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One of the major challenges in applying tomography methods for detecting
defects in composite materials is the large image datasets generated during
imaging, which require significant effort for the detection of damage. Machine-
learning (ML) methods require a large training dataset and can be efficient in
processing tomography datasets for defect detection. Methods need to be
developed for processing images to train the ML algorithms, which is the focus
of the present work. An additive manufactured fiber reinforced composite
material is imaged using a micro-CT scan to generate an image set for defect
detection. The microstructures are processed using the binarized statistical
image features (BSIF) method for compression without compromising the
desired information about defects. The result shows that the convolutional
neural network model has a mean square error of 0.001 in fiber orientation
prediction, and a scheme has been developed for defect detection based on the

predictions obtained from the ML models.

INTRODUCTION

Additive manufacturing (AM) is playing an
important role in the aeronautical, automotive,
and medical fields, ' by making it possible to
fabricate parts of complex geometry, internal struc-
tural details, and individually customized designs at
low cost and small production runs.>* For AM, a
wide range of feed materials is available across the
entire material spectrum of polymers, metals,
ceramics, and composites.?°~ Parts made of glass
and carbon fiber-filled polymer matrix composites
(PMCs) are now being 3D printed.g_10 AM methods
have evolved significantly in recent years; however,
there are still challenges in obtaining high-quality
resolution and surface finish for many applica-
tions.''3 For example, while fabricating a com-
plex-shaped object wusing material extrusion
methods, which is one of the most commonly used
by AM methods,'* an outline is first printed to more
accurately define the contours, and then an infill
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pattern is used to deposit material within the
contour lines.”® This kind of space-filling
scheme leads to gaps at the end of the deposited
lines, and creates porosity in the specimens if the
process is not well optimized, which affects the
mechanical properties of the printed part.'® In
addition, the curvatures present in the computer-
aided design (CAD) models are often reformed with
linear segments in file formats such as STL, and can
result in the loss of dimensional accuracy in the
printed part.'”'® Such effects cannot be avoided in
material extrusion methods and may lead to voids of
several tens, even hundreds, of microns in size near
curvatures, which can be detected using both
destructive and non-destructive imaging methods.
Quality assessment of AM parts is a challenge
that is being addressed by a variety of methods,
such as automated or computationally assisted non-
destructive inspection,'® to maintain high %uality as
well as high manufacturing throughput.?>! In AM,
since a part is printed in several hundred layers,
detection of defects may be possible through in situ
monitoring. In a way, the lay-up process of compos-
ite manufacturing is similar to the layer-by-layer
manufacturing of AM, while the machine-learning
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(ML) methods applied to composite quality assess-
ment can be applicable to the AM process.”> ML
methods are now being applied to a variety of
problems in materials science, including fields such
as the development of batter%/ materials and the
testing of composite materials,*>?* where enormous
amounts of raw data are generated on a daily basis
that can be used to train the model for effective
decision-making.?® The artificial neural network
(ANN) is a computational ML method, inspired bzy
the architecture of biological neural networks,*®
that has been applied to many problems related to
composite materials 2 ° and other materials for
defect detection.?!3

ML methods are being applied to materials design
and characterization fields.>>® The large image
dataset generated in many materials characteriza-
tion methods, such as micro-CT (uCT) scan, which is
a limitation for manual inspection methods, is an
asset for the training of ML methods. In deep
learning methods, massive image datasets are used
for training the algorithms and improving the
quality of the results.®® It is beneficial to pre-
determine the useful features that need to be
detected to reduce the training effort and increase
the accuracy of detection of the desired features.
The location and orientation of the reinforcing fibers
governs the mechanical response of composite mate-
rials, which can be detected by ML methods.?” ML
methods have also been used on optical images to
identify and classify two-dimensional materials.>®
Use of ML methods on large image databases
sometimes requires significant signal processing
effort to make the search faster or for identification
of the features of interest.

In this work, a glass fiber-reinforced PMC fila-
ment is used to fabricate specimens by a commercial
material extrusion 3D printer. The specimens are
imaged using a uCT scanner. The image dataset has
been used to train a ML algorithm. Previous studies
have revealed that 2D images with irregular outli-
nes increase the difficulty in analyzing the
microstructure features of composite materials,
such as the fiber orientation identification,*®* and
such limitations are overcome by cropping the
training images into a circular shape during train-
ing. Furthermore, with the help of the binarized
statistical image features (BSIF) algorithm, the
desired features of the images are retained while
reducing the image data to 1D information, and
achieving a significant reduction in the size of the
dataset. Application of these image-processing
methods to reduce the size of the dataset helped in
making the training significantly faster. In addi-
tion, two different ANN architectures have been
used to compare their ability to address such
problems. The short fibers present in the 3D
printing feed filament are largely aligned in the
printing direction. The misalignment of fibers and
the gaps between the deposited lines lead to voids
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that are identified as the defect. The combined effect
of all the voids is detected as the defects in the
composite material.

MATERIALS AND METHODS
CAD Model Design and 3D Printing

The details of specimen design and AM process
have been presented in a previous publication,>’
and are included here only in brief. The sample was
designed using SolidWorks 2017 (Dassault Sys-
temes, Waltham, MA, USA) and saved in STL
format. Figure 1 shows the SolidWorks CAD model
of the sample and the uCT scan-reconstructed 3D
model.?® The material used for printing was ABS-
GF10 glass fiber-reinforced acrylonitrile butadiene
styrene (ABS) filaments of 1.75 mm diameter,
manufactured by 3DXTECH (Grand Rapids, MI,
USA). A FlashForge Creator Pro Dual Extruder 3D
printer was used to print the cube-shaped speci-
mens of 6 mm sides. The CAD files were saved in
STL format and then sliced using ReplicatorG, and
the G-code was generated for printing the model.
The printing parameters include 100% solid infill,
travel rate of 15 mm/s, feed rate of 41lmm/s,
extrusion temperature of 220°C, and the build
platform temperature of 120°C. The printing direc-
tion of the fiber was set to 0° and 90° for alternate
layers, and the layer resolution (thickness of each
layer) was set to 0.27 mm. The existence of sharp
edges in the cube geometry is a challenge for the 3D
printing method, and reversal in the printing
direction may generate some porosity in the speci-
men, which will be identified in this exploratory
study.

The printed specimen was mounted on a Skyscan
1127 uCT scanner and scanned at an X-ray voltage
of 44 kV with 222 uA, and the image pixel size was
9.5 um, the rotation step was 0.6° per scan, with
360° rotation, taking 34:54 min for the scan.

Micro-CT Scan and Image Reconstruction

The pCT scan images underwent reconstruction
using the software NRecon. In this step, the recon-
structed image can be tuned with the “smooth”
function to adjust the resolution, the “contract”
function to reduce noise, and the “rotation” function
to rotate the images. Since, the sample was ran-
domly mounted on the stage, the images were
rotated to designate 0° as the horizontal direction
after the image reconstruction. The glass fibers
filled in ABS can be observed as the white lines in
the images. The image dataset contains 656 images
in jpg format of 683 x 674 pixel size each.

Dataset Preparation for Machine Learning

Each image slice represents a variety of fiber
directions based on the space-filling algorithm used
for determining the print head movement. The
potential defects in the specimen include fiber
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Fig 1. (a) CAD model of a cube with 6 mm side and (b) a ¢CT scan of the 3D-printed part showing an in situ signatures representation (the violet
lines seen in the image are from the imaging reference frame). Images obtained after uCT scan and image reconstruction: (c) a random

orientation image, and (d) adjusted 0° rotated image.

direction misalignment and voids. The ML model
tuning dataset needs to identify these features,
which are significantly smaller than each image.
Hence, each image was further sliced in circular
sub-images of 100 x 100 pixels using a Matlab code.
The sub-sampling process and the resulting images
are shown as Fig. 2. This process results in 961
cropped circular images for each pCT image slice.
The circular shape helps in reducing the errors
caused by the irregular outline of the specimen. In
order to train the model, 126 images with clear
visibility of the 0° fiber angle were selected, and
then the images were synthetically rotated coun-
terclockwise at intervals of 1° each from 0-180°
using a Python code to train the model for predict-
ing various rotation angles. The process allows the
creating of a dataset with controlled orientation of
the glass fiber, resulting in 22,806 images of
100 x 100 pixel size each.

Binarized Statistical Image Features (BSIF)
Process

Since 22,806 images represent a large dataset, the
training time for the neural network is reduced by
applying the BSIF algorithm, which can signifi-
cantly reduce the storage size of each image without
losing the accuracy for interpreting the features
present in the image. BSIF is described as comput-
ing a binary code string for the pixels of a given
image. The code value of a pixel is considered as a
local descriptor of the image intensity pattern in the
pixel’s surroundings. Histograms of the pixels’ code
values allow the characterizing of the texture
properties within image sub-regions.*® Thus, the
descriptor can be used in texture recognition tasks.
An example of the images processed by BSIF is
given in Fig. 3. The 2D images are converted into 1D
data with 1 row and 256 columns, and the resulting
data were saved as a csv file with 22,806 rows of
image features. This dataset was divided into
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22,806 images

Fig 2.. The image dataset (22,806 segmented images) obtained from the uCT scan after removing overlapping images and being labeled as

0° for ML.

training, validating, and testing datasets. Since 126
images for each angle are available, and to avoid
bias while training the model, 100 images were
picked for each angle as the training dataset, which
totaled 18,100 sub-images. Then, 20 images from
each angle were added to the validating dataset,
which totaled 3,620 sub-images. Finally, 1086 sub-
images, corresponding to 6 images for each angle,
were used in the test dataset. By feeding the dataset

with evenly distributed weights, the neural network
will have the least bias when the training is
completed.

Machine Learning

Two kinds of ANN architectures have been used
to build °models using Python with Tensorflow, A
recurrent neural network (RNN) and A
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Fig 3. BSIF representation of the glass fiber orientation with a 100 x 100 pixel image: (a) the original circular cropped 2D image, and (b) the 2D

image converted by BSIF.

convolutional neural network (CNN). Both neural
networks can deal with sequences of variable
lengths. The RNN uses the memory-state to process
the input data on each neuron. In this work, an
RNN architecture with 64 long short-term memory
(LSTM) cells has been used to train the model. The
CNN model was trained with kernel size 5 and filter
size 80 in the first layer, and same parameters were
used in the second layer to iterate through the data
to train the model.

The BSIF-converted csv file was loaded and
converted to an array as (18,100, 1, 256) for the
training feature, which means that this training set
has 18,100 data, representing the true angle label,
with time-step as 1, and 256 feature points. The
same process was applied to the validation data,
which resulted in an array of (3620, 1, 256). The loss
function depends on the desired result parameter,
such as the fiber angle. Hence, the mean square
error (MSE) was used as the loss function in the
model. The estimated values and the actual value of
the angle are used to calculate the MSE.

The Damage Scales

A damage scale has been adopted to quantify the
damage detected in the composite through the
image analysis. It can be used to compare two
specimens analyzed under the same set of condi-
tions. The damage scale, D, is calculated by:

D= % x 100% (1)

t

where Ny is the number of deviated images and N;
is the number of the total cropped images. The
calculation of D depends on several factors, includ-
ing the threshold used for calculating the deviation
of a fiber from the assigned angle, the size of the

segmented image, the total number of segmented
images, and the resolution of the imaging method.
The possible deviations are based on factors such as
fiber misalignment, fiber debonding, and voids.

RESULTS AND DISCUSSION
Prediction of Fiber Orientation

As mentioned in Sect. 2.4, the image dataset has
been split into the training set and the validating
set with 18,100 and 3620 images, respectively. Since
the built-in function of the training set splits the
dataset randomly, it preferentially takes the first
few data for the neural network to train. This may
lead to an uneven weightage based on the trends in
the first few data points and so cause bias while
predicting. However, with the evenly distributed
training and validating data, the possible bias
during prediction can be eliminated. To test the
accuracy of the trained model, the remaining 1086
images were used to check the prediction accuracy
of the model. With the MSE loss function, a
continuous output number represents the angle of
the fiber that will be predicted. Although the ML
algorithm mostly depends on the parameters within
each layer of the neural network, with the same set-
up, a slightly deviation occurred. Therefore, the
standard deviation is considered in this research.
Hence, 5 outputs for each iteration were saved.
Here, in combining the fine-tuning technique men-
tioned above, an RNN model with MSE 0.87 and a
CNN model with MSE 0.001 were achieved. The
testing results are shown in Fig. 4. To illustrate the
testing results for different epochs, the standard
deviation of the 5 training results is shown in
Table 1.

Figure 4 shows the prediction results of the RNN
and CNN models, including the average MSE
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Fig 4. RNN predictions for each angle in the training and test datasets on 10,000 epochs: (a) mean square error and (b) predicted angle of fiber
orientation compared to the correct labeled value for the test dataset with the regression line. CNN predictions for each angle in the training and
test dataset on 100 epochs: (c) mean square error and (d) predicted angle of fiber orientation compared to the correct labeled value for test

dataset with the regression line.

values for each angle in the training and testing
datasets in each epoch. The test results show the
accuracy over the training dataset. The difference in
the MSE values between the training and test
dataset is very small. No trend of underfitting or
overfitting is observed in the prediction result. The
information of the prediction of the fiber angle with
respect to the actual angle for the test dataset, and
the predicted value for each labeled angle and the
linear regression line, are also shown in Fig. 4a,
providing the proof that the predicted result is close
to the exact angle. Therefore, the trained model has
been acquired. Moreover, from the results listed in
Table I, the CNN model provides an overall better
prediction result compared to the RNN model, and
so do the MSE values in the training, validation,
and test datasets. Therefore, the following defects
detection is conducted with the CNN model.

Defects detection

The uCT scan image presented in Fig. 5a shows
that the 3D printing process first prints an outline
of the layer and then fills the space inside the
outline at 0° and 90° fiber orientation. This area is
used to detect the glass-fiber orientation.

Figure 4c and d and Table I show that the
predictions conducted by the trained CNN model
have a higher accuracy compared to the RNN
model. With the highly accurate machine-leaning
model, the uCT scan images of the specimen can be
used for defect detection. Figure 5 shows a uCT scan
slice of the sample. The image was then cropped into
small square images to perform a regional glass-
fiber orientation prediction. Each square image was
cropped using a python code with 100 x 100 pixels
from the original image of 683 x 674 pixels. An
orientation indicator was generated by the trained
machine-learning model to display the directions of
the glass fibers in each sub-sampled image, as
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Table I. MSE values at different epochs for training, validation and test datasets in RNN and CNN model

predictions.

Standard deviation for RNN Model

Epochs
Training Dataset 500 1000 10000 Standard deviation for 10,000 epochs
1 Training MSE 1.551 0.838 0.312
Validation MSE 1.950 1.469 1.272
Test MSE 1.894 1.539 0.983
2 Training MSE 1.236 0.788 0.313
Validation MSE 1.579 1.479 1.313
Test MSE 1.677 1.545 1.048 Training MSE 0.0074
3 Training MSE 1.853 0.846 0.320
Validation MSE 2.027 1.536 1.26 Validation MSE 0.0128
Test MSE 1.906 1.516 0.968
4 Training MSE 1.243 0.795 0.389 Test MSE 0.0154
Validation MSE 1.864 1.379 1.314
Test MSE 1.525 1.439 1.010
5 Training MSE 1.970 0.828 0.217
Validation MSE 2.490 1.459 1.257
Test MSE 2.574 1.556 1.021
Standard deviation for CNN Model
Epochs
Training Dataset 5 10 150 Standard deviation for 150 epochs
1 Training MSE 0.288 0.266 0.120
Validation MSE 0.058 0.096 0.010
Test MSE 0.003 0.002 0.001
2 Training MSE 0.244 0.239 0.112
Validation MSE 0.064 0.099 0.0099
Test MSE 0.003 0.002 0.0018 Training MSE 0.01494
3 Training MSE 0.292 0.291 0.141
Validation MSE 0.071 0.089 0.019 Validation MSE 0.00536
Test MSE 0.005 0.004 0.0013
4 Training MSE 0.288 0.245 0.0123 Test MSE 0.00036
Validation MSE 0.058 0.092 0.018
Test MSE 0.003 0.002 0.0012
5 Training MSE 0.288 0.210 0.140
Validation MSE 0.058 0.095 0.0199
Test MSE 0.003 0.002 0.0015

shown in Fig. 6a. The position of the indicator in
each sub-image represents the local glass-fiber
orientation, which provides a full picture of the
toolpath of the printed specimen.

Based on the collection of the orientation indica-
tors in Fig. 6b, the defects are observed in places
where discontinuous predictions are shown. To
properly address the position of the cropped images,
a rows and columns index has been added onto the
image. Also, with the help of the ML model, 47
deviations were captured. The regions of the devi-
ations observed from the orientation indicators are
superimposed on the microstructure of one layer of
composite in Fig. 6a, with the locations of the
deviations marked by red circles. The trained

algorithm does not directly detect voids in this
work. Rather, fiber misalignment is taken as the
measure of the defects in the material. Voids appear
as black regions in the images and the appearance
of more than expected black color in the image is
detected as a deviation in the predictions and
labeled as a defect. Due to the contrast difference,
the primary defects detected in the images are the
voids. It is also noted that the efficient detection of
voids depends on the image resolution and the
dimensions of the segmented images, since each
segmented image is reduced to a single indicator of
the fiber direction in the predictions from this
method.



2082

Chen, Yanamandra and Gupta

N

PErARECEEEES TSN
FRECSEEEESERESERSTIN
P £ 5 208 0 AR )
BEEmREEEcSANRERARNNY
I 72 ik 6 5 5 5 5 o 0 B R R SR A AN N
MEaREEsEEE=REE SRSN L
MM%@EEEEEE%&E&E&&W
(161 A N2 2 5 5 2 5 5 i 5 S G ) Y Y )
| il 1 5 2 5 I Y N O
Vi T 1 S N 5 8 5 S
1 e i 9 0
HEIEEESREEE ¥ 155 550 5 A
iSRS = oo ) T
N EEES e e s e w0 6 )
HREEESSNEES! o Bt o ) il
HRtEEREEE S s Byt 9 o7
BREssmsEEa: Lt |
R ZEEPT
AESES - cimaadd
(b

Fig 5. Slice of uCT scan image cropped into small square shapes for regional glass-fiber orientation prediction with (a) the original image and (b)

cropped by python coding with 19 rows and 18 columns.
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Fig 6. (a) Predicted collection of direction indicators corresponding with (b) cropped image, (c) rows 5, columns 4; (d) rows 8, columns 14, (e)
rows 11, columns 8, and (f) rows 14, columns 16, showing the defects marked by yellow circles (Color figure online).

Based on the images showing deviations, a dam-
age scale of 13.7% has been calculated. It should be
noted that the deviation can be defined by a number
of parameters, including the angle of marker
misalignment that is acceptable and should not be
counted as the deviation. The porosity present in
the specimen results in localized changes in the
fiber direction, and a sufficiently small subsampled
image is able to detect such aberrations. Examples

of some of the images that are labeled as deviations
are magnified as Fig. 6¢c—f, which shows the defects
that resulted in deviations of the predictions. Such
defects are marked with yellow circles in the
images. Depending on the desired outcomes, the
images may be further sub-sampled to a smaller
size to more accurately determine the defects.
However, the workflow for such detection would be
the same.
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Fig 7. (a) A slice of a micro-CT scan image of the cylindrical sample. (b) A collection of predicted direction indicators corresponding to the micro-
CT scan image slice. (c) The cropped micro-CT scan image slice used for prediction. Defects in the image are shown in (d) rows 10, columns 7,
(e) rows 11 columns 7, (f) rows 13, columns 10, and (g) rows 14, columns 12, showing the defects marked by yellow circles (Color figure online).

Validation of the Mechine-Learning Model

To further validate the efficiency of the trained
CNN ML model, it has been tested on the uCT
image set obtained from a specimen of a different
geometry. A cylindrical sample, shown in Fig. 7, has
been 3D printed using the same material and
process as the cubic model used in the previous
sections for model training. The images obtained of
this specimen have been used to demonstrate the
efficiency of the trained algorithm in defect detec-
tion. From the predicted result, shown in Fig. 7b
and c, the damage areas can be detected. This test
on a different specimen demonstrates that the
trained ML algorithm can be used effectively for
defect detection in composite materials.

CONCLUSION

This work focuses on training machine-learning
(ML) base models for uCT scan images for possible
defect detection. The deviation in the fiber direction
from the predicted values is considered as the
measure of defects in the microstructure. The

possible reasons for deviations in the microstructure
include fiber misalignment, voids, and debonds. A
glass fiber-reinforced ABS filament was used to 3D
print the specimens using a fused filament fabrica-
tion 3D printer. The results are summarized as:

e A defect detection method was developed based
on artificial neural network architecture applied
to uCT scan images of 3D printed specimens of
fiber-reinforced composites.

e A refined CNN model achieved an accuracy of a
mean square error of 0.001 in predicting the
fiber orientation. The model showed that 13.7%
of the sub-sampled images had defects in them.

e The trained deep learning model can be used on
specimens of a similar nature with a high level of
accuracy in the detection of defects.

Although the method has been developed on images
acquired after 3D printing, a similar scheme can be
used for in situ defect detection during specimens
printed using optical images acquired by a camera.
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