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Abstract Optical materials with special optical properties are widely used in
a broad span of technologies, from computer displays to solar energy utiliza-
tion leading to large dataset accumulated from years of extensive materials
synthesis and optical characterization. Previously, machine learning models
have been developed to predict the optical absorption spectrum from a mate-
rials characterization image or vice versa. Herein we propose TLOpt, a trans-
fer learning based inverse optical materials design algorithm for suggesting
material compositions with a desired target light absorption spectrum. Our
approach is based on the combination of a deep neural network model and
global optimization algorithms including a genetic algorithm and Bayesian
optimization. A transfer learning strategy is employed to solve the small
dataset issue in training the neural network predictor of optical absorption
spectrum using the Magpie materials composition descriptor. Our extensive
experiments show that our algorithm can inverse design the materials composi-
tion with stoichiometry with high accuracy. The source code is freely available
at https://github.com/usccolumbia/TLOpt
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1 Introduction

Optical materials play a major role in imaging, communications, solar cell
and sensor design, and the absorption spectra of meterials are the key re-
search object for these applications. The optical properties of composite metal
oxides are an interesting area of optical materials research because these prop-
erties may be very different from the properties of individual components. The
structure of a composite material depends on its preparation process and the
chemical properties of its constituent elements, which further affect its optical
properties. Constituent elements of a composite material and the mole ratios
among elements also have large impact on its structure and optical properties
of the material.

In order to study the optical properties of composite materials, first princi-
ples calculations such as Density Functional Theory (DFT) have been widely
used [1,2]. Although first principles calculations are powerful, they are suscep-
tible to the constraints of their excessive calculation cost, which limits the size
of the material design space or the number of materials they can screen. To
address this problem, machine learning (ML) has been increasingly applied to
materials science fields, leading to the emergence of “materials informatics”
[3], in which materials learning methods are developed to obtain prior knowl-
edge and predictive models from known material dataset, and then predict
complex material properties based on these models. In the past few years, ML
has succeeded in predicting new features [4], guiding chemical synthesis and
discovering suitable compounds with target properties [5,6,7,8]. While ML
based material property prediction models can be used to screen known ma-
terials database to find candidates with expected properties, its performance
is limited by the available materials, which are not developed for the target
properties anyway. When ideal materials are not found in existing databases,
discovering and synthesizing new materials with target properties is needed,
which is usually based on the experience and knowledge of the researchers
and expensive experiments. As materials that can be easily found have been
found already and the scope of experimental exploration based on experience
is narrow, new methods of material discovery is needed [9], which promoted
the development of the inverse material design approaches [10].

Inverse design started in the field of alloy design [11], using genetic al-
gorithm and molecular dynamics simulations to optimize the composition of
multi-component alloys. This method received widespread attention in various
fields once it was proposed, and now widely used in nanophotonic design [12,
13,14,15,16], surface design [16,17,18,19] catalyst design [20], catalyst design
[10,21], drug design [6] and materials design [9]. Inverse design of materials
with desirable optical properties is of great significance in many industries
such as solar cells, computer monitors, and optical microscopes[22]. Inverse
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materials design can be regarded as an optimization problem, in which the
desired materials characteristics are used as the optimization objectives. If the
material is designed for optimizing only one attribute, it can be formulated as
a single-objective optimization problem; if multiple materials attributes need
to be optimized at the same time, it can be regarded as a multi-objective
optimization problem. There are two major modules in a typical inverse de-
sign framework: one is the sampling module to guide the search in the design
space in which a variety of optimization algorithms [23] can be used such as
genetic algorithm (GA) [24], Bayesian optimization (BO) [25], particle swarm
optimization (PSO) [26], and differential evolution (DE) [27,28]. The other
module is the forward property prediction model, which evaluates the perfor-
mance of each design candidate, for which a set of commonly machine learning
algorithms have been used includinig support vector machines (SVM) [29], ran-
dom forest (RF) [30] and artificial neural network (ANN) [31] etc.

However, few studies have focused on inverse design of optical materials,
especially inferring the possible compound formula of the materials only based
on their absorption spectrum. The main reason of this phenomenon is lack of
large-scale optical characterizations dataset of materials for model training.
Previously, a metal oxide optical characterization dataset was published, and
autoencoder algorithms for measured optical properties of metal oxides based
on this dataset [32,33] have been developed, which can map composite mate-
rials’ characterization image patterns to its UV-vis absorption spectrum and
vice versa. Comparing the band gap energy from the truth spectra to the pre-
dicted spectra, the root mean squared error and mean absolute error are 261
meV and 180 meV respectively, which are very small errors. However, it is
not clear how to map the characterization images back to the composite ma-
terial compositions. Yu et al. [34] proposed a spectroscopic limited maximum
efficiency metric, which can be used to guide the search of very thin film photo-
voltaic devices with high absorption. Inverse design of materials compositions
have also been proposed by using generative adversarial networks [35], which
is mainly done by screening a large set of generated hypothetical materials.

Our work focuses on the inverse design problem of optical materials compo-
sitions with given target UV-vis absorption spectrum. In this study, we propose
an algorithm to inverse design composite materials with a given target opti-
cal spectrum by combining artificial neural networks and genetic algorithms
and Bayesian optimization. First, a large number of known composite mate-
rial spectra are used to train a neural network model to predict the spectrum
from the formula of a given composite material. The transfer learning method
is used to train the spectrum prediction model of a specific set constituent
elements with limited number of samples of varying stoichiometries. Finally,
the metal oxide material is designed inversely based on the given target optical
absorption spectrum performance using GA and BO.

Our contributions can be summarized as follows:
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· We propose a transfer learning based neural network model for predict-
ing optical absorption spectra from materials compositions. This approach
helps to address the small data issue in materials property prediction.

· We develop an approach for inverse design of metal oxide material com-
positions for achieving a target optical absorption spectrum using both
genetic algorithms and Bayesian Optimization.

· We conduct extensive experiments and show that our proposed framework
is capable to achieve good performance for target spectra.

The remainder of this paper is organized as follows. Section 2 focuses on
the research framework, materials representation, and inverse design models
of materials. Section 3 describes our experiments and highlights our inverse
design performance. The last section concludes the paper.

2 Materials and Methods

2.1 Problem setup and inverse design framework

In our inverse design problem, the goal is to design the materials formula of
a potential optical material that can achieve the given target light absorption
spectrum. As shown in Fig.1, we have 554 different formula groups in the
dataset, and each formula group consists of formulas with the same set of
elements but different mole ratios. For each independent formula, there is a
corresponding absorption spectrum. According to the composition of formulas,
we define two versions of the inverse design problem: 1) the elements in the
material are given, only the mole ratios need to be determined; 2) the elements
are not specified in advance, we need to search both the elements and their
mole ratios.

The main components of the framework are shown in Fig.2. We use deep
neural network models, a type of machine learning model to learn the rela-
tionships between material composition and light absorption spectrum. Unlike
previous work [36] which explores the relationship between characterization
images of different optical material structures and their light absorption prop-
erties, we address the real-world need to inversely design suitable materials
(in terms of their materials composition) to achieve a specific target light ab-
sorption performance. In order to design materials according to performance
specification and guide the discovery of new optical materials, we construct
two inverse design models through the genetic algorithm and Bayesian opti-
mization respectively to predict the corresponding material compound formula
elements and their mole ratios based on the UV-vis absorption spectrum (220
items).

For inverse design with given elements, our framework is shown in Fig.2
(a), which is composed of a fully connected neural network-based transfer
learning model trained with Magpie features and global optimization based
search model including a genetic algorithm and a Bayesian optimization. To
divide the dataset, we randomly select the target formula from all 100,429
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Fig. 1: The inverse composite material design problem for achieving a target
optical absorption spectrum

samples, and then set the formulas with same elements but different mole
ratios as the target formula and corresponding spectra as Dataset B, while
remaining 553 formula-spectrum groups are set to be Dataset A. Firstly, we
use large amounts of known data (Dataset A) for initial training of the fully
connected neural network model 1. Then we transfer parameters of model
1 to model 2 (with the same type as model 1), and use a small amount of
sample data (Dataset B) to fine-tune the model. Finally, a genetic algorithm
and Bayesian optimization method are used to inverse design materials that
approximate the target optical properties through spectrum fitting. For inverse
design without specifying the elements, although we also divide the dataset
into A and B according to the known target, the fully connected neural network
model is trained only by the Dataset A and without transfer learning( Fig.2
(b)) to ensure fair comparison with transfer learning.
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(a) Transfer learning framework for computational inverse design of optical materials

(b) Framework without transfer learning for computational inverse design of optical mate-
rials

Fig. 2: Frameworks for computational inverse design of optical materials

2.2 Materials datasets

The material data used in this study are downloaded from references [32,
33]. This dataset contains sample images, UV-vis spectra and composition of a
large set of metal oxide materials selected from the Materials Experiment and
Analysis Database (MEAD) of the High-Throughput Experimentation (HTE)
group at the Joint Center for Artificial Photosynthesis at Caltech. It is one of
the largest publicly available scientific data set of cured metal oxide materials,
which are synthesized by metal nitric acid salt with annealing. The absorption
spectra are recorded using real-time scanning UV-vis dual-ball spectrometer
while a flatbed scanner is used to obtain the sample images. This database
contains a total of 178,994 molding material samples and their corresponding
optical absorbance values at 220 energies between 1.32 to 3.2eV. The metal
oxide samples contain various combinations of 1 to 5 cationic elements, as well
as various inkjet printing and heat treatment parameters. These parameters
are not used in the model described in this study. Since different prepara-
tion processes in the metal nitric acid salt produce many repetitive compound
formulas, for materials with a fixed composition, we choose the average pho-
toconductivity under different processes as its reference photoconductivity.
After screening, we got a total of 100,429 samples composed of 42 different el-
ements, which are then divided into 554 groups according to their constituent
elements. Each group consists of a series of material formulas with the same
composition elements and different mole ratios. Our dataset includes 2 groups
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of quinary compounds, 114 groups of quaternary compounds, 216 groups of
ternary compounds, 181 groups of binary compounds, and 41 groups of simple
substances. Fig.3 shows the distribution of element groups in binary, ternary
and quaternary compound materials.

(a) Number of samples for binary element
groups

(b) Number of samples for ternary ele-
ment groups

(c) Number of samples for quaternary el-
ement groups

Fig. 3: Distribution of element groups in binary, ternary and quaternary com-
pound materials

2.3 Materials representation

We use the Materials Agnostic Platform for Informatics and Exploration
(Magpie) composition descriptor [37] to represent the materials in our dataset,
which are calculated from properties of the atom elements in compound formu-
las to characterize materials. As discussed in the recent review [38], using ele-
mental physical properties as descriptors for structure yields reasonably good
performance in predicting various properties. Although composition-based fea-
tures are unable to distinguish between crystalline polymorphs and molecular
isomers/conformers, our data structure type is relatively stable, and there are
no crystalline polymorphs and molecular isomers/conformers. For the inverse
design process, in order to expand the search space, we should not limit the
structure of the material. A Magpie descriptor vector is composed of a set of
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Table 1: Model parameters of the fully connected neural network network

Layer Input Shape Output Shape
Fc1 [batch, input] [batch, 256]
Fc2 [batch, 256] [batch, 128]
Fc3 [batch, 128] [batch, 64]
Fc4 [batch, 64] [batch, 32]
Fc5 [batch, 32] [batch, 16]
Fc6 [batch, 16] [batch, 32]
Fc7 [batch, 32] [batch, 64]
Fc8 [batch, 64] [batch, 128]
Fc9 [batch, 128] [batch, 220]

statistics of a selected element properties created by Ward [37] and can be
used for representing materials with any number of constituent elements. The
set of properties is broad enough to capture a widely variety of physical and
chemical properties which can be used to create predictive models of many
material properties given only composition [39]. The physicochemical proper-
ties include stoichiometric properties (depending only on the ratios between
elements), element properties (atomic number, atomic radius, melting temper-
ature, etc.), electronic structure properties (valence electron number of s, p,
d, and f layers) and ionic compound characteristics. To construct a Magpie
feature, 22 weighted element attributes of the compound formula are calcu-
lated, and then the minimum, maximum, difference, average, variance and
mode characteristics are calculated for each attribute. Finally, the material is
characterized as a 132-dimensional data input. Here, the elemental properties
are taken from the dataset available in the Wolfram programming language
[40].

2.4 Model 1 for spectrum prediction from composition: Initial training

First, we select one target compound formula that needs to be inverse
engineered. Except for the formulas in the same group as the target compound
formula, we randomly choose 50 compound formulas for each group in Dataset
A (select all formulas if less than 50), and then randomly divide them into the
training set and the test set according to 70%:30% for performance evaluation.
The spectrum prediction model 1 used in this study is a fully connected multi-
layer perceptron neural network model. Since our input has 132 dimensions
and the expected output has 220 dimensions, the nodes in the first and last
layer are determined. From experience, the greater the depth, the better the
generalization of tasks, but too many layers often lead to overfitting. Therefore,
we chose the number of layers and nodes per layer of our neural network based
on experience, and fine-tuned it based on the experimental results. The final
neural network parameters are shown in Table 1. The batch size is designed
by the user, in this article we selects 64 samples as a training batch.
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2.5 Model 2 for spectrum prediction trained by transfer learning

In our inverse design framework, one key issue is that for a given element
set, the number of training samples are too few. For example, there are only
51 samples in element set [Bi, V, Cr, Ca]. To address this issue, we use a
machine learning strategy called transfer learning. Transfer learning [41] is an
algorithm to improve the performance of a target task in a target domain by
exploiting some knowledge acquired when solving a source task in a source
domain. Transfer learning has been widely used to address small dataset issue
in machine learning [42]. Usually, the source domain and the target domain or
the source and target tasks are different. Transfer learning can reduce resource
consumption and the time required for model training by just fine-tuning a
trained model on the target task. In this study, the source domain is the
compound formula groups other than the formulas with the same composition
elements as the target formula in the previous step (Dataset A); and the target
domain is a group of compound formulas with the same constituent elements
but different element ratios as the target compound formula (Dataset B).
Here both the source task and the target task are predicting light absorption
performance. Our transfer learning strategy is to first train the neural network
model on Dataset A and then import the parameters of this pretrained model
1 into the identical training model 2 for further training (fine-tuning). We
randomly select 30 formulas in Dataset B and divide them into a training set
and a validation set according to the ratio of 2:1, as the input to train model
2. The goal of fine-tuning the parameters for model 2 training is to make it
more accurate to predict the composition of the target compound formula.

2.6 Genetic Algorithm

A Genetic Algorithm (GA) is a global search method proposed by Hol-
land [43] and Rechenberg [44] inspired by the biological evolution in nature
to search for optimal solutions. The algorithm transforms the optimization
problem-solving process into a simulated evolution process with inheritance,
mutation, selection, and crossover of chromosomal genes in biological evo-
lution through mathematical methods and computer simulation operations.
When solving more complex combinatorial optimization problems, compared
to conventional optimization algorithms, better optimization results can usu-
ally be obtained. Genetic algorithms have been widely used in combinatorial
optimization, machine learning, signal processing and adaptive control [45]. In
the context of materials science, genetic algorithms have been widely used in
crystal structure prediction [46], inverse materials design [47], and materials
property prediction [48].

As Gobin and Schuth [49] clarified, the way that materials are presented in
the genome may have a significant impact on the performance of evolutionary
algorithms. In this study, each material is mathematically represented by a
n × 7 bit binary sequence (its chromosome or genotype) representing n mole
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ratios of the n elements in the material composition (Figure 4). Each element’s
mole ratio in the compound formula is represented by a seven-bit binary string.
Decoding the binary strings into decimal values, the mole ratios of the elements
can be obtained, and the material composition can be determined. The binary
sequences of the population can then be mutated and crossovered by specific
genetic operators.

Two decoding strategies have been proposed in our study. In the first de-
coding approach (Fig.4(a)), the 7-bit string that encodes the mole ratio for
each element is first decoded into a decimal value, and then each of them will
be divided by the sum of these decimal values to ensure that the final sum
of the decoded mole ratios to be 1. In the second unique decoding approach
as shown in Fig.4(b), the decoding process is as follows: 1) first all 7-binary
strings are decoded into decimal value and then converted into a value between
[0,1]; 2) the first ratio r1 will be assigned as the mole ratio of the first element,

for remaining ratio ri, we first compare it with 1 −
∑︁i−1

i=1 ri, then we choose
the smaller one as the mole ratio of element i. By converting binary encoding
to decimal values, the mole ratios of the elements can be obtained, and the
material composition can be determined. Compared to the first decoding ap-
proach, it has the benefit that each mole ratio vector corresponds to a unique
genetic binary string while the first approach allows redundant encodings for
the same mole ratio vector.

(a) Redundant decoding approach
(b) Unique decoding approach

Fig. 4: Genetic encoding approaches for mole ratios with a given element set

For the inverse design problem without specifying the element set, the
encoding of the GA is shown in Fig.5. The main difference is that the chro-
mosome now has a block for encoding the n elements, where n should be
specified by the user.

The initial population of individuals is usually randomly generated, but it
can also seeded with suitable known materials. The generations are mutated
to generate the next population in an iterative manner. The fitness of each
individual in the population is evaluated by a fitness or objective function
(here it is the MAE distance between the predicted spectrum for a material
composition and the target spectrum). The fitness function may also include
undesirable characteristics as constraints that need to be avoided. Then fol-
lowing the idea of survival of the fittest principle, a set of fitter materials will
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Fig. 5: Genetic encoding for inverse design without specifying the element set

be selected from the current population for breeding via mutation or crossover
operations on their genomes to generate a new generation of population. This
iterative cycle continues until the maximum number of generations is pro-
duced, or some members of the population have characteristics that reach the
expected target. Fig.6 summarizes the basic steps of the evolution process of
a GA. The hyper-parameters of a GA include the material genome encoding
length, the population size, the mutation and crossover rate, and the number
of generations.

Fig. 6: Basic steps of a genetic algorithm

In this study, the genetic algorithm is used as one of the global search
algorithms for inverse material design with a target light absorption perfor-
mance. The evolution process starts with compound formulas with the same
constituent elements but different element ratios as the target compound for-
mula. The parameters of the genetic algorithm in this study are: gene length:
13 (6 for elements and 7 for ratios), initial population size: 500, crossover
probability: 0.5, mutation probability: 0.5, generation: 100.

2.7 Bayesian optimization model

The Bayesian optimization (BO) method was proposed by [50]. Jones et al.
[51] introduced an effective global optimization (EGO) method and extended
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the BO technique. This method has become very popular and well-known in
engineering and is now widely used in the design of time-consuming exper-
iments, aimed at reducing experiment costs. Application of BO in machine
learning mainly focuses on adjusting the hyperparameters of computationally
expensive machine learning models [52]. In this study, we use BO methods to
build predictive models for the potential relationships between design variables
of the materials and their properties, and then use decision theory to suggest
which design is most valuable. BO finds the candidate solutions that minimize
the objective function by establishing a substitution function (e.g. Gaussian
process model) based on the evaluation results of the objective function. The
Bayesian method is different from random or grid search in that it exploits
evaluated sampling points to build a surrogate model which not only predict
the objective values but also related uncertainty, which allow it to achieve
automated balance of exploitation and exploration. The schematic diagram of
BO algorithm is shown in Fig.7.

Fig. 7: The flowchart of Bayesian optimization algorithm

BO requires several initial sample points, and through Gaussian process re-
gression (assuming that the optimization variables conform to the joint Gaus-
sian distribution), the posterior probability distribution of first n points is
calculated to obtain expectation, mean and variance. The mean represents the
final expected effect of this point, the larger the mean, the greater the final
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index of the model. The variance represents the uncertainty of the effect of this
point, the larger the variance, the more uncertain the value of this point and
worth exploring. Therefore, the first step in BO is to implement the Gaussian
process regression algorithm.

Another important step is to balance exploitation and exploration. For
exploitation, points close to the known points need to be selected as the refer-
ence points for the next iteration, that is, excavate points around the known
points, the distribution of points will appear in a dense area, which is easy
to enter the local maximum. For exploration, points far away from the known
points need to be chosen as the reference points for the next iteration, and
make the distribution of points as even as possible to explore the unknown
area. Sampling points with large mean value can be selected for exploitation
and samples with large variance can be selected for exploration. To control the
ratio of exploitation and exploration, the acquisition function needs to be de-
fined. The simplest acquisition function is Upper confidence bound algorithm
(UCB) which equals the mean plus k times the variance. Where k is the adjust-
ment parameter, which can be intuitively understood as the upper confidence
boundary. More complex acquisition functions include expected improvement,
entropy search, and so on.

In this study, BO algorithm is used as one of the optimization algorithms
for material light absorption performance inverse design. The following con-
figuration parameters are set: the initial population size is 500, the number of
generations is 100, and the UCB acquisition function is used to achieve the
balance of exploration and exploitation.

2.8 Model evaluation and experiment environment

This study uses fully connected neural networks to construct training spec-
trum prediction models. We choose average absolute error (MAE), root mean
square error (RMSE), and coefficient of determination (R2) as the evaluation
criteria of these models. MAE is used to reflect the actual situation of the
predicted value error, RMSE is used to measure the difference between the
predicted value and the true value, R2 is used to indicate the degree of fit be-
tween the predicted value and the true value. The specific calculation formulas
are as follows:

MAE =
1

m

m∑︂
i=1

|yi − ŷi| (1)

RMSE =

⌜⃓⃓⎷ 1

m

m∑︂
i=1

(yi − ŷi)
2

(2)

R2 = 1−
∑︁m

i=1 (yi − ŷi)
2∑︁m

i=1 (yi − ȳ)
2 (3)
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where m is the number of samples, yi and ŷi are the true and predicted
values of the i sample label (the spectrum of formula i), ȳ is the average of the
m sample real labels. All calculations were performed on a Dell Server work-
station equipped with an Intel Xeon W-2123 @3.70 GHz CPU, 16 GB RAM, a
Nvidia GTX1080Ti GPU with 12 GB dedicated GPU memory. Software used
was Python version 3.6.4, Keras version 2.2.0, and TensorFlow version 1.14.0.
The random train-test split is 70% for training and 30% for testing.

3 Results and discussion

3.1 Prediction performance of the composition descriptor based spectrum
predictor

Considering the small sample data for a specific element set, we first train
a fully connected neural network Model 1 on Dataset A, and then use the
transfer learning method to fine tuning the model parameters of Model 2
whose initial parameters are transferred from Model 1 using Dataset B. Fig.8
shows how the training and validation performance criteria MAE, RMSE and
R2 change during Model 1 training. After 800 epochs the MAE and RMSE
are reduced to 0.04eV and 0.004eV and R2 is raised to 0.997. This model will
be used as the source model to build target prediction models for different
chemical systems of specific element sets.

Since the experimental absorption spectrum usually contains noise, we dis-
cuss the performance of Model 1 under noise environment. Signal-to-noise
ratio (SNR) is defined as the ratio of signal power to the noise power, often
expressed in decibels detailed as follows:

SNRdB = 10log10 (Psignal/Pnoise) (4)

where Psignal and Pnoise are the power of the signal and the noise, respec-
tively. In this case, the same as [53], Model 1 is tested by adding different SNR
white Gaussian. The different SNR ranges from -2 dB to 4 dB. The smaller
SNR value is, the stronger power of noise is. Table 2 shows the performance
of Model 1 under noise experiment. It is clear that the accuracy increases as
the noise gets weak, e.g., the R2 is only 0.9819 when the SNR is -2 dB, while
the R2 surges to 0.9929 when SNR is 4 dB. Despite being affected by noise,
the prediction accuracy of Model 1 is still of a high point.

Table 2: Performance under noise environment

SNR(dB)
errors -2 0 2 4 None
R2 0.9819 0.9866 0.9902 0.9929 0.9979
MAE (eV) 0.1154 0.0951 0.0839 0.0714 0.0357
RMSE (eV) 0.1610 0.1384 0.1180 0.0997 0.0539
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(a) MAE changes during training (b) RMSE changes during training

(c) R2 changes during training

Fig. 8: Training and validation errors during training for composition based
spectrum prediction

After training the source Model 1, we transfer the model parameters to
the target chemical system with a given set of elements and fine-tune its pa-
rameters using the samples of the specified chemical system. We calculate the
performance of the prediction models for target formula with few samples and
with many samples to compare the performances of the models trained with
or without using transfer learning strategy. In the process of training, we use
randomly selected target formula as the test set. In transfer learning progress,
the Dataset B is independently divided into training set, validation set and test
set (only the target formula). The results are shown in Table 3. For formula
group [Sn, Ca, Zr, Hf] and [Fe, Bi, V, Mn] consisting of 88 and 973 different
formula samples respectively, we randomly choose two quaternary compounds
Sn0.3Ca0.1Zr0.4Hf0.2 and Fe0.25Bi0.15V 0.3Mn0.3 as representative test for-
mulas with small number of samples and with large large number of samples,
respectively.

Table 3: Testing errors for composition based spectrum prediction

R2 MAE (eV) RMSE (eV)
small sample set without TL 0.9925 0.0936 0.0221
small sample set with TL 0.9947 0.0682 0.0127
large sample set without TL 0.9953 0.0416 0.0033
large sample set with TL 0.9982 0.0251 0.0012
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3.2 Comparison of two GA encoding-decoding methods

To verify whether our proposed unique decoding approach in the GA for
inverse design is better than the standard redundant decoding, we evaluate
their performance on two inverse design problems of Ni0.25Bi0.67Mn0.08 and
Fe0.05V 0.05Cu0.25Ca0.65 respectively. Both experiments have been run with
30,000 evaluations with pop size of 300 and generation number 100. The MAE
distances of our unique decoding (blue color) and standard redundant decoding
(red color) are shown in Fig.9.

Through Fig.9(a) we found that our decoding approach first achieved a
lower MAE distance of 0.003488eV in the 27th generation and reached the
minimum MAE 0.003484eV in the 68th generation, while MAE of the tra-
ditional decoding method converged to 0.003492eV in the 17th generation.
As presented in Fig.9(b), the minimum MAE of both decoding approaches
reached 0.004507eV in 15th generation vs 23rd generation respectively, and
our method converged faster.

Both experiments proved that our unique decoding approach performed
better than the standard decoding, not only reducing the redundant search
space but also achieving the smallest MAE faster.

(a) MAEs of Ni0.15Bi0.7Mn0.15 (b) MAEs of Fe0.05V 0.05Cu0.25Ca0.65

Fig. 9: MAE distances of two GA decoding methods

3.3 Inverse design of two compounds using GA and BO

To evaluate the inverse design performance of our TLOpt algorithm, we
select two metal oxide materials from the whole dataset as the design tar-
get spectra with known composition information. Since most of the materi-
als in the dataset are ternary and quaternary compounds, we randomly se-
lected one for ternary Ni0.15Bi0.7Mn0.15 and one for quaternary compounds
Fe0.05V 0.05Cu0.25Ca0.65 respectively.
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For each target spectra, we conduct two inverse design tasks: one with
specified element set so the inverse design algorithm only needs to determine
the mole ratios of the given elements; in the second design task, the elements
are not given so the inverse design algorithm also needs to search the elements
along with the mole ratios of all elements. For both experiments, we tested our
GA and BO-based algorithms based on the same number of evaluations to com-
pare their performance. The final prediction results are shown in Fig.10 and
Fig.11. Fig.10 (a) shows the true spectrum and predicted spectrum by the
GA search algorithm with composition elements [Ni, Bi, Mn] specified. After
100 generations, GA identified a formula Ni0.25Bi0.67Mn0.08 with very similar
spectrum to the target spectrum. The MAE error of the predicted spectrum of
GA is only 0.00274eV (See Table 4). Fig.10 (b) shows the spectrum of inverse
designed metal oxide Ni0.04Bi0.71Mn0.25, which has a slightly higher MAE
error 0.00278eV. Both spectra of the inverse design materials closely approxi-
mate the target spectra, which demonstrates the effectiveness of the proposed
approach. Fig.10 (c), (d) compare the prediction spectra and the target spec-
tra of the inverse design metal oxides by GA and BO when the composition
elements are not specified. After 100 generations, GA got the most similar
spectrum with formula Mn0.22Fe0.45Pd0.33, and BO got Gd0.06Ni0.41Fe0.53.
The MAEs of GA and BO are 0.00273eV and 0.00275eV respectively.

Fig.11 (a), (b) show the truly spectrum and prediction spectrum of for-
mula Fe0.05V 0.05Cu0.25Ca0.65 by GA and BO with given composition elements
[Fe, V, Cu, Ca]. After 100 generations, GA got the most similar spectrum with
formula Fe0.08V 0.07Cu0.25Ca0.6, and BO got Fe0.02V 0.02Cu0.25Ca0.71. The
MAEs of GA and BO are 0.00280eV and 0.00284eV respectively. Fig.11 (c),(d)
compare the prediction spectra and truly spectra of target formula by GA and
BO when the composition elements are not specified. After 100 generations,
GA got the most similar spectrum with formula Al0.15Ti0.47Ba0.11Sc0.27, and
BO got Mn0.36Y b0.34Mg0.22Pb0.08. The MAEs of GA and BO are 0.00278eV
and 0.00283eV respectively. The results are also shown in Table 4.

From Table 4 we can find that, for the same formula, GA performs bet-
ter than BO method. When the composition elements are not specified, the
prediction spectrum is closer to the true spectrum. For ternary and quater-
nary compounds, with same generations, the ternary compounds have better
prediction performance. In the case of the same number of evaluations, BO re-
quires much less time than GA, the time required for BO is about one-quarter
to one-third of GA, but it is easy to fall into local optimization. GA can find
the global optimum due to its characteristics of crossover, mutation and elite
reservation, but it costs much more time. As the search space becomes larger
and more combinations can be made, both GA and BO methods perform bet-
ter when using random elements. And ternary compounds Ni0.15Bi0.7Mn0.15

perform better than quaternary Fe0.05V 0.05Cu0.25Ca0.65 is determined by the
characteristics of the dataset, the element Bi, Mn in [Ni, Bi, Mn] appear more
frequently in the dataset, while the Fe, Cu, Ca in [Fe, V, Cu, Ca] appears
relatively less frequently. The frequency of all elements in the dataset is shown
as Fig.12.
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Fig. 10: Inverse designs for target spectrum of Ni0.15Bi0.7Mn0.15, (a) Spec-
tra comparison of inverse designs by GA with specified elements, (b) Spectra
comparison of inverse designs by BO with specified elements, (c) Spectra com-
parison of the inverse designs by GA without specifying composition elements,
(d) Spectra comparison of inverse designs by BO without specifying composi-
tion elements

Table 4: Predicted formulas and MAEs of experiment 1

Target Ni0.15Bi0.7Mn0.15 Fe0.05V0.05Cu0.25Ca0.65
Algorithm Predicted Formula MAE(eV) Predicted Formula MAE(eV)
GA with given Ni0.25Bi0.67Mn0.08 0.00274 Fe0.08V0.07Cu0.25Ca0.6 0.00280
BO with given Ni0.04Bi0.71Mn0.25 0.00278 Fe0.02V0.02Cu0.25Ca0.71 0.00284
GA with random Mn0.22Fe0.45Pd0.33 0.00273 Al0.15Ti0.47Ba0.11Sc0.27 0.00278
BO with random Gd0.06Ni0.41Fe0.53 0.00275 Mn0.36Yb0.34Mg0.22Pb0.08 0.00283

3.4 Prediction of the spectrum for a span of representative samples

To further evaluate the performance of our TLOpt inverse design algorithm,
we randomly select 25 target compositions and their spectra as design targets
from the whole 554 groups. The spectra (red color) of the inverse designed
metal oxides predicted by the BO algorithm are shown in Fig.13 together
with the target spectra (blue color).

From Fig.13, we can find that most reconstructed spectra patterns (from
row 1 to row 4) contain not only the general shape of the truth spectra but
also finer details such as the presence of local maxima in absorption. For the
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Fig. 11: Inverse designed spectra of Fe0.05V 0.05Cu0.25Ca0.65, (a) Spectra com-
parison of inverse designs by GA with specified elements, (b) Spectra compar-
ison of inverse designs by BO with specified elements, (c) Spectra comparison
of the inverse designs by GA without specifying composition elements, (d)
Spectra comparison of inverse designs by BO without specifying composition
elements

targets in the last row in Fig.13, the performance of the inverse design is
still great, though not as good as those in top 4 rows. After close exami-
nation, we find that this is due to the composition elements Lu, Gd, Pd of
these target materials rarely appear in the whole dataset while our TLOpt
algorithm achieves great performance for the targets in the top 3 rows, which
contain common composition elements Bi, Mn, V, Cu, and Ni. The results in
Fig.13 thus validate our inverse design method on the dataset, proving the
universality of the model. This inverse design model enables us to exploit hid-
den relationship between materials composition and their optical absorption
properties and discover new materials with desired optical property.

4 Conclusion

We propose a transfer learning and global optimization based framework
for inverse design of optical materials composition to achieve the target optical
absorption spectrum. Our framework is composed of a fully connected neu-
ral network-based transfer learning model trained with Magpie features and
global optimization based search including genetic algorithm and a Bayesian
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Fig. 12: Frequency of all elements in the dataset

optimization model. Our transfer learning algorithm can be used to address
the small dataset problem typical in material informatics, enabling our DNN
model for predicting the material’s full UV-vis absorption spectrum from only
its compound formula. Experiment of our transfer learning shows that after
initial training and fine-tuning parameters through transfer learning, our pre-
diction model performs well in spectrum prediction of metal oxide materials
with only composition information alone. Extensive experiments show that our
frame is able to discover interesting material compositions that approximate
the target optical absorption spectrum. Our experiments also present that
when running time is not an issue, genetic algorithm methods perform better
than the Bayesian optimization in global optimization for our inverse design.
Our research proves that machine learning based inverse design method could
be used with small dataset when there are additional data of the same type
used to initial training prediction model. Our inverse design model can be
further improved when combined with materials structure information. Based
on the successful design case studies, we believe our inverse design model is
of great significance to be used to guide the discovery of new materials with
other properties as well.
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Fig. 13: The inverse design of 25 metal oxides given the target spectra

6 Acknowledgement

Research reported in this work was supported in part by NSF under grant
and 1940099 and 1905775 and by NSF SC EPSCoR Program under award
number (NSF Award OIA-1655740 and GEAR-CRP 19-GC02). The views,
perspective, and content do not necessarily represent the official views of the
SC EPSCoR Program nor those of the NSF.

References

1. Pornsawan Sikam, Pairot Moontragoon, Zoran Ikonic, Thanayut Kaewmaraya, and Pr-
asit Thongbai. The study of structural, morphological and optical properties of (al,
ga)-doped zno: Dft and experimental approaches. Applied Surface Science, 480:621–
635, 2019.



22 Rongzhi Dong et al.

2. Muhammad Khalid, Malik Aman Ullah, Muhammad Adeel, Muhammad Usman Khan,
Muhammad Nawaz Tahir, and Ataualpa Albert Carmo Braga. Synthesis, crystal struc-
ture analysis, spectral ir, uv–vis, nmr assessments, electronic and nonlinear optical prop-
erties of potent quinoline based derivatives: interplay of experimental and dft study.
Journal of Saudi Chemical Society, 23(5):546–560, 2019.

3. Krishna Rajan. Materials informatics. Materials Today, 8(10):38–45, 2005.
4. Logan Ward and Chris Wolverton. Atomistic calculations and materials informatics: A

review. Current Opinion in Solid State and Materials Science, 21(3):167–176, 2017.
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