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Answer set programming is a leading declarative constraint programming paradigm with wide use
for complex knowledge-intensive applications. Modern answer set programming languages support
many equivalent ways to model constraints and specifications in a program. However, so far answer
set programming has failed to develop systematic methodologies for building representations that
would uniformly lend well to automated processing. This suggests that encoding selection, in the
same way as algorithm selection and portfolio solving, may be a viable direction for improving per-
formance of answer-set solving. The necessary precondition is automating the process of generating
possible alternative encodings. Here we present an automated rewriting system, the Automated Ag-
gregator or AAgg, that given a non-ground logic program, produces a family of equivalent programs
with complementary performance when run under modern answer set programming solvers. We
demonstrate this behavior through experimental analysis and propose the system’s use in automated
answer set programming solver selection tools.

1 Introduction

Developers of answer set programming (ASP) solutions often face situations where individual constraints
of a problem or even the problem as a whole can be expressed in several syntactically different but seman-
tically equivalent ways. Picking the right representation is crucial to designing these solutions because,
given an instance, certain representations perform better (often much better) than others when processed
with modern ASP grounders and solvers. However, techniques for selecting a particular representation
are often ad hoc and tailored to the needs of the particular application, and require significant program-
ming expertise from the programmer.

About a decade ago, Gebser et al. presented a set of “rules-of-thumb” used by their team in manual
tuning of ASP solutions [6]. These rules include suggestions on program rewritings that often result in
substantial performance gains. This was verified experimentally by Gebser et al., with all rewritings used
in their experiments generated manually [6]. Buddenhagen and Lierler studied the impact of these rewrit-
ings on an ASP-based natural language processor and reported orders of magnitude gains in memory and
time consumption as a result of some program transformations they executed manually [2]. Because of
these promising results, researchers proposed to automate the task of program rewriting. Bichler et al.
investigated rewritings of long rules guided by the tree decomposition of graphs built of program rules (a
form of join optimization) [1]. Hippen and Lierler proposed a method of applying projection to rewrite
rules based on estimates of the size of the ground program [8].

These projects demonstrated that automated program rewritings may lead to programs performing
better than the original ones when run under current ASP solvers such as gringo/clasp [5]. However, the
effects of rewritings are not uniformly the same. In fact, depending on the actual instance they are run
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with, rewritten programs may perform worse that the original ones. This is a problem because a non-
uniform behavior makes the process of selecting the uniformly best encoding ill defined. Nevertheless,
automated rewritings potentially can significantly improve the state-of-the-art of ASP solving. Namely,
the non-uniform behavior of programs obtained by rewriting opens a possibility of using families of
equivalent alternative programs in algorithm selection and portfolio solving [13, 14, 9]. In fact, a recent
study of suite of six encodings of the Hamiltonian cycle problem shows that one can train performance
prediction models to select, given an instance, a program from the suite to run on that instance, guaran-
teeing a much better overall performance on large sets of instances than that of each of the six programs
alone [12].

In this work, we focused on rewritings in which rules using counting based on explicit naming of a
required number of objects are rewritten with the use of a counting aggregate. We designed a software,
Automated Aggregator (AAgg), for automating such rewritings into several equivalent forms. We studied
the software’s applicability and effectiveness. In our experiments, we applied the software to programs
submitted to past ASP Competitions. We found that while many of them already included aggregate
expressions and AAgg did not detect any rules to which it could apply, in several cases, it was applicable!
For those cases, we studied the performance of the original program and the rewritings produced by
AAgg. The results showed that depending on an instance, rewritings produced by our software often
performed better than the original programs. In other words, the family of encodings generated by AAgg
(the original program and its rewritings) showed a complementary performance on both the instances
used in the ASP Competitions and on instances which we generate ourselves. These results show that
AAgg can be used as a tool for generating collections of encodings to be used in algorithm selection and
portfolio solving. A systematic experimental verification of this claim will be the subject of a future
work.

2 Aggregate Equivalence Rewriting

In this section we describe the aggregate equivalence rewriting, its input and output forms. Currently, we
support one input form and three output forms. The input form is a rule that expresses a constraint that
there are b different objects with a certain property by explicitly introducing b variables to name these b
objects. The output forms model the same property by relying, in some way, on the counting aggregate.
For each of the rewritings we establish its correctness and experimentally study its performance. The
correctness follows from Theorems A.3 and A.5, presented and proved in the appendix.

2.1 Preliminaries

We follow the ASP-Core-2 Input Language Format [3]. We consider rules of the form head < body. The
head may consist of a single literal or be empty, the latter representing a contradiction, making the rule
a constraint. The body may contain one or more literals or be empty, which constitutes a fact. Literals
are composed of an atom, which may be preceded by not. Negative literals include not; positive literals
do not. Atoms have the form p(ty,...,t;), where p is a predicate symbol of arity k and each ¢; is a term,
that is, a constant, variable, or expression of the form f(zy,...,#) where f is a function symbol of arity
k > 0 and each ¢, is a term.!

Atoms may also take the form of an aggregate expression. In this work, we focus on counting

1AAgg also accepts other term expressions following the definition used by clingo [5].
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aggregates, that is, expressions of the form:
51 <1 #eount{t) :Ly;...;t, 1 L,} <05 €))

In (1), t; and L; form an aggregate element, which is a non-empty tuple of terms and literals, re-
spectively. The count operation simply counts the number of unique term tuples t; whose corresponding
condition L; holds. The result of the count function is compared by the comparison predicates < and
<7 to the terms s; and s,. These comparison predicates may be one of {<,<,=,#}. One or both of
these comparisons can be omitted [5].

2.2 Input Forms

The aggregate equivalence rewriting takes as input rules of the form:
H+ N\ F(X.Y), N\ X#X;G. )
1<i<b 1<i<j<b
where
e H is the head of a rule (H may be empty making the rule a constraint)
e F is a predicate of arity 1+ |Y|
e Xi,...,X, are variables, all in the same position in F

e Y is a comma-separated list of variables, identical in variables and variable positions for all F' in
the rule

e G is the remaining body of the rule, possibly empty,
and the following hold true:
e h>2
e H, G, and Y have no occurrences of variables X,...,X,
e The terms A\, <;. <, X; # X; may instead be a continuous chain of comparisons:
Ni<i<p—1Xi < Xiv10or Njcicp 1 Xi > Xig1.

Note that X;’s need not be in the first position in F, so long as they are all in the same position in F'
and the other variables in F (if any) are identical in all occurrences of F in the rule. Additionally, some
other forms logically equivalent to /<, j<;X; # X; are also acceptable. For instance, the condition
X1 # X, may be expressed as X +a # X, + a, for some integer a.

2.3 Output Forms

The form of the output depends on the size of Y. When |Y| = 0, the output form is:
H <+ b <#count{X : F(X)},G. 3)

where
e H. b, F,and G are as above

o Aggregate element X : F(X) follows the form term : literal as defined above. The prior, X, is a
tuple of one term, which in this case is a variable. The second, F(X), is a literal.
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When |Y| > 0, we perform projection to project out the variable X from F. This gives us an output
form consisting of two rules:

H + b < #count{X : F(X,Y)},F'(Y),G.

F'(Y)+ F(X,Y). X

where
e H,b, F, Y, and G are as above
o Aggregate element X : F(X,Y) follows the form term : literal as above

e F'is a new predicate symbol of arity equal to the size of Y, that is, equal to the arity of F minus
one; introducing F' ensures that variables in Y are universally quantified.

The correctness of this rewriting, follows from the results presented in the appendix (Theorem A.3).
Specifically, we show there that if a program is obtained from another program by rewriting one of its
rules in the way described above, then both programs have the same answer sets (modulo atoms F'(y),
if F' is introduced).

2.3.1 Alternative Output Forms

Two alternative, logically equivalent output forms are also available, each derived from the output form
presented above. First, we observe that b < F is logically equivalent to the negation of F' < b. We can
then restate the original literal as follows:

not #count{X : F(X,Y)} < b. Q)

Second, we note that the input language we consider permits integer-only arithmetic. Consequently,
the expression not a < b for some integers a and b is equivalent to the conjunctive expression:

“(a=—)A=(a= -0+ 1)A...A=(a=b—-2)A=(a=b—-1).

Additionally, the result of the count never returns a negative number. Therefore, we can restate the
aggregate literal in this alternative output form as a conjunction of aggregate literals having the form:

not #count{X : F(X,Y)} =0,

t #count{X : F(X,Y)} = 1,
not #count{ (X,Y)} ©

b

not #count{X : F(X,Y)} =b—1.

Note that, due to the precise semantics of logic programs, the equivalence of these two alternative logic
forms relies on additional assumptions about the input program (it has to be splittable) and the rule to be
rewritten. Theorem A.5 provides conditions under which the rewriting is guaranteed to be correct. These
conditions are checked by our software and only when they hold, the software proceeds with rewriting
into an alternative form (5) or (6), as selected by the user.
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3 The Automated Aggregator System

We now present the Automated Aggregator’ (AAgg) software system for performing the Aggregate
Equivalence rewriting. The software provides an automated way to detect rules within a given pro-
gram following the input format (2) and rewrite those rules into an equivalent output format (3/4), (5), or

(6).

3.1 Usage

The software relies on the clingo Python module provided by the Potassco suite [7]. The module is
written in Python 2.7. As such, Python 2.7 is required to run the Automated Aggregator system. Instal-
lation information is provided in the software’s README file. The Automated Aggregator is invoked as
follows:

python aagg/main.py
[-h,--help] [-o0,--output FILENAME] [--no-rewrite]
[--no-prompt] [--use-anonymous-variable]
[--aggregate-form ID] [-d,--debug] [-r,--run-clingo]
[encoding_1 encoding_ 2 ...]

The -h flag lists the help options. The encoding(s) are the filename(s) of the input encoding(s), and
the output is the desired name for the output file. If no output filename is given, one is generated based
on the first input filename given. When a candidate rule is discovered, the user is shown the proposed
rewriting and prompted for confirmation. If the -~—no-rewrite flag is given, no prompts are given and
no rewriting is performed. If the ——no-prompt flag is given, no prompts are given and rewriting is
performed where possible. The ID supplied to the --aggregate-form argument informs the program
which aggregate form to use when performing rewrites: its values 1, 2, and 3 correspond to aggregate
forms (3/4), (5), and (6), respectively. The —d debug flag directs the application to operate with verbosity,
printing details during the rewriting candidate discovery process and printing some statistics after the
application’s conclusion. The --r run-clingo flag directs the application to run the resulting program
through clingo after any rewritings are performed.

Finally, the -—use-anonymous-variable flag indicates an additional modification of the output
form to be performed. It uses the anonymous variable ‘_’ in place of the variable X in the output
forms listed above, with some additional modifications of the rule to ensure the transformation is cor-
rect. Specifically, we replace the aggregate element X : F(X,Y) with F(_,Y) : F(_,Y) rather than with
_:F(.,Y), because the latter is not a valid gringo syntax. We mention this option for completeness sake,
since it is available in our implementation. However, we found that the programs generated when using
and when not using the anonymous variable are identical after grounding, so we neither discuss it further
nor use these rewritings in our experiments.

By default all boolean flags are disabled and the aggregate-form ID is set to 1 indicating output form
(3). At least one input encoding filename must be specified.

3.2 Methodology

The methodology used for discovering whether a rule is a candidate for the aggregate equivalence rewrit-
ing is as follows. The given logic program(s) are parsed by the clingo module, generating an abstract

2The system and all encodings, test instances, and driver programs can be found online at:
https://drive.google.com/drive/folders/11qRsy9HGIDHvyX _Pvkc8zKt1l-xvbwcAp?usp=sharing
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syntax tree for each rule. Each such tree is passed to a transformer class for preprocessing. After prepro-
cessing, some information is gathered from the program as a whole; specifically, predicate dependencies
are determined, which in turn determine when output forms (5) and (6) are appropriate for a given rule
(see the appendix for more details). Rules are then passed individually to an equivalence transformer
class for processing. After processing, and if the requested rewriting is possible and confirmed by the
user, the rewritten form of the rule is returned. Otherwise the original rule is returned. All returned rules,
rewritten or not, are collected and output to the desired output file location. Optionally, the resulting
program is then run using clingo.

When a rule is passed to the equivalence transformer for processing, it first undergoes a process of
exploration, which traverses the rule’s abstract syntax tree, recording comparison literals between two
variables as well as other pertinent information found along the way. These comparison literals are
scrutinized to determine whether a subset of the comparisons follows the form given in (2) or some
equivalent format as detailed in the section 2.2. The process also identifies those variables that play the
role of X1,...,X, as in (2). The rule is then analyzed to determine whether there are b occurrences of
some positive literal of predicate F' with the arguments X; and Y, where each X;, 1 <i < b, exists at
least once in the set of occurrences, and Y is the same for each occurrence and contains no variables
Xi,...,Xp. Let us call this set of b literals combined with the corresponding comparisons following the
form given in (2) or equivalent, the rule’s counting literals. Similarly, we denote the variables playing
the role of the variables X; as given in (2) as the rule’s counting variables.

After gathering counting literals and counting variables, the equivalence transformer verifies that the
counting variables are not used within literals anywhere in the rule excluding literals within the set of
counting literals. If this verification fails or if any of the constraints for the counting literals cannot be
satisfied or if no such set of counting variables can be obtained, then the rule is not fit for rewriting. As
a result, no rewriting is performed on the rule and the original rule is returned.

In the other case, if the verification succeeds (the counting literals and the counting variables satisfy
all the required constraints), then we proceed as follows. If the requested output form is (3/4), then we
check whether |Y| > 0 and rewrite the rule accordingly using (3) or (4). If the requested output form is
(5) or (6), then the predicate dependency condition related to splitting must be verified (see the appendix
for details). If it holds, then we check whether |Y| > 0 and rewrite the rule into the desired form (5) or
(6), adding the second of the two rules in (4) when |Y| > 0.

Note that the user is first prompted for confirmation for each rewritten rule before the rule is added
to the final program. If the user denies a rewriting, then the original rule is used.

3.3 Limitations

Here we discuss the limitations of the Automated Aggregator in its current form.

1. The rewriting is one-directional. The software will only rewrite rules from the form (2) into rules
of the forms (3/4), (5), and (6). As it stands, the system will not rewrite rules given in any of the
forms (3/4), (5), or (6) into rules of any of other form.

2. In the cases when multiple rewritings are possible for a single rule, only one rewriting will be
detected and performed. To illustrate, if the form given in (2) occurs twice in one rule over a
disjoint set of variables and predicates, where both sets of counting literals consider the other set
as part of G and all conditions hold, then only the set of counting literals with the highest number
of counting variables will be used for rewriting. If both sets contain the same number of counting
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Table 1: Problem Domains of ASP Competition Encodings with Rules for Rewriting
ASP Competition Year | Problem Domain of Encodings
2009 | Golomb Ruler & Wire Routing
2014 | Steiner Tree
2015 | Steiner Tree & Graceful Graphs

variables, then one is chosen based on the order in which the comparisons using those variables
occur in the rule.

3. There are some cases in which the software will not recognize a valid rewriting when one exists.
These cases mostly lie in the many obscure ways of representing a chain of comparisons equivalent
to that in (2). However, there are no known cases in which an incorrect rewriting will be proposed
when no valid rewriting is possible. More details are given in the software’s README document.

4 Experimental Analysis

The Automated Aggregator system has been made available for download online.? Encodings with which
the application was tested, their corresponding instances, and (Python) scripts for driving such tests, are
included there too.

4.1 Automated Aggregator in Practice

The Automated Aggregator system was applied to logic programs in gringo syntax submitted to the 2009,
2014, and 2015 Answer Set Programming Competitions. Of the 58 encodings given to the application,
five contained rules which were candidates for the rewriting described. Table 1 lists the encoding problem
names and the ASP Competitions for which they were developed.

Additionally, to provide an example of the functionality of AAgg, the system was applied to an
encoding for the Hamiltonian Cycle problem. The original program is shown in Figure 1. The rewritten
program, as output by AAgg, is shown in Figure 2. We see that the first two constraints in the program
are both rewritten with the necessary projection performed as in (4). Experimental results for these
encodings when applied to a generated set of hard instances are given in the following section.

4.2 Experimental Results

Results were gathered by systematically grounding and solving each instance-encoding pair within fam-
ilies of encodings for each problem type. The data sets of instances we used are available together with
the AAgg tool (see the url listed earlier).* Each encoding in each family of encodings was run for each
instance. The total grounding plus solving time of instance-encoding pairs were recorded and compared.

The precise encodings used as input to the AAgg software for gathering results are listed in Table
2. Two output encodings are generated for each input encoding and together they form the encoding
family for that problem domain. The two output forms used were those shown in equations (3/4) and

Shttps://drive.google.com/drive/folders/11qRsy9HGIDHvyX _Pvkc8zKt1-xvbwcAp?usp=sharing

4We thank Daniel Houston and Liu Liu for providing us with the data sets of instances for the Latin Square and the Hamil-
tonian Cycle problems, respectively. The data sets for the remaining problems were generated by software tools we developed
for the purpose. These tools and descriptions of instance sets used in experiments can be found at the AAgg site.
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node(X) :- edge(X,Y).
node(X) :- edge(Y,X).

{ he(X,Y) } :- edge(X,Y).
:= hc(X,Y), hc(X,2), Y!=Z.
:- he(X,Y), hc(Z,Y), X!=Z.

reach(X,Y) :- hc(X,Y).
reach(X,Y) :- hc(X,Z), reach(Z,Y).

:- node(X), node(Y), not reach(X,Y).

Figure 1: Example Hamiltonian Cycle problem encoding. Original version.

node(X) :- edge(X,Y).
node(X) :- edge(Y,X).

{ he(X,Y) } :- edge(X,Y).

:= 2 <= #count{ Y : hc(X,Y) }, hc_project_Z(X).
hc_project_Z(X) :- hc(X,Y).

:= 2 <= #count { X : hc(X,Y) }, hc_project_Z1(Y).
hc_project_Z1(Y) :- hc(X,Y).

reach(X,Y) :- hc(X,Y).
reach(X,Y) :- hc(X,Z), reach(Z,Y).

:— node(X), node(Y), not reach(X,Y).

Figure 2: Example Hamiltonian Cycle problem encoding. Rewritten version.
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Table 2: Sources of Encodings Used for Experimental Results
Source of Encoding | Problem Domain of Encodings
ASP Competition 2009 | Wire Routing
ASP Competition 2015 | Steiner Tree & Graceful Graphs
Home-Brewed | Latin Squares& Hamiltonian Cycle?

“We are thankful to Daniel Houston and Liu Liu for supplying the Latin Squares and Hamiltonian Cycle instance sets,
respectively.

Table 3: Result Statistics by Problem Domain

Encoding \ Wins | Exclusive Wins | Wins by 20% | Wins by 50%

Wire Routing Input Encoding 122 (58.4%) 34 (27.8%) 115 (92.0%) 97 (77.6%)
AAgg Output Form (3/4) 50 (24.0%) 26 (52.0%) 48 (87.3%) 38 (69.1%)
AAgg Output Form (6) 37 (17.7%) 13 (35.1%) 39 (90.7%) 23 (53.5%)
Steiner Tree Input Encoding 130 (33.9%) 0 (0%) 1 (0.8%) 0 (0%)
AAgg Output Form (3/4) 123 (32.1%) 0 (0%) 4 (3.3%) 0 (0%)
AAgg Output Form (6) 130 (33.9%) 0 (0%) 6 (4.6%) 0 (0%)
Graceful Graphs Input Encoding 212 (37.3%) 62 (29.2%) 182 (85.8%) 128 (60.4%)
AAgg Output Form (3/4) 97 (17.1%) 23 (23.7%) 82 (84.5%) 58 (59.8%)
AAgg Output Form (6) 259 (45.6%) 51 (19.7%) 229 (88.4%) 169 (63.7%)
Latin Squares Input Encoding 5611 (77.7%) 5(0.1%) | 4435 (79.0%) | 2003 (35.7%)
AAgg Output Form (3/4) 1432 (19.8%) 0 (0%) 655 (45.7%) 86 (6.0%)
AAgg Output Form (6) 176 (2.4%) 0 (0%) 64 (36.4%) 7 (4.0%)
Hamiltonian Cycle Input Encoding 72 (28.7%) 47 (65.3%) 59 (81.9%) 34 (47.2%)
AAgg Output Form (3/4) 102 (40.6%) 69 (67.7%) 79 (77.5%) 52 (51.0%)
AAgg Output Form (6) 77 (30.7%) 45 (58.4%) 64 (83.1%) 44 (57.1%)

(6); previous experiments showed extreme similarity between forms (3/4) and (5), so (5) was left out to
preserve machine time. The machine used for testing contained an Intel(R) Core(TM) i7-7700 CPU @
3.60GHz with 16GB RAM.

Result statistics are shown in Table 3. Data is grouped by problem domain. The first line of each
grouping shows statistics for the input encoding. The second line shows statistics for the encoding output
by the AAgg software using the first line as input and the output rule form (3/4) as the selected output
form. The third and final line of each grouping shows statistics for the encoding output by the AAgg
software again using the first line as input but now selecting the output form (6) as the chosen output
form.

A win is when an encoding grounds and solves for an instance in the shortest amount of time as
compared with the other two encoding in its grouping. The percentage value beside the win count is the
proportion of instances which that encoding won relative to the number of instances in the instance set
for which at least one of the three encodings terminated within the total time limit set for grounding and
solving. This time limit was set to 200 seconds in all experiments, except those with encodings of the
Hamiltonian Cycle problem that used a timeout value of 400 seconds due to the relative difficulty of the
instance set (in all problem domains except for the Hamiltonian Cycle domain, the number of instances
for which no encoding computed an answer within the time limit was very small; for the Hamiltonian
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Cycle problem, even with the increased time limit, it was significant).

An exclusive win is when the encoding is the only encoding in its grouping to find a solution (or
determine there is no solution) for an instance while both of the other two encodings failed to do so
within the time limit. The column shows the number and the percentage of wins which were exclusive
wins for the encoding. The next column shows the number and the percentage of wins by a margin of
at least 20% (this is when the best encoding runs at least 20% faster than the second one; in case the
of exclusive wins, we count a win as by at least 20%, if it is faster by at least 20% than the time limit
used). The data in the last column shows the numbers and percentages of wins by at least 50% (it is to
be interpreted similarly to the data in the previous column).

Results indicate that in some cases, the rewriting can provide complementary performance of encod-
ings. Specifically, the results for the Wire Routing, Graceful Graphs, and Hamiltonian Cycle problems
support the claim. This is shown first by the fact that for each problem, each of the encodings scores
a significant proportion of wins, and that among those wins a significant proportion are exclusive wins,
and an even greater proportion (about 50% or more) are wins by at least 50%. This means that about half
of the times when an encoding outperforms the two other encodings, it outperforms both by a factor of
at least two.

The Steiner Tree results indicate that sometimes the rewriting produces little to no effect at all. While
each encoding for the problem registers a similar proportion of wins, there are very few instances (just
eleven out of 283) when the best encoding outperforms the other two by 20% or more, and no instances
when the best encoding would outperform the other two by 50% or more. The Latin Squares results are
mixed in the sense that for the most part the original encoding works best. However, one of the rewritings
registers almost 20% of wins. Moreover, about 45% of those wins are by 20% or more and 6% by 50%
or more.

In summary, we see that the rewriting can provide programs that perform complementary to the
original. This complementarity is perhaps somewhat surprising, because aggregates are assumed to lead
to better performance. Our results show that the picture is more complicated and whether rewriting with
aggregates yields better performance is instance-dependent. It is also interesting to note that for some
encodings replacing simple counting, like that used in the Latin Square encodings (no two identical
elements in a row or column), with the count aggregates does not lead to substantial improvements.
Finally, for some problems (in our experiments for the Steiner Tree problem) where complementary
behavior does emerge, the differences in performance are relatively small.

5 Future Work

As detailed in Section 3.3, the Automated Aggregator software can be improved. Extending the software
so that it rewrites rules by eliminating the counting aggregate by inverting the current rewriting seems
to be a potentially most beneficial direction. Indeed, our results show that introducing aggregates does
not guarantee uniformly improved performance. This gives reason to think that removing the counting
aggregate, that is, rewriting it in an explicit way, has a potential of generating encodings that on many
instances may perform better. Just like the present version of the AAgg system, this could yield collec-
tions of encodings of complementary strengths. Moreover, this form of rewriting would be quite widely
applicable, as the counting aggregate is commonly used.

Expanding the software to detect and perform multiple aggregate equivalence rewritings on a single
rule and to detect more obscure forms of representations are two other directions for improvement.
While necessary to ensure the software has a possibly broad scope of applicability, we do not expect
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these extensions to have a major practical impact due to low frequency with which such less intuitive and
convoluted forms of modeling are found in programs.

Automated rewriting has been studied before. The PROJECTOR system [8] and the Ipopt system [1]
are two notable examples. That earlier work sought to develop rewritings improving the performance
over the original ones. That goal is in general difficult to meet; both systems were shown to offer gains,
but the rewritten encodings are not always performing better. Our goal was different. We aimed at
rewritings of varying relative performance depending on input instances. With the AAgg system we
showed that even a rather simple rewriting consisting of introducing the count aggregate often leads to
families of encodings with complementary strengths (areas of superior performance). This opens a way
for using machine learning to develop models in support of effective encoding selection or encoding
portfolio solving [12]. In such work, to generate promising collections of encodings, one could use
the AAgg system, with extensions mentioned above, but also other program rewriting software such as
PROJECTOR and /popt which, as noted, while they do yield good encodings, often better than the original
one, they do not perform uniformly better.
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A Correctness of Rewritings
Let us consider the following program rule (H may be L):

H«+ N\ F(X,2,Z'),0X),G(Z'.Z"). (7

1<i<b

where F is a predicate, X a tuple of variables Xj,...,X,, Q(X) is a list of literals over variables X, ..., Xp,
and Z,Z’ and Z" are three pairwise disjoint tuples of variables, and disjoint with X, and H contains none
of X,' .

Let P be a program containing rule (7) and let P’ be the program obtained from P by replacing that
rule with the two rules

H+ N\ F(X.,2,Z'),0(X),G(Z',2"),F'(Z).
1<i<b (8)
F'(Z)«+ F(X,Z,Z").

where F’ is a predicate not occurring in P.

Theorem A.1. The programs P and P’ have the same answer sets modulo ground atoms of the form
F'(2).

Proof. (Sketch) Consider a ground instance r of rule (7) and let a be the first atoms in the body of r (that
is, a ground instance of the atom F(X;,Z,Z")). In P’ there are ground rules »’ and v obtained from (8)
using the same variable instantiation as that used to produce r. Clearly, r contributes to the reduct of
ground (P) if and only if ' and r’ contribute to the reduct of ground(P’). Moreover, if they do, r “fires”
in the least model computation if and only if # fires in the least model computation. It follows that an
interpretation / of P is an answer set of P if and only if /UJ is an answer set of P/, where J consists of
all atoms F’(z) such that F(x,z,z') € I, for some constant x and a tuple of constants z’. O

Next, we recall the following theorem proved by Lierler [10].
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Theorem A.2. Let H be an atom (H may be 1), G a list of literals, X a variable, Z a tuple of variables,
each different from X and each with at least one occurrence in a literal in G, and F a predicate symbol
of arity 1+ |Z|. If b is an integer, and X1, ..., X}, are variables without any occurrence in H and G, then
the logic program rule

H«+ N\ F(X,Z), N\ X #X;G. )

1<i<b 1<i<j<b

is strongly equivalent to the logic program rule
H + b < #count{X : F(X,Z)},G. (10)

where |\ is used to represent a sequence of expressions separated by commas.

Combining the two results leads to the following result that proves the correctness of the first rewrit-
ing implemented by our tool AAgg.

Theorem A.3. Let P be a program containing a rule r of the form

H« N\ F(x,2,Z), \ Xi#X; G(Z.2z"). (11)

1<i<b 1<i<j<b

under the same assumptions about variable tuples X,Z,Z' and Z" as before. If Z is empty, let P' be
P. Otherwise, let P’ be obtained from P by replacing r with the rules (8), adjusting the first of them to
contain \<;< j<pXi # X; in place of O(X). Let us call the first of these two rules r (reusing the name of
the original rule). Finally, let P" be obtained from P' by replacing r with the corresponding rule (10).
Then, the programs P and P’ have the same answer sets (in the case, when Z is not empty, the same
answer sets modulo atoms F'(z)).

Proof. Clearly, rule r is a special case of a rule of the form (7). By A.1, programs P and P’ have the same
answer sets (when Z, is not empty, the same answer sets modulo atoms F’(z)). The rule r in P’ is of the
form (9) required by Theorem A.2. Applying this theorem shows that programs P’ and P” have the same
answer sets and the assertion follows.

O

Once a program has a rule of the form (10), we can often modify it further by exploiting alternative
encodings of the aggregate expressions. In particular, under some assumptions about the structure of the
program, we can replace a rule (10) by

H < not #count{X : F(X,Z)} < b,G. (12)

where we assume that the variable X is not a variable in Z, and that all variables in Z appear in G.

We recall that a partition (P, F;) of a program P is a splitting of P if no predicate appearing in the
head of a rule from P, appears in P, [11, 4]. A well-known result on splitting states that answer set
of programs that have a splitting can be described in terms of answer sets of programs that form the
splitting.

Theorem A.4. Let P be a logic program and let (Py,P;) be a splitting of P. For every answer set I, of
Py, every answer set of the program P; U1}, is an answer set of P. Conversely, for every answer set I of P,
there is an answer set I, of Py, such that I is an answer set of F; U I,.



Michael Dingess and Miroslaw Truszczynski 109

This result implies that in programs that have a splitting, a rule in F; containing in its body an ag-
gregate expression involving only predicates appearing in P, can be replaced by a rule in which this
aggregate expression is replaced by any of its (classically) equivalent forms. We formally state this result
for the case of rules of the form (10).

Theorem A.5. Let P be a logic program and let (Py,P,) be a splitting of P. If P, contains a rule of the
form (10) and F appears in P, then P and the program P’ obtained from P by replacing the rule (10) by
the rule (12) have the same answer sets.

Proof. (Sketch) Let P/ be the program obtained from P, by replacing the rule (10) by the rule (12). It is
clear that (P,, P/) is a splitting of P’. Let I be an answer set of P. By A.4, there is an answer set I, of P,
such that I is an answer set of P, U1,. In particular, / is an answer set of the program I, U ground(P,). Let
Q be the program obtained by simplifying the bodies of the rules in ground(P;) as follows. If a conjunct ¢
in the body of a rule in ground(F,) involves only atoms from the Herbrand base HB(P;) of P,, we remove
c if I, = ¢, and we remove the rule, if I, [~ c. Because atoms from HB(P,) do not appear in the heads of
the rules in ground(P,), I is an answer set of QU I,.

We denote by Q' the program obtained by the same simplification process from ground(P/). From
the definition of P/ it follows that Q' = Q (indeed, the only difference between P; and P/ is in the bodies
of some rules, in which an aggregate built entirely from the atoms in HB(P,) is replaced by a classically
equivalent one; thus, both expressions evaluate in the same way under I, and the contribution of the
corresponding rules to Q and Q' in each case is the same). Consequently, / is an answer set of Q' U1,,.
Because atoms from HB(P;) do not appear in the heads of the rules in ground(P/), I is an answer set of
ground(P/) U1, and, because (Py,P/) is a splitting of P’, also an answer set of P’. A similar argument
shows that answer sets of P’ are also answer sets of P. O

It is clear that the same argument applies to other similar rewritings, for instance, to the one that
replaces the rule (9) by the rule

H<« N\ noti=#count{X : F(X,Z)},G. (13)

0<i<bh—-1

where, as before, we assume that the variable X is not a variable in Z, and that all variables in Z appear
in G.

Theorem A.5 establishes the correctness of the two remaining rewritings implemented by the tool
AAgg. The tool is designed to check for splitting and allows the rewriting to take place only if the
conditions of A.5 hold.



	1 Introduction
	2 Aggregate Equivalence Rewriting
	2.1 Preliminaries
	2.2 Input Forms
	2.3 Output Forms
	2.3.1 Alternative Output Forms


	3 The Automated Aggregator System
	3.1 Usage
	3.2 Methodology
	3.3 Limitations

	4 Experimental Analysis
	4.1 Automated Aggregator in Practice
	4.2 Experimental Results

	5 Future Work
	A Correctness of Rewritings

