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ABSTRACT

Crystal structure prediction is now playing an increasingly important role in discovery of new materi-
als. Global optimization methods such as genetic algorithms (GA) and particle swarm optimization
(PSO) have been combined with first principle free energy calculations to predict crystal structures
given composition or only a chemical system. While these approaches can exploit certain crystal
patterns such as symmetry and periodicity in their search process, they usually do not exploit the
large amount of implicit rules and constraints of atom configurations embodied in the large number
of known crystal structures. They currently can only handle crystal structure prediction of relatively
small systems. Inspired by the knowledge-rich protein structure prediction approach, herein we
explore whether known geometric constraints such as the atomic contact map of a target crystal
material can help predict its structure given its space group information. We propose a global opti-
mization based algorithm, CMCrystal, for crystal structure reconstruction based on atomic contact
maps. Based on extensive experiments using six global optimization algorithms, we show that it is
viable to reconstruct the crystal structure given the atomic contact map for some crystal materials
but more constraints are needed for other target materials to achieve successful reconstruction. This
implies that atomic interaction information learned from existing materials can be used to improve
crystal structure prediction.

Keywords crystal structure prediction - machine learning - contact map - global optimization - implicit rules

1 Introduction

Computational discovery of novel functional materials has big potential in transforming a variety of industries such as
cell phone batteries, electric vehicles, quantum computing hardware, catalysts|1l]. Compared to traditional Edisonian or
trial-and-error approaches which usually strongly depends on the expertise of the scientists, computational materials
discovery has the advantage of efficient search in the vast chemical design space. Among these methods, inverse
design[2} 3], generative machine learning models[4} 5} 3,16} [7], and crystal structure predictions [8, 9, [1,[10] are among
the most promising approaches for new materials discovery.
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In a standard crystal structure prediction (CSP) problem[11], one has to find a crystal structure with the lowest free
energy for a given chemical composition (or a chemical system such as Mg-Mn-O with variable composition) at given
pressure—temperature conditions [[Il]. With the crystal structure of a chemical substance, many physichochemical
properties can be predicted reliably and routinely using first-principle calculation or machine learning models [12]. It
is assumed that lower free energy corresponds to the more stable arrangement of atoms. The CSP approach for new
materials discovery is especially appealing due to the efficient sampling algorithm that generates diverse chemically
valid candidate compositions with low free energies[4]. CSP algorithms based on evolutionary algorithms (such as
USPEX]13]]) and particle swarm optimization (such as CALYPSO[14]) have led to a series of new materials discoveries
[15} 1L [16]. However, these global free energy search based algorithms have a major obstacle that limits their successes
to relative simple crystals [[I, [17] (mostly binary materials with less than 20 atoms in the unit cell[1,[16]) due to their
dependence on the costly DFT calculations of free energies for sampled structures. With limited DFT calculations
budget, how to efficiently sample the atom configurations becomes a key issue [[15} [11]]. To improve the sampling
efficiency, a variety of strategies have been proposed such as exploiting symmetry[18] and pseudosymmetry[11],
smart variation operators, clustering, machine-learning interatomic potentials with active learning [19]]. However, the
scalability of these approaches remains an unsolved issue.

Recently, generative machine learning models have been emerging as a novel approach to generate new materials
including generative adversarial networks (GAN) approach for both chemical composition discovery [20] and crystal
structure generation for a given chemical system [21]] and autoencoder based models for crystal structure generation[6\ 7].
Compared to global free energy approaches in CSP, these methods can take advantage of the implicit composition,
atomic configuration rules and constraints embodied in the large number of known crystal structures which can be
learned by the deep neural network models. Using neural networks to implicitly learn such rules may lead to more
efficient sampling of the search space [20]. Such machine learning and data driven approaches have been applied to
CSP with successes [22, 23]].

Herein we explore a new knowledge-rich approach for crystal structure prediction, which is inspired by the recent success
of deep learning approaches for protein structure prediction (PSP)[24] led by the famous AlphaFold [25] algorithm
from Google DeepMind. In the PSP problem, one has to predict the 3D tertiary structure of a protein given only its
amino acid sequence. The latest approach uses deep learning to predict the contact maps[26]] or distance matrix[25],
which can then be used to reconstruct the full three-dimensional (3D) protein structure with high accuracy[27]]. In this
paper, we are exploring how we can use global optimization algorithms to reconstruct the atomic configuration for
a given composition based on its space group and the atomic contact map. The idea is that we can exploit the rich
atom interaction distribution or other geometric patterns or motifs [28]] existing in the large number of known crystal
structures to predict the atomic contact map. The space group of crystal structures can also be predicted using a variety
of prediction algorithms [29, 30] or be inferred from domain knowledge [31]. In [30]], the top-3 accuracy for space
group prediction ranges from 81% to 100% given its Bravais lattice, which can also be predicted using composition
features with up to 84% accuracy. With the predicted contact map and the space group, we investigate whether global
optimization algorithms such as GAs and CMA-ES methods can be used for predicting its crystal structure. The
comparison of the main differences of conventional CSP and knowledge rich CSP is shown in FigurdT]

Our contributions can be summarized as follows:

e We propose a new approach for crystal structure prediction using the atomic contact map as a knowledge-rich
methodology for solving CSP problems.

e We define a series of benchmark test cases for testing global optimization algorithms to reconstruct the atomic
configurations from atomic contact maps

e we conduct extensive evaluations of how different global optimization algorithms perform in contact map
based crystal structure prediction.
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(a) Conventional free energy minimization based CSP (b) Knowledge rich CSP

Figure 1: Comparison of traditional CSP and knowledge rich CSP. Conventional CSP is limited by its dependence
on expensive DFT calculations of free energies while knowledge rich CSP exploits chemical rules and geometric or
physical constraints from known crystals to guide the structure search.

2 Materials and Methods

2.1 Problem formulation: knowledge-rich contact map based CSP

Title fel2 ol2

Lattice type P

Space group name P-62c
Space group number 190
Setting number 1

Lattice parameters
a b c alpha beta gamma
5.30786 5.30786 10.60447 90.0000 90.0000 120.0000
Unit-cell volume = 258.737240 A3
Structure parameters
Occ. B
000 000
000 000

000 000
000 000

x z
1 Fe Fel 0.00688 D.§3411 0.12481
20 ol 0.01124 0.67619 0.25000
30 02 0.33333 0.66667 0.51447
40 03 0.00000 0.00000 0.00000

[y
e

(a) Cif file of crystal material Fe;201, (b) Graph representation of the crystal Fe;2012

Figure 2: Cif and graph representation of crystal materials

A periodic crystal structure can be represented by its lattice constants a,b,c and angles «, (3, and +y, the space group, and
the coordinates at unique Wyckoff positions. Using a threshold of 3.5 A, the crystal structure can be converted into a
graph, which can be represented as an adjacency matrix, or contact map. The contact map captures the interactions
among atoms in the unit cell, which can be predicted by the know interaction patterns of these atom pairs in other known
crystal materials structures. Here we assume that the perfect atom contact maps have been obtained, and we’d like to
check if the global optimization algorithms can help reconstruct the crystal structures in terms of the atom coordinates
from the contact map, with or without adding other geometric or physical constraints. By formulating the contact map
based CSP as an optimization problem, it allows us to evaluate how different global optimization algorithms such as
genetic algorithms (GA), particle swarm optimization (PSO), differential evolution (DE) can solve this problem and
how difficult this reconstruction problems for different crystal structures of varying complexity in terms of the number
of unique Wyckoff positions(which determine the number of independent variables to optimize), the level of symmetry
as represented by the space group, and also the number of atoms in the unit cell, which determines the number of contact
constraints. For the example in Figure?] the number of variables to optimize is 4x3=12, corresponding to 4 Wyckoff
positions each with x,y,z three coordinate values. The crystal has 24 atoms in the unit cell, which can be mapped
into a 24x24 contact map matrix. The optimization problem is then how to search appropriate Wyckoff position atom
coordinates so that after symmetry operations specified by space group 190, the generated crystal structure will have the
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same contact map matrix. In this study, we assume the space group information, and the unit cell parameters of the target
composition are all known, which is reasonable as they can be predicted using different approaches (30, 331, [34].
While only contact map information is used as optimization target, other atomic interaction information such as limits
of distances or preferential neighborhood relationships (e.g. atoms of some element pairs cannot stay too close to each
other in known crystals) between some atom pairs can also be added as constraints in global search. The geometric
constraint optimization objective can also be combined with the traditional free energy objective to achieve synergistic
effect by e.g. reducing the number of DFT free energy calculations.
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Figure 3: The CMCrystal algorithm for contact map based crystal structure prediction.

2.2 Contact map based CSP using global optimization

In our problem formulation, the independent variables are a set of fractional coordinates (z;, y;, z;) for i=0,...,N, where
N is the number of Wyckoff positions and z;, y;, z; are all real numbers in the range of [0,1]. To solve this crystal
structure reconstruction problem, we propose to employ global optimization algorithms such as GAs and PSO to
search the coordinates by maximizing the match between the contact map of the predicted structure and the contact
map of the target crystal structure. This CMCrystal CSP framework is given in Figurd3] Basically, first, using the
existing inorganic materials samples in the databases such as ICSD, Materials Project, and OQMD, three prediction
models will be trained including a space group predictor [29, [30]], a lattice constant predictor[33} 34} [33] [36] 371, and a
contact map predictor. And then given these information a global optimization algorithm, such as the genetic algorithm,
particle swarm optimization or Bayesian optimization, to search the atom coordinates such that the resulting structure’s
topology(contact map) matches the predicted contact map as much as possible. After that, the structures will then be
fed to free energy minimization based DFT relaxation or refinement to generate the final structure prediction.

In this work we focus on exploring how global optimization can be used to search the atom coordinates guided by a
given contact map. We apply a set of six state-of-the-art global optimization algorithms to different problem instances
to evaluate and compare their performance. Here, we summarize the main ideas of the selected optimization algorithms,
their advantages and key hyper-parameters.
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2.2.1 Genetic algorithms(GA)

Genetic algorithms[38]] are population based search algorithms inspired by the biological evolution process. Candidate
solutions (individuals) are encoded by binary or real-valued vectors. Starting with a random population of individuals,
the population is then subject to generations of mutation, crossover, and selection to evolve the population toward
individuals with high fitness, evaluated by the optimization objective functions. Compared to other heuristic search
algorithms, GAs have proved to be suitable for large-scale global optimization problems[39] and has been used in several
crystal structure prediction algorithms 8,140} |41]], and mainly for free energy minimization. The main hyper-parameters
include the population size, crossover and mutation rates. Here we apply the real-value encoded GA as the global
optimization procedure for crystal structure reconstruction.

2.2.2 Differential evolution (DE)

Differential evolution [42] is a stochastic, population-based evolutionary optimisation algorithm designed for optimise
real parameter, real valued functions, many of which are nondifferentiable, non-continuous, non-linear, noisy, flat,
multi-dimensional or have many local minima, constraints or stochasticity. While genetic algorithms more focuses
on crossover operator, DE mainly uses its special mutation operator, which generates new candidates by adding a
weighted difference between two population members to a third member. This mutation operator has an inherent
adaptive characteristic to make smaller mutations when the population approaches global or local optima. It is thus
usually robust and has fast convergence. It has three main parameters: the population size (usually 5-10 times of the
number of variables), the scaling factor F, and the crossover rate.

2.2.3 Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) [43] is a population-based stochastic optimization algorithm inspired by social
behavior of some animals such as flocks of birds or schools of fish to solve nonlinear global optimization problems.
The algorithm seeks the optimal solution through collaboration and information sharing between searching individuals
in the group. Each individual updates its movement through the search space by combining some aspect of its own
history of current and best (best-fitness) locations with those of one or more members of the swarm. Although PSO can
fall into the local optimum for complexity problems, its search speed is fast, efficient, and the algorithm is simple, so it
is used in the article to optimize the target.

2.2.4 Bayesian Optimization (BO)

Bayesian optimization (BO) [44]45]] is an algorithm for optimizing expensive objective functions that take a long time
to evaluate. It is good for optimization over continuous domains of less than 20 dimensions[46]. Bayesian optimization
is one of the most efficient approaches to optimization in terms of the number of function evaluations by incorporating
problem belief about the problem to help direct the sampling and by employing an automated mechanism to trade off
exploration and exploitation of the search space based on its acquisition function based sampling. Common acquisition
functions include expected improvement, entropy search, and knowledge gradient. It usually uses Gaussian process
regressor or deep neural networks[47] to build a surrogate model [48]] for the expensive objective function and uses
Bayesian estimation to calculate the prediction uncertainty at each sampling points. BO has been widely used in tuning
hyper-parameters for machine learning algorithms [49]and active learning for materials design [50].

2.2.5 Covariance Matrix Adaptation-Evolution Strategy (CMA-ES)

Covariance Matrix Adaptation-Evolution Strategy (CMA-ES)[51]] is a random, fast and robust local search algorithm
that does not need to calculate gradients. It samples new candidate solutions from the multivariate normal distribution
of its mean, and adapts after each iteration. CMA-ES is mainly used to solve nonlinear and non-convex optimization
problems. It belongs to a category of evolutionary algorithms and has randomness. Compared with most other
evolutionary algorithms, it is a quasi-parameterless algorithm. CMA-ES is one of the most effective methods to deal
with difficult numerical optimization problems [52]. CMA-ES has been widely used in practical problems [53} 154} 55].
This algorithm is superior to all other similar learning algorithms in the benchmark multimodal functions. Good results
with CMA-ES can be achieved when given a very large evaluation budget [56].

2.2.6 RBF Model-based optimization (RBFOpt)

RBFOpt [57] is a continuous optimization algorithm based on the Radial Basis Function method. It constructs and
iteratively refines a surrogate model of the unknown objective function and exploits a noisy but less expensive surrogate
model to accelerate convergence to the optimum of the exact oracle. In this aspect, it shares some principles with the
Bayesian optimization approach. It also introduces an automatic model selection phase during the optimization process.
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One of its key ideas is to use RBF interpolation to build a surrogate model, and define a measure of “bumpiness”. Given
a target objective function value at a sampling point, its bumpiness measures the likelihood that the target function value
occurs there, based on the interpolation points. The assumption is that the unknown function f does not oscillate too
much so that a model that can explain the data and minimizes the bumpiness can be found. Previous benchmark study
shows that this algorithm has high efficiency in terms of number of evaluations and robustness.

2.3 Objective function and Evaluation Criteria

The objective function for contact map based structure reconstruction is defined as the dice coefficient, which is shown
in the following equation:

21ANB| 2% AeB
|A|+|B| ~ Sum(A4) 4+ Sum(B)

fitness,p: = Dice =

(D

where A is the predicted contact map matrix and B is the true contact map of a given composition, both only contain 1/0
entries. A N B denotes the common elements of A and B, Igl represents the number of elements in a matrix, e denotes
dot product, Sum(g) is the sum of all matrix elements. Dice coefficient essentially measures the overlap of two matrix
samples, with values ranging from O to 1 with 1 indicating perfect overlap. We also call this performance measure as
contact map accuracy.

To evaluate the reconstruction performance of different algorithms, we can use the dice coefficient as one evaluation
criterion, which however does not indicate the final structure similarity between the predicted structure and the true
target structure. To address this, we define the root mean square distance (RMSD) and mean absolute error (MAE) of
two structures as below:

1 n
RMSD(v,w) = , | > o = wil®
=1

2)
1 n
“Aln ; ((Uw: - ’U}iz)2 + (viy — wiy)2 + (v — wiz)2>
1 n
MAE(v,w) = — D llvi = wi]
i=1
3)

1 n
o Z (lvie = wiall + vy — wiy|l + lviz — wiz|)
=1

where n is the number of independent atoms in the target crystal structure. For symmetrized cif structures, n is the
number of independent atoms of the set of Wyckoff equivalent positions. For regular cif structures, it is the total number
of atoms in the compared structure. v; and w; are the corresponding atoms in the predicted crystal and the target crystal
structure. It should be pointed out that in the experiments of this study, the only constraints for the optimization is the
contact map, it is possible that the predicted atom coordinates are oriented differently from the target atoms in terms of
of coordinate systems. To avoid this complexity, we compare the RMSD and MAE for all possible coordinate systems
matching such as (x,y,z —>X,y,2), (X,y,Z —>X,z,y), etc. and report the lowest RMSD and MAE.

3 Experiments

3.1 Test problems

We have selected a set of target crystal structures as test cases for evaluating the proposed contact map based crystal
structure reconstruction algorithm using different global optimization algorithms. The list of target materials are shown
in Table[I} Here, the numbers of independent atom sites are 2 and 3 corresponding to 6 and 9 number of optimization
variables. The space group numbers range from 4 to 61 corresponding to triclinic,monoclinic,orthorhombic structurs
(More symmetric structures are reported in Section 3.3.3.
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Table 1: Statistics of target crystal structures
Target MP_id No.of sites #Atom in unit cell Space Group #variables

AgsS; mp-560025 3 6 4 9
BiySes mp-1182022 2 8 14 6
B4Ny mp-569655 2 8 14 6

S4Ny mp-236 2 8 14 6
PbsOy4 mp-550714 2 8 29 6
CosAsg mp-2715 3 12 14 9
BigSes  mp-1102082 3 12 14 9
Te4Og mp-561224 3 12 19 9
W4Ng mp-754628 3 12 33 9
Cd4Pg mp-402 3 12 33 9
NigPg mp-27844 2 16 61 6

3.2 Experimental Setup

For all optimization algorithms, we set the lower boundary and upper boundary of all variables to be [0, 1] when
optimizing fractional coordinates. The number of variables depends on the target materials, which is equal to the
number of independent atom sites multiplied by 3. For GA and DE, we set the population size to 100 and the number of
generations to 1000 with mutation probability of xx. For PSO, the number of particles is set as 100. For CMA-ES, we
set the population size to be 300 and generation number to be 1000. For RBFOpt, we set the max_iterations to be 1000
and the maximum number of function evaluations in accurate mode to be 300.

3.3 Results

3.3.1 Successful contact map based crystal structure predictions

To evaluate our CMCrystal method for crystal structure prediction, we apply it to a selected set of 11 target structures as
shown in TabldI| with the number of atoms ranging from 6 to 16. The total number of objective evaluations is set as
100,000. The overall performance of different global optimization algorithms for contact map based crystal structure
reconstruction is shown in Table 2] We find that the contact prediction accuracy for 9 out of the 11 targets reach 100%,
demonstrating the effectiveness of our method to find the target topology from random atom coordinates using the
contact map as the target. Table2] also shows the RMSD and MAE of the predicted structures compared to the target
structures, both of which are calculated in terms of fractional coordinates of the independent atom sites. The RMSD
values range from 0.07 to 0.381 with MAE ranging from 0.054 (for B4Ny) to 0.335 (for NigPsg).

Figure@] shows three sets of predicted and target crystal structures of B4Ny4, BisSe4, and CosAsg. For both B4N4 and
BisSe, (Figurefdf(a)-(d)), the contact map accuracy reaches 100% and the predicted structures are very close to the
target structures. The RMSD of B4Ny is 0.07 which is smaller than the RMSD (0.124) of Bi4N4, which is reflected
by the higher similarity of the pairs of B4N4 than the pair of structures of BiyN4. The contact map accuracy for the
target structure of CosAssg is lower with a value of 92.3% and higher RMSD of 0.197. We note that the topology of the
predicted structure in general can reach the target topology while the precise coordinates can be different.

3.3.2 Performance comparison of different algorithms

To compare the performance of different optimization algorithms for crystal structure reconstruction from contact
maps, we run all six optimization algorithms for a set of target structures of different complexity. Figurd5|shows the
performance of six algorithms. For easy cases of BisSes and B4Ny, all algorithms reach the 100% accuracy for contact
map prediction. For the more complex one NigPs, only DE achieves the 100% accuracy in the given computing budget
(100,000 evaluations) while PSO and BO fall behind the most. For the most complex target CosAsg, no algorithms have
achieved an accuracy of 100% while GA, DE, CMA-ES, and RBFOpt all achieve 92% accuracy.

We also compared the RMSD performance for the six algorithms as shown in Figurd6] Here we find that the CMA-ES
achieves the best RMSD performance (0.07 and 0.12 respectively) for B4Ns and CosAsg. For BisSe4, the best result
is obtained by GA with a RMSD of 0.12. For NigPg, the best result is obtained by RBFOpt with a value of 0.19.
However, we must note that the objective function in our study here contains only the topology information, the contact
map. So algorithms with better contact map accuracy do not necessarily have better RMSD performances. In terms
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Figure 4: Examples of predicted versus target crystal structures.

of computational complexity, for most of the global optimization experiments here, each experiment takes about 15
minutes, which is marginal compared to the computationally demanding DFT based search algorithms.
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Table 2: Performances of global optimization algorithms in terms of contact map prediction accuracy

Target material | contact map accuracy | RMSD | MAE
AgsS) 1.000 0.320 0.233
BiySey 1.000 0.124 0.097
B4Ny 1.000 0.070 0.054
Pb,O4 1.000 0.246 0.196
S4Ny 1.000 0.156 0.137
Te,Og 1.000 0.379 0.266
W4Ng 1.000 0.368 0.214
Cd4Pg 1.000 0.320 0.204
CoyAsg 0.923 0.197 0.149
BigSey 0.889 0.257 0.232
NigPg 1.000 0.381 0.335
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Figure 5: Performance comparison of different algorithms in terms of contact map prediction accuracy over four target
structures
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Figure 6: Performance comparison of different algorithms in terms of contact map prediction RMSD over four target
structures
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3.3.3 Factors that affect the optimization difficulty

From our extensive experiments, we find that there are several factors that affect the crystal structure prediction
performance of our algorithms such as the number of independent atom sites, the number of atoms in the unit cell,
the space group, the number of bonds/topology constraints and etc. Here we report how two factors, the number of
independent atomic sites and the space group, affect the crystal structure reconstruction performance by the CMA-ES
algorithm. To gain a more intuitive comparison, we plot both results in Figurd7]

In Figurd7|(a), we compare the performance of CMA-ES for problem instances with the same number of total atoms
in the unit cells but different numbers of independent atom sites. It shows that in general, the contact prediction
accuracy gradually drops with increasing number of atom sites, which corresponds to more optimization variables for
the optimization problem. This trend is also reflected by the corresponding RMSD errors as shown in Tabld3]

Figurd7(b) and Tablefd] show the performance results of CMA-ES structur reconstruction for a set of materials with the
same number of five atom sites and similar numbers of atoms but different space groups. It is found that in general the
higher the space group, the contact map accuracy is higher, indicating that higher symmetry puts more constraints on
the atom configurations and reduces its search space so that better performance can be found. To be more specifically,
as Tabld4] shows, the contact map accuracy increases from 0.811 to 0.923 when the space group goes from 2 to 194 for
Mg4Co2H10, a hexagonal structure. At the same time, the RMSD error has no consistent trend as it goes up to 0.37 and
drops to 0.182 and then goes up to 0.380 and goes down to 0.276. As we discuss above, since we have only included
the contact map without any distance information into our objective function, it is understandable that the RMSD have
alternating up and downs.

P —

ps ——

—. — P ™

2 3 4 5 6 7 8 9 10 0 50 100 150 200

Site number Space group

(a) Contact map accuracy vs # of atom sites (b) Contact map accuracy vs space group

Figure 7: Problem difficulty based on space group and number of atom sites

Table 3: Prediction performance versus number of atom sites for CMA-ES.

Target mp_id atom site# | atom # contact map RMSD
accuracy
Laj»Seiq mp-491 2 28 1.000 0.193
BigPd;Oy4 mp-29259 3 28 1.000 0.257
VO, mp-25280 4 28 0.963 0.216
Fe»016 mp-1192788 | 5 28 0.938 0.206
GegSiolg mp-27928 6 28 0.870 0.248
LisV4SisOp6 | mp-1176508 | 7 28 0.865 0.358
Ba,VgOys mp-18910 8 28 0.831 0.296
Si,HsC6Cl, | mp-867818 | 9 28 0.818 0.253
ZrgCrgFy, mp-690241 10 28 0.783 0.349

10
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Table 4: Prediction performance versus space group using CMA-ES

. . contact map
Target mp_id atom site# | space group accuracy RMSD
HggCl404 mp-636805 | 5 2 0.811 0.293
Be4sB,0qg mp-1079124 | 5 5 0.833 0.371
BigOgF, mp-757162 | 5 13 0.833 0.182
TlgV,0g mp-29047 5 44 0.842 0.344
La4Sn2810 mp-12170 5 55 0.878 0.335
Li, V,F)» mp-753573 | 5 102 0.889 0.380
YbsH4Og mp-625103 | 5 113 0.909 0.310
Mg,sCorHjg | mp-642660 | 5 129 0.929 0.376
KioCuzAss | mp-14623 5 194 0.923 0.276

4 Conclusion

We formulate a crystal structure prediction/reconstruction problem based on its space group symmetry and the atom
contact map, and applied a series of state-of-the-art global optimization algorithms to solve the problem. Our experiments
show that global optimization algorithms are able to reconstruct the crystal structure for some materials by optimizing
the placement of the atoms using the contact map as the objective given only their space group and stoichiometry.
These predicted structures are close to the target crystal structures so that they can be used to seed the costly free
energy minimization based crystal structure prediction algorithms for further structure refining. They may also be
used for DFT based structure relaxation to obtain the correct crystal structures for some compositions. However, we
found that using the contact map alone is in general not enough to guide the search for the true structure precisely
and additional geometric and physical constraints may be needed such as pairwise distance information to further
improve the reconstruction quality, which is under our investigation. Another potential improvement is to conduct more
extensive parameter tuning for the optimization algorithms used here for different structures as here we mostly use the
default parameters for the algorithms.
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The data that support the findings of this study are openly available in Materials Project database at http:
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