existing method. Section 6 offers closing comments on the advantages and limitations of 

the research.

2. Literature review

2.1. Regional co-location discovery

Initially, the problem of discovering spatial co-locations was defined for mining subsets of 

spatial features whose instances were frequently located together across an entire study 

area (Shekhar and Huang 2001, Bao and Wang 2019, Cai et al. 2020). However, global 

methods fail to discover hidden co-locations occurring in individual regions, which are 

common in spatial datasets where most relationships are geographically regional, rather 

than global (Ding et al. 2011). Thus, research on the discovery of regional co-locations has 

received increasing attention in recent years (Xie et al. 2017). It updates the problem of 

discovering global spatial co-locations to regional scales through space-partitioning or 

region-detection strategies.

Methods that employ space-partitioning first partition the study area into smaller 

regions, thereby allowing the reuse of global discovery methods in each region to extract 

co-locations. Space can be partitioned using quad-tree structures (Celik et al. 2007), multi- 

resolution grids (Ding et al. 2011), or k-nearest neighbor graphs (Qian et al. 2014). 

However, these user-specified schemes for partitioning are independent of the endogenic 

distribution of co-locations; furthermore, they may impair the discovery of the true 

regions with co-locations (Mohan et al. 2011).

The second strategy, region detection, attempts to overcome this limitation by identi-

fying co-location regions in a data-driven manner. Generally, regions of co-locations are 

determined based on the co-location instances of different features (e.g. minimum 

orthogonal bounding rectangles of all subsets of co-location instances (Li and Shekhar 

2018)). Furthermore, regions of co-location can be understood as the concentration of co- 

location instances, which can be identified using a neighbor graph (Mohan et al. 2011), 

the prototype-based clustering method (Eick et al. 2008), or the adaptive pattern cluster-

ing method (Deng et al. 2017); this interpretation may be of substantial interest to 

geographers. To further reduce subjectivity in the evaluation, Cai et al. (2018) developed 

non-parametric significance tests to validate the co-location regions.

All of the aforementioned methods can determine where the co-locations among 

features are prevalent; however, they cannot identify the regions where the co- 

locations are anomalous. Taking the dataset in Figure 1 as an example, all the aforenoted 

methods will report R1 and R2 as co-location regions because features A and B always 

occur together in these two regions (Figure 2(a)). However, some normal co-locations are 

also included in these regions, and regions with weak co-locations cannot be identified.

Recently, the ability of spatial scan methods (e.g. the spatial scan statistic (Kulldorff 

1997)) has been exploited in bivariate and multivariate cases to detect statistically sound 

clusters of multiple features. For example, Jung et al. (2010) proposed a multinomial 

spatial scan statistic to detect clusters where the proportions of at least one of the features 

are significantly different from those expected. However, co-locations among different 
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features cannot always be guaranteed in multinomial clusters (Leibovici et al. 2014). 

Leibovici et al. (2011) developed an exploratory scan approach to visualize and test 

clusters of multivariate associations using statistics based on local co-occurrences. The 

clustered associations imply local spatial dependence among features (i.e. significantly 

prevalent co-locations in sub-regions); thus, they do not necessarily point out anomalous 

co-locations. In addition, the pre-defined geometric shapes (e.g. circle) cannot well 

represent the natural shapes of clusters (Xie and Shekhar 2019). Wang et al. (2013) noticed 

that the scan-statistic-based method has the potential to discover co-location regions of 

arbitrary shapes by comparing the co-location probability of two features inside and 

outside a region represented by connected grid cells. However, the method treats the 

occurrence of both many and few co-location instances of a feature equally in the 

estimation of co-location probability; thus, it may also include some normal co- 

locations in the identified region (see HR1 in Figure 2(b)). Although the method can easily 

be modified to detect a single region with a minimal co-location probability ratio (see LR1 

in Figure 2(b)), other valid regions may be missed (see LR2 in Figure 1). In addition, to 

perform the significance tests, the data are assumed to follow a bivariate Poisson dis-

tribution. This assumption could be invalid in some instances.

2.2. Spatial cross-outlier detection

The second category of related work, spatial cross-outlier detection, is an extension of 

spatial outlier detection for a single type of feature, which aims to find anomalous 

instances of a single feature that deviate significantly from their neighborhoods 

(Shekhar et al. 2003). Anomalous instances of a single feature can be determined based 

on the values of their spatial attributes (locations) (e.g. density-based method (Breunig 

et al. 2000) and Delaunay-triangulation-based method (Shi et al. 2016)) or both their 

spatial and nonspatial attributes (e.g. distance-based method (Lu et al. 2003) and graph- 

based method (Lu et al. 2011)). However, the presence of extra features may cause these 

Figure 2. Illustration of existing methods for regional co-location discovery: (a) adaptive pattern 
clustering method and (b) scan-statistic-based method.
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methods to misidentify normal instances as anomalous (Papadimitriou and Faloutsos 

2003). Therefore, some typical methods, designed for a single type of feature, are 

modified to discover spatial cross-outliers between two types of features.

In the detection of spatial cross-outliers, the spatial attributes of a primary feature are 

used to define the neighbor relation, and the number of co-occurring instances of another 

feature (called a reference feature) serves as the nonspatial attribute for evaluating the 

outlier instances of the primary feature. Typically, spatial cross-outliers can be identified 

using the ‘k times the standard deviation’ criterion (Papadimitriou and Faloutsos 2003), 

constrained Delaunay triangulation (Shi et al. 2018), or statistical tests (Deng et al. 2018). 

However, these methods cannot directly evaluate statistically anomalous regions of co- 

occurring features. Furthermore, the determination of spatial cross-outliers commonly 

involves subjective assumptions regarding the distribution of features, such as the assump-

tion of a normal distribution underlying the cross-outlier criterion (Papadimitriou and 

Faloutsos 2003) and the complete spatial randomness process used to define the null 

distribution of a feature (Deng et al. 2018), in which the spatial auto- and cross-correlation 

characteristics of the observed datasets are ignored.

3. A novel strategy for ROASC detection

As discussed above, discovering ROASCs remains challenging because the nature of the 

distribution underlying the data is unknown a priori. ROASCs are usually spatially irregular 

owing to the complex distribution of features inside the regions. To reveal the arbitrarily 

shaped ROASCs that are fully encapsulated in the data, we propose a detection strategy 

that is independent of distribution assumptions.

First, we develop a multidirectional optimization method that frees the generation of 

candidate ROASCs from implicit assumptions regarding the size and shape of regions. For 

two input spatial features, one is designated as the primary feature pf and the second is 

designated the reference feature rf with respect to which we investigate the co-locations 

(Papadimitriou and Faloutsos 2003). The designation of pf and rf depends on the semantics 

of the application domain. The method adaptively constructs a spatial neighbor relation 

among instances of pf and measures the co-location intensity with respect to rf. The 

collection of neighboring instances of pf that exhibit a higher-than-average (or lower-than- 

average) co-location intensity with rf and their co-located instances of rf is then considered 

a candidate high-value (or low-value) ROASC. Using this protocol, candidate ROASCs are 

discovered in a bottom-up manner by iteratively searching for interesting instances of pf 

from each seed instance, in all directions specified by the spatial neighbor relation.

Second, when determining ROASCs, we eliminate the need for restrictive assumptions 

regarding the distribution forms of features. To ensure that the discovered ROASCs are 

unlikely to occur by chance, the determination of a ROASC is modeled as a significance 

test problem under a null hypothesis H0 which says that the co-location intensity between 

two features inside a candidate region is consistent with that expected in the entire study 

area, i.e. the expected co-locations exhibited by the observed dataset are spatially uni-

form across the whole geographical space. To model the H0, we need to randomize the 

distribution of spatial co-locations constrained by all other characteristics of the observed 

data. In practice, this means that the null model must be conditioned on the observed 

auto- and cross-correlation structures of the two features, and only questions regarding 
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the uniformity of expected co-locations are explored. Although the distribution forms of 

two features are unknown a priori, their spatial structures can be described using several 

summary characteristics. Considering this, a bivariate pattern reconstruction method is 

developed as a Monte Carlo simulator of H0 for the significance tests by reconstructing the 

observed univariate and bivariate summary characteristics.

Figure 3 presents the framework of the proposed three-part strategy: (1) generation of 

the candidate ROASCs; (2) construction of the null hypothesis; and (3) implementation of 

the significance tests. The techniques involved in these three phases are detailed in the 

following section.

4. A distribution-free method

4.1. Multidirectional optimization for identifying candidate ROASCs

We first present a multidirectional optimization method to identify candidate ROASCs, 

whose sizes and shapes are fully endogenized. Fundamental to this method is a well- 

established spatial statistic tool, AMOEBA (Aldstadt and Getis 2006), that is used to 

identify spatial clusters of related areal units with high or low attribute values. The 

AMOEBA procedure starts with one or more seed units and then, defines a high-value 

(or low-value) cluster by iteratively adding neighboring units until the local spatial 

autocorrelation statistic is maximized (or minimized). We take advantage of its ability to 

guide our method toward an optimal solution with regard to ROASCs at the finest scale. 

However, AMOEBA is not immediately extensible to the ROASC discovery for two main 

reasons. First, the spatial neighbor relation, defined based on the contiguity of spatial 

units, is not applicable to spatial points that are usually unevenly distributed in contin-

uous space. Second, it is designed for spatial units with one type of continuous variable, 

but here is for spatial points of two Boolean spatial features. Our method upgrades the 

original AMOEBA so that it can be used for two types of point data through an adaptive 

neighborhood definition and a co-location intensity measurement.

A prerequisite for this method is the definition of the spatial neighbor relation among 

instances of the primary feature pf. Here, we employ the multi-level constrained Delaunay 

triangulation-based method (Deng et al. 2011) because it provides an adaptive concept of 

neighborhood that can better reflect the characteristics of data. With regard to Delaunay 

Figure 3. Framework of the distribution-free strategy for detecting arbitrarily shaped ROASCs.
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triangulation (DT) performed among instances of pf, the global and local long edges 

linked to each instance Ipf
i are successively removed if their length is larger than the global 

and local constraint statistics, GCðI
pf
i Þ and LCðI

pf
i Þ, respectively, which are represented as: 

GC I
pf
i

� �

¼ Mean DTð Þþ
MeanðDTÞ

MeanðE
1
DTðI

pf
i ÞÞ

� SDðDTÞ (1) 

LC I
pf
i

� �

¼ MeanðE
2
SGðI

pf
i ÞÞ þ MeanðSDðE

1
SGÞÞ (2) 

where Mean(DT) and SD(DT) are the mean and standard deviation of the lengths of all 

edges in DT, respectively, MeanðE
1
DTðI

pf
i ÞÞ is the mean length of edges directly linked to Ipf

i 

in DT, SG is the sub-graph containing I
pf
i , obtained by removing global edges from DT, 

MeanðE
2
SGðI

pf
i ÞÞ is the mean length of the edges linked to I

pf
i within two paths in SG, and 

MeanðSDðE
1
SGÞÞ is the mean of the standard deviations of edges directly linked to each 

instance in SG. In Figure 4(a), the connected instances are identified as neighbors after 

removing the global and local long edges.

Given a distance threshold r that reflects the scale-level of interest at which one wants 

to investigate the spatial co-locations (termed as co-location distance), an instance of the 

reference feature rf, Irf
j , is considered to co-occur with an instance of pf, Ipf

i , if the distance 

between them, dðI
pf
i ; Irf

j Þ, is not larger than r. The co-location intensity of pf with respect to 

rf at the location of Ipf
i is then measured using the number of co-occurring instances of rf, 

represented as: 

CIi¼ jfI
rf
j jdðI

pf
i ; Irf

j Þ � rgj (3) 

For a region R, we employ the G� statistic (Getis and Ord 1992, Duque et al. 2011) as the 

interest measure, represented as: 

Figure 4. Preliminaries for the multidirectional optimization method: (a) neighbor relation constructed 
for the primary feature A and (b) spatial co-locations defined between the primary feature A and the 
reference feature B.
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G�ðRÞ ¼ ð
X

I
pf

i
2R

CIi � n � CIÞ=ðS �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N � n � n2

N � 1

r

Þ (4) 

where n is the number of instances of pf included in the region R, N is the total number of 

instances of pf, CI is the mean of all the CIi values, and 

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
j¼1 CIj

2

N
� CI

2

s

(5) 

A positive (or negative) G� value indicates that the co-location intensity of pf and rf in R is 

higher (or lower) than the average level exhibited by the dataset as a whole. Consider the 

primary feature A and reference feature B in Figure 4(b) as an example. The average co- 

location intensity CI is the average number of instances of B that co-occur with an instance 

of A; furthermore, it equals (4 + 3+ . . . +0)/20 = 20/20 = 1. The G� value of the region that 

contains four high-value instances of A (represented by red points) is 

ð 4 þ 3 þ 4 þ 3ð Þ � 4 � 1Þ=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

42þ32þ . . .þ02
� �

=20 � 12
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

20 � 4 � 42
� �

= 20 � 1ð Þ
q

Þ � 4:06 

, which indicates the stronger-than-average co-locations between A and B in that region.

Based on the above definitions, the multidirectional optimization method starts by 

considering each instance of the primary feature (called the primary instance) as a seed 

instance and iteratively expands the region from each seed instance to its neighboring 

primary instances in a constructive manner (Duque et al. 2011). This is an efficient and 

equivalent alternative to exhaustive evaluations on all possible neighbor combinations 

(Widener et al. 2012). The process is detailed as follows:

(1) For a region Rt
i with a positive G�, its neighboring primary instances outside Rt

i are 

sorted according to their G� values, in descending order. The variable t is the 

number of primary instances included in the current region and its value starts 

from 1, i.e. the initial region R1
i consists of only the seed instance Ipf

i .

(2) The sorted neighbors are tested one-by-one. If G�ðR
tþ1
i Þ >G�ðR

t
i Þ, i.e. the region Rtþ1

i 

that contains Rt
i and a neighbor is more interesting than Rt

i according to the G�

value, the region is expanded by adding that neighbor so that t becomes t + 1.

(3) If any neighbor is added, the neighbors that are not included are eliminated from 

further consideration, and step (1) is followed to test the neighbors of newly added 

neighbors. The process is terminated if no new neighbors are added, and Rt
i is 

outputted as the high-value region with the maximal G� value, with respect to I
pf
i .

Figure 5(a–d) illustrates the process starting from the seed instance A1. For regions with 

negative G�, the process followed is the same, except that the goal is to minimize the 

value of G�. After each seed instance is examined, non-overlapping regions with the 

maximal absolute G� values are reported. The collection of primary instances in each 

reported region and their co-located reference instances is then identified as a candidate 

ROASC for the significance test (see the high-value region HR1 and the low-value regions 

LR1 and LR2 in Figure 5(e)).
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4.2. Bivariate pattern reconstruction method for constructing the null hypothesis

At the outset of the significance test, we need to model the null hypothesis H0 such that 

no regions with unexpected co-locations exist, i.e. the expected co-locations between two 

features are uniformly distributed in the study area. As analyzed in Section 3, the 

permutations under H0 should consider the following properties: (1) consistent co- 

location intensity across space; (2) similar univariate spatial structures of each feature; 

and (3) similar bivariate spatial structures between two features as in the observed 

dataset. The first two properties are used to randomize the distribution of the co- 

locations between two spatially autocorrelated features. However, the potential spatial 

cross-correlation between features is likely to be disrupted. Therefore, the third property 

should also be maintained, so that the expected co-locations in the observation can be 

guaranteed in permutations. To generate such permutations, we propose a bivariate 

pattern reconstruction method, that translates a reconstruction technique in materials 

science (Rintoul and Torquato 1997) into the bivariate point pattern analysis. Instead of 

assuming the distribution forms of features, the proposed method generates permuta-

tions by fitting several univariate and bivariate summary characteristics of the observa-

tions, thus allowing subjectivity to be reduced in the modeling of H0.

The first step is to determine a proper combination of summary characteristics because 

different summary characteristics usually describe different aspects of spatial structures and 

may also capture redundant information. To comprehensively characterize the univariate 

spatial structures, we select three summary characteristics, namely, the pair-correlation 

Figure 5. Multidirectional optimization method for identifying candidate ROASCs: (a) seed instance; 
(b) the first expansion; (c) the second expansion; (d) the third expansion and (e) candidate high- and 
low-value ROASCs.
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function g(r), nearest-neighbor distribution function D(r), and spherical contact distribution 

function Hs(r), based on the systematic comparison conducted by Wiegand et al. (2013). Figure 

6(a) shows the schematic representation of these univariate summary characteristics. The g(r) 

function captures the average neighborhood properties of points; furthermore, it is the most 

informative characteristic when used in isolation. D(r) is valuable because of its up-close view 

of the nearest neighbor that can quantify subtle variations in local structures that are lost by g 

(r). Finally, Hs(r) can provide important additional information on the size of gaps, especially for 

non-stationary patterns. Similarly, the bivariate forms of g(r) and D(r), namely, the cross pair- 

correlation function g12(r) and cross nearest-neighbor distribution function D12(r), are also 

recommended for describing the bivariate spatial structures. The computation is analogous to 

that in the case of univariate functions, except that bivariate functions summarize the 

neighborhood properties of one feature with respect to another feature (Figure 6(b)). Unlike 

point-centered g(r) and D(r), the Hs(r) function characterizes the spatial structures from the 

viewpoint of arbitrary locations; thus, it is difficult to present in a bivariate form to measure the 

cross-correlation between points of two features. Details regarding the five selected summary 

characteristics, g(r), D(r), Hs(r), g12(r), and D12(r), can be found in Wiegand and Moloney (2013).

Based on the selected summary characteristics Fm(r) (where m = 1, 2, . . ., M), the bivariate 

pattern reconstruction pattern method produces permutated datasets with fixed instances of 

the primary feature pf, while reconstructing the instances of the reference feature rf. The 

reconstruction of rf starts with a random pattern that has the same number of instances of rf 

as in the observed dataset ω. The permutated dataset $ is, then, iteratively modified to 

minimize the deviations of Fm(r) values between ω and $, calculated as 

ΔF $ð Þ¼
X

M

m¼1

km �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

jrj
�
X

rmax

r¼rmin

Fω
m rð Þ � F$

m rð Þ
� �2

v

u

u

t =
X

M

m¼1

km (6) 

where |r| is the number of distances r (rmin � r � rmax) at which the Fm(r) values are 

evaluated, and km is the weight of Fm(r) that is used to balance the importance of different 

Figure 6. Schematic representation of univariate and bivariate summary characteristics: (a) g(r), D(r), 
and Hs(r) and (b) g12(r) and D12(r).
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summary characteristics. Note that the univariate Fm(r) (e.g. g(r), D(r), and Hs(r)) is calcu-

lated for rf and the bivariate Fm(r) (e.g. g12(r) and D12(r)) is calculated by considering rf as 

the reference feature. In each modification step t, a randomly selected instance of rf in the 

last permutated dataset $t�1 is tentatively replaced with a new point with random 

coordinates. The modified dataset $t is accepted only if $t is more similar to ω than 

$t�1, i.e. ΔFð$tÞ<ΔFð$t�1Þ. Otherwise, another modification is considered. This process 

proceeds until the ΔFð$tÞ value becomes smaller than a tiny value (0.01 in this study) or 

a sufficient number of steps (40, 000 in this study) is reached.

Figure 7(b) shows a permutated dataset of the dataset in Figure 7(a), produced using 

the bivariate pattern reconstruction pattern method. Figure 7(c–g) displays the curves of g 

(r), D(r), Hs(r), g12(r), and D12(r) values calculated for feature B in the observed dataset and 

99 permutated datasets. Clearly, the method randomizes the distribution of spatial co- 

locations between two features while maintaining the observed univariate and bivariate 

spatial structures.

4.3. Monte Carlo tests for ROASCs adjusted for the multiple testing problem

In the decision-making step, tests of ROASCs employ the G� statistic as the test statistic. G�

is asymptotically distributed as a standard normal variate (Duque et al. 2011). However, 

the normality of G� maybe lost in practice, in which case tests based on the normal 

Figure 7. Bivariate pattern reconstruction pattern method for modeling the null hypothesis of 
consistent co-locations: (a) observed dataset; (b) an example of the permutated datasets; (c)–(e) 
curves of the g(r), D(r), Hs(r), g12(r) and D12(r).
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approximation will be inappropriate (Getis and Ord 1992). To obtain more objective 

decisions with regard to ROASCs, G� is assessed via its empirical distribution estimated 

using Monte Carlo permutations, wherein a priori assumptions on the null distribution are 

not required.

For a high-value (or low-value) ROASC, HR (or LR), we rank the observed G� value, Gobs, in 

descending (or ascending) order amongst a corresponding set of values, 

Gnull
n ðn ¼ 1; 2; . . . ;NÞ, calculated for a large number N of Monte Carlo permutated datasets. 

The p-value of HR (or LR) is, then, calculated as the rank divided by N + 1, represented as 

p � value HRð Þ¼ ðjGnull
n ðHRÞ � GobsðHRÞj þ 1Þ=ðN þ 1Þ (7) 

p � value LRð Þ¼ ðjGnull
n ðLRÞ � GobsðLRÞj þ 1Þ=ðN þ 1Þ (8) 

where jGnull
n ðHRÞ � GobsðHRÞj is the number of Gnull

n values of HR that exceed the observed 

value and jGnull
n ðLRÞ � GobsðLRÞj is analogous.

In practice, the dataset usually has more than one ROASC. The unguarded use of 

multiple tests will result in an increased false-positive rate (i.e. the probability of falsely 

identifying a region as a significant ROASC). To alleviate the multiple testing problem, we 

adjust the given significance level α (a cutoff value of p-value which is 0.01 or 0.05 by 

convention) using the false discovery rate method (Benjamini and Hochberg 1995). Let p- 

value(R1) � p-value(R2) � � � � � p-value(RK) be the ordered p-values of K candidate 

ROASCs. The adjusted significance level αadj is p-value(Ri), where i is the largest index in {1, 

2, . . ., K} for which 

p � valueðRiÞ �
i

K
� α (9) 

If the p-value for an HR (or LR) is not larger than αadj, we reject the null hypothesis and 

conclude that the spatial co-locations between features in HR (or LR) are significantly 

stronger (or weaker) than expected; moreover, the HR (or LR) is identified as a significant 

ROASC of high (or low) value.

4.4. Implementation and analysis of the distribution-free method

Given (1) an observed dataset containing instances of two spatial features (primary 

feature pf and reference feature rf; (2) a distance threshold r for defining spatial co- 

locations; and (3) a significance level α, the distribution-free method detects all non- 

overlapping ROASCs with maximal absolute G� values and qualified p-values, using the 

following steps:

(1) Construct the spatial neighbor relation among n instances of pf. The multi-level 

constrained Delaunay triangulation-based method approximately requires Oðn �

lognÞ time.

(2) Calculate co-location intensity and G� for each instance of pf. This requires approxi-

mately Oðn � logmÞ time, where m is the number of instances of rf.

(3) Identify candidate ROASCs with maximal absolute G� values using the multidirec-

tional optimization method. This requires a maximum of Oðn2Þ time when the 
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neighbor graph of primary instances is completely connected and the entire set of 

primary instances is explored, for each seed instance.

(4) Generate a set of N permutated datasets using the bivariate pattern reconstruction 

method. Because each candidate permutation differs only by one point from that of 

the last iteration, only the part of an estimator of a summary characteristic that is 

affected by the exchange needs to be updated. This process requires O(m) time for 

functions g(r) and D(r), O(t) time for Hs(r), and O(n) time for g12(r) and D12(r) at each 

distance. This whole step requires a maximum of approximately 

O N � R � S � ðn þ m þ tð Þ time when all the permutated datasets are modified for the 

maximum number S of times. Here, t is the number of test locations used in the Hs(r) 

function, and R is the number of distances at which summary characteristics are 

evaluated.

(5) Conduct the Monte Carlo tests and report the statistically significant ROASCs. This 

requires approximately O N � n � logmð Þ time.

As discussed above, the time complexity of the distribution-free method mainly 

depends on Steps 3–5, which require a maximum time 

of Oðn2Þ þ O N � R � S � ðn þ m þ tÞð ÞþO N � n � logmð Þ:

5. Experimental evaluation and case study

We evaluated the performance of the distribution-free method using both synthetic and 

real-world taxi datasets. For comparison, the scan-statistic-based method (Wang et al. 

2013) was also applied because of its similarity to our method in the problem formulation. 

For both methods, the co-location distance was predefined in the synthetic experiments 

and estimated as 500 m in the case study, in accordance with the spatial auto-correlation 

method (Yoo and Bow 2012) which recommends the use of a distance at which spatial 

processes substantially promote clustering. The significance level was set to 0.05, and the 

number of permutated datasets was set to 99. For better visualization, the α-shape 

algorithm (Edelsbrunner et al. 1983) was used to delineate the boundary of the ROASCs 

identified using our method.

5.1. Experiments using synthetic data

5.1.1. Data generation

Figure 8 illustrates the synthetic data generator designed to predefine the ROASCs. The 

generator first produced the instances of primary feature A, including nhigh high-value 

instances, nlow low-value instances, and nnormal normal instances. The high- and low-value 

instances were divided into several groups, and the normal instances were randomly dis-

tributed. Instances of reference feature B were, then, randomly located within the predefined 

distance r of instances of A. The mean number of instances of B that co-occurred with each 

high-value, low-value, and normal instance of A is μhigh, μlow, and μnormal, respectively. Here, 

μnormal¼ ðμhigh � nhighþμlow � nlowÞ=ðnhighþnlowÞ, so that the average co-location intensity 

between A and B can be controlled to μnormal. The region formed by each group of high- 

value (low-value) instances of A and the corresponding co-occurring instances of B is known 
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as a high-value (low-value) ROASC. Using this generator, we obtained a synthetic dataset 

containing four predefined ROASCs, of which two were high-value and two were low-value, in 

a study area S = [0, 100]2 (Figure 9(a)). The total number of instances of primary feature A and 

reference feature B was 160 and 800, respectively. Here, 

nhigh¼nlow¼ 30;nnormal¼ 100; r ¼ 2; μhigh¼ 9; μlow¼ 1; and μnormal¼ 5. Thus, in the synthetic 

dataset, each primary instance has an average of nine, one, and five neighboring reference 

instances in the high-value ROASCs, low-value ROASCs, and the entire study area, respectively.

5.1.2. Performance metrics

We evaluated two aspects of the detection methods: (1) the extent to which each method 

can correctly find the known ROASCs and (2) the extent to which the known ROASCs can 

be completely uncovered by each method. Since a ROASC is determined by the instances 

of the primary feature A inside it, the predefined groups of high-value and low-value 

instances of A were employed to serve as the benchmark for assessing the performance of 

both methods, using the metrics of precision, recall, and F1 score, defined as 

precision ¼ TPj j=ð TPj jþ FPj jÞ (10) 

recall ¼ TPj j=ð TPj jþ FNj jÞ (11) 

Figure 8. Experimental setup of the synthetic dataset: (a) generate instances of the primary feature; (b) 
generate instances of the reference feature and (c) predefined ROASCs.

Figure 9. Synthetic data and discovered ROASCs: (a) predefined high- and low-value primary 
instances; (b) our method; and (c) scan-statistic-based method.
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F1 score ¼ 2 � precision � recall=ðprecision þ recallÞ (12) 

where TPj j, FPj j, and FNj j are the number of true positive, false positive, and false negative 

instances of A, respectively. Precision is also referred to as the positive predictive value; 

moreover, it represents the fraction of detections that are truly positive, indicating the 

correctness of results. Recall is also referred to as sensitivity; furthermore, it represents the 

fraction of true cases that are successfully detected, indicating the completeness of 

results. The F1 score is a comprehensive metric that takes both correctness and complete-

ness into account. The larger the values of these metrics, the better the results.

5.1.3. Comparison and analysis

Figure 9(b) displays the ROASCs detected by our method and reports their G* values and 

p-values. The precision, recall, and F1 score of the results are all equal to 100%. These 

results demonstrate that our method detected all the predefined ROACSs without any 

false-positive or false-negative errors in the synthetic dataset. It was able to do this 

because the shapes and sizes of ROASCs are adaptively determined using the multi-

directional optimization method, and the casual ROASCs that occur by chance can be 

effectively removed using the significance tests.

By contrast, Figure 9(c) shows the regions with maximal and minimal co-location 

probability ratio (CPR) obtained by the scan-statistic-based method. As discussed in 

Section 2.1, the high-value region incorrectly includes some normal instances of A near 

the predefined ROASCs. In addition, the low-value region omits some predefined low- 

value instances of A. This happened because the minimal CPR of the regions in this dataset 

was zero. Thus, adding any instances of A that co-occurred with B would increase the CPR 

of the reported region, even though the number of co-occurring instances of B was 

significantly smaller than the average. Furthermore, both regions are reported as statis-

tically insignificant by the significance tests on the observed CPR. This was because the co- 

location probability embedded in the CPR only considers whether the instances of A are 

co-located with instances of B; that is, it cannot capture the co-location intensity between 

the two features. In this synthetic dataset, almost all instances of A (154 out of 160) co- 

occur with instances of B. Thus, it is not surprising to observe a higher or equal CPR in the 

replicas of the bivariate Poisson distribution, where the co-location rate of two features is 

learned from observations. Similarly, we can commonly detect one region with a CPR of 

zero in the replicates. Therefore, the scan-statistic-based method is not suitable for 

datasets where two features frequently co-occur across the entire study area.

5.1.4. Effect of co-location distance

Figure 10 shows the effect of co-location distance on the performance of our distribution- 

free method. As can be seen, co-location distances somewhat smaller or larger than the 

preset distance (r = 2) will result in undesirable performance in terms of precision, recall, 

and F1 score. Some meaningful co-location instances of the reference feature may be 

missed at a smaller distance, which will, then, lead to the underestimation of co-location 

intensity. Similarly, ROASCs discovered at a larger distance could include certain distant 

reference instances that are weakly correlated to the primary feature.
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5.2. Case study: detecting regions of taxi demand-supply mismatch in Shanghai

5.2.1. Data description

We assessed the practicality and effectiveness of the distribution-free method via a case 

study of taxi data pertaining to Shanghai, China. Shanghai is one of the most densely 

populated Chinese cities, with more than 24 million permanent residents. However, only 

approximately 50,000 taxis are registered in the city. A report from the Didi Media 

Research Institute and CBNData (2016) concluded that Shanghai is the most challenging 

regarding hailing taxis among all the cities in the Yangtze Delta area. The background 

population is one of the most apparent factors influencing the demand for taxis (Qian and 

Ukkusuri 2015). The built environment (e.g. residential and commercial buildings) is a key 

determinant of the daily activities of individuals (Sung and Oh 2011), and this causes 

dynamic variation in population size and density across space and time. Thus, the 

distribution of taxi demand is usually uneven in space and varies with time, making it 

difficult for taxis to satisfy the demand. Detecting regional mismatches of taxi demand 

and supply is of critical importance to the provision of responsive taxi services and the 

facilitation of passenger commutes.

The taxi data used in this case study were collected once every 10 seconds from 48,806 

taxis in Shanghai on Monday, 2 December 2013. These taxis, mostly registered with five 

taxi companies (Dazhong, Jinjiang, Bashi, Qiangsheng, and Haibo), account for more than 

97% of all the taxis registered. The data recorded regarding each taxi included the time, 

location, and status (0 for empty and 1 for occupied). We investigated the supply of and 

demand for taxi services at 8:00 a.m., 6:00 p.m., 8:00 p.m., and 11:00 p.m. (Figure 11). For 

each time t that we investigated, the locations corresponding to taxi demand are 

indicated by the pick-up locations (i.e. the locations where the taxi status switches from 

0 to 1) within 10 minutes before t, and the locations of taxi supply are represented by the 

locations of empty taxis at t. It is noteworthy that we only considered the satisfied 

demand here, as unmet demand cannot be revealed from these taxi data. In the context 

of taxi services, we want to know whether the supply of taxis can adequately match the 

demand. Thus, the demand for taxis is considered as the primary feature and the supply is 

the reference feature. High-value ROASCs indicate regions of oversupply of taxi services 

and low-value ROASCs indicate regions of undersupply. Figure 12 shows the distribution 

of 10 places of interest in Shanghai, which are used to explain the distribution of 

discovered ROASCs.

Figure 10. Effect of co-location distance on the performance of our distribution-free method: (a) 
precision; (b) recall and (c) F1 score.
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5.2.2. ROASCs detected using different methods

Figure 13 presents the spatial distribution of ROASCs discovered by the two methods for 

the taxi data at 8:00 a.m. Table 1 summarizes the numerical results of the distribution-free 

method, which include 19 ROASCs (eight high-value regions and eleven low-value 

regions), sorted in descending order according to their absolute G* values. By contrast, 

the scan-statistic-based method only identified one high-value ROASC, where the co- 

Figure 11. Distribution of taxi data in Shanghai: (a)–(d) demand at 8:00 a.m., 6:00 p.m., 8:00 p.m., and 
11:00 p.m., respectively and (e)–(h) supply at 8:00 a.m., 6:00 p.m., 8:00 p.m., and 11:00 p.m., 
respectively.

Figure 12. Places of interest in Shanghai.
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location probability ratio (CPR) was maximized. This region also covered some normal and 

weak co-locations identified by our method because spatial co-locations weaker than or 

equal to the average can also help increase the CPR. In addition, no significant low-value 

ROASCs were identified because the CPR of the low-value region was zero, i.e. no taxi 

supply co-occurred with demand. This phenomenon can also be regularly observed in 

a sub-region under the null hypothesis.

5.2.3. ROASCs detected at different times

In this subsection, we explored the variations in ROASCs discovered by our method at 

other times (6:00 p.m., 8:00 p.m. and 11:00 p.m.) during the day. Figure 14 shows the taxi 

travel flows among 10 places of interest listed in Figure 12 and other regions in Shanghai 

leaving at four different times. Figure 16 overlaps the detected ROASCs with these places. 

Figure 13. ROASCs at 8:00 a.m. detected by different methods: (a) our method and (b) scan-statistic- 
based method.

Table 1. Numerical results of ROASCs at 8:00 a.m. detected by 
our method.

Region ID Region type G* value p-value

1 high-value 15.80 0.01
2 high-value 11.40 0.01
3 low-value −9.22 0.01
4 low-value −7.84 0.01
5 high-value 7.65 0.01
6 high-value 7.46 0.01
7 high-value 6.68 0.01
8 high-value 6.29 0.01
9 high-value 4.45 0.01
10 low-value −4.35 0.01
11 low-value −4.13 0.01
12 low-value −3.83 0.01
13 high-value 3.47 0.01
14 low-value −3.44 0.01
15 low-value −2.55 0.01
16 low-value −2.28 0.01
17 low-value −2.22 0.01
18 low-value −2.21 0.01
19 low-value −2.21 0.01
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Some common phenomena can be observed at these times. For example, a high-value 

ROASC can always be detected near Pudong International Airport (see region 8 in Figure 

13(a), region 2 in Figure 15(a), and region 13 in Figure 15(b)), except at 11 p.m., when the 

airport system is about to terminate its schedule. Figure 16 shows the time and distance 

distributions of taxis that traveled from Pudong Airport at different times. Although the 

travel times at 8:00 a.m. and 6:00 p.m. (working hours) tend to be higher than those at 8:00 

p.m. and 11:00 p.m. (non-working hours), the distributions of travel distances at these 

times are similar. In particular, the peak distances at these times are between 36 km and 

39 km (Table 2), which may reflect travel to downtown Shanghai (e.g. Nanjing Road). Such 

long-distance trips can make taxi services more profitable. At these four times, an average 

of 35.2% of the taxis carrying passengers to Pudong Airport did not leave within 15 min-

utes, suggesting that these taxis may have waited to pick up customers in the airport 

queue, thus creating an oversupply at the airport. Furthermore, high-value ROASCs were 

usually found in the center of the city (see region 7 in Figure 13(a), region 8 in Figure 15(a), 

region 2 in Figure 15(b), and region 1 in Figure 15(c)). This is because alternative 

Figure 14. Travel flows among places of interest and other regions (OR) in Shanghai at different times: 
(a) 8:00 a.m.; (b) 6:00 p.m.; (c) 8:00 p.m. and (d) 11:00 p.m. (For better visualization, flows between 
other regions are not displayed.).

Figure 15. ROASCs detected at different times: (a) 6:00 p.m.; (b) 8:00 p.m. and (c) 11:00 p.m. (Regions 
are numbered in descending orders of absolute G* values. For better visualization, some numbers are 
not displayed.).
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transportation services, including subways, buses, and shared bicycles, are accessible in 

these commercial areas (e.g. the Nanjing Road Pedestrian Street and the Xujiahui district). 

The convenient accessibility of other transportation services likely increases the risk of 

oversupply of taxis in these areas.

Some interesting temporal dynamics in the attributes, locations, and shapes of ROASCs 

are apparent. For example, at 8:00 a.m., low-value ROASCs tend to occur in residential 

areas (see regions 3 and 19 in Figure 13(a)), whereas at 6:00 p.m., the low-value ROASCs 

shift to workplaces, such as the Jinqiao Industrial Park and Zhangjiang Hi-Tech Park (see 

regions 9 and 10 in Figure 15(a)). Such a phenomenon likely results from the fact that the 

importance of residential areas and workplaces with regard to taxi demand differs across 

the day. During the morning rush hour, the demand for taxis is mainly associated with 

residential areas, whereas during the evening rush hour, the demand is more substantial 

at workplaces. During non-working hours, the proportion of travel flows starting from the 

two workplaces, Jinqiao and Zhangjiang, decreased (Figure 14(c)–(d)). Therefore, smaller 

or even no low-value ROASCs were identified in these places (Figure 15(b–c)). At 8:00 p.m., 

low-value ROASCs were usually observed outside of business districts (e.g. region 7 

around Lujiazui in Figure 15(b)). The reason for this could be the increasing number of 

taxi departures in these areas for leisure activities, such as dinner, shopping, and sightsee-

ing. At 11:00 p.m., a few new low-value ROASCs were identified in busy nightlife areas (e.g. 

region 5 near the Bund, a famous attraction in Shanghai, in Figure 15(c)). The main reasons 

for this are twofold: first, the metro system is closed during this period, suggesting more 

demand for taxis (Wu et al. 2017); second, most people in these regions need to return 

home or to hotels, owing to their daily schedule. Factors related to the generation of 

Figure 16. Distribution of the time and distance traveled from Pudong Airport at different times: (a) 
time distribution and (b) distance distribution.

Table 2. Peak distances and concentrative destinations traveled from 
Pudong Airport at different times.

Time Peak distance (km) Destinations around peak distance

8:00 a.m. 38.93 Nanjing Road, Wujiaochang
6:00 p.m. 36.46 Nanjing Road, Lujiazui
8:00 p.m. 38.67 Nanjing Road
11:00 p.m. 37.79 Nanjing Road, Xujiahui
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demand may further trigger the undersupply of taxis (Tang et al. 2019), thereby con-

tributing to the formation of low-value ROASCs.

5.2.4. ROASCs detected using different co-location distances

In a real-world dataset, there may be no single correct co-location distance. Thus, we 

further implemented our method at multiple co-location distances (750 m, 1000 m, and 

1250 m) for the taxi data at 8:00 a.m. With increasing co-location distances, some ROASCs 

may become smaller or even disappear (e.g. regions 17 and 18 in Figure 17(a) cannot be 

identified in Figure 17(b–c)), while some are likely to become larger (e.g. region 10 in 

Figure 17(a) gradually becomes larger in Figure 17(b–c)). A larger distance may or may not 

associate more reference instances with primary instances; furthermore, both the number 

of high- and low-value primary instances may increase or decrease at a larger distance, 

leading to diverse changes in the spatial scope of ROASCs. However, some ROASCs were 

relatively stable across different distances, such as the two regions in Zhangjiang. These 

ROASCs are more valid according to the popular belief in the multi-scale analysis (Witkin 

1984, Leung et al. 2000); furthermore, they should be considered as typical regions of 

mismatched taxi demand and supply that will require substantial efforts to improve the 

efficiency of the taxi network in these regions.

6. Conclusions and future work

In this paper, we define a novel problem of ROASC discovery. ROASCs are different from 

regional co-locations, which represent prevalent co-locations occurring in sub-regions, 

and differ from spatial cross-outliers, which are points of a feature that arouse suspicions 

with respect to points of another feature. By comparison, ROASCs refer to regions with 

unexpected co-locations between different features, thus providing new and valuable 

insights for studying surprising spatial associations at regional scales. ROASC discovery is 

of significant practical interest in many domains, including detecting mismatching 

regions of taxi demand and supply in transportation and identifying areas of high crime 

risk in criminology.

With regard to the discovery of ROASCs, this paper presents a distribution-free method 

that does not entail restrictive assumptions regarding the distribution of data. The main 

advantages of the method are twofold: first, the method is capable of adaptively 

Figure 17. ROASCs detected at 8:00 a.m. using different co-location distances: (a) 750 m; (b) 1000 m 
and (c) 1250 m. (Regions are numbered in descending orders of absolute G* values.).
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determining the sizes and shapes of ROASCs based on endogenous spatial neighbor 

relations; second, a bivariate pattern reconstruction technique enables the method to 

objectively establish the statistical significance of the results by reconstructing the spatial 

auto- and cross-correlation structures observed in the data. Experiments, with both 

synthetic and real-world taxi datasets, revealed that the distribution-free method can 

discover valid ROASCs more effectively in sharp contrast to the existing method.

The distribution-free method has several limitations to be considered in the 

future. First, this approach does not allow the identification of ROASCs having 

more than two spatial features. It is important to generalize the approach to 

multivariate cases where the spatial structures among more than two features 

need to be explored. Second, analysis based on the assumption of Euclidean 

space could be ill-suited for human-mobility-related phenomena as these are 

commonly constrained by road networks (Yu et al. 2017, Cai et al. 2019). The 

proposed method will be extended by using network distance to identify network- 

constrained ROASCs. Third, the computational performance of the distribution-free 

method is significantly constrained by Monte Carlo-type permutation tests. Parallel 

computational implementations will be studied to improve the scalability of the 

method to large datasets (Prasad et al. 2017).

Acknowledgments

The authors thank the editors, the reviewers, and the members of the spatial computing research 
group at the University of Minnesota for their helpful comments. We also thank Kim Koffolt for 
improving the readability of this paper.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This study was supported by the National Natural Science Foundation of China (NSFC) [41730105, 
41471385]; National Key Research and Development Foundation of China [2016YFB0502303]; U.S. 
National Science Foundation (NSF) [1737633, 0940818, 1029711, 1541876, IIS-1218168, IIS- 
1320580]; Advanced Research Projects Agency - Energy, U.S. Department of Energy [DE- 
AR0000795]; U.S. Department of Defense [HM0210-13-1-0005, HM1582-08-1-0017]; U.S. 
Department of Agriculture [2017-51181-27222]; U.S. National Institute of Health [KL2 TR002492, 
TL1 TR002493, UL1 TR002494]; OVPR Infrastructure Investment Initiative, University of Minnesota; 
Minnesota Supercomputing Institute (MSI), University of Minnesota.

Notes on contributors

Jiannan Cai received his PhD in GIScience at the Central South University and was a visiting PhD 
student at the University of Minnesota, Twin Cities. He is currently a Postdoctoral Fellow of the 
Institute of Space and Earth Information Science at The Chinese University of Hong Kong. His 
research interests focus on spatial data science and its smart-city applications.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 995



Min Deng is currently a Professor and Associate Dean of the School of Geosciences and Info-physics 
at the Central South University. His research interests are map generalization, spatio-temporal data 
analysis and mining.

Yiwen Guo is a PhD candidate at the Central South University and her research focuses on spatio- 
temporal association rule mining.

Yiqun Xie received his PhD in Computer Science at the University of Minnesota, Twin Cities. He is 
currently an Assistant Professor in the Department of Geographical Sciences and Center for 
Geospatial Information Science at the University of Maryland, College Park. His research focuses 
on developing novel and cutting-edge techniques for spatial data science and artificial intelligence. 
His work has received multiple best paper awards and was highlighted by the Great Innovative Ideas 
program at the Computing Community Consortium.

Shashi Shekhar is a McKnight Distinguished University Professor in the Department of Computer 
Science and Engineering at the University of Minnesota, Twin Cities. He is an IEEE Fellow and AAAS 
Fellow. Earlier, he served as the President of the University Consortium for GIS, and on many 
National Academies’ committees. His research focuses on spatial data science, spatial databases 
and GIS.

ORCID

Jiannan Cai http://orcid.org/0000-0003-4752-0153

Data and codes availability statement

The synthetic data and codes that support the findings of this study are available in ‘figshare.com’ 
with the identifier: https://doi.org/10.6084/m9.figshare.12993146. The Shanghai taxi data cannot be 
made publicly available due to third party restrictions. Mocked taxi data are provided at the link to 
show how the codes work.

References

Aldstadt, J. and Getis, A., 2006. Using AMOEBA to create a spatial weights matrix and identify spatial 
clusters. Geographical Analysis, 38 (4), 327–343.

Bao, X. and Wang, L., 2019. A clique-based approach for co-location pattern mining. Information 

Sciences, 490, 244–264. doi:10.1016/j.ins.2019.03.072
Benjamini, Y. and Hochberg, Y., 1995. Controlling the false discovery rate: a practical and powerful 

approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57 
(1), 289–300.

Breunig, M.M., et al., 2000. LOF: identifying density-based local outliers. In: Proceedings of the 2000 

ACM SIGMOD International Conference on Management of Data, Dallas, Texas, USA: ACM, 93–104
Cai, J., et al., 2018. Adaptive detection of statistically significant regional spatial co-location patterns. 

Computers, Environment and Urban Systems, 68, 53–63. doi:10.1016/j.compenvurbsys.2017.10.003
Cai, J., et al. 2019. Nonparametric significance test for discovery of network-constrained spatial 

co-location patterns. Geographical Analysis, 51 (1), 3–22. doi:10.1111/gean.12155
Cai, J., et al., 2020. Significant spatial co-distribution pattern discovery. Computers, Environment and 

Urban Systems, 84, 101543. doi:10.1016/j.compenvurbsys.2020.101543
Celik, M., Kang, J.M., and Shekhar, S., 2007. Zonal co-location pattern discovery with dynamic 

parameters. In: Proceedings of the 7th IEEE International Conference on Data Mining, 28–31 
October, Omaha NE.

Deng, M., et al. 2011. An adaptive spatial clustering algorithm based on Delaunay triangulation. 
Computers, Environment and Urban System, 35 (4), 320–332. doi:10.1016/j.compenvurbsys.2011.02.003

996 J. CAI ET AL.

https://doi.org/10.6084/m9.figshare.12993146
https://doi.org/10.1016/j.ins.2019.03.072
https://doi.org/10.1016/j.compenvurbsys.2017.10.003
https://doi.org/10.1111/gean.12155
https://doi.org/10.1016/j.compenvurbsys.2020.101543
https://doi.org/10.1016/j.compenvurbsys.2011.02.003


Deng, M., et al. 2017. Multi-level method for discovery of regional co-location patterns. International 

Journal of Geographical Information Science, 31 (9), 1846–1870. doi:10.1080/13658816.2017.1334890
Deng, M., et al. 2018. A non-parametric statistical test method to detect significant cross-outliers in 

spatial points. Transactions in GIS, 22 (6), 1462–1483. doi:10.1111/tgis.12481
Didi Media Research Institute and CBNData., 2016. Yangtze River Delta city intelligent travel big data 

report. https://www.cbndata.com/report/354/detail
Ding, W., et al. 2011. A framework for regional association rule mining and scoping in spatial 

datasets. Geoinformatica, 15 (1), 1–28. doi:10.1007/s10707-010-0111-6
Duque, J.C., et al. 2011. A computationally efficient method for delineating irregularly shaped spatial 

clusters. Journal of Geographical Systems, 13 (4), 355–372. doi:10.1007/s10109-010-0137-1
Edelsbrunner, H., Kirkpatrick, D., and Seidel, R., 1983. On the shape of a set of points in the plane. IEEE 

Transactions on Information Theory, 29 (4), 551–559. doi:10.1109/TIT.1983.1056714
Eick, C.F., et al., 2008. Finding regional co-location patterns for sets of continuous variables in spatial 

datasets. In: Proceedings of the 16th ACM SIGSPATIAL international conference on Advances in 

geographic information systems, Irvine, California: ACM.
Getis, A. and Ord, J.K., 1992. The analysis of spatial association by use of distance statistics. 

Geographical Analysis, 24 (3), 189–206. doi:10.1111/j.1538-4632.1992.tb00261.x
He, Z., et al., 2020. Mining spatiotemporal association patterns from complex geographic 

phenomena. International Journal of Geographical Information Science, 34 (6), 1162–1187. 
doi:10.1080/13658816.2019.1566549

Huang, Y., Shekhar, S., and Xiong, H., 2004. Discovering colocation patterns from spatial data sets: 
a general approach. IEEE Transactions on Knowledge and Data Engineering, 16 (12), 1472–1485. 
doi:10.1109/TKDE.2004.90

Jung, I., Kulldorff, M., and Richard, O.J., 2010. A spatial scan statistic for multinomial data. Statistics in 

Medicine, 29 (18), 1910–1918. doi:10.1002/sim.3951
Kulldorff, M., 1997. A spatial scan statistic. Communications in Statistics-Theory and Methods, 26 (6), 

1481–1496. doi:10.1080/03610929708831995
Leibovici, D.G., 2011. Spatially clustered associations in health related geospatial data. Transactions 

in GIS, 15 (3), 347–364. doi:10.1111/j.1467-9671.2011.01252.x
Leibovici, D.G., et al. 2014. Local and global spatio-temporal entropy indices based on 

distance-ratios and co-occurrences distributions. International Journal of Geographical 

Information Science, 28 (5), 1061–1084. doi:10.1080/13658816.2013.871284
Leslie, T.F. and Kronenfeld, B.J., 2011. The colocation quotient: a new measure of spatial association 

between categorical subsets of points. Geographical Analysis, 43 (3), 306–326. doi:10.1111/j.1538- 
4632.2011.00821.x

Leung, Y., Zhang, J., and Xu, Z., 2000. Clustering by scale-space filtering. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 22 (12), 1396–1410. doi:10.1109/34.895974
Li, Y. and Shekhar, S., 2018. Local co-location pattern detection: a summary of results. In: Proceedings 

of the 10th International Conference on Geographic Information Science. Melbourne, Australia: 
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Lu, C.T., et al., 2003. Detecting spatial outliers with multiple attributes. In: Proceedings of the 15th IEEE 

International Conference on Tools with Artificial Intelligence, Sacramento, California, USA: IEEE, 
122–128.

Lu, C.T., et al. 2011. A graph-based approach to detect abnormal spatial points and regions. 
International Journal on Artificial Intelligence Tools, 20 (4), 721–751. doi:10.1142/ 
S0218213011000309

Mohan, P., et al., 2011. A neighborhood graph based approach to regional co-location pattern 
discovery: A summary of results. In: Proceedings of the 19th ACM SIGSPATIAL international con-

ference on advances in geographic information systems, 1–4 November, Chicago, IL, 122–132.
Papadimitriou, S. and Faloutsos, C., 2003. Cross-outlier detection. In: International Symposium on 

Spatial and Temporal Databases, Santorini, Greece: Springer, Berlin, Heidelberg, 199–213.
Pei, T., et al. 2015. Density-based clustering for data containing two types of points. International 

Journal of Geographical Information Science, 29 (2), 175–193. doi:10.1080/13658816.2014.955027

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 997

https://doi.org/10.1080/13658816.2017.1334890
https://doi.org/10.1111/tgis.12481
https://www.cbndata.com/report/354/detail
https://doi.org/10.1007/s10707-010-0111-6
https://doi.org/10.1007/s10109-010-0137-1
https://doi.org/10.1109/TIT.1983.1056714
https://doi.org/10.1111/j.1538-4632.1992.tb00261.x
https://doi.org/10.1080/13658816.2019.1566549
https://doi.org/10.1109/TKDE.2004.90
https://doi.org/10.1002/sim.3951
https://doi.org/10.1080/03610929708831995
https://doi.org/10.1111/j.1467-9671.2011.01252.x
https://doi.org/10.1080/13658816.2013.871284
https://doi.org/10.1111/j.1538-4632.2011.00821.x
https://doi.org/10.1111/j.1538-4632.2011.00821.x
https://doi.org/10.1109/34.895974
https://doi.org/10.1142/S0218213011000309
https://doi.org/10.1142/S0218213011000309
https://doi.org/10.1080/13658816.2014.955027


Prasad, S.K., et al., 2017. Parallel processing over spatial-temporal datasets from geo, bio, climate and 
social science communities: a research roadmap. In: 2017 IEEE International Congress on Big Data. 
Honolulu, HI, USA: IEEE, 232–250.

Qian, F., et al., 2014. Mining regional co-location patterns with kNNG. Journal of Intelligent 

Information Systems, 42 (3), 485–505. doi:10.1007/s10844-013-0280-5
Qian, X. and Ukkusuri, S.V., 2015. Spatial variation of the urban taxi ridership using GPS data. Applied 

Geography, 59, 31–42. doi:10.1016/j.apgeog.2015.02.011
Rintoul, M.D. and Torquato, S., 1997. Reconstruction of the structure of dispersions. Journal of Colloid 

and Interface Science, 186 (2), 467–476. doi:10.1006/jcis.1996.4675
Shekhar, S., et al. 2003. A unified approach to detecting spatial outliers. GeoInformatica, 7 (2), 

139–166. doi:10.1023/A:1023455925009
Shekhar, S. and Huang, Y. 2001. Discovering spatial co-location patterns: a summary of results. In: 

International symposium on spatial and temporal databases, Springer Berlin Heidelberg, 236–256.
Shi, Y., et al., 2016. Adaptive detection of spatial point event outliers using multilevel constrained 

Delaunay triangulation. Computers, Environment & Urban Systems, 59, 164–183. doi:10.1016/j. 
compenvurbsys.2016.06.001

Shi, Y., et al., 2018. A graph-based approach for detecting spatial cross-outliers from two types of 
spatial point events. Computers, Environment and Urban Systems, 72, 88–103. doi:10.1016/j. 
compenvurbsys.2018.05.011

Sung, H. and Oh, J.T., 2011. Transit-oriented development in a high-density city: identifying its 
association with transit ridership in Seoul, Korea. Cities, 28 (1), 70–82. doi:10.1016/j. 
cities.2010.09.004

Tang, J., et al. 2019. Identification and interpretation of spatial–temporal mismatch between taxi 
demand and supply using global positioning system data. Journal of Intelligent Transportation 

Systems, 23 (4), 403–415. doi:10.1080/15472450.2018.1518137
Wang, S., et al., 2013. Regional co-locations of arbitrary shapes. In: International Symposium on 

Spatial and Temporal Databases. Munich, Germany: Springer, Berlin, Heidelberg, 19–37.
Widener, M.J., Crago, N.C., and Aldstadt, J., 2012. Developing a parallel computational implementa-

tion of AMOEBA. International Journal of Geographical Information Science, 26 (9), 1707–1723. 
doi:10.1080/13658816.2011.645477

Wiegand, T., He, F., and Hubbell, S.P., 2013. A systematic comparison of summary characteristics for 
quantifying point patterns in ecology. Ecography, 36 (1), 92–103. doi:10.1111/j.1600- 
0587.2012.07361.x

Wiegand, T. and Moloney, K.A., 2013. Handbook of spatial point-pattern analysis in ecology. Boca 
Raton, Florida: CRC Press.

Witkin, A., 1984. Scale-space filtering: a new approach to multi-scale description. In: Proceedings of 

the 1984 IEEE International Conference on Acoustics, Speech, and Signal Processing. San Diego, CA, 
USA, 150–153.

Wu, H., Fan, H., and Wu, S., 2017. Exploring spatiotemporal patterns of long-distance taxi rides in 
Shanghai. ISPRS International Journal of Geo-Information, 6 (11), 339. doi:10.3390/ijgi6110339

Xie, Y., et al. 2017. Transdisciplinary foundations of geospatial data science. ISPRS International 

Journal of Geo-Information, 6 (12), 395. doi:10.3390/ijgi6120395
Xie, Y., et al., 2018. A TIMBER framework for mining urban tree inventories using remote sensing 

datasets. In: 2018 IEEE International Conference on Data Mining. Singapore: IEEE, 1344–1349.
Xie, Y. and Shekhar, S., 2019. Significant DBSCAN towards statistically robust clustering. In: 

Proceedings of the 16th International Symposium on Spatial and Temporal Databases. Vienna, 
Austria: ACM, 31–40.

Yoo, J.S. and Bow, M., 2012. Mining spatial colocation patterns: a different framework. Data Mining 

and Knowledge Discovery, 24 (1), 159–194. doi:10.1007/s10618-011-0223-0
Yu, W., et al., 2017. Spatial co-location pattern mining of facility points-of-interest improved by 

network neighborhood and distance decay effects. International Journal of Geographical 

Information Science, 31 (2), 280–296. doi:10.1080/13658816.2016.1194423
Zhou, M., et al. 2019. A visualization approach for discovering colocation patterns. International 

Journal of Geographical Information Science, 33 (3), 567–592. doi:10.1080/13658816.2018.1550784

998 J. CAI ET AL.

https://doi.org/10.1007/s10844-013-0280-5
https://doi.org/10.1016/j.apgeog.2015.02.011
https://doi.org/10.1006/jcis.1996.4675
https://doi.org/10.1023/A:1023455925009
https://doi.org/10.1016/j.compenvurbsys.2016.06.001
https://doi.org/10.1016/j.compenvurbsys.2016.06.001
https://doi.org/10.1016/j.compenvurbsys.2018.05.011
https://doi.org/10.1016/j.compenvurbsys.2018.05.011
https://doi.org/10.1016/j.cities.2010.09.004
https://doi.org/10.1016/j.cities.2010.09.004
https://doi.org/10.1080/15472450.2018.1518137
https://doi.org/10.1080/13658816.2011.645477
https://doi.org/10.1111/j.1600-0587.2012.07361.x
https://doi.org/10.1111/j.1600-0587.2012.07361.x
https://doi.org/10.3390/ijgi6110339
https://doi.org/10.3390/ijgi6120395
https://doi.org/10.1007/s10618-011-0223-0
https://doi.org/10.1080/13658816.2016.1194423
https://doi.org/10.1080/13658816.2018.1550784

	Abstract
	1. Introduction
	2. Literature review
	2.1. Regional co-location discovery
	2.2. Spatial cross-outlier detection

	3. A novel strategy for ROASC detection
	4. A distribution-free method
	4.1. Multidirectional optimization for identifying candidate ROASCs
	4.2. Bivariate pattern reconstruction method for constructing the null hypothesis
	4.3. Monte Carlo tests for ROASCs adjusted for the multiple testing problem
	4.4. Implementation and analysis of the distribution-free method

	5. Experimental evaluation and case study
	5.1. Experiments using synthetic data
	5.1.1. Data generation
	5.1.2. Performance metrics
	5.1.3. Comparison and analysis
	5.1.4. Effect of co-location distance

	5.2. Case study: detecting regions of taxi demand-supply mismatch in Shanghai
	5.2.1. Data description
	5.2.2. ROASCs detected using different methods
	5.2.3. ROASCs detected at different times
	5.2.4. ROASCs detected using different co-location distances


	6. Conclusions and future work
	Acknowledgments
	Disclosure statement
	Funding
	Notes on contributors
	ORCID
	Data and codes availability statement
	References

