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Abstract:  Two new computational approaches are described to aid the design of new peptide-based drugs 
by evaluating ensembles of protein structures from their dynamics, and the assessment of the structures 
using empirical contact potential. This builds on the concept that conformational variability can aid the binding 
process and, for disordered proteins, can even facilitate the binding of more diverse ligands. This latter 
consideration should mean that such a design process should be less restrictive so that multiple designed 
inhibitors might be effective. The example chosen here focuses on proteins/peptides binding to 
hemagglutinin (HA) to block the large-scale conformational change occurring during its activation. Variability 
in the conformations are considered from sets of experimental structures, or as an alternative their simple 
computed dynamics, and the set of designed peptides/small proteins from Baker (1) designed to bind to 
hemagglutinin, is the large set considered are assessed with the new empirical contact potentials.  

Introduction 
Influenza infection is a widespread cause of major medical concern because of the rapid viral evolution, that 
causes both occasional pandemics and more frequent problems almost every year. It has been estimated 
that the annual outbreaks by influenza A and B viruses over the past 100 years have had an even greater 
impact than all other past pandemics combined (2-4). The extremely high mutation rate of the virus means 
that any given vaccine soon becomes outdated. Thus, vaccination offers limited protection, especially when 
facing highly virulent nature and rapid evolution of influenza (5). Although some effective anti-influenza drugs 
have been developed, drug resistance usually appears rapidly.  

Hemagglutinin (HA) is a major surface glycoprotein of this virus that is involved in four of the most important 
aspects of influenza infection: (a) it is the target of antibodies that neutralize infectivity, (b) it undergoes 
antigenic drift to escape neutralization, (c) it binds to cell-surface receptors to initiate infection, and (d) it 
mediates the fusion of viral and host membranes essential for viral entry. The large-scale conformational 
changes in HA are critical for the steps in which the virus inserts itself into the host cells by fusing to the host 
membrane and the residues involved in this process are highly conserved across different types and 
subtypes during antigenic drift. These residues can serve as important targets for developing broad-reacting 
antiviral inhibitors (6-9).  Based on a set of crystal structures of the HA-antibody complex showing the 
conformational changes to  HA during the essential activation steps, David Baker and his colleagues 
designed a novel HA inhibitor for Group 1 of type A virus (1).   
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Influenza HA is a homo-trimeric protein where each monomer contains two disulfide-bonded polypeptides, 
HA1 and HA2.  HA1 is responsible for attaching to host cell-surface receptors while HA2 mediates the fusion 
of the influenza envelope with the endosomal membrane, thus allowing the entry of influenza RNA into the 
host cell.  The pre- (2) and post-fusion structures (3) of HA1 are essentially the same, while those of HA2 
(2;4;5) are drastically different, see Fig. 1.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The structural change in HA2 includes a partial unfolding of the long -helix into a loop (dark blue) and the 

folding of an inter-helix loop (in red) into a part of the long -helix, thus delivering both N- (blue) and C-
terminal (pink) fragments to the same end of the molecule upon the fusion of viral and endosomal 
membranes. 

The protein gp41 of HIV-1 is the membrane fusion protein, is similar to HA2 of HA (6). In that case, peptides 

derived from the C-terminal region of gp41 corresponding to the outer-layer helices, referred to as C-

peptides, were found to inhibit HIV-1 infection with IC50 in the nanomolar range (7-9). C-peptides are believed 

to act by binding to the exposed surface of the N-terminal central three-helical bundle in a transient pre-

fusion gp41 intermediate, thereby blocking membrane fusion. One such L-peptide, T-20/ Enfuvirtide with 36-

residues, was approved few years ago as a drug by the Food and Drug Administration (10); it shows high 

efficacy in suppressing resistant HIV-1 strains. Moreover, efforts to target a prominent pocket on the surface 

of the central three-helical bundle have led to the discovery of small, cyclic D-peptides that inhibit HIV-1 

infection, thereby validating the pocket as a potential target for small-molecule HIV-1 fusion inhibitors (11). 

 
To evade host antibody recognition, the HA protein on the surface of influenza virus, primarily on the globular 
domain, must constantly mutate.  This interferes in important ways with any vaccine, and reduces the 
vaccine’s efficiency and useful lifetime.  However, no matter how much the influenza virus mutates, it must 
maintain the ability to induce membrane fusion to ensure its propagation.  Thus, the stem domain that is 
primarily responsible for inducing membrane fusion is the most conserved.  Ian Wilson’s group identified 
antibodies that broadly neutralize influenza A virus Group 1 (12) (Fig. 2a), Group 2 (13), Group 1 and 2 (14) 

Figure 1. The HA in the pre- (a), intermediate (b) and 
post-fusion (c) states.  The termini of HA1 (light  blue) and 

HA2 are labeled as N1, C1, N2, and C2, respectively in (a). 
The dotted lines in (c) indicate unresolved regions.  The 
structures have all been aligned on the cyan helix, which is 
the only region in that domain that does not change during 
the transition. 
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and influenza type A and B viruses (15), see Fig. 2b.  All these antibodies recognize epitopes located in the 
stem domain.  David Baker’s group designed small proteins against influenza A virus Group 1 (1) (Fig. 2a).  
In addition, they identified a conserved patch on the surface of the central helical bundle in the low-pH 
postfusion state (Fig. 2c).  These three interfaces may all serve as useful targets for developing inhibitors 

against influenza virus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Molecular recognition in general and protein-protein interactions in particular are essential in almost every 
aspect of biological function. Moreover, proteins that bind other proteins with high affinity and high specificity 
have numerous applications for diagnostics and therapeutics. Currently, antibodies are by far the most 
commonly used proteins for both detection and therapeutic intervention. However, antibodies are large 
proteins that are expensive to produce and difficult to deliver. Thus, it would be important progress for 
biomedicine to be able to design novel protein-binding modules at will. 

The set of 88 proteins that were designed and tested by Baker and colleagues provides an excellent test set 
for use in the present study. Below we consider the dynamics of the structure in two different ways, from a 
set of experimental structures and from computed dynamics. Then we apply new knowledge-based free 
energies to rank the different designs, specifically predicting which designs are likely to bind. – Baker and 
colleagues were not able to do this without experimental testing. These are empirical free energy contact 
potentials developed by Jernigan, Kloczkowski and Faraggi that have proven to be highly successfully in 
blind-tests at past CASP experiments. In the present paper, we aim to make some suggestions for new ways 
to sample conformations of a target protein and how to assess the designed structures.  
 

 

Multiple Experimental Structures Capture the Important Functional Motions within a Hemagglutinin 
Structure Set 

The 43 structures of hemagglutinin listed in Table 1 were collected from the PDB with a BLAST search, 
retaining only those structures present as trimeric complexes of the HA1 and HA2 subunits. The individual 

Figure 2. Interfaces on HA that could likely be targeted 
in inhibitor design.  a) The interface conserved among 

Group 1 influenza A virus (in colors).  b) The interface 
conserved among all influenza A and B viruses.  c) The 
conserved patch on the surface of the central helical bundle 
at low-pH on HA. 
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subunits were extracted separately and aligned. This yields a total of 129 structures of the HA1 + HA2 
monomers that were superimposed onto the central structure (PDB: 1mqm) using the Combinatorial 
Extension (CE) algorithm, and these have a continuous distribution of RMSDs from 0 to 3.3 Å.  

Table 1. The PDB identifiers of the  
43 structures of hemagglutinin  
used here for extracting dynamics 

1HGD 2HMG 3FKU 4BGZ 4KPQ 

1MQL 2IBX 3HMG 4BH1 4KPS 

1MQM 2WR7 3LZG 4DJ6 5HMG 

1MQN 2WRB 3M5G 4EDB  

1RD8 2WRD 3M6S 4F23  

1RUY 2WRE 3S11 4F3Z  

1RUZ 2WRF 3SM5 4FIU  

1RV0 2WRG 3UBE 4GXX  

1RVX 2WRH 3VUN 4JTX  

2FK0 3EYM 3ZTJ 4KDM  

 

After these have been superimposed, then the covariances in for all pairs of positions were computed. Then, 
Principal Component Analysis is performed on this dataset. The input is the set of all of the structures in the 
set (16;17). From these data, the average position of each point in the reference structure is computed as 
<xi>  and the covariances for each pair of points i and j was computed according to  

 where brackets < > indicate averages over the set of structures. The covariance 

matrix C can be decomposed as where the eigenvectors P represent the principal components 

(PCs) and the eigenvalues are the elements of the diagonal matrix . The eigenvalues are sorted in order. 
Each eigenvalue is directly proportional to the amount of the total variance it captures.  The results of this 
analysis are shown in Fig. 3 for the set of coarse-grained hemagglutinins, which shows how truly limited the 
characteristic motions are within the structure set.  Clearly it does not require many of these characteristic 
motions to capture nearly all of the overall motions. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Characterization of the Global Motions in Hemagglutinins 

   ,ij i i j jc x x x x  

,TPPC 

Figure 3. Principal Component 

Contributions to the Total Motions of 

Hemagglutinin. Percent of variance 

explained by each individual PC is 

shown in blue and the cumulative 

contribution of each PC to the total 

variance/motion in red. The first 5 PCs 

account for 90% of the total motions 

present in the set of 43 structures. 
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Based on their sequences, HAs 
have been subdivided into two 
main groups: Group 1 (H1, H2, H5, H6, 
H8, H9, H11, H12, H13 and H16) and 
Group 2 (H3, H4, H7, H10, H14 and 
H15) (18).  Interestingly the 
first three PCs separately cluster 
into these two major groups, with 
minor exceptions. The distribution of 
the experimental structures over the 
PCs are shown in Fig. 4 for pairs of 
PCs. This distinctive 
clustering can be seen clearly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Different conformations can bind to different partners and thus include dynamics in the process will improve 
the probability of success in computational protein design.  When the PCs are visualized on the structures it 
can be seen that the first three PCs represent primarily motions in the B-loop (blue) that is involved in the 
large-scale transition. PC1, PC2 and PC3 can be interpreted as primarily involving conformations changes 
in the C-terminus, the central and N-terminus parts of the B-loop (see Fig. 5). Interestingly the B-loop is a 
region with a strong tendency to form a coiled-coil and is implicated in the formation of the pre-hairpin 
intermediate in the ‘spring loaded mechanism’ of HA action (19;20). The PC3 motion also clearly 
demonstrates the shift in the loop necessary for it to position itself at the top of helix C. In addition, PC2 
captures a hinge motion in the head of HA with respect to the stem as well as well as a motion at the N-
terminus of HA2 (fusion peptide) that is subsequently exposed for insertion into the membrane during fusion. 
These computed structures show a high level of variability of conformations particularly for the B-loop, which 
relate well to the known conformational transition, even though the full extent of motions is not shown in Fig. 
5. As shown in Table 2, these PCs provide a useful representation of changes present in the ensemble of 
structures.  

 
 

Figure 5. Visualization of the first three PC motions on the structures of HA. 

The two structures shown in each column are two extreme conformations 

representative of the changes indicated in each individual PC.  PCs 1, 2 and 3 

can be identified as winding and unwinding of the C-terminal, central and N-

terminal parts of the B-loop (blue) into a helix. PC2 captures the hinge bending of 

the structure between the head and stem regions as well as movement of the N-

terminus of HA2. The blue highlighted segments indicate the parts of the structure 

exhibiting a broad  range of conformations. 

 

Figure 4. Distribution of the 129 HA monomeric structures projected onto the first 3 PCs. (A) PC2-

PC1 space and (B) PC3-PC1 space. PC1 separates the Group 1 and Group 2 hemagglutinins into different 

clusters. Outliers H13 and H16 have been eliminated from the figure for the sake of clarity. PC1 has a major 

gap between the two groups of clustered structures. PC3 appears to be populated in two somewhat similar 

clusters, with Group 1 showing a particularly wide range of PC3 values. 
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Anisotropic Network Models (ANM) Can Substitute, If Insufficient Numbers of Experimental 
Structures Are Available   
 
Elastic Network Models of proteins, such as the Gaussian Network Model (GNM) and Anisotropic Network 
Models (ANM) of proteins as developed by Tirion (21), Bahar, Erman and Jernigan (22-30) computationally 
yield information about protein fluctuation dynamics, the directions of motions of the residues and atoms 
around their equilibrium positions. This information has already been used by Bahar, Jernigan, Kloczkowski 
and many others with significant success (23;31-33) to explain functional motions and mechanisms in 
proteins, nucleic acids and large biological assemblies, such as the ribosome. ANM could be used as an 
alternative to calculate the normal modes from a single structure when insufficient numbers of experimental 
structures or structures having sufficient variability are not available to perform PC analysis, then normal 
modes from the elastic network models could also be used to compute entropies (34). (But, as we show 
below, contact entropies are simpler and provide significant gains.) In ANM, the potential energy V is a 

function of the displacement vector D of each point in the structure where  is the spring 

constant for all closely interacting points in a structure (here we used a cutoff distance of 13 Å between alpha-

carbons for coarse-grained models retaining only C atoms) to establish the spring connections between 
residues), and H is the Hessian matrix containing the second derivatives of the energy, with respect to each 

of the coordinates x, y, z. For a structure with n residues, the Hessian matrix H contains n  n super-elements 

each of size 3  3.  The Hessian matrix H can be decomposed (22) as  where  is a diagonal 

,
2

TDHDV




,TMMH 
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matrix comprising the eigenvalues with the eigenvectors forming the columns of the matrix M. This 
decomposition generates 3n-6 normal modes (the first 6 modes account for the rigid body translations and 
rotations of the system) reflecting the vibrational fluctuations, so singular value decomposition is utilized.  

 
Comparing Directions of Motions Using Overlaps 
 
The alignment between the directions of a given experimental PC and a given computed normal mode can 
be measured by comparing the directions of motion in  their overlap, as defined by Tama and Sanejouand 

(35)  : where Pi is the ith PC for and Mj is the jth normal mode. A perfect match yields an 

overlap value of 1, meaning these motions are in the same direction. We also define the cumulative 

overlap (CO) between the first k vectors Mj and Pi  as    . 

 
The high overlaps between the two methods ensures the reliability of the computed dynamics. The 1st, 2nd 
and 3rd PCs have good overlaps of 0.57, 0.43 and 0.34 with the 3rd, 2nd and 1st individual modes, respectively. 
We  compare the first three PC’s from the X-ray set with the first 20 normal modes from the elastic network 
models, and these are relatively high between all three PCs of the X-ray hemagglutinin and the set of normal 
modes for the computed normal modes (see Table 2). 

 
 

 
 
 
 

 
Strategies for Generating and 
Ranking an Ensemble of Structures and Identifying a Structure Module Targeted for Inhibitor Design 
 
Identifying the most conformationally variable part of the structure is the aim here. These are the parts of a 
structure that should be the most useful to use for inhibitor design.  These parts can be  

 

 

 

 

 

 

 

 

identified simply by computing the 
changes in all internal distances over the 
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Table 2. Cumulative overlaps between computed ANM modes  and  
PCs from the set of experimental hemagglutinin structures  

 
CO 

3 Modes 6 Modes 20 Modes 

PC1 0.60 0.66 0.71 

PC2 0.50 0.57 0.65 

PC3 0.40 0.44 0.60 

Figure 6. Examples of the diversity of conformations from the first 3 PCs 

for the B loop (blue) of hemagglutinin.  The PCs can be used to generate an 

ensemble of conformations.  Each of three shows a conformation generated 

from one PC. The motions showed that this loop is the most flexible part of 

the structure and possesses an extremely diverse set of conformations. 
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ensemble.  Examples of such potential binding parts to target have been extracted from the ensemble of 
sampled conformations for HA generated by utilizing combinations of the first several PCs (Fig. 6). This 

highly variable segment should be susceptible to binding by a broader range of ligands. 

Assessing Peptide/Protein Designs with New Empirical Contact  Potentials 

Here we present new strategies for the assessment of bound ligand structures by taking as our target the 
designed small proteins from David Baker and his colleagues that were targeted to bind hemagglutinin (1;36). 
This provides an interesting relatively large dataset, which we can use to test our assessment method. The 
Baker designs, originating from small, monomeric proteins in the PDB having between 80 and 250 residues, 
were targeted against a hydrophobic region on the ‘stem’ of hemagglutinin. Of the 88 designs that they tested, 
only two were reported to have detectable binding affinity for hemagglutinin (these affinity were subsequently 
improved in rounds of randomization and selection). 

 
Four-body Coarse-Grained Contact Potentials (37-38). Four-body potentials were developed by 
Kloczkowski and Jernigan to account for the cooperative interactions in proteins; they take into account the 
coarse-grained contact interactions together with the extent of solvent exposure, and thus provide a more 
detailed and more cooperative representation of protein interaction energies than do pairwise potentials. 
Capturing this cooperativity is considered to be critical for evaluating densely packed protein structures. 
These potentials are highly empirical and are based simply on the observed frequency of occurrences of 
different types of amino acids in closely interacting quartets of amino acid types within a large set of protein 
structures. We have found that these four-body contact potentials can discriminate well between native 
structures and partially unfolded or deliberately misfolded structures. These have also included short-range 
backbone energies (39). We tested these optimized potentials at CASP9 as the prediction group 
4_BODY_POTENTIALS from Iowa State University. There were 110 other human prediction groups 
participating in CASP9 competition, and 140 prediction servers. According to Nick Grishin, the assessor of 
free modeling techniques at CASP9, 4_BODY_POTENTIALS was one of most successful groups in free 
modeling at that time, ranking third, according to the averaged zscore both for best models, and top models. 
Free modeling is the most difficult and most challenge in protein structure prediction, when the sequence of 
the protein has only a low sequence similarity in comparison to any known protein structures. This success 
at CASP9 demonstrates clearly that the cooperative multibody interactions are an appropriate tool for 
assessing predicted structures, and we apply them here to Baker’s hemagglutinin inhibitor structures. Later 
we have added in electrostatic interactions and these were tested at the subsequent CASP10.  
 
Including Entropies in the Inhibitor Assessments 
 
The Elastic Network Models (ENM) have proven themselves to be highly useful in representing the global 
motions for a wide variety of diverse protein structures (22;24-27;31-33;39-73). Since they have proven to 
be so successful in capturing the global most import important motions of protein structures, it is reasonable 
to expect that they should be able also to estimate the conformational entropies of structures. We employ 
the Elastic Network Model to compute the motions of protein structures and then these motions are then 
used directly to approximate the entropy of a conformation (34;74) . We previously (74) used vibrational 
entropies based on the frequencies of the normal modes, but more recently have found significant gains by 
utilizing the mean square fluctuations computed from the ENM as a direct measure of entropy: 

 where Q is a normal mode vector, λ the corresponding square frequency, Γ the 

system’s Hessian, and Γ-1 its pseudo-inverse. We obtain the Free Energy changes from ΔG = ΔE – TΔS by 
simply combining the four-body potential with the ENM-based entropy (34). The excellent blind-tested 
performance of our method in CASP experiments shows that our methodology is an outstanding tool for 
assessing protein designs, such as the ones from Baker’s hemagglutinin inhibitor designs.  
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These New Free Energies Successfully Select Native-like Poses in Protein-Protein Docking 

We have applied this method to the set of 89 inhibitor proteins designed against hemagglutinin by David 
Baker’s group, and we find that it provides a useful screen for that set of structures. Structures having the 
lowest energies indicate stable favorable conformations. However, stable structures are not always 
functional. In this case, we tested a set of eight structures at local minimums of the energy landscape 
ranked by their energies. From these, it was reported that two of them were found to be functional. (see 
Fig. 7). 

 

Discussion 

Here we have outlined a simple new way to use protein dynamics for peptide/protein design studies. This 
approach serves to identify those specific regions in the structure having particularly wide-ranging 
conformational variability, which could be of particular importance for targeting computational design efforts. 
Specifically, the highly variable segments should be able to bind to a particularly wide range of diverse 
ligands.  Such variable conformations are well known to be important for the promiscuous binding exhibited 
by disordered proteins and using this approach should have some advantage. Using such more localized 
protein targets might be an important new approach for targeted computational design. Another advantage 
of this is that more exhaustive computations can be carried out for smaller targets. 

Application of the potentials described above to assess structural designs would allow ranking of sets of 
designed inhibitor proteins. The differences in rankings should allow to conclude the extent to which the 
large-scale backbone fluctuations identified in the dynamics could be utilized in the design process. This 
would require a significantly larger effort than has been presented here.   Of course, the potentials 
themselves are empirical and could be modified to reflect the data from the experimental studies on the 
designed molecules for the specific class of targeted protein, which is one of a major advantages of the 
adaptability of the empirical potentials in any particular application.  

Our approach can be extended by detailed analysis of allosteric sites that are important for drug design. Most 
drugs are designed to bind directly to the primary active sites named orthosteric sites, to inhibit or modify the 
function of the protein. Binding of a drug to the active site prevents binding to a virus or other disease-related 
agent and most drugs are designed to fit into the primary active sites. However, adverse side effects of a 
drug may occur because many enzymes or receptors with related functions may have similarities in their 
active sites.  

Figure 7. Ranking by Coarse-Grained Free Energies of inhibitor 
proteins designed against hemagglutinin. Free energies are given on 

the ordinate axis (arbitrary scale), and the different structures (from the 
pdb) are indicated along the abscissa.  The 8 top-ranked structures with 
favorable free energies can be seen to be HB22, HB36, HB51, HB56, 
HB65, HB68, HB80, and HB88. This demonstrates the utility of the 

coarse-grained free energies to computationally screen for favorable 
structures. The two structures HB36 and HB80 were experimentally 
shown to be functional. 
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A new approach to drug design is based on secondary binding site effects. In this approach, small molecule 
drugs are designed to bind at secondary binding sites called allosteric sites (75-81). A potential drug - an 
allosteric modulator binds to an allosteric site and remotely modifies the conformation of the primary binding 
site of the protein. Allosteric sites are controlled by intrinsic protein dynamics, and the approach proposed 
here could also be applied to these allosteric sites.  

Acknowledgements: This research was supported by NSF grant DBI-1661391, and NIH grant 
R01GM127701. 
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