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Abstract

Bacteria are essential parts of ecosystems and are the most diverse organisms on the
planet. Yet, we still do not know which habitats support the highest diversity of bacteria
across multiple scales. We analyzed alpha-, beta-, and gamma-diversity of bacterial assem-
blages using 11,680 samples compiled by the Earth Microbiome Project. We found that
soils contained the highest bacterial richness within a single sample (alpha-diversity), but
sediment assemblages displayed the highest gamma-diversity. Sediment, biofilms/mats,
and inland water exhibited the most variation in community compaosition among geographic
locations (beta-diversity). Within soils, agricultural lands, hot deserts, grasslands, and
shrublands contained the highest richness, while forests, cold deserts, and tundra biomes
consistently harbored fewer bacterial species. Surprisingly, agricultural soils encompassed
similar levels of beta-diversity as other soil biomes. These patterns were robust to the alpha-
and beta- diversity metrics used and the taxonomic binning approach. Overall, the results
support the idea that spatial environmental heterogeneity is an important driver of bacterial
diversity.

Introduction

Bacteria are the most diverse organisms on the planet [1]. Bacterial richness and composition
influences ecosystem functioning, whether in host-associated communities, soils, or oceans
[2-7]. Nevertheless, we have yet to answer a number of basic questions about bacterial diver-
sity, including “Which habitats contain the highest diversity of bacteria?” More broadly, evalu-
ating geographic patterns in biodiversity across habitats and spatial scales can illuminate the
processes influencing and consequences of biodiversity [8-12].

While many studies document spatial patterns of bacterial diversity, most are restricted to a
particular geographic region or habitat, such as soil, sediment, or water [13-15]. To under-
stand global trends, however, studies that analyze diversity across habitats and geographic
regions are needed. Combining data from independent projects is oftentimes infeasible
because community variation can be caused simply by differences in methodology. The Earth
Microbiome Project (EMP) comprises 27,751 samples from 97 studies from a wide range of
habitats and geographic regions that are processed in the exact same way [16]. Although there
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are limitations to PCR-based sequencing surveys [17], this dataset is unique for its size in
using standardize methods for all samples. Thus, this dataset provides an opportunity for a rig-
orous comparison of bacterial diversity across many parts of the globe.

A recent overview from the EMP noted, as has previously been observed, that communities
of free-living bacteria are more diverse than host-associated bacteria [18-20]. For example, soil
and sediment samples have higher alpha-diversity than animal gut or skin microbiomes. We
expand on this initial alpha-diversity analysis by additionally evaluating beta- and gamma-
diversity across spatial scales while mitigating for unevenly spaced samples (Fig 1). We also
take the opportunity to use the large size of the EMP dataset to test whether different diversity
metrics and taxa definitions influence our understanding of microbial diversity patterns.

We specifically ask: which habitats support the highest levels of bacterial diversity? We con-
sider three interrelated aspects of biodiversity: alpha-, beta-, and gamma-diversity. We mea-
sure alpha-diversity as the observed richness (number of taxa) or evenness (the relative
abundances of those taxa) of an average sample within a habitat type. We quantify beta-diver-
sity as the variability in community composition (the identity of taxa observed) among sam-
ples within a habitat [21]. Finally, we calculate gamma-diversity as the total observed richness
of all samples within in a habitat.

We test several predictions about relative, not absolute, diversity patterns because, even in
this large dataset, bacterial diversity remains undersampled. First, we predict that sediment
and soil support the highest alpha-diversity within a single sample. These habitats are known
to have relatively high bacterial diversity, although their relative rankings have not yet reached
a consensus [16,18-20]. Second, we expect that soil, sediment, inland water, and biofilm/mat
habitats will exhibit high beta-diversity. These habitats are spatially separated with less dis-
persal or mixing than air or marine water. Finally, we predict that soils and sediments will
exhibit high gamma-diversity as they are expected to have both high alpha- and beta-diversity.

Within the soil habitat, we hypothesize that soils from biomes higher in plant diversity and
productivity (e.g., forests and grasslands) support higher alpha-diversity than soils from biomes
with low diversity and productivity (e.g., tundra and deserts) [22-24]. Of course, these biomes do
not directly influence diversity, but they are defined based on abiotic factors [25], such as temper-
ature or precipitation, that do influence diversity. Further, we expect that agricultural soils will
exhibit lower beta-diversity than other biomes as common practices (pesticides, tilling, and fertil-
izer use) and the low diversity of crop plants influences community composition [26,27]. We also
compare the relationship between diversity and biomes to those between diversity, and pH or
temperature to assess whether plant diversity or abiotic conditions more strongly influence bacte-
rial diversity. We expect bacterial richness to peak at neutral pH and moderate temperatures
[14,28,29], and abiotic factors to be a stronger influence on diversity than plant biomes. Overall,
the aim of this study was to compare bacterial diversity trends across habitats. We show that the
most diverse habitat depends on the type of diversity (alpha-, beta-, or gamma-diversity).

Materials and methods

Bacterial 16S rDNA (V4 region) sequence data and associated metadata (e.g., sample location,
sample type, date of sampling) were downloaded from the Earth Microbiome Project (EMP)
on September 1, 2016. Sample processing, sequencing, and core amplicon data analysis were
performed by the Earth Microbiome Project (www.earthmicrobiome.org), and all amplicon
sequence data and metadata have been made public through the data portal (giita.microbio.
me/emp). Data available from: https://doi.org/10.1038/nature24621 [16]. We used the EMP
closed-reference (Greengenes 13.8) OTU dataset classified at 97% sequence similarity to
reduce computational time (instead of the open-reference dataset). The dataset contains
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Fig 1. Sample and geocluster locations. Map showing locations of each of the EMP samples used in this study (black dots) and the geoclustered samples
for each habitat (colored dots). Geoclusters were created from samples located within 110 km of each other.

https://doi.org/10.1371/journal.pone.0233872.9001

27,751 samples, with a median depth of 54,091 sequences per sample. We excluded archaea
from the analysis because, relative to bacteria, they make up a small portion of any given com-
munity (median = 0.018% of sequences).

Habitat designations

We used the EMP Ontogeny metadata to classify the habitat and, for soil, biome of each sam-
ple based on the EMP metadata (Fig 2). When the existing metadata were unclear, we used the
latitude and longitude coordinates to assess the environmental context. Samples with insuffi-
cient data about their location or habitat were removed from the analysis. Host-associated
samples were also removed. Further, we only retained samples that could be classified into one
of the following habitats: soil, sediment, marine water, inland water (e.g., rivers and lakes), air,
and biofilms/mats. These habitat types were chosen because they represent a wide range of
environmental conditions and are well sampled within the EMP dataset. Within the soil habi-
tat, we further classified samples into forest, hot desert, cold desert, grassland, shrubland, tun-
dra, and agricultural soil. We also classified inland water and sediment samples as saline and
non-saline. See supplemental materials for descriptions of sample locations (S1 Appendix).
After removing samples with less than 15,000 sequences (rarefaction depth in this study),
11,680 free-living (non-host system) samples remained.

Alpha-diversity analysis. To account for differences in sequencing depth, the samples
were rarefied to 15,000 sequences with 1,000 resamplings in QIIME [30]. This rarefaction
depth provided a high sequence count per sample while minimizing sample loss to 4.74% of
samples. All samples with less than 15,000 sequences were removed leaving 11,680 free-living
(non-host system) samples. For each resampling, we calculated 24 alpha-diversity metrics on
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Fig 2. Alpha- and beta-diversity patterns. Alpha- and beta-diversity per habitat for all geoclusters used in study (A, C, and E) and per biome for soil
geoclusters (B, D, and F). (A and B) Boxplot of alpha-diversity (OTU richness). (C and D) Mean beta-diversity (distance from centroid) + standard error.
For all bar and boxplots, letters above indicate significant differences among groups (Tukey test) where groups that share a letter are not significantly
different from each other. (E and F) NMDS of geoclusters.

https:/doi.org/10.1371/journal.pone.0233872.9002

the rarified OTU table in QIIME (Fig 3A). These metrics characterized the community in five
general ways: observed richness, estimated richness, evenness/dominance, phylogenetic diver-
sity, and coverage of sampling. We used all 24 metrics throughout the alpha-diversity analysis
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Fig 3. Comparison of diversity metrics. (A) Heatmap shows degree of correlation (r* from linear regression with all EMP samples used
in analysis). Dendrogram shows relatedness of metrics based on their correlation strength. Note that the metrics are clustered into two
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cluster on dendrogram). Simpson’s evenness, Heip’s evenness, and ENS;. fall outside of those two clusters. (B) Dot plot showing
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air geoclusters, and black line is a linear regression for all geoclusters except for air.

https://doi.org/10.1371/journal.pone.0233872.9003

to ensure that our final conclusions were not dependent on the type of metric. We calculated
the median value of each metric across the 1,000 replicates.
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To minimize the effect of unevenly spaced samples, we averaged the alpha-diversity of the
samples within a single geocluster. Many of the samples are highly clumped such that some
geographic regions contribute unequally to the habitat’s diversity. Geoclusters (n = 172) were
formed by clustering samples of the same habitat type located within 110 km of each other
(distance of 1° latitude at the equator) using hclust() and cutree() from package ‘stats’ and
rdist.earth() from package ‘fields’ in R [31,32]. While a smaller clustering distance would have
yielded a higher geocluster sample size, this conservative distance allowed us to be more confi-
dent that our results reflected ecological processes, rather than sampling locations. We calcu-
lated the median of each diversity metric for the samples within each geocluster of the same
habitat type. The averaged alpha-diversities were then cube root transformed to achieve nor-
mality and homoscedasticity. Finally, we tested for significant differences in alpha-diversity
among habitats by performing a one-way ANOVA and Tukey’s HSD in R.

We tested whether the alpha-diversity results depended on the diversity metric by running
a correlation with every pairwise combination of diversity metrics using all 11,680 samples.
Likewise, we tested whether our results depended on the resolution of OTU clustering by com-
paring the 97% similarity OTU table with the single-nucleotide resolution ‘sub-OTUs’ dataset,
Deblur, produced by the EMP. We rarefied the Deblur dataset to 15,000 sequences per samples
(1,000 times), calculated Exact Sequence Variance (ESV) richness per sample, and calculated
the mean richness across the 1,000 replicates. We then ran a correlation between the OTU
richness and ESV richness for every sample present in both datasets (n = 11,137).

To further explore what factors might be driving alpha-diversity, we compared bacterial
richness with pH and temperature at each sample site. We chose pH and temperature because
these were the most widely included in the EMP dataset. For soil samples, however, the tem-
perature data were often missing from the EMP dataset. Thus, for the analysis with just soil
samples, we used temperature data from WorldClim. Metadata (pH and temperature) from
the EMP were taken at the site at the time of sample collection. Data from WorldClim, a pub-
licly-available dataset, included mean annual temperature averaged from 1970-2000 with spa-
tial resolution of 10 minutes. Data is available from WorldClim Version2: http://doi.org/10.
1002/joc.5086 [33]. We assigned external temperature data to soil samples using latitude and
longitude with extract() from package ‘raster’ in R [34]. Temperature and pH were correlated
with OTU richness using a second-degree polynomial in R. We tested whether temperature
and pH differed among habitats and biomes using an ANOVA in R.

Beta-diversity analysis. To reduce computation time, we used a subset (150 rarefied
tables) of the 1000 rarefied OTU tables generated during the alpha-diversity analysis to analyze
beta-diversity. The OTU tables were first square root transformed to increase weight given to
the rare taxa [35] that make up the majority of microbial communities [36]. For each of the
150 rarefied, square root transformed OTU tables, we calculated the median abundance for
each taxon across all the samples within a single geocluster. We then calculated a Bray-Curtis
dissimilarity matrix for each of the 150 OTU-by-geocluster tables in QIIME. Finally, we calcu-
lated the median of the 150 dissimilarity matrices to yield one median Bray-Curtis dissimilarity
matrix.

To visualize compositional differences among habitats, we used NMDS in PRIMERS® [37].
We also tested community composition differences among habitats using PERMANOVA in
PERMANOVA+ [38]. Because we averaged OTU abundances for all samples of the same habi-
tat type located within the same geographic area (geocluster), beta-diversity provides an
approximation of the amount of community variation from location to location within one
habitat (as opposed to variation from sample to sample within one location).

To compare beta-diversity across habitats, we analyzed the variance within each habitat
using the function PERMDISP in PERMANOVA+. To determine if unequal sampling among
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habitats biased these results, we re-calculated the Bray-Curtis values based on a selection of
only 20 geoclusters for each habitat from a rarified OTU-by-geocluster table. We chose 20
geoclusters because that depth included five of the six habitats (excluding air) but avoided the
biases expected with sample sizes less than ten [38]. We repeated these subsamplings 100 times
and tested for differences in beta-diversity among habitats using betadisper(), the PERMDISP
test implemented in the R package ‘vegan’ [39]. We compared the relative rankings of these
rarefied beta-diversity results to the unrarefied results to determine if rarefaction changed the
relationships of variance among habitat groups. Specifically, we considered the rarefied results
to match the unrarefied results if 95-100 subsampled tests were significant and showed the
same beta-diversity rankings (based on mean distance to centroid) as the unrarefied test.

We tested whether the beta-diversity results depended on the diversity metric by running a
correlation with every pairwise combination of nine diversity metrics. For each of the 150
OTU-by-geocluster tables, we calculated nine beta-diversity metrics using vegdist() from pack-
age ‘vegan’ in R [39]. We then took the mean matrix (of the 150 matrices) for each diversity
metric. We performed a Spearman’s mantel test for every pairwise comparison of the nine
averaged beta-diversity matrices using mantel() from package ‘stats’ [31]. To compare Raup-
Crick to the other beta-diversity metrics, we calculated the dissimilarity within, but not
among, habitats. Raup-Crick is not an appropriate metric when communities do not share the
same species pool [40]. To calculate Raup-Crick, we took the mean of the matrices computed
with raupcrick(. . ., chase = TRUE) and raupcrick(. . ., chase = FALSE) from package ‘vegan’ in
R [39] to follow the method recommended by Chase et al. [40]. We calculated one Raup-Crick
matrix for each habitat for each of the 150 OTU-by-geocluster tables, took the mean for each
habitat across the 150 matrices, and then calculated the mean and SE distance from centroid
in PRIMERS [37]. We used the mean and SE to compare the trends in dissimilarity to those
generated with the Bray-Curtis metric.

Gamma-diversity analysis. To assess gamma-diversity by habitat, we plotted an OTU
accumulation curve for each habitat with specaccum() from package “vegan’ in R [39] using
the 150 OTU-by-geocluster tables. The OTU accumulation curve displays the numbers of
geoclusters sampled on the x-axis and observed OTU richness on the y-axis. This plot allowed
us to compare cumulative diversity levels across multiple samples distributed across the world.
We examined whether habitats likely exhibit different gamma-diversity levels by calculating
error bars equal to 1.96 times the standard deviation.

Results
Alpha-diversity

Out of the six habitats compared, soils contained the highest observed richness (i.e., number of
observed taxa rarefied at 15,000 sequences) for a single sample, with a median of 1,842 taxa
(97% OTUs) per sample given this depth of sequencing (one-way ANOVA: F = 39.13,

P < 0.001, ” = 0.541; Fig 2A). Sediments were the second most diverse habitat with an average
of 1,137 taxa. Marine water, air, inland water, and biofilms/mats had a significantly lower rich-
ness (averaging 571, 500, 478, and 342 taxa, respectively) than soils and sediments (P < 0.001;
Fig 2A) but could not be distinguished from one another by richness.

Because salinity influences bacterial community composition [18], we further tested
whether taxon richness varied between non-saline and saline habitats. We found that salinity
had no impact on alpha-diversity for sediments (one-way ANOVA: F = 0.433, P = 0.516; S1
Fig) or inland water (F = 0.093, P = 0.763; S1 Fig).

Within the soil habitat, we further compared alpha-diversity among seven biomes (agricul-
tural, grassland, shrubland, forest, hot desert, cold desert, and tundra soil). Within soil
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samples, richness differed significantly among biomes. Agricultural soils supported the highest
richness in a sample, along with hot desert, grassland, and shrubland biomes. Forest soils were
less diverse than agricultural soil, and tundra and cold deserts supported the lowest richness
(one-way ANOVA: F = 42.62, P < 0.001, r* = 0.642; Fig 2B). Notably, the cold desert biome
was only represented by two geoclusters (averaging across 117 samples); thus, more data are
needed to assess that particular biome’s diversity.

The above results were robust to the alpha-diversity metric used. On a sample by sample
basis, 24 alpha-diversity indices, including observed richness, were all correlated with each
other (r* = 0.09-1.00, P < 0.0001) with a mean r* of 0.63 (Fig 3A). The metrics grouped into
two main clusters. One cluster encompassed the richness/coverage metrics such as OTU rich-
ness, Faith’s Phylogenetic Diversity, and Chaol (r* = 0.86-1.00, mean r* = 0.97). The other
cluster included the evenness/dominance metrics such as Simpson’s and McIntosh dominance
index (r? = 0.31-1.00, mean r* = 0.85). Further, each metric ranked the habitats from highest
to lowest alpha-diversity in the same way, with the exception of air. Air communities were
more even than other habitats, given their relative richness level (Fig 3B). Excluding air sam-
ples, OTU richness (ANCOVA: F = 54.68, P < 0.0001, r* = 0.229), but not habitat (F = 2.14,

P =0.0775) was a predictor of evenness. When air samples were included, both OTU richness
(F =57.09, P < 0.0001, r* = 0.173) and habitat (F = 7.0989, P < 0.0001, r* = 0.107) were signifi-
cant predictors of evenness.

The alpha-diversity patterns were also robust to the taxonomic binning method (Fig 4). We
compared the 97% OTU and Exact Sequence Variant (ESV) Deblur datasets provided by the
EMP. Not only were OTU richness and ESV richness strongly correlated (r* = 0. 933,

P < 0.0001), but, on a sample by sample basis, they were also nearly identical (slope = 0.953,
P < 0.0001). However, the relationship between OTU richness and ESV richness varied
among habitats (ANOVA: F = 786.5, P < 0.0001, r*=0.331). In particular, non-saline sedi-
ments and inland water demonstrated a higher ESV:OTU richness ratio than other habitats
(Fig 4).

Taxon richness displayed a weak hump-shaped relationship with pH and a peak in diversity
at a neutral pH (non-linear regression: P < 0.0001, r* = 0.047; $2A Fig). In contrast, taxon
richness only weakly correlated with temperature, and this relationship was driven by low-
diversity biofilm/mat samples sampled from high temperatures (P < 0.0001, r* = 0.036; S2C
Fig). Overall, the bacterial alpha-diversity patterns across all habitats were not obviously
related to pH or temperature. Most of the samples were, on average, at a neutral pH, with the
soil samples more acidic and the biofilm/mat samples more basic (S2B Fig). Despite this, tem-
perature (ANOVA: F = 272.3, P < 0.0001, r* = 0.198) and pH (F = 245.2, P < 0.0001,r* =
0.215) differed significantly among habitats (52D Fig).

Similar to the pattern observed across all habitats, richness within just the soil samples also
peaked at a neutral pH (non-linear regression: P = 0.001, r* = 0.121; S3A Fig). In contrast, rich-
ness in soils also peaked at a temperature around 10°C (P < 0.0001, r* = 0.288; S3C Fig). Both
temperature (ANOVA: F = 640.2, P < 0.0001, r* = 0.153) and pH (F = 199.8, P < 0.0001, r* =
0.594) differed among soil samples by biome (S3B and S3D Fig). Soils from both hot and cold
deserts tended to be basic while agricultural fields, forests, and tundra were acidic. Tundra and
cold deserts were the coldest biomes, and shrubland, agriculture, and hot deserts were among
the hottest biomes.

Beta-diversity

Sediment, biofilm/mat, and inland water habitats displayed the highest beta-diversity among
geographic locations or geoclusters (not within a single sample), whereas soil, air, and marine
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water exhibited 17% lower beta-diversity (PERMDISP: F = 10.7, P = 0.001; Fig 2C). To test
that these patterns were not influenced by unequal sampling (number of geoclusters) of the
habitats, we subsampled the habitats (to 20 geoclusters per habitat) and retested the patterns.
All 100 subsamplings produced the same beta-diversity rankings, and all models were signifi-
cant, indicating that unequal sampling did not influence within-habitat beta-diversity. Within
the soil habitat, beta-diversity did not differ by biome (P = 0.526; Fig 2D).

Overall, bacterial community composition differed significantly by habitat (PERMANOVA:
P = 0.001, Pseudo-F = 9.8601, r* = 0.210; Fig 2E) and by biome for soils (P = 0.001, Pseudo-
F=4.221, r’ = 0.227; Fig 2F). Because salinity influenced the community composition for both
sediments (P = 0.002, Pseudo-F = 2.0168, r* = 0.075) and inland water (P = 0.02, Pseudo-
F = 1.7702, r* = 0.085), we tested whether salinity likewise influenced beta-diversity within
these habitats. Beta-diversity did not differ between saline and non-saline samples within sedi-
ments (PERMDISP: P = 0.21, F = 2.4404) or inland water (P = 0.849, F = 0.27406; 54 Fig).

The above results did not depend on the beta-diversity metric used. On a sample by sample
basis, nine beta-diversity indices, including Bray-Curtis, were correlated with each other
(r =0.435-1.00, P = 0.001, mean r = 0.88; S5A Fig). Raup-Crick has been suggested as a more
appropriate metric when comparing groups with different alpha-diversity levels [40]. Because
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Raup-Crick assumes that all communities are part of the same regional species pool, we calcu-
lated the mean and standard error within each habitat (excluding between habitat compari-
sons) and compared the trend to that generated by the Bray-Curtis metric. Both Bray-Curtis
and Raup-Crick metrics showed the same trend of beta-diversity among habitats (S5B Fig).

Gamma-diversity

Considering the accumulation of taxon richness across geoclusters, sediments exhibited the
highest gamma-diversity of any habitat, followed by soils and inland water (Fig 5). The sedi-
ment rarefaction curve showed little sign of flattening out, indicating that most taxa are yet to
be sampled. In contrast, the soil curve noticeably leveled off, even at a similar level of sampling.
The gamma-diversity of marine water, biofilms/mats, and air were not statistically distinguish-
able from one another but, as a group, exhibited lower gamma-diversity than inland water,
soils, and sediments.

Discussion

Here, we tested which habitat contains the most bacterial taxa within a single sample (alpha-
diversity), which exhibits the most variation among samples (beta-diversity), and which con-
tains the most taxa across all samples (gamma-diversity). We show that a single sample of soil
on average contained higher bacterial alpha-diversity than any other habitat, including sedi-
ment (Fig 2A). However, sediment had higher gamma-diversity, with much of its diversity yet
to be sampled (Fig 5). Within soils, we found that agricultural soils had among the highest
richness and exhibited just as much compositional variation (beta-diversity) as other biomes.

Although both sediments and soil were previously known to be highly diverse microbial
habitats, previous studies demonstrated conflicting results about their relative ranking [16,18-
20]. Using 11,680 samples and minimizing geographic biases, this analysis suggests that soil
contains higher alpha-diversity than sediments. In contrast, marine water, inland water, air,
and biofilms/mats contain the lowest alpha-diversity (Fig 2A).

Within-habitat heterogeneity is a known driver of plant and animal diversity [41,42] and
has been correlated with microbial communities as well [43,44]. Here, we show that the alpha-
diversity patterns are consistent with the idea that habitat heterogeneity may drive bacterial
diversity at a single sample. The highly mixed water and air environments harbor lower diver-
sity, consistent with previous smaller-scale studies [19,45,46]. While both sediments and soil
are not as well mixed, sediments contain higher water content than soils. Water content
increases connectivity and thus reduces environmental heterogeneity and promotes dispersal,
both of which can result in lower diversity [9,47-49]. At the same time, biofilms and mats,
despite being spatially structured, also displayed low alpha-diversity [50]. However, the bio-
film/mat samples from the EMP dataset encompassed samples with the highest pH and tem-
perature (S2 Fig). We therefore speculate that these abiotic extremes contribute to low alpha-
diversity [51-53]. In fact, diversity in many habitats is lowest at extreme temperatures
[14,28,29,51-55]. Yet ultimately, little is known about the environmental conditions, and their
heterogeneity, at the spatial scale that matters for microorganisms [56]. To test the importance
of within-sample heterogeneity on microbial diversity directly, finer-scale data are needed.

Our analysis is the first to quantify bacterial beta-diversity among habitats across many
parts of the globe. While soils contained the highest alpha-diversity within a single sample, sed-
iments displayed higher beta-diversity among geoclustered samples within a habitat (Fig 2C).
Sediment beta-diversity was also similar to that of inland water and biofilms/mats. Additional
environmental data associated with the individual samples would be needed to distinguish
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Fig 5. Geocluster accumulation curves. Geocluster accumulation curves (gamma-diversity) for mean OTU richness from a random sampling of
geoclusters (permutations = 999) with 95% confidence intervals drawn for each habitat.

https://doi.org/10.1371/journal.pone.0233872.g005

whether these beta-diversity patterns might be driven by dispersal limitation [9,57] or spatial
variation in environmental conditions [6,45].

Given their high alpha- and beta-diversity, it is not surprising that sediments are also esti-
mated to contain the highest gamma-diversity (Fig 5). While extracellular DNA (eDNA) may
be particularly prevalent in ocean sediments [58], evidence thus far suggests that eDNA has
minimal effect on sediment diversity estimates from sequencing surveys [59]. The taxa accu-
mulation curves also suggest that, while we may have observed most bacterial taxa in soil (at
least from highly sampled continents), there is much more diversity to discover in sediments.
Similarly, other than soil, the accumulation curves suggest that air, water habitats, and bio-
films/mats remain undersampled as well. Of course, the number and localities of samples
available will influence the diversity estimates. Thus, a limitation to these conclusions is that
the samples are highly concentrated in North America and Europe (Fig 1), and continued sam-
pling is needed to test the robustness of these diversity patterns.

Because plant diversity and productivity are shown to impact microbial communities
[23,24], we further characterized alpha- and beta-diversity trends among biomes from which
the soil samples were collected. Agricultural soils contained among the highest alpha-diversity,
as previously noted in smaller scale studies [27,60]. Indeed, some agricultural practices, such
as application of manure, are known to increase bacterial diversity [61,62]. Even more notable,
however, is that agricultural soils encompassed similar levels of beta-diversity to those of other
biomes. While some agricultural practices have been shown to homogenize communities
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within a single field [60], not all practices have a homogenizing effect [63]. Further, the diver-
sity of agricultural practices around the world [61,64] seems to select for as much variation in
bacterial composition (beta-diversity) as different types forests or deserts.

Contrary to our hypothesis, biomes with higher plant diversity or productivity, such as for-
est or shrubland soils, were no more diverse within a sample than other biomes (Fig 2B).
These results support previous findings that grasslands contain more bacterial diversity than
forests [65] and, overall, plant and soil diversity are uncoupled [66]. We therefore propose that
abiotic factors may be more important for soil bacterial alpha-diversity than plant biomes.
Biomes differed significantly in pH and temperature, and soil alpha-diversity was strongly cor-
related with both factors (S3 Fig). These results are consistent with previous studies [14,28,29]
that find bacterial richness in soils peaks at a neutral pH and at mid-temperatures (around
10°C). Of course, other unmeasured environmental factors and/or ecological interactions are
likely influencing soil diversity.

Finally, these diversity patterns appear to be robust to two key methodological issues. First,
diversity trends did not depend on the particular alpha- or beta-diversity metrics used (Figs
3A and S5A). Air, as the only exception, was more even than expected, given its richness (Fig
3B). We speculate that the movement of air contributes to its evenness as air likely picks up a
sampling of bacteria from many different habitats [67,68]. Second, the results were robust to
the degree of clustering of the amplicon sequences (Fig 4). Both the 97% OTU and the ESV
datasets yielded the same alpha-diversity trends, as previously noted in a smaller scale study
[69]. Most of those outliers in this analysis came from non-saline sediment or inland water
samples, which had higher ESV richness than 97% OTU richness. While this pattern could
suggest higher finer-scale diversity within these habitats, we caution that these samples origi-
nated from only four geoclusters. Overall, while ESVs can be useful for resolving finer diversity
among specific taxonomic groups [70], broad-scale alpha-diversity patterns do not seem to be
altered by these particular operational definitions.

With the largest dataset created with consistent methodology and a geographically wide-
spread sampling effort, we show that soils support the highest diversity within a single sample
(alpha-diversity) and that sediments are more variable in composition among locations (beta-
diversity) and likely support the most bacterial taxa at a larger spatial scale (gamma-diversity).
Within soils, we find biome type impacts soil alpha-diversity but not beta-diversity. Many of
these results appear consistent with the idea that spatial heterogeneity and dispersal limitation
promote bacterial diversity. These baseline patterns set the stage for new research on the mech-
anisms driving the generation and maintenance of bacterial diversity.

Supporting information

81 Fig. The influence of salinity on alpha-diversity. Taxon richness did not differ between

saline and non-saline samples from inland water or sediment habitats.
(TIF)

$2 Fig. The influence of abiotic factors on taxon richness. (A) pH significantly impacts
taxon richness (P < 0.0001). Each point represents an individual EMP sample (not a geoclus-
ter) and is colored by habitat. (B) pH differs among habitats (ANOVA, p < 0.0001). Out of all
the EMP environmental samples used in this study, 30.7% had associated pH metadata: 0% of
air samples, 60.0% of inland water samples, 19.6% of sediment samples, 6.5% of marine water
samples, 5.1% of biofilm/mat samples, and 23.4% of soil samples. (C) Temperature signifi-
cantly influences taxon richness (P < 0.0001). Each point represents an individual EMP sam-
ple (not a geocluster) and is colored by habitat. (D) Temperature recorded when samples were
collected (EMP metadata) differs among habitats (ANOVA, p < 0.0001). Out of all the EMP
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environmental samples used in this study, 47.3% had associated temperature metadata: 9.0%
of air samples, 77.0% of inland water samples, 17.5% of sediment samples, 48.8% of marine
water samples, 81.0% of biofilm/mat samples, and 0.6% of soil samples.

(TIF)

83 Fig. Abiotic factors influence taxon richness in soil. (A) pH significantly impacts taxon
richness (P = 0.001). Each point represents an individual EMP soil sample (not a geocluster)
and is colored by biome. (B) pH differs among biomes (ANOVA, p < 0.0001). (C) Mean
annual temperature significantly impacts taxon richness (P < 0.0001). Each point represents
an individual EMP soil sample (not a geocluster) and is colored by biome. Temperature data
was retrieved from WorldClim, a publicly available data source. (D) Temperature differs
among biomes (ANOVA, p < 0.0001).

(TIF)

$4 Fig. The influence of salinity on beta-diversity. The level of beta-diversity within sedi-
ments and inland water is not driven by the combination of saline and non-saline samples
within a single habitat. (A) Mean beta-diversity (distance from centroid) + standard error of
the six habitats, ranking habitats from highest to lowest beta-diversity. (B) Mean beta-
diversity + standard error of the six habitats with sediment and inland water habitats split into
saline and non-saline samples.

(TIF)

S5 Fig. Comparison of beta-diversity metrics. Beta-diversity patterns are not dependent on
the beta-diversity metric used. (A) Heatmap shows degree of correlation (r from a Spearman’s
mantel test with all EMP samples used in analysis). Dendrogram shows relatedness of metrics
based on their correlation strength. (B) Mean Raup-Crick dissimilarity (distance from cen-
troid) + standard error. The patterns shown by Raup-Crick analysis match those demonstrated
by Bray-Curtis metric.

(TIE)

$1 Appendix. Sample locations.
(DOCX)
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