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Answer set programming is a leading declarative constraint programming paradigm with wide use

for complex knowledge-intensive applications. Modern answer set programming languages support

many equivalent ways to model constraints and specifications in a program. However, so far answer

set programming has failed to develop systematic methodologies for building representations that

would uniformly lend well to automated processing. This suggests that encoding selection, in the

same way as algorithm selection and portfolio solving, may be a viable direction for improving per-

formance of answer-set solving. The necessary precondition is automating the process of generating

possible alternative encodings. Here we present an automated rewriting system, the Automated Ag-

gregator or AAgg, that given a non-ground logic program, produces a family of equivalent programs

with complementary performance when run under modern answer set programming solvers. We

demonstrate this behavior through experimental analysis and propose the system’s use in automated

answer set programming solver selection tools.

1 Introduction

Developers of answer set programming (ASP) solutions often face situations where individual constraints

of a problem or even the problem as a whole can be expressed in several syntactically different but seman-

tically equivalent ways. Picking the right representation is crucial to designing these solutions because,

given an instance, certain representations perform better (often much better) than others when processed

with modern ASP grounders and solvers. However, techniques for selecting a particular representation

are often ad hoc and tailored to the needs of the particular application, and require significant program-

ming expertise from the programmer.

About a decade ago, Gebser et al. presented a set of ”rules-of-thumb” used by their team in manual

tuning of ASP solutions [6]. These rules include suggestions on program rewritings that often result in

substantial performance gains. This was verified experimentally by Gebser et al., with all rewritings used

in their experiments generated manually [6]. Buddenhagen and Lierler studied the impact of these rewrit-

ings on an ASP-based natural language processor and reported orders of magnitude gains in memory and

time consumption as a result of some program transformations they executed manually [2]. Because of

these promising results, researchers proposed to automate the task of program rewriting. Bichler et al.

investigated rewritings of long rules guided by the tree decomposition of graphs built of program rules (a

form of join optimization) [1]. Hippen and Lierler proposed a method of applying projection to rewrite

rules based on estimates of the size of the ground program [8].

These projects demonstrated that automated program rewritings may lead to programs performing

better than the original ones when run under current ASP solvers such as gringo/clasp [5]. However, the

effects of rewritings are not uniformly the same. In fact, depending on the actual instance they are run
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with, rewritten programs may perform worse that the original ones. This is a problem because a non-

uniform behavior makes the process of selecting the uniformly best encoding ill defined. Nevertheless,

automated rewritings potentially can significantly improve the state-of-the-art of ASP solving. Namely,

the non-uniform behavior of programs obtained by rewriting opens a possibility of using families of

equivalent alternative programs in algorithm selection and portfolio solving [13, 14, 9]. In fact, a recent

study of suite of six encodings of the Hamiltonian cycle problem shows that one can train performance

prediction models to select, given an instance, a program from the suite to run on that instance, guaran-

teeing a much better overall performance on large sets of instances than that of each of the six programs

alone [12].

In this work, we focused on rewritings in which rules using counting based on explicit naming of a

required number of objects are rewritten with the use of a counting aggregate. We designed a software,

Automated Aggregator (AAgg), for automating such rewritings into several equivalent forms. We studied

the software’s applicability and effectiveness. In our experiments, we applied the software to programs

submitted to past ASP Competitions. We found that while many of them already included aggregate

expressions and AAgg did not detect any rules to which it could apply, in several cases, it was applicable!

For those cases, we studied the performance of the original program and the rewritings produced by

AAgg. The results showed that depending on an instance, rewritings produced by our software often

performed better than the original programs. In other words, the family of encodings generated by AAgg

(the original program and its rewritings) showed a complementary performance on both the instances

used in the ASP Competitions and on instances which we generate ourselves. These results show that

AAgg can be used as a tool for generating collections of encodings to be used in algorithm selection and

portfolio solving. A systematic experimental verification of this claim will be the subject of a future

work.

2 Aggregate Equivalence Rewriting

In this section we describe the aggregate equivalence rewriting, its input and output forms. Currently, we

support one input form and three output forms. The input form is a rule that expresses a constraint that

there are b different objects with a certain property by explicitly introducing b variables to name these b

objects. The output forms model the same property by relying, in some way, on the counting aggregate.

For each of the rewritings we establish its correctness and experimentally study its performance. The

correctness follows from Theorems A.3 and A.5, presented and proved in the appendix.

2.1 Preliminaries

We follow the ASP-Core-2 Input Language Format [3]. We consider rules of the form head← body. The

head may consist of a single literal or be empty, the latter representing a contradiction, making the rule

a constraint. The body may contain one or more literals or be empty, which constitutes a fact. Literals

are composed of an atom, which may be preceded by not. Negative literals include not; positive literals

do not. Atoms have the form p(t1, . . . , tk), where p is a predicate symbol of arity k and each ti is a term,

that is, a constant, variable, or expression of the form f (t1, . . . , tk) where f is a function symbol of arity

k > 0 and each ti is a term.1

Atoms may also take the form of an aggregate expression. In this work, we focus on counting

1AAgg also accepts other term expressions following the definition used by clingo [5].
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aggregates, that is, expressions of the form:

s1 ≺1 #count{t1 : L1; . . . ;tn : Ln} ≺2 s2 (1)

In (1), ti and Li form an aggregate element, which is a non-empty tuple of terms and literals, re-

spectively. The count operation simply counts the number of unique term tuples ti whose corresponding

condition Li holds. The result of the count function is compared by the comparison predicates ≺1 and

≺2 to the terms s1 and s2. These comparison predicates may be one of {<,≤,=, 6=}. One or both of

these comparisons can be omitted [5].

2.2 Input Forms

The aggregate equivalence rewriting takes as input rules of the form:

H←
∧

1≤i≤b

F(Xi,Y),
∧

1≤i< j≤b

Xi 6= X j, G. (2)

where

• H is the head of a rule (H may be empty making the rule a constraint)

• F is a predicate of arity 1+ |Y|

• X1, . . . ,Xb are variables, all in the same position in F

• Y is a comma-separated list of variables, identical in variables and variable positions for all F in

the rule

• G is the remaining body of the rule, possibly empty,

and the following hold true:

• b≥ 2

• H , G, and Y have no occurrences of variables X1, . . . ,Xb

• The terms
∧

1≤i< j≤b Xi 6= X j may instead be a continuous chain of comparisons:
∧

1≤i≤b−1 Xi < Xi+1 or
∧

1≤i≤b−1 Xi > Xi+1.

Note that Xi’s need not be in the first position in F , so long as they are all in the same position in F

and the other variables in F (if any) are identical in all occurrences of F in the rule. Additionally, some

other forms logically equivalent to
∧

1≤i< j≤b Xi 6= X j are also acceptable. For instance, the condition

X1 6= X2 may be expressed as X1 +a 6= X2 +a, for some integer a.

2.3 Output Forms

The form of the output depends on the size of Y. When |Y|= 0, the output form is:

H← b≤ #count{X : F(X)},G. (3)

where

• H , b, F , and G are as above

• Aggregate element X : F(X) follows the form term : literal as defined above. The prior, X , is a

tuple of one term, which in this case is a variable. The second, F(X), is a literal.
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When |Y|> 0, we perform projection to project out the variable X from F . This gives us an output

form consisting of two rules:

H← b≤ #count{X : F(X ,Y)},F ′(Y),G.

F ′(Y)← F(X ,Y).
(4)

where

• H , b, F , Y, and G are as above

• Aggregate element X : F(X ,Y) follows the form term : literal as above

• F ′ is a new predicate symbol of arity equal to the size of Y, that is, equal to the arity of F minus

one; introducing F ′ ensures that variables in Y are universally quantified.

The correctness of this rewriting, follows from the results presented in the appendix (Theorem A.3).

Specifically, we show there that if a program is obtained from another program by rewriting one of its

rules in the way described above, then both programs have the same answer sets (modulo atoms F ′(y),
if F ′ is introduced).

2.3.1 Alternative Output Forms

Two alternative, logically equivalent output forms are also available, each derived from the output form

presented above. First, we observe that b ≤ F is logically equivalent to the negation of F < b. We can

then restate the original literal as follows:

not #count{X : F(X ,Y)}< b. (5)

Second, we note that the input language we consider permits integer-only arithmetic. Consequently,

the expression not a < b for some integers a and b is equivalent to the conjunctive expression:

¬(a =−∞)∧¬(a =−∞+1)∧ . . .∧¬(a = b−2)∧¬(a = b−1).

Additionally, the result of the count never returns a negative number. Therefore, we can restate the

aggregate literal in this alternative output form as a conjunction of aggregate literals having the form:

not #count{X : F(X ,Y)}= 0,

not #count{X : F(X ,Y)}= 1,

. . . ,

not #count{X : F(X ,Y)}= b−1.

(6)

Note that, due to the precise semantics of logic programs, the equivalence of these two alternative logic

forms relies on additional assumptions about the input program (it has to be splittable) and the rule to be

rewritten. Theorem A.5 provides conditions under which the rewriting is guaranteed to be correct. These

conditions are checked by our software and only when they hold, the software proceeds with rewriting

into an alternative form (5) or (6), as selected by the user.
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3 The Automated Aggregator System

We now present the Automated Aggregator2 (AAgg) software system for performing the Aggregate

Equivalence rewriting. The software provides an automated way to detect rules within a given pro-

gram following the input format (2) and rewrite those rules into an equivalent output format (3/4), (5), or

(6).

3.1 Usage

The software relies on the clingo Python module provided by the Potassco suite [7]. The module is

written in Python 2.7. As such, Python 2.7 is required to run the Automated Aggregator system. Instal-

lation information is provided in the software’s README file. The Automated Aggregator is invoked as

follows:

python aagg/main.py

[-h,--help] [-o,--output FILENAME] [--no-rewrite]

[--no-prompt] [--use-anonymous-variable]

[--aggregate-form ID] [-d,--debug] [-r,--run-clingo]

[encoding_1 encoding_2 ...]

The -h flag lists the help options. The encoding(s) are the filename(s) of the input encoding(s), and

the output is the desired name for the output file. If no output filename is given, one is generated based

on the first input filename given. When a candidate rule is discovered, the user is shown the proposed

rewriting and prompted for confirmation. If the --no-rewrite flag is given, no prompts are given and

no rewriting is performed. If the --no-prompt flag is given, no prompts are given and rewriting is

performed where possible. The ID supplied to the --aggregate-form argument informs the program

which aggregate form to use when performing rewrites: its values 1, 2, and 3 correspond to aggregate

forms (3/4), (5), and (6), respectively. The -d debug flag directs the application to operate with verbosity,

printing details during the rewriting candidate discovery process and printing some statistics after the

application’s conclusion. The --r run-clingo flag directs the application to run the resulting program

through clingo after any rewritings are performed.

Finally, the --use-anonymous-variable flag indicates an additional modification of the output

form to be performed. It uses the anonymous variable ‘ ’ in place of the variable X in the output

forms listed above, with some additional modifications of the rule to ensure the transformation is cor-

rect. Specifically, we replace the aggregate element X : F(X ,Y) with F( ,Y) : F( ,Y) rather than with

: F( ,Y), because the latter is not a valid gringo syntax. We mention this option for completeness sake,

since it is available in our implementation. However, we found that the programs generated when using

and when not using the anonymous variable are identical after grounding, so we neither discuss it further

nor use these rewritings in our experiments.

By default all boolean flags are disabled and the aggregate-form ID is set to 1 indicating output form

(3). At least one input encoding filename must be specified.

3.2 Methodology

The methodology used for discovering whether a rule is a candidate for the aggregate equivalence rewrit-

ing is as follows. The given logic program(s) are parsed by the clingo module, generating an abstract

2The system and all encodings, test instances, and driver programs can be found online at:

https://drive.google.com/drive/folders/1lqRsy9HGIDHvyX_Pvkc8zKt1-xvbwcAp?usp=sharing
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syntax tree for each rule. Each such tree is passed to a transformer class for preprocessing. After prepro-

cessing, some information is gathered from the program as a whole; specifically, predicate dependencies

are determined, which in turn determine when output forms (5) and (6) are appropriate for a given rule

(see the appendix for more details). Rules are then passed individually to an equivalence transformer

class for processing. After processing, and if the requested rewriting is possible and confirmed by the

user, the rewritten form of the rule is returned. Otherwise the original rule is returned. All returned rules,

rewritten or not, are collected and output to the desired output file location. Optionally, the resulting

program is then run using clingo.

When a rule is passed to the equivalence transformer for processing, it first undergoes a process of

exploration, which traverses the rule’s abstract syntax tree, recording comparison literals between two

variables as well as other pertinent information found along the way. These comparison literals are

scrutinized to determine whether a subset of the comparisons follows the form given in (2) or some

equivalent format as detailed in the section 2.2. The process also identifies those variables that play the

role of X1, . . . ,Xb as in (2). The rule is then analyzed to determine whether there are b occurrences of

some positive literal of predicate F with the arguments Xi and Y, where each Xi, 1 ≤ i ≤ b, exists at

least once in the set of occurrences, and Y is the same for each occurrence and contains no variables

X1, . . . ,Xb. Let us call this set of b literals combined with the corresponding comparisons following the

form given in (2) or equivalent, the rule’s counting literals. Similarly, we denote the variables playing

the role of the variables Xi as given in (2) as the rule’s counting variables.

After gathering counting literals and counting variables, the equivalence transformer verifies that the

counting variables are not used within literals anywhere in the rule excluding literals within the set of

counting literals. If this verification fails or if any of the constraints for the counting literals cannot be

satisfied or if no such set of counting variables can be obtained, then the rule is not fit for rewriting. As

a result, no rewriting is performed on the rule and the original rule is returned.

In the other case, if the verification succeeds (the counting literals and the counting variables satisfy

all the required constraints), then we proceed as follows. If the requested output form is (3/4), then we

check whether |Y|> 0 and rewrite the rule accordingly using (3) or (4). If the requested output form is

(5) or (6), then the predicate dependency condition related to splitting must be verified (see the appendix

for details). If it holds, then we check whether |Y| > 0 and rewrite the rule into the desired form (5) or

(6), adding the second of the two rules in (4) when |Y|> 0.

Note that the user is first prompted for confirmation for each rewritten rule before the rule is added

to the final program. If the user denies a rewriting, then the original rule is used.

3.3 Limitations

Here we discuss the limitations of the Automated Aggregator in its current form.

1. The rewriting is one-directional. The software will only rewrite rules from the form (2) into rules

of the forms (3/4), (5), and (6). As it stands, the system will not rewrite rules given in any of the

forms (3/4), (5), or (6) into rules of any of other form.

2. In the cases when multiple rewritings are possible for a single rule, only one rewriting will be

detected and performed. To illustrate, if the form given in (2) occurs twice in one rule over a

disjoint set of variables and predicates, where both sets of counting literals consider the other set

as part of G and all conditions hold, then only the set of counting literals with the highest number

of counting variables will be used for rewriting. If both sets contain the same number of counting
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Table 1: Problem Domains of ASP Competition Encodings with Rules for Rewriting

ASP Competition Year Problem Domain of Encodings

2009 Golomb Ruler & Wire Routing

2014 Steiner Tree

2015 Steiner Tree & Graceful Graphs

variables, then one is chosen based on the order in which the comparisons using those variables

occur in the rule.

3. There are some cases in which the software will not recognize a valid rewriting when one exists.

These cases mostly lie in the many obscure ways of representing a chain of comparisons equivalent

to that in (2). However, there are no known cases in which an incorrect rewriting will be proposed

when no valid rewriting is possible. More details are given in the software’s README document.

4 Experimental Analysis

The Automated Aggregator system has been made available for download online.3 Encodings with which

the application was tested, their corresponding instances, and (Python) scripts for driving such tests, are

included there too.

4.1 Automated Aggregator in Practice

The Automated Aggregator system was applied to logic programs in gringo syntax submitted to the 2009,

2014, and 2015 Answer Set Programming Competitions. Of the 58 encodings given to the application,

five contained rules which were candidates for the rewriting described. Table 1 lists the encoding problem

names and the ASP Competitions for which they were developed.

Additionally, to provide an example of the functionality of AAgg, the system was applied to an

encoding for the Hamiltonian Cycle problem. The original program is shown in Figure 1. The rewritten

program, as output by AAgg, is shown in Figure 2. We see that the first two constraints in the program

are both rewritten with the necessary projection performed as in (4). Experimental results for these

encodings when applied to a generated set of hard instances are given in the following section.

4.2 Experimental Results

Results were gathered by systematically grounding and solving each instance-encoding pair within fam-

ilies of encodings for each problem type. The data sets of instances we used are available together with

the AAgg tool (see the url listed earlier).4 Each encoding in each family of encodings was run for each

instance. The total grounding plus solving time of instance-encoding pairs were recorded and compared.

The precise encodings used as input to the AAgg software for gathering results are listed in Table

2. Two output encodings are generated for each input encoding and together they form the encoding

family for that problem domain. The two output forms used were those shown in equations (3/4) and

3https://drive.google.com/drive/folders/1lqRsy9HGIDHvyX_Pvkc8zKt1-xvbwcAp?usp=sharing
4We thank Daniel Houston and Liu Liu for providing us with the data sets of instances for the Latin Square and the Hamil-

tonian Cycle problems, respectively. The data sets for the remaining problems were generated by software tools we developed

for the purpose. These tools and descriptions of instance sets used in experiments can be found at the AAgg site.
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node(X) :- edge(X,Y).

node(X) :- edge(Y,X).

{ hc(X,Y) } :- edge(X,Y).

:- hc(X,Y), hc(X,Z), Y!=Z.

:- hc(X,Y), hc(Z,Y), X!=Z.

reach(X,Y) :- hc(X,Y).

reach(X,Y) :- hc(X,Z), reach(Z,Y).

:- node(X), node(Y), not reach(X,Y).

Figure 1: Example Hamiltonian Cycle problem encoding. Original version.

node(X) :- edge(X,Y).

node(X) :- edge(Y,X).

{ hc(X,Y) } :- edge(X,Y).

:- 2 <= #count{ Y : hc(X,Y) }, hc_project_Z(X).

hc_project_Z(X) :- hc(X,Y).

:- 2 <= #count { X : hc(X,Y) }, hc_project_Z1(Y).

hc_project_Z1(Y) :- hc(X,Y).

reach(X,Y) :- hc(X,Y).

reach(X,Y) :- hc(X,Z), reach(Z,Y).

:- node(X), node(Y), not reach(X,Y).

Figure 2: Example Hamiltonian Cycle problem encoding. Rewritten version.
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Table 2: Sources of Encodings Used for Experimental Results

Source of Encoding Problem Domain of Encodings

ASP Competition 2009 Wire Routing

ASP Competition 2015 Steiner Tree & Graceful Graphs

Home-Brewed Latin Squares& Hamiltonian Cyclea

aWe are thankful to Daniel Houston and Liu Liu for supplying the Latin Squares and Hamiltonian Cycle instance sets,

respectively.

Table 3: Result Statistics by Problem Domain

Encoding Wins Exclusive Wins Wins by 20% Wins by 50%

Wire Routing Input Encoding 122 (58.4%) 34 (27.8%) 115 (92.0%) 97 (77.6%)

AAgg Output Form (3/4) 50 (24.0%) 26 (52.0%) 48 (87.3%) 38 (69.1%)

AAgg Output Form (6) 37 (17.7%) 13 (35.1%) 39 (90.7%) 23 (53.5%)

Steiner Tree Input Encoding 130 (33.9%) 0 (0%) 1 (0.8%) 0 (0%)

AAgg Output Form (3/4) 123 (32.1%) 0 (0%) 4 (3.3%) 0 (0%)

AAgg Output Form (6) 130 (33.9%) 0 (0%) 6 (4.6%) 0 (0%)

Graceful Graphs Input Encoding 212 (37.3%) 62 (29.2%) 182 (85.8%) 128 (60.4%)

AAgg Output Form (3/4) 97 (17.1%) 23 (23.7%) 82 (84.5%) 58 (59.8%)

AAgg Output Form (6) 259 (45.6%) 51 (19.7%) 229 (88.4%) 169 (63.7%)

Latin Squares Input Encoding 5611 (77.7%) 5 (0.1%) 4435 (79.0%) 2003 (35.7%)

AAgg Output Form (3/4) 1432 (19.8%) 0 (0%) 655 (45.7%) 86 (6.0%)

AAgg Output Form (6) 176 (2.4%) 0 (0%) 64 (36.4%) 7 (4.0%)

Hamiltonian Cycle Input Encoding 72 (28.7%) 47 (65.3%) 59 (81.9%) 34 (47.2%)

AAgg Output Form (3/4) 102 (40.6%) 69 (67.7%) 79 (77.5%) 52 (51.0%)

AAgg Output Form (6) 77 (30.7%) 45 (58.4%) 64 (83.1%) 44 (57.1%)

(6); previous experiments showed extreme similarity between forms (3/4) and (5), so (5) was left out to

preserve machine time. The machine used for testing contained an Intel(R) Core(TM) i7-7700 CPU @

3.60GHz with 16GB RAM.

Result statistics are shown in Table 3. Data is grouped by problem domain. The first line of each

grouping shows statistics for the input encoding. The second line shows statistics for the encoding output

by the AAgg software using the first line as input and the output rule form (3/4) as the selected output

form. The third and final line of each grouping shows statistics for the encoding output by the AAgg

software again using the first line as input but now selecting the output form (6) as the chosen output

form.

A win is when an encoding grounds and solves for an instance in the shortest amount of time as

compared with the other two encoding in its grouping. The percentage value beside the win count is the

proportion of instances which that encoding won relative to the number of instances in the instance set

for which at least one of the three encodings terminated within the total time limit set for grounding and

solving. This time limit was set to 200 seconds in all experiments, except those with encodings of the

Hamiltonian Cycle problem that used a timeout value of 400 seconds due to the relative difficulty of the

instance set (in all problem domains except for the Hamiltonian Cycle domain, the number of instances

for which no encoding computed an answer within the time limit was very small; for the Hamiltonian
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Cycle problem, even with the increased time limit, it was significant).

An exclusive win is when the encoding is the only encoding in its grouping to find a solution (or

determine there is no solution) for an instance while both of the other two encodings failed to do so

within the time limit. The column shows the number and the percentage of wins which were exclusive

wins for the encoding. The next column shows the number and the percentage of wins by a margin of

at least 20% (this is when the best encoding runs at least 20% faster than the second one; in case the

of exclusive wins, we count a win as by at least 20%, if it is faster by at least 20% than the time limit

used). The data in the last column shows the numbers and percentages of wins by at least 50% (it is to

be interpreted similarly to the data in the previous column).

Results indicate that in some cases, the rewriting can provide complementary performance of encod-

ings. Specifically, the results for the Wire Routing, Graceful Graphs, and Hamiltonian Cycle problems

support the claim. This is shown first by the fact that for each problem, each of the encodings scores

a significant proportion of wins, and that among those wins a significant proportion are exclusive wins,

and an even greater proportion (about 50% or more) are wins by at least 50%. This means that about half

of the times when an encoding outperforms the two other encodings, it outperforms both by a factor of

at least two.

The Steiner Tree results indicate that sometimes the rewriting produces little to no effect at all. While

each encoding for the problem registers a similar proportion of wins, there are very few instances (just

eleven out of 283) when the best encoding outperforms the other two by 20% or more, and no instances

when the best encoding would outperform the other two by 50% or more. The Latin Squares results are

mixed in the sense that for the most part the original encoding works best. However, one of the rewritings

registers almost 20% of wins. Moreover, about 45% of those wins are by 20% or more and 6% by 50%

or more.

In summary, we see that the rewriting can provide programs that perform complementary to the

original. This complementarity is perhaps somewhat surprising, because aggregates are assumed to lead

to better performance. Our results show that the picture is more complicated and whether rewriting with

aggregates yields better performance is instance-dependent. It is also interesting to note that for some

encodings replacing simple counting, like that used in the Latin Square encodings (no two identical

elements in a row or column), with the count aggregates does not lead to substantial improvements.

Finally, for some problems (in our experiments for the Steiner Tree problem) where complementary

behavior does emerge, the differences in performance are relatively small.

5 Future Work

As detailed in Section 3.3, the Automated Aggregator software can be improved. Extending the software

so that it rewrites rules by eliminating the counting aggregate by inverting the current rewriting seems

to be a potentially most beneficial direction. Indeed, our results show that introducing aggregates does

not guarantee uniformly improved performance. This gives reason to think that removing the counting

aggregate, that is, rewriting it in an explicit way, has a potential of generating encodings that on many

instances may perform better. Just like the present version of the AAgg system, this could yield collec-

tions of encodings of complementary strengths. Moreover, this form of rewriting would be quite widely

applicable, as the counting aggregate is commonly used.

Expanding the software to detect and perform multiple aggregate equivalence rewritings on a single

rule and to detect more obscure forms of representations are two other directions for improvement.

While necessary to ensure the software has a possibly broad scope of applicability, we do not expect
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these extensions to have a major practical impact due to low frequency with which such less intuitive and

convoluted forms of modeling are found in programs.

Automated rewriting has been studied before. The PROJECTOR system [8] and the lpopt system [1]

are two notable examples. That earlier work sought to develop rewritings improving the performance

over the original ones. That goal is in general difficult to meet; both systems were shown to offer gains,

but the rewritten encodings are not always performing better. Our goal was different. We aimed at

rewritings of varying relative performance depending on input instances. With the AAgg system we

showed that even a rather simple rewriting consisting of introducing the count aggregate often leads to

families of encodings with complementary strengths (areas of superior performance). This opens a way

for using machine learning to develop models in support of effective encoding selection or encoding

portfolio solving [12]. In such work, to generate promising collections of encodings, one could use

the AAgg system, with extensions mentioned above, but also other program rewriting software such as

PROJECTOR and lpopt which, as noted, while they do yield good encodings, often better than the original

one, they do not perform uniformly better.
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A Correctness of Rewritings

Let us consider the following program rule (H may be ⊥):

H ←
∧

1≤i≤b

F(Xi,ZZZ,ZZZ
′′′),Q(XXX),G(ZZZ′′′,ZZZ′′′′′′). (7)

where F is a predicate, XXX a tuple of variables X1, . . . ,Xb, Q(XXX) is a list of literals over variables X1, . . . ,Xb,

and ZZZ,ZZZ′′′ and ZZZ′′′′′′ are three pairwise disjoint tuples of variables, and disjoint with XXX , and H contains none

of Xi.

Let P be a program containing rule (7) and let P′ be the program obtained from P by replacing that

rule with the two rules

H←
∧

1≤i≤b

F(Xi,ZZZ,ZZZ
′′′),Q(XXX),G(ZZZ′′′,ZZZ′′′′′′),F ′(ZZZ).

F ′(ZZZ)← F(X ,ZZZ,ZZZ′′′).

(8)

where F ′ is a predicate not occurring in P.

Theorem A.1. The programs P and P′ have the same answer sets modulo ground atoms of the form

F ′(zzz).

Proof. (Sketch) Consider a ground instance r of rule (7) and let a be the first atoms in the body of r (that

is, a ground instance of the atom F(X1,ZZZ,ZZZ
′′′)). In P′ there are ground rules r′ and r′′ obtained from (8)

using the same variable instantiation as that used to produce r. Clearly, r contributes to the reduct of

ground(P) if and only if r′ and r′′ contribute to the reduct of ground(P′). Moreover, if they do, r “fires”

in the least model computation if and only if r′ fires in the least model computation. It follows that an

interpretation I of P is an answer set of P if and only if I∪ J is an answer set of P′, where J consists of

all atoms F ′(zzz) such that F(x,zzz,zzz′′′) ∈ I, for some constant x and a tuple of constants zzz′′′.

Next, we recall the following theorem proved by Lierler [10].
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Theorem A.2. Let H be an atom (H may be ⊥), G a list of literals, X a variable, ZZZ a tuple of variables,

each different from X and each with at least one occurrence in a literal in G, and F a predicate symbol

of arity 1+ |ZZZ|. If b is an integer, and X1, . . . ,Xb are variables without any occurrence in H and G, then

the logic program rule

H ←
∧

1≤i≤b

F(Xi,ZZZ),
∧

1≤i< j≤b

Xi 6= X j,G. (9)

is strongly equivalent to the logic program rule

H← b≤ #count{X : F(X ,ZZZ)},G. (10)

where
∧

is used to represent a sequence of expressions separated by commas.

Combining the two results leads to the following result that proves the correctness of the first rewrit-

ing implemented by our tool AAgg.

Theorem A.3. Let P be a program containing a rule r of the form

H←
∧

1≤i≤b

F(Xi,ZZZ,ZZZ
′′′),

∧

1≤i< j≤b

Xi 6= X j, G(ZZZ′′′,ZZZ′′′′′′). (11)

under the same assumptions about variable tuples XXX ,ZZZ,ZZZ′′′ and ZZZ′′′′′′ as before. If ZZZ is empty, let P′ be

P. Otherwise, let P′ be obtained from P by replacing r with the rules (8), adjusting the first of them to

contain
∧

1≤i< j≤b Xi 6= X j in place of Q(XXX). Let us call the first of these two rules r (reusing the name of

the original rule). Finally, let P′′ be obtained from P′ by replacing r with the corresponding rule (10).

Then, the programs P and P′ have the same answer sets (in the case, when ZZZ is not empty, the same

answer sets modulo atoms F ′(zzz)).

Proof. Clearly, rule r is a special case of a rule of the form (7). By A.1, programs P and P′ have the same

answer sets (when ZZZ, is not empty, the same answer sets modulo atoms F ′(zzz)). The rule r in P′ is of the

form (9) required by Theorem A.2. Applying this theorem shows that programs P′ and P′′ have the same

answer sets and the assertion follows.

Once a program has a rule of the form (10), we can often modify it further by exploiting alternative

encodings of the aggregate expressions. In particular, under some assumptions about the structure of the

program, we can replace a rule (10) by

H← not #count{X : F(X ,ZZZ)}< b,G. (12)

where we assume that the variable X is not a variable in ZZZ, and that all variables in ZZZ appear in G.

We recall that a partition (Pb,Pt) of a program P is a splitting of P if no predicate appearing in the

head of a rule from Pt appears in Pb [11, 4]. A well-known result on splitting states that answer set

of programs that have a splitting can be described in terms of answer sets of programs that form the

splitting.

Theorem A.4. Let P be a logic program and let (Pb,Pt) be a splitting of P. For every answer set Ib of

Pb, every answer set of the program Pt ∪ Ib is an answer set of P. Conversely, for every answer set I of P,

there is an answer set Ib of Pb such that I is an answer set of Pt ∪ Ib.
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This result implies that in programs that have a splitting, a rule in Pt containing in its body an ag-

gregate expression involving only predicates appearing in Pb can be replaced by a rule in which this

aggregate expression is replaced by any of its (classically) equivalent forms. We formally state this result

for the case of rules of the form (10).

Theorem A.5. Let P be a logic program and let (Pb,Pt) be a splitting of P. If Pt contains a rule of the

form (10) and F appears in Pb, then P and the program P′ obtained from P by replacing the rule (10) by

the rule (12) have the same answer sets.

Proof. (Sketch) Let P′t be the program obtained from Pt by replacing the rule (10) by the rule (12). It is

clear that (Pb,P
′
t ) is a splitting of P′. Let I be an answer set of P. By A.4, there is an answer set Ib of Pb

such that I is an answer set of Pt ∪ Ib. In particular, I is an answer set of the program Ib∪ground(Pt). Let

Q be the program obtained by simplifying the bodies of the rules in ground(Pt) as follows. If a conjunct c

in the body of a rule in ground(Pt) involves only atoms from the Herbrand base HB(Pb) of Pb, we remove

c if Ib |= c, and we remove the rule, if Ib 6|= c. Because atoms from HB(Pb) do not appear in the heads of

the rules in ground(Pt), I is an answer set of Q∪ Ib.

We denote by Q′ the program obtained by the same simplification process from ground(P′t ). From

the definition of P′t it follows that Q′ = Q (indeed, the only difference between Pt and P′t is in the bodies

of some rules, in which an aggregate built entirely from the atoms in HB(Pb) is replaced by a classically

equivalent one; thus, both expressions evaluate in the same way under Ib and the contribution of the

corresponding rules to Q and Q′ in each case is the same). Consequently, I is an answer set of Q′∪ Ib.

Because atoms from HB(Pb) do not appear in the heads of the rules in ground(P′t ), I is an answer set of

ground(P′t )∪ Ib and, because (Pb,P
′
t ) is a splitting of P′, also an answer set of P′. A similar argument

shows that answer sets of P′ are also answer sets of P.

It is clear that the same argument applies to other similar rewritings, for instance, to the one that

replaces the rule (9) by the rule

H←
∧

0≤i<b−1

not i = #count{X : F(X ,ZZZ)},G. (13)

where, as before, we assume that the variable X is not a variable in ZZZ, and that all variables in ZZZ appear

in G.

Theorem A.5 establishes the correctness of the two remaining rewritings implemented by the tool

AAgg. The tool is designed to check for splitting and allows the rewriting to take place only if the

conditions of A.5 hold.
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