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Abstract. In this paper, we extend the traditional few-shot learning
(FSL) problem to the situation when the source-domain data is not acces-
sible but only high-level information in the form of class prototypes is
available. This limited information setup for the FSL problem deserves
much attention due to its implication of privacy-preserving inaccessibil-
ity to the source-domain data but it has rarely been addressed before.
Because of limited training data, we propose a non-parametric approach
to this FSL problem by assuming that all the class prototypes are struc-
turally arranged on a manifold. Accordingly, we estimate the novel-class
prototype locations by projecting the few-shot samples onto the average
of the subspaces on which the surrounding classes lie. During classifi-
cation, we again exploit the structural arrangement of the categories
by inducing a Markov chain on the graph constructed with the class
prototypes. This manifold distance obtained using the Markov chain is
expected to produce better results compared to a traditional nearest-
neighbor-based Euclidean distance. To evaluate our proposed framework,
we have tested it on two image datasets – the large-scale ImageNet and
the small-scale but fine-grained CUB-200. We have also studied param-
eter sensitivity to better understand our framework.

1 Introduction

Deep learning has produced breakthrough in many areas like computer vision [7,
9], speech recognition [1], natural language processing [4] etc., mainly due to the
availability of lots of labeled data, complex neural network architectures and effi-
cient training procedures. Even though these deep learning models are trained on
large labeled datasets, they still fail to generalize to new classes or environments.
Humans, on the other hand, can quickly recognize new objects from very few
samples. They do that by using their previously obtained knowledge and apply
it to new situations. This difference in the way machines and humans learn pro-
vides motivation to carry out research on few-shot learning (FSL). Accordingly,
most few-shot learning methods strive for a transfer-learning approach where
they extract useful transferable knowledge from data-abundant base classes and
use it to recognize data-starved novel classes.

Most previous methods in FSL assumed that abundant labeled data is avail-
able across the base categories from which a robust and generalizable knowledge
c© Springer Nature Switzerland AG 2020
G. Bebis et al. (Eds.): ISVC 2020, LNCS 12510, pp. 3–14, 2020.
https://doi.org/10.1007/978-3-030-64559-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64559-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-64559-5_1


4 D. Das et al.

representation can be learned. However, in certain situations, it is difficult to have
access to all the labeled data of these base categories due to privacy restrictions
and/or inefficiency in maintaining such a large database. Hence, alternatively
class exemplars or prototypes can be retained. These prototypes summarize the
class information by averaging over the data samples without revealing sensitive
information about the data. For example, the prototype of the dog category can
be the arithmetic mean of all the dog sample features. Previous work on hypothe-
sis transfer learning (HTL) [8,10,15] assumed access to base class models, where
recognition performance would depend on the choice of these models. As a result,
this HTL-based setting does not allow for fair comparison. On the other hand,
our proposed setting involving base-class prototypes allow for fair comparison
where performance depends only on the data and the proposed transfer learning
approach. This proposed FSL setting is depicted in Fig. 1.

Fig. 1. In this FSL setting, the
base-class prototypes are known
but not the novel-class proto-
types. The spread of the classes
(dashed boundaries) are also
unknown.

Previous FSL methods cannot be applied
to this proposed restrictive setting. This is
because they assume that lots of labeled data
are available from the source domain. Conse-
quently, they use neural-network-based para-
metric approaches. The neural-network-based
approaches can be categorized depending on the
type of transferable knowledge extracted from
the base categories and encoded in the neural
network architecture: (a) Metric-learning meth-
ods [13,14,16] learn a metric space; (b) Meta-
learning methods [2,5,12] learn the learning pro-
cedure; (c) Generative methods [6,11,17] gen-
erate data for the novel classes. However, the
neural-network-based parametric models might severely overfit if we only have
limited data in the form of class prototypes available from the source domain.
Hence, in order to solve this restrictive FSL problem, it is natural to seek a
non-parametric approach.

In this paper, we address this restricted FSL setting by formulating it as
a case of ill-sampling. As depicted in Fig. 1, the correct locations of the base
category prototypes are known but that of the novel categories are unknown.
This is because the few-shot data from a novel category might be sampled from
the periphery of the class distribution. These non-representative samples when
used for classification will result in poor recognition performance. Therefore, a
non-parametric-based prior is used to produce a biased estimate of the novel-
class prototype location.

For the non-parametric-based prior, we find inspiration from the idea [3]
that data samples from one class lie on a low-dimensional subspace. Therefore,
we can consider all the classes as a collection of piece-wise linear subspaces.
This set of subspaces can be considered as an approximation of a non-linear
manifold close to which the class-prototypes lie. This manifold serves as a prior
to estimate the location of the novel-class prototype. The subspace near the
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novel-class prototype is found by calculating the mean of the subspaces on which
the nearby base classes lie. The subspace on which the nearby base classes lie is
again found using their nearest neighbors as shown in Fig. 2. Finally, the novel-
class sample can be projected onto the mean subspace to obtain the novel-class
prototype.

Once the novel-class prototypes are estimated, one can use the nearest-
neighbor (NN) approach to assign a test sample to a class based on the Euclidean
distance to all the prototypes. However, the estimation procedure for the novel-
class prototype might still be error prone. Hence, there is a need to exploit the
structural arrangement of the manifold containing all the classes to assign a class
to a test sample. The neighboring class locations can provide better estimate of
class-prototype distances. This can be achieved by constructing a graph using
all the class prototypes and then using equilibrium probability of an induced
absorbing Markov-chain process to output the most probable class. Finally, to
validate the proposed approach, we perform experiments and analyses on this
framework to set a benchmark for future research.

Fig. 2. The surrounding subspaces S1, S2 and S3 for a novel-class sample xn are found
by using its Nearest Neighbors (NN) and the NNs of its NNs. Their mean can be
calculated to obtain the subspace S̄ on which the novel-class sample xn is projected to
obtain cp. The weighted average cd of the nearby prototypes are also used to obtain
the novel-class prototype.

2 Proposed Approach

In this section, we describe the proposed framework, which consists of two steps -
estimating novel-class prototypes using the manifold approach and classification
using the Markov chain method.

2.1 Estimating Novel-Class Prototypes

Consider that we have access to the base-category prototypes collected in the
form of a matrix C ∈ R

nb×d, where nb is the number of base prototypes and d
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is the dimensionality of the feature space. Let the one-shot sample from a novel
class be xn ∈ R

d. Our goal is to estimate the prototype location cn ∈ R
d of the

novel class. Our assumption is that all the base and novel-class prototypes, i.e.,
all rows of C and cn lie close to a non-linear manifold. Since the mathematical
expression of the manifold is unknown, we express it as a collection of piece-
wise linear subspaces. First, we find the surrounding classes of the novel class
by finding r nearest-neighboring prototypes of the novel-class sample xn. Let
these nearest-neighboring prototypes be denoted as cni ∈ R

d for i ∈ {1, 2, ..., r}.
For each of the r neighboring prototypes, we find q neighboring prototypes.
These new prototypes can be expressed as cnij ∈ R

d for j ∈ {1, 2, ..., q} and
i ∈ {1, 2, ..., r}. Hence, cnij represents the jth nearest neighbor of the ith nearest
neighbor of the novel-class sample xn. To represent the non-linear manifold, we
form r linear subspaces using the r nearest neighbors of the novel sample as
well as the q nearest neighbors of each of the r prototypes. The linear subspace
Si corresponding to the ith nearest neighbor of xn is represented as a column

space such that Si ≡ [cni
... cni1

... cni2
......

... cniq]. The linear subspace can be
orthonormalized to obtain S⊥

i and the operation can be repeated for all the r
nearest neighbors. The net result is r linear subspaces with dimensionality (q+1)
surrounding the novel-class sample xn. In the example in Fig. 2, we chose r = 3
and q = 3. These linear subspaces represent linearized localized versions of the
non-linear manifold on which the class prototypes lie. The subspace on which the
novel-class prototype lies close to can be found by averaging these surrounding
r subspaces S⊥

i for i ∈ {1, 2, ..., r}. For finding the average of these orthonormal
subspaces, we use the concept of Grassmann manifold.

A Grassmann manifold G(n, l) for n, l > 0 is the topological space composed
of all l-dimensional linear subspaces embedded in an n-dimensional Euclidean
space. A point on the Grassmann manifold is represented as an n × l orthonor-
mal matrix S whose columns span the corresponding linear subspace S. It is
represented as: G(n, l) = {span(S): S ∈ R

n×l,STS = Il}, where Il is a l × l-
dimensional identity matrix and superscript T indicates matrix transpose.

Following the definition, the r orthonormal subspaces S⊥
i for i ∈ {1, 2, ..., r}

are points lying on a G(d, q + 1) Grassmann manifold. The average of these
points on the Grassmann manifold will represent the linear subspace to which
the novel-class prototype lies close to. The average of these points is found using
the extrinsic mean. For a set of points on the Grassmann manifold G(d, q+1), the
extrinsic mean is the point that minimizes the Frobenius-norm-squared difference
of the projections of the points onto the space of (q + 1) ranked d × d matrices.
Therefore, the optimization problem for finding the extrinsic mean S̄ is

argmin
STS=I

r∑

i=1

d(Si,S)2, where d(Si,S) =
||SST − SiST

i ||F√
2

. (1)

Here || · ||F is the Frobenius norm. Let S∗ be the solution to the optimiza-
tion problem (1), which can be found using eigenvalue decomposition. S∗ is the
spanning matrix of the extrinsic mean of the surrounding subspaces S⊥

i ’s. Set-
ting the extrinsic mean S̄ = S∗, we project the novel-class sample xn onto the



Few-Shot Image Recognition with Manifolds 7

subspace spanned by the matrix S̄. The projected point cp can be obtained as
cp = S̄S̄+xn, where S̄+ = (S̄T S̄)−1S̄T . Superscripts −1 and + indicate matrix
inverse and matrix pseudo-inverse, respectively.

We also consider the direct contribution of the surrounding class prototypes
into estimating the novel-class prototype. If Cr ∈ R

r×d consists of the r nearest
neighbors of the novel-class sample xn, then their contribution cd to the novel-
class prototype location can be found using the equation cd = CT

r pd, where pd ∈
R

r is the probability vector formed by carrying out the exponential mapping of
the Euclidean distances of the class prototypes to xn, followed by normalization.
Hence, the contributions xn, cp and cd can be used to estimate the novel-class
prototype location cn as

cn = α2[α1xn + (1 − α1)cp] + (1 − α2)cd, (2)

where α1, α2 ∈ [0, 1] are scalar weights that are manually set. In case xn is very
close to the novel-class prototype, α1 = α2 ≈ 1 will produce optimal classification
performance.

2.2 Classification Using Absorbing Markov Chain

Fig. 3. Possible transitions are shown
with directed arrows. The transition
probability from a state i to a state j is
pij . The transient state and the absorb-
ing state have self-transition probabili-
ties pii as 0 and 1, respectively.

Once the class prototype locations of the
novel classes are known, the structural
arrangement of the prototypes of both
the base and novel classes are again used
to recognize a test sample to obtain a
more informed decision about the classifi-
cation. The structural arrangement of the
classes is represented using a k′-nearest-
neighbor (k′-NN) graph, where each node
represents a class prototype. The k′-NN
graph formulation allows nodes to only
be connected to its k′-NN nodes. The
weights between the nodes are defined
using the exponential of the negative
Euclidean distances. Upon defining this
graph, an absorbing Markov-chain process is induced on it. Each state of the
Markov chain corresponds to a node in the graph and therefore a category. The
transition probability from a state i to a state j is found as pij = wij/

∑
l wil,

where wil is the weight connecting nodes i and l. In the absorbing Markov chain
process, there are two kinds of states - transient and absorbing. The transient
state and the absorbing state have self-transition probabilities pii as 0 and 1,
respectively. This suggests that a random walker on a graph cannot stay on the
transient node for the next step but for the absorbing node it will stay there
forever. An example of an absorbing Markov chain is given in Fig. 3, where the
arrows represent the possible transitions from one node to another. Overall, the
Markov chain is represented using the transition matrix P, which models the
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dynamics of the process. Using P, the Markov-chain equations are described as
follows:

ut+1 = utP, where P =
[
Tnt×nt

Ant×na

0na×nt
Ina×na

]
,P∞ =

[
0nt×nt

(I − T)−1A
0na×nt

Ina×na

]
.

(3)
ut and ut+1 are the states of the process at instants t and t + 1, respectively,
and they are represented as a probability vector over all the states. T describes
the transition probabilities from one transient state to another. A describes the
transition probabilities from transient states to absorbing states. nt and na are
the number of transient and absorbing states, respectively, and the zero and
identity matrices 0na×nt

and Ina×na
imply that the process cannot leave the

absorbing state. Our goal is to find the equilibrium state ut as t → ∞ for a given
initial state u0. Accordingly, u∞ = u0Pm as m → ∞. The closed-form solution
of Pm as m → ∞ is treated as P∞. Using this formulation, the equilibrium
state probabilities can only be distributed among the absorbing states with zero
probabilities on the transient states.

The initial state u0 is calculated using the Euclidean distances of the test
sample to all the base- and novel-class prototypes and normalizing it to obtain
a probability vector. Using the absorbing Markov-chain formulation in Eq. (3),
we choose the novel categories and base categories as transient and absorbing
states, respectively, to obtain the most probable base category from u∞. Then,
we interchange the order of absorbing and transient states to obtain the most
probable novel category. In the final step, we apply one nearest neighbor app-
roach on the test sample to choose the most probable class among the most
probable base and novel categories obtained in the previous steps. The overall
procedure from the novel-class prototype estimation to the Markov-chain-based
prediction for a test sample is given in Algorithm1. In case we have multiple
samples for a novel class, xn is set as the mean of these samples.

3 Experiments and Discussions

3.1 Dataset Description

To evaluate our proposed approach, we used two image recognition datasets
– ImageNet and CUB-200. Originally, the ImageNet dataset consists of 21K
categories of which we used 1000 for our experiments. These 1000 categories
are accordingly split into base and novel classes. The CUB-200 is a fine-grained
dataset that consists of 200 categories of different bird species. Of these 200
classes, we used a total of 150 of which 100 are base and 50 are novel classes. For
both datasets, the image features used were the 2048-dimensional ResNet-101 [7].

3.2 Effects of Varying the Number of Classes and Samples

In this section, we study how recognition performance is affected by the num-
ber of categories and the number of samples per category in the base and novel
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Algorithm 1: Proposed two-step FSL procedure using manifolds.
Given: Base category prototypes C ∈ R

nb×d, Novel class one-shot samples
xn, n ∈ {1, 2, ..., nnov}, Test sample xte.
Parameters: r, q, k′, α1, α2

Goal: Classify xte into one of the nb + nnov categories
Step 1 Estimate class prototype for each novel class
for each novel class n ∈ {1, 2, ..., nnov}

Obtain r nearest base prototypes for xn to form Cr ∈ R
r×d

Obtain q nearest base prototypes for each of the r base prototypes
Obtain orthonormal subspaces S⊥

i for i ∈ {1, 2, ..., r} using the q neighbors
S̄ ← ExtrinsicManifoldMean(S⊥

1 , S⊥
2 , ..., S⊥

r )
Project xn onto S̄ to obtain cp followed by cd
Obtain novel-class prototypes as cn ← α2(α1xn + (1 − α1)cp) + (1 − α2)cd

end for
Step 2 Predict class of test sample xte

Construct k′-nearest-neighbor graph with nb base prototypes and nnov novel
prototypes as nodes.
Find initial probability vector u0 using distance of xte to all the prototypes.
Construct Markov chain and obtain most probable base class.
Construct Markov chain and obtain most probable novel class.
Use nearest neighbor to obtain the most probable class among the two.

datasets. For training purposes, we used the prototypes of the base categories
and the few-shot samples from the novel categories. For evaluation purposes, test
samples from both base and novel categories were used. Recognition performance
is reported as class-wise averaged accuracy. This ensures that major classes do
not dominate the performance and minor classes containing less number of sam-
ples are not ignored. It is noted that performing cross-validation is impossible
since we do not have access to enough data to be held out as a validation set
and therefore results were reported by fixing the hyper-parameters. For evalu-
ation, we used the following models: (NA) The No-adaptation baseline which
consists of just using nearest neighbor on the few-shot sample mean; (M1) It
uses nearest neighbor on the estimated novel-class prototypes; (M2) It uses the
Markov-chain-based manifold distance on the few-shot sample mean; (Oracle) It
assumes access to novel-class prototypes and uses nearest neighbor for predic-
tion; (M1+M2) involves computing the manifold distance on the estimated class
prototypes.

For the first set of experiments, we used the ImageNet dataset with 800
base and 200 novel categories and studied the effect of changing the number
of shots per novel category. The results were taken over 10 trials and reported
in Table 1. From the results, it is seen that M1 improves the recognition per-
formance over the no-adaptation baseline but the difference diminishes as the
number of shots increases. This is because for the novel categories, the few-shot
mean becomes closer to the prototype location as the number of shots increases.
Also, the contribution of M2 over the baseline or over M1 is incremental. This
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can be attributed to the fact that the ResNet-101 features are not trained using
the manifold-based distance and there is a mis-match between the training and
testing evaluation measures. The standard error reduces with the increasing
number of shots because of reduced variance in the few-shot mean and eventu-
ally the estimated prototype over the trials. We repeated the same experiment
for the CUB-200 dataset, the results of which are reported in Table 2. In this
case, we have 100 base and 50 novel categories, all of which are fine-grained.
As a result, the recognition performance is poorer compared to ImageNet, even
though CUB-200 has lesser number of categories. Still, the observed recognition
performance has a pattern similar to that of the ImageNet dataset. However,
there is no reduction in the standard error with increasing shots. This can be
attributed to larger overlap between the fine-grained classes of CUB-200. For the

Table 1. Average accuracy results over 10 trials of the ImageNet dataset with 800
base and 200 novel categories as the number of shots per novel category is changed.
Standard error is shown in the parentheses. The hyper-parameter setting is r = 20, q =
20, k′ = 3, α1 = 0.9, α2 = 0.7.

1 shot 2 shot 5 shot 10 shot 20 shot

NA 64.31 (0.05) 67.60 (0.05) 71.09 (0.03) 72.24 (0.02) 72.89 (0.01)

M1 66.58 (0.05) 69.67 (0.05) 71.62 (0.03) 72.31 (0.02) 72.91 (0.01)

M1+M2 66.91 (0.05) 69.88 (0.05) 72.05 (0.03) 72.72 (0.02) 72.97 (0.02)

M2 65.21 (0.05) 67.98 (0.05) 71.33 (0.02) 72.07 (0.02) 72.60 (0.01)

Oracle 73.3 73.3 73.3 73.3 73.3

Table 2. Accuracy results over 10 trials of the CUB-200 dataset with 100 base and
50 novel categories as the number of shots per novel category is changed. The hyper-
parameter setting is r = 20, q = 20, k′ = 5, α1 = 0.5, α2 = 0.5.

1 shot 2 shot 5 shot 10 shot 20 shot

NA 43.40 (0.12) 45.28 (0.13) 51.19 (0.18) 55.70 (0.20) 58.16 (0.16)

M1 45.91 (0.23) 48.80 (0.20) 51.90 (0.16) 55.94 (0.18) 57.63 (0.14)

M1+ M2 46.13 (0.28) 49.01 (0.22) 52.13 (0.11) 55.57 (0.17) 58.67 (0.12)

M2 43.81 (0.11) 45.86 (0.15) 51.45 (0.15) 55.91 (0.18) 58.31 (0.14)

Oracle 60.51 60.51 60.51 60.51 60.51

next set of experiments, we considered the performance change on the ImageNet
dataset for the 1-shot setting as the numbers of base and novel categories are
varied. We considered two such scenarios. In the first case, the total number of
categories was fixed at 1000 while the proportion of base categories was changed.



Few-Shot Image Recognition with Manifolds 11

Table 3. Accuracy results over 10 trials of the ImageNet dataset for the 1-shot setting
as the ratio of number of base categories to the total number of categories is changed.
(x-b, y-n) implies x base and y novel categories.

0.1 (100-b, 900-n) 0.2 (200-b,800-n) 0.4 (400-b, 600-n) 0.6 (600-b, 400-n)

NA 38.29 (0.30) 39.59 (0.29) 46.50 (0.18) 55.28 (0.11)

M1 47.70 (0.28) 49.65 (0.30) 54.65 (0.23) 60.71 (0.12)

M1+M2 47.89 (0.28) 50.33 (0.29) 55.13 (0.23) 61.34 (0.11)

M2 38.36 (0.30) 39.68 (0.29) 46.57 (0.19) 55.31 (0.11)

Oracle 73.3 73.3 73.3 73.3

This setting considers less number of base categories compared to novel cate-
gories and it has rarely been studied in previous work. The results of this setting
are reported in Table 3. From the table, it can be seen that M1 improves over
NA by a large margin (9 points) especially when the number of base categories
is very less (ratio of 0.1). This is alluded to our assumption that all the class
prototypes have a structural arrangement on a manifold. Therefore, the use of
this structure is especially beneficial in the few-class regime. However, the dif-
ference between M1 and NA decreases mainly due to more base categories and
lesser difficult novel categories. After that, we considered the experimental set-
ting where the total number of categories was varied but the proportion of base
and novel categories was kept the same at 4:1, the results of which are reported
in Table 4. The results show that the upper bound of the recognition perfor-
mance, i.e., the oracle performance, decreases with an increase in the number of
categories. This is because classification becomes more difficult as the number
of categories increases. As expected, M1 performs better compared to NA and
the contribution of M2 is incremental.

Our proposed few-shot learning setting is new and therefore we do not
have previous work to compare and benchmark against. However, we can study
whether our approach can improve existing relevant work. Prototypical net-
works [13] consider the mean of the few-shot samples to represent class proto-
types. Therefore, there is a possibility of obtaining the class prototypes using our
manifold-based approach and further improving the performance. Accordingly,
we tested the contribution of M1 and M2 over prototypical networks on mini-
ImageNet, which is a subset of the ImageNet dataset. The results are shown in
Table 5. In the table, K-way N -shot implies that K novel categories are sampled
per testing episode with N samples per category. From the results, it is clear that
M1 improves the performance, however M2 declines it. This is mainly because
of the discrepancy between the Euclidean distance metric used during training
ProtoNets and the manifold-based distance metric used during testing.

3.3 Parameter Sensitivity Studies

In this section, we study the effect of hyper-parameters on the recognition per-
formance. We only report results of sensitivity with respect to r, α1 and α2 in
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Table 4. Accuracy results over 10 trials of the ImageNet dataset for the 1-shot setting
as the total number of categories is changed but keeping the ratio of base categories to
novel categories as 4:1.

50 (40-b, 10-n) 100 (80-b, 20-n) 200 (160-b, 40-n) 500 (400-b, 100-n)

NA 81.76 (0.54) 75.98 (0.34) 70.25 (0.16) 67.43 (0.10)

M1 86.10 (0.45) 79.92 (0.36) 73.50 (0.16) 69.59 (0.08)

M1+M2 86.43 (0.47) 80.61 (0.51) 74.09 (0.34) 70.41 (0.08)

M2 82.52 (0.53) 75.48 (0.39) 70.88 (0.23) 67.44 (0.10)

Oracle 92.20 86.76 80.85 76.87

Table 5. Few-shot classification accuracies on the miniImageNet dataset averaged over
600 test episodes for different ways and shots. 95% confidence intervals are shown in
the parentheses.

5-way 1-shot 5-way 5-shot 20-way 1-shot 20-way 5-shot

ProtoNet 47.21 (0.69) 63.62 (0.61) 20.51 (0.46) 35.20 (0.59)

ProtoNet+M1 48.79 (0.51) 65.67 (0.56) 21.93 (0.62) 35.66 (0.53)

ProtoNet+M2 41.36 (0.47) 57.48 (0.43) 16.94 (0.57) 31.52 (0.64)

Fig. 4. We found our recognition performance to be negligibly sensitive to q and
k′. This suggests that the location of the novel-class prototype estimate only
depends on the number of subspaces (r) rather than its dimensionality (q + 1).
Similarly, the Markov-chain-based prediction does not depend on the number of
nearest neighbors k′ used for connecting the graph. In Fig. 4(a), the number of
subspaces (r) is varied, keeping rest of the hyper-parameters the same. This is
done for both the ImageNet (denoted as (I)) and the CUB-200 dataset (denoted
as (C)). From the plot, it is seen that the performance increases as the number of
subspaces increases but then decreases after reaching a peak. Initially, more lin-
ear subspaces in the neighborhood are required for estimating the local structure
of the non-linear manifold but becomes irrelevant after more supbspaces.

Next, we studied the effects of α1 and α2 on the recognition performance
for the 1- and 5-shot settings of the ImageNet and the CUB-200 datasets as
reported in Figs. 4(b) and 4(c), respectively. Accordingly, we obtained an optimal
performance when α1 or α2 is between 0 and 1. From Eq. (2), it suggests that
the location of the novel-class prototype is within the space bounded by the few-
shot sample mean (xn), the subspace projection (cp) and the weighted mean of
the nearby class prototypes (cd). For higher number of shots, the maxima seems
to move towards the right; that is, closer to α1, α2 values of 1. This implies
more contribution from the few-shot class mean as visible from Eq. (2). This is
intuitive because as the number of shots increases, we expect the few-shot sample
mean to converge to the class prototype. In fact, for shots of 10 and higher, we
obtained the maxima at α1 = α2 = 0.9 on both datasets. For low values of
α1, α2 (less contribution of the few-shot sample mean), we observed a dip in
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Fig. 4. (a) Effect of the number of subspaces r on recognition performance for both
ImageNet (I) and CUB-200 (C). Effect of α1 and α2 on 1-shot and 5-shot recognition
performance for (b) ImageNet and (c) CUB-200. Legends of (c) hold for (b) as well.
α1 in parenthesis suggests that α1 is varied while α2 = 1 and vice versa. All results are
over 10 trials.

performance, even sometimes worse than the NA baseline. This suggests that
the contribution of the few-shot mean is important in estimating the novel-class
prototype. From the plot, we see that the setting α1 = 0, α2 = 1 produces much
better performance as compared to α1 = 1, α2 = 0. According to Eq. (2), it
means that the contribution of the projection (cp) is more important compared
to contribution of nearby prototypes (cd).

4 Conclusions

In this paper, we have introduced a new setting in few-shot learning that assumes
access to only the base-class prototypes. To address this problem, we used the
structural arrangement of the class prototypes on a manifold, firstly to estimate
the novel-class prototypes and secondly to induce an absorbing Markov-chain
for test-time prediction. From the experiments, it is evident that our proposed
method improved over the no-adaptation baseline but there is still a lot of room
for improvement to reach the oracle-level performance. Therefore, our results
serve as a benchmark for future researchers to work upon.
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