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ABSTRACT

Geometric information such as the space groups and crystal systems plays an important role in the
properties of crystal materials. Prediction of crystal system and space group thus has wide applications
in crystal material property estimation and structure prediction. Previous works on experimental
X-ray diffraction (XRD) and density functional theory (DFT) based structure determination methods
achieved outstanding performance, but they are not applicable for large-scale screening of materials
compositions. There are also machine learning models using Magpie descriptors for composition
based material space group determination, but their prediction accuracy only ranges between 0.638
and 0.907 in different kinds of crystals. Herein, we report an improved machine learning model
for predicting the crystal system and space group of inorganic materials using only the formula
information. Benchmark study on a dataset downloaded from Materials Project Database shows
that our random forest models based on our new descriptor set, achieve significant performance
improvements compared with previous work with accuracy scores ranging between 0.712 and 0.961
in terms of space group classification. Our model also shows large performance improvement for
crystal system prediction. Trained models and source code are freely available at https://github.
com/Yuxinya/SG_predict

Keywords crystal system prediction - space group prediction - materials informatics - machine learning

1 Introduction

According to the degree of geometric form symmetry, the crystals can be divided into different crystal systems and
space groups|1} 2]. Determining the symmetry information, particularly the space group, provides wide applications
for crystal material property prediction[3] and crystal structure prediction[4} 5]]. Recently, we proposed the method of
knowledge-rich approach for crystal structure prediction[6} [7, |8, 9f], which is inspired by the recent advances in protein
structure prediction (PSP)[10}|11]] which predicts protein structures using the predicted distance matrix. In our approach,
various global optimization algorithms[6] such as genetic algorithm[7]] and differential evolution algorithm[9] have
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been used to reconstruct the crystal structure atom coordinates. However, it is indispensable to provide the space group
information for a given material composition before predicting their structures.

Several machine learning models have been proposed to predict the space groups of crystals. Several studies developed
machine learning approaches for space group classification by the X-ray diffraction[12] data of materials. Suzuki
et al.[13] emphasised on demonstrating the potential of simple machine learning techniques suitable for knowledge
discovery and real-world experiments. Their tree-ensemble-based machine learning model works with over 90%
accuracy for crystal system classification based on powder X-ray diffraction patterns. Park et al.[14] developed three
convolutional neural networks (CNN) for the space group, extinction group and crystal system classification of 150,000
powder XRD patterns, which returned test accuracy of 81.14, 83.83 and 94.99% respectively. Vecsei et al.[15] studied
the problem of space group determination from powder X-ray diffraction patterns by using fully connected neural
networks and convolutional neural networks and then tested those two models on the other database. Oviedo et al.[16]
proposed a supervised machine learning framework for rapid crystal structure identification of novel materials from
thin-film XRD measurements. Chakraborty et al.[17] performed augmentation of thin filmed X-ray diffraction patterns
and developed a high accuracy model for lattice classification from X-ray diffraction. Zaloga et al.[18]] identified crystal
systems and symmetry space groups by full-profile X-ray diffraction patterns using convolutional neural networks
and explored the factors that affect the classification performance. Ziletti et al.[19] represented crystals by calculating
a diffraction image, then constructed a deep learning neural network model for classification which achieves robust
performance even in the presence of highly defective structures.

Although the XRD based symmetry prediction algorithms can achieve good performance in space group classification,
they have several limitations. The performance of XRD based methods is frequently influenced by low-quality X-ray
diffraction data[20]]. Moreover, it is time-consuming to acquire and analyze XRD data to recognize the crystal structure
for each material[[16]]. There are other machine learning models, different from XRD based methods, applied for space
groups and crystal systems classification. Liu et al.[21] trained a convolutional neural network model by atomic pair
distribution function for 45 most heavily represented space groups with an accuracy of 0.70. Kaufmann et al.[22] used
a machine learning—based approach and developed a general methodology for rapid and autonomous identification of
the crystal symmetry from electron backscatter diffraction (EBSD) patterns. However, those methods are inconvenient
for predicting thousands of space groups since the input pictures of materials should be provided. Theoretically,
given the chemical composition of a material, computational prediction of its crystal structure is possible[23]]. Several
studies determine crystal structures by combining global optimization with DFT calculations[23]]. These methods have
demonstrated successes in a variety of cases. However, the DFT based methods generally require thousands of CPU
hours and can only be applied to predict structures of relative small systems[/19]], which is not suitable for large-scale
material space group determination.

Recently, there emerged several crystal structure prediction methods that start with a seed structure generated by the
symmetry-restricted procedure [5} 8} 24]. In these algorithms, usually for a given composition, a space group is specified
to generate some random structures that satisfy the symmetry constraints of the space group. There is thus a need to
predict the space group for a given composition. Several machine learning algorithms have been proposed for material
crystal system and space group prediction quickly using composition information alone[25} 26]. In order to get the
best classification performance, Zhao et al.[25] uses two machine learning algorithms, random forest and multiple
layer perceptron neural network models, combined with three kinds of descriptors, atom vector, one-hot encoding and
Magpie, for the crystal system and space group classification. For the Material Project database they used, there are only
18 space groups selected, each has more than 1000 samples for multi-class classification which achieve a performance
of 0.652 and 0.637 in terms of the F1-scores. Liang et al.[26] proposed Cryspnet for Bravais lattice, space group and
lattice constants prediction of crystal materials using deep neural networks. However, the accuracy scores only range
from 0.638 and 0.907 for space group classification in the fourteen Bravais lattice categories.

In this work, we present an improved machine learning model for the crystal system and space group prediction by
inputting the formulas of the crystal materials. Magpie descriptors are used as the basic descriptor set which is combined
with a new descriptor set that we proposed, to train our machine learning models. To ensure that our classification
algorithm can predict all types of crystal materials, we trained and validated the models on all kinds of entries from the
Material Project Database of September 2020. Compared with previous works based only on the Magpie descriptors,
the addition of the new descriptors enables our models to achieve significantly improved performance on crystal system
and space group prediction. For example, the space group prediction of the cubic crystal system, which consists of
18,325 materials, has an accuracy score of 0.961. Our models can simultaneously make crystal system and space
group predictions for a large number of hypothetical materials, which can make contribution to our knowledge-rich
approach for crystal structure prediction. Our algorithm is also useful for downstream tasks such as the exploration of
the structure and properties of new materials.

Our contributions can be summarized as follows:
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* We propose a new descriptor set for crystal system and space group prediction of crystal materials which
achieves significant performance improvements compared to prior studies. We also identified what features
contribute most in our experiments for the classification performance

* We remove the duplication caused by the isomer, and build ML models for multi-class classification for space
group and crystal system of crystal materials.

* We build ML models for multi-label classification for space group prediction and crystal system prediction.

* We conduct extensive experiments with different machine learning algorithms. Our experiments show that our
algorithm based on random forest achieves high performance in crystal system and space group prediction.

2 Materials and Methods

2.1 Datasets

Table 1: lattice parameter relationships for materials of different lattice systems.

Crystal system | Edge lengths | Axial angles Space groups | Amount
Cubic a=b=c a=p3=7v=90 195-230 18324
Hexagonal a=1b a=p0=90,v=120 | 168-194 9243
Trigonal a=b#c a=p=90,v=120 | 143-167 11086
Tetragonal a=b#c a=0=v=90 75-142 14654
Orthorhombic | a #b # ¢ a=pF=v=90 16-74 26800
Monoclinic a#c a=v=90,8#90 | 3-15 29872
Triclinic all other cases | all other cases 1-2 15297

There are 125,276 inorganic material items used in our experiment, which are extracted from the Materials Project[27]],
an extensive material database which includes the properties of all known inorganic materials. According to the degree
of geometric forms symmetry, those crystals are divided into seven categories, namely cubic system, hexagonal system,
tetragonal system, trigonal system, orthorhombic system, monoclinic system and triclinic system. The amount of those
crystal systems and some details of geometric forms symmetry are shown in Table[I] For those crystals, they are divided
into 230 different combinations of symmetrical elements. Each space group has a unique crystal system corresponding

to it.
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Figure 1: The statistics of the formulas which have isomers.

However, for a given crystal composition, there may be multiple structural isomers which share the same chemical
formula. There are a total of 10,412 unrepeated formulas that have isomers in the dataset we used. As is shown in
Figure[I] we show several statistics of these 10,412 formulas. We can see that there are some formulas that have only
one crystal system and even one space group even though they have isomers. This is because the isomers of above
formulas belong to the same crystal system or space group. In addition, there are no more than two crystal systems
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for most materials formula isomers, but there is a formula that has even 7 crystal systems. For material formulas with
isomers, more than half of the formulas have two space groups. In order to make each formula match only one crystal
system and space group, we calculate the retain score by Formula[I] which is also used in Cryspnet[26], and keep the
material structure with the highest score among the isomers while dropping out other materials. Then, our machine
learning model has a unique crystal system or space group target for a formula to achieve multi-class classification.
Moreover, we also trained machine learning models for multi-label classification[25] for the 10,412 crystals which have
isomers.

_ Abundance (f, s)
Score(f,s) = Enut (.5 + 0

In this formula, « is tunable for balancing the formation energy term and the abundance count from the Materials Project
dataset, we set it as 0.1 in our work, s and f represent the space group and chemical formula. The Abundance(s, f)
means the number of records which have the same formula and space group. The Ej,,;;(s, f) is used to find the lowest
formation energy above the convex hull by the given composition and space group. For the formulas that have isomers,
we choose the material with the highest Score(s, f) for our benchmark experiments. Then, there are 102,528 materials
used in our experiment for multiclass classification.

(D

2.2 Descriptors

Magpie descriptors[28]] are a set of composition based materials attributes that calculate the statistics of stoichiometric
attributes, elemental properties, electronic structure attributes and ionic compound attributes. It has been widely used
for building machine learning models for composition based materials property predictions. In our work, the elemental
property statistics have been used as the baseline data set for space group and crystal system prediction. There are
22 kinds of features in Magpie element property statistics including Atomic Number, Mendeleev Number, Atomic
Weight, Melting Temperature, Periodic Table Row and Column, Covalent Radius, Electronegativity, the number of
Valence e in each Orbital(s, p. d, f, total), the number of unfilled e in each orbital (s, p. d, f, total), Ground State Volume,
Ground State Band Gap Energy, Ground State Magnetic Moment, and the Space Group Number of elements. The main
features of the Magpie feature set are obtained by calculating the mean, average deviation, range, mode, minimum, and
maximum of above elemental properties (weighted by the fraction of each element in the composition) to transform
raw materials data into a form compatible with machine learning. We also add some other Magpie properties, which
are used in Cryspnet[26] for structure information prediction, include Stoichiometry p-norm (p=0,2,3,5,7), Elemental
Fraction, Fraction of Electrons in each Orbital, Band Center, Ion Property (possible to form ionic compound, ionic
charge) to improve classification performance.

Additionally, we propose a set of new descriptors to improve crystal systems and space groups prediction performance.
Our descriptors are related to the number of various atoms in a crystal structure. For a crystal, the numbers of atoms is

Table 2: Descriptors.
Additional Predictors of Magpie

Element Property statistics of Magpie Added Predictors in this work

Atomic Number

Stoichiometry p-norm (p=0,2,3,5.7)

Total Atom Number

Mendeleev Number

Elemental Fraction

Maximum Atom Number

Atomic Weight

Fraction of Electrons in each Orbital

Minimum Atom Number

Melting Temperature

Band Center

Average Atom Number

Periodic Table Row and Column

lon Property (possible to form
ionic compound, ionic charge)

Specific Value

Covalent Radius

Atom Number Variance

Electronegativity

The number of Valence e in
each orbital(s, p. d, f, total)

The number of unfilled e in
each orbital (s, p. d, f, total)

Ground State Volume

Ground State Band Gap Energy

Ground State Magnetic Moment

Space Group Number of elements
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different for different elements within a unit cell and our new descriptor is obtained by (for an element) calculating the
maximum atom number, the minimum atom number, the total atom number, the average atom number, the specific
value (ratio of pretty formula to full formula) and the atom number variance of all the elements within a crystal structure.
All the features used in our experiments are shown in Table 2]

2.3 Machine learning models: Random forest(RF), Extreme Gradient Boosting(XGBoost) and Deep Neural
Networks(DNN)

In this study, we use ensemble machine learning algorithms and neural networks to find out the best model for crystal
system and space group prediction.

2.3.1 Random Forest

Random forest (RF)[29], a popular ensemble machine learning algorithm, is one of the major bagging machine learning
models. Its driving principle in classification is to build several estimators independently and each estimator gets the
probability of possible output labels. Then the average of the predicted probabilities of all estimators are calculated as
outputs. Labels with the highest average probability are used as the output results. In our random forest classification
models, we choose ’entropy’ as our criterion. The two important hyper-parameters, the number of trees and max
features, are set to be 100 and 80 respectively. The max depth is None. The min samples leaf and min samples split are
sat as 1 and 2. This algorithm was implemented by the Scikit-Learn[30] library in Python 3.6

2.3.2 Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost)[31] is an excellent boosting algorithm which is widely used in machine learning
classification tasks. As an integrated algorithm, XGBoost has outstanding performance in classification with excellent
generalization performance. In addition, it is optimized by a series of methods, such as supporting regularization and
using second-order Taylor expansion for loss function. Similar to traditional boosting algorithms which are composed
of several weak algorithms, when training the XGBoost model, each weak algorithm tries to correct the error of the
previous algorithms. In our work, we chose the *gbtree’ as our booster whose max depth was set as 6. As an important
parameter, the number of the trees is set as 180. The learning rate, alpha, gamma, lambda are set as 0.3, 0, 0,1
respectively. For triclinic, which has only two kinds of space groups, the objective (used to specify the learning task and
the corresponding learning objective) and evaluation metrics are set as softmax and multiclass logloss. For the rest
experiments of the XGBoost model, we choose the logistic and logloss as the objective and evaluation metrics. We use
the XGBoost library in Python 3.6 to implement this algorithm.

2.3.3 Deep Neural Networks
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Figure 2: Architecture of the deep neural network.

The deep neural networks (DNN), which plays an important role in material performance prediction and discovery of
new materials, is also used in our work. The structure of our DNN model, shown in Figure[2] is composed of 7 fully
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connected layers, and the numbers of the hidden nodes are 230, 178, 280, 244, 181, 192 respectively. Relu[32] is used
as the action function for those layers. And after each layer except the last one, two strategies, Dropout and BatchNorm,
are used to prevent overfitting. The loss function is set as the categorical cross entropy loss. The Adam optimizer is
used in model training. The learning rate, epochs and batch size are set as 0.001, 2000 and 255 respectively. In order to
prevent overfitting and improve performance of the DNN, we use the early stopping strategy where the monitor is ’loss’
and patience is 30. Our DNN model is implemented on TensorFlow2.4.

2.4 Evaluation criteria

We use K-fold cross-validation in our work to assess the performance of classification models of different algorithms.
The process of K-fold cross-validation strategy is that it randomly splits the initial sample set into K sub-sample sets,
taking one of them as the test set, the rest as the training set. After the initial sample set split into K sub-sample sets, the
cross-validation is repeated K times, each sub-sample set is verified once, then the results of K times are averaged to
finally obtain a single performance estimate. The 10-fold cross-validation method is chosen to evaluate the classification
performance of different algorithms in our work. Due to the uneven distribution of samples, the following performance
criteria in this work are used, including accuracy, Matthews correlation coefficient (MCC), weighted precision, weighted
recall and weighted F1 score[33, 34].

3 Results and Discussion

3.1 Multi-class classification

3.1.1 Prediction performance of multi-class classification

Table 3: The classification performance of RF algorithm for all data removed the duplication caused by isomers.

Accuracy MCC Precision Recall F1 score

Crystal system prediction | 0.8164+0.005 | 0.779+£0.006 | 0.818+0.005 | 0.8164+0.005 | 0.816+0.005
Space group prediction | 0.729£0.004 | 0.721+£0.004 | 0.73440.004 | 0.729+£0.004 | 0.725+0.004
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Figure 3: Confusion matrix of crystal system classification.

We trained the multi-class prediction models using the data sets after removing the duplications caused by isomers.
Then we use the 10-fold cross-validation evaluation approach to assess our model performance. The crystal system and
space group classification performance for all data are shown in Table 3] Our random forest model achieves an accuracy
score of 0.816 and F1 score of 0.812 for crystal systems prediction, and its confusion matrix is shown in Figure 3] which
shows that the more regular of the crystal material structures, the better classification result the model has in general.
For space groups prediction with around 230 categories, the accuracy and MCC scores are 0.729 and 0,721 by just
using the formula as the input to the machine learning models.

The results of space group classification in each crystal system are shown in Table 4] the accuracy score of our RF
model reaches 0.961 in space group classification for cubic materials. Although the crystal structures in the cubic



Table 4: The performance of space group classification in different crystal systems.
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data set size Accuracy MCC Precision Recall F1 score
Cubic 17367 0.961+0.006 | 0.945+0.008 | 0.960+0.005 | 0.961+0.006 | 0.959+0.006
Hexagonal 8201 0.909+0.008 | 0.888+0.010 | 0.908+0.008 | 0.909+0.008 | 0.906+0.008
Trigonal 9429 0.8244+0.012 | 0.797£0.014 | 0.823+0.013 | 0.8244+0.012 | 0.818+0.012
Tetragonal 12675 0.849+0.013 | 0.832+0.015 | 0.846+£0.013 | 0.849+0.013 | 0.840+0.014
Orthorhombic | 22392 0.75540.005 | 0.729£0.006 | 0.759+£0.005 | 0.75540.005 | 0.746+0.006
Monoclinic | 23024 0.71240.009 | 0.647£0.011 | 0.715£0.010 | 0.71240.009 | 0.703£0.010
Triclinic 9440 0.8354+0.013 | 0.665+£0.026 | 0.835+0.013 | 0.8354+0.013 | 0.834£0.013

crystal system have the highest symmetry compared to other crystal systems, the cubic crystal system has 36 space
groups, from the space group of 195 to 230. It is exciting to achieve such high space group classification performance
with so many categories. However, the classification performances in orthorhombic and monoclinic for space group
prediction are much lower with accuracy scores neither reaching 0.8. This is because these two crystal systems have
complex crystal structures, and the input of our machine learning models is only the crystal formula. It is difficult to get
the complex crystal structures information merely by the formulas of materials, which can however be ameliorated
with large dataset. While the top-1 accuracy scores may not be ideal, it is possible to use the top-k prediction results of
our models in downstream tasks to improve the hit rate. For other crystal systems, the performances in space groups
classification have scores above 0.80 in terms of accuracy, MCC and F1 scores.
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Figure 4: Feature importance of crystal system and space group classification.
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In order to find out which features most affect the performance of classification, we calculated the feature importance
scores to sort the top 20 features which are shown in Figure[d We find that the specific value, minimum atom number,
total atom number, average atom number, maximum atom number and atom number variance have major impact, which
explains why our model is better than previous Magpie features based machine learning methods.

3.1.2 Performance comparison with previous works

1

0.9
0.8
0.7
- 0.6
8 0.5
3 0.4
< 0.3
0.2
0.1
0
Cubic Hexagonal Trigonal Tetragonal Orthorhombic Monoclinic Triclinic
HOur Model 0.961 0.909 0.824 0.849 0.755 0.712 0.835
mRF[25] 0.850 0.786 0.653 0.703 0.622 0578 0.786
m Cryspnet[26] 0.872 0.769 0.621 0.682 0.588 0.532 0.757

(a) Performance comparison in terms of Accuracy

1.000
0.900
0.800

0.700
0.600
0.500
0.400
0.300
0.200
0.100

0.000

F1score

Cubic Hexagonal Trigonal Tetragonal Orthorhombic Monoclinic Triclinic
HOur Model 0.959 0.906 0.818 0.840 0.746 0.703 0.834
W RF[25] 0.846 0.781 0.644 0.694 0.609 0.561 0.785
w Cryspnet[26] 0.870 0.768 0.618 0.679 0.582 0.521 0.757

(b) Performance comparison in terms of F1 score

Figure 5: Performance comparison with previous works for space group prediction. Note that the results in RF[25] and
Cryspnet[26]) are based on our implementations of the corresponding algorithms described in the literature.

For multi-class classification, we select all kinds of space groups available in Materials Project in order that our
classification algorithm can predict all types of crystal materials. However, in ref.[23]], there are only 18 space groups
selected for experiment, each having more than 1000 compositions for space group prediction. In addition, we use
Formula [T]to tackle the duplicate formula caused by isomers, but in paper[23], there is no information about the isomer
processing. In Magpie descriptors based space group classification, compared with Cryspnet[26], we use random
forest algorithm which has better performance than the neural network[25]]. And most importantly, we propose a new
descriptor set, which greatly improves the performance of our model compared to previous works on space group
prediction for inorganic materials[25] 26]. As is shown in Figure[5] we make comparisons with two previous works for
space group prediction. Our model is the random forest in this work, which is trained using all the descriptors in Table
RF[23] is the random forest algorithm trained by Element Property statistic descriptors of Magpie. Cryspnet[26] is
the neural networks framework of Cryspnet trained by Element Property statistic descriptors and additional Predictors
of Magpie. The three models are trained using the same dataset of Materials Project processed by Formula[l] As we
can see that compared with the previous works of Cryspnet and ref.[25]], the space group prediction performance in
terms of accuracy scores is improved by about 0.14 and 0.16 on average respectively in the six crystal systems except
the triclinic. For F1 scores, the improvements are similar. Moreover, the higher the symmetry of the crystal structures,
the better prediction performance our RF can achieve for space group classification in the three algorithms.

In particular, we show the confusion matrices in Figure [6]to explore some classification details for the space group
prediction performance in the monoclinic system which has 13 space groups and relatively complex crystal structures.
For our RF model, confusion matrices shown in Figure[6{a), the classification performance is better than previous two
works whose confusion matrices are shown in Figure [6c) and Figure[6{d). For more than half of the space groups, there
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Figure 6: Performance of space group prediction for monoclinic materials using different algorithms. All those
performances are trained by the same dataset. Note that the results in (c) and (d) are based on our implementations of
the corresponding algorithms described in the literature.

are about 0.2 improvements in terms of accuracy. And the improvement of the space group of 3 and 10 are obvious
which has about 0.5 improvement. In addition, the prediction results of our model are more concentrated, for example,
for the actual space group of 6, the classification result concentrates on the space group of 3, 6, 10 and 12. However, in
previous works[25] [26]], particularly the Cryspnet[26]], the classification results are scattered. To illustrate the validity
of our descriptor, we make classification by the combination of random forest algorithm and the new descriptors we
proposed, the performance is shown in Figure[6[b). The model even has a better performance than the two previous
works, which indicates that the descriptors related to the number of various atoms in a crystal structure are effective for
space group classification.

3.1.3 Performance comparison of different algorithms

Various machine learning algorithms have been used for structural information prediction. Here, we evaluate the
performance of three powerful machine learning methods, the DNN, RF, and XGBoost, in space group and crystal
system classification. As is shown in Figure[7] the RF model performances in both accuracy and F1 score are slightly
better than those of XGBoost. And in our experiment, which uses the physical and chemical properties as descriptors, the
performance of the two kinds of ensemble tree algorithms is better than that of DNN. In this work, RF has demonstrated
better performance than DNN in making crystal systems and space groups classification, which is consistent with the
results in previous study[25]]. However, there are many works indicating that neural networks has excellent performance
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Table 5: The performance of multi-label classification.

Precision Recall F1 score

Crystal system prediction | 0.813£0.011 | 0.706+£0.013 | 0.75140.010
Space group prediction | 0.7641+0.020 | 0.45240.018 | 0.547+0.017

compared with other machine learning models in the field of material informatics[[13} [16]. Therefore, for different
problems, choosing suitable machine learning algorithms is needed to achieve the best results.

1
0.9
0.8
0.7
0.6
g os
2 04
< 03
0.2
0.1
0
Cubic Hexagonal Trigonal Tetragonal Orthorhombic Monoclinic Triclinic
WRF 0.961 0.909 0.824 0.849 0.755 0.712 0.835
W XGBoost 0.959 0.906 0.808 0.831 0.725 0.695 0.835
WNN 0.945 0.870 0.763 0.810 0.682 0.639 0.786
(a) Performance comparison in terms of Accuracy
1
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o 06
5 05
3 04
20
“- 03
0.2
0.1
0
Cubic Hexagonal Trigonal Tetragonal Orthorhombic Monoclinic Triclinic
HRF 0.959 0.906 0.818 0.840 0.746 0.703 0.834
W XGBoost 0.958 0.903 0.801 0.824 0.714 0.687 0.835
WNN 0.944 0.868 0.760 0.806 0.673 0.634 0.786

(b) Performance comparison in terms of F1 score

Figure 7: Performance comparison of different algorithms in our work for space group prediction

3.2 Multi-label classification

Considering the fact that some formulas can correspond to multiple structures of different crystal systems or space
groups, the prediction problem of crystal systems and space groups can also be mapped as a multi-label classification
problem[23]]. Here we train machine learning models for multi-label classification for the 10,412 crystals which have
isomers. The crystal system classification performance is shown in Table [5| which has the recall score of 0.706, the
precision score of 0.813, and the F1 score is 0.751. For space group classification, the performance is inferior to the
crystal system prediction. The precision, recall and F1 scores are 0.764, 0.452 and 0.547 respectively. This is because
the crystal structures have 230 space groups, which are far more diverse than the seven types of crystal systems.

4 Conclusion

Computational prediction of space groups and crystal systems plays an important role in analyzing crystal material
structures and their physical and chemical properties and is useful for crystal structure prediction. While there are
various methods to classify the space groups and crystal systems of crystal materials in previous works, this study
proposes an efficient and easy-to-use method to achieve more accurate classification by introducing a new set of
materials composition based descriptors. When combined with the Magpie descriptors, our algorithms’ classification
performance have improved significantly compared to previous algorithms that use only the magpie descriptors. Our
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trained models and source code are freely available at https://github.com/Yuxinya/SG_predict, which should
be helpful for downstream works such as material property exploration, material screening, and crystal structure
prediction. To further improve the performance of composition based space group and crystal system prediction, more
advanced machine algorithms and deep learning based representation learning are two most promising directions.
For example, graph neural networks with attention layers can be used for composition based representation learning.
Moreover, more physics based heuristic descriptors can also potentially improve the performance.

5 Contributions

Conceptualization, J.H. and Y.L.; methodology, Y.L. and J.H.; software, Y.L. and J.H.; validation, Y.L. and
J.H.;investigation, Y.L.,J.H., R.D., and W.Y.; resources, J.H.; writing—original draft preparation, J.H. and Y.L.; writ-
ing-review and editing, J.H and Y.L.; visualization, Y.L., R.D; supervision, J.H.; funding acquisition, J.H

6 Data Availability

The data that support the findings of this study are openly available in Materials Project database[27] at http:
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