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Abstract. We consider the spread of an infectious disease in a heterogeneous environment,5
modelled as a network of patches. We focus on the invasibility of the disease, as quantified by the6
corresponding value of an approximation to the network basic reproduction number, R0, and study7
how changes in the network structure affect the value of R0. We provide a detailed analysis for two8
model networks, a star and a path, and discuss the changes to the corresponding network structure9
that yield the largest decrease in R0. We develop both combinatorial and matrix analytic techniques,10
and illustrate our theoretical results by simulations with the exact R0.11
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1. Introduction. Advanced science and technology have made our world an in-14

creasingly connected place. Globalization and urbanization bring not only benefits,15

but also attendant consequences such as the spread of emerging and re–emerging in-16

fectious diseases. Historically, plague, cholera and influenza have resulted in millions17

of human deaths, and insight into the spread and control of these diseases has shaped18

our modern society, particularly in medicine and public health. Recent emerging dis-19

eases such as HIV/AIDS, SARS, Ebola and COVID-19 highlight the need for scientific20

investigations of disease spread via transport networks [43]. As disease vectors (e.g.,21

mosquitoes and ticks) can also be carried via human/goods transportation, the out-22

break and spread of vector-borne diseases such as dengue, Lyme disease, malaria, West23

Nile virus, yellow fever, and Zika virus have exhibited strong spatio–temporal patterns24

[15, 22, 26, 37, 40, 41, 42, 47] (also see the recent special issues [31, 39]), partly due25

to the interplay between disease epidemiology and vector ecology. Spatio–temporal26

patterns have also been observed for many waterborne diseases caused by pathogenic27

micro–organisms such as bacteria and protozoa that are transmitted in water/river28

networks [3, 20, 33, 38, 45, 46]. One of the main scientific challenges is to deter-29

mine the connection between disease risk and the change of network structures (as a30

consequence of human behavior and/or environmental uncertainty). Recent studies31

using statistical data from climate, environmental and disease surveillance have shown32

inconsistent and geographically variable results. For example, a discrepancy in the33

correlation with precipitation has appeared in the literature of waterborne diseases:34

a significant positive association between heavy rainfall and waterborne diseases is35

often observed [9, 13, 16, 23, 32] (also see the review paper [30]), while increased36

prevalence of waterborne diseases has also been reported as an unexpected conse-37
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quence of drought [6] and the anthropogenic protection against annual flooding [10].38

Detailed discussions of this discrepancy, as a consequence of human behavior and/or39

climate change, have been surveyed in [4, 29], while rigorous scientific explanations40

and theoretical insights are lacking, due to the complexity and multiple time–scales.41

Many existing studies in the literature have focused on the aggregation of disease42

dynamics at each geographical region (or patch) via a static movement (or commu-43

nity) network, either for the situation where the time scale of the dispersal among44

patches is much faster than the scale of patch demography/disease dynamics, or with45

the focus on monotonicity of disease invasibility with respect to dispersal speed or46

travel frequency; for example, see [1, 8, 17, 18, 19, 44]. Recently, a general result47

on the spectral monotonicity of a perturbed Laplacian matrix in [12] has provided a48

theoretical insight on the aggregation. Specifically, for a square matrix A = Q− µL,49

where Q = diag{qk} is a diagonal matrix encoding within–vertex (within–patch) pop-50

ulation/disease dynamics and L is a Laplacian matrix describing population dispersal51

among patches in a heterogeneous environment (of n patches), the monotonicity and52

convexity of the spectral abscissa of A, s(A), with respect to dispersal speed µ is53

established: ds(A)
dµ ≤ 0 and d2s(A)

dµ2 ≥ 0. The limiting behavior with a faster time54

scale of population/disease dynamics is like the decoupled (no movement) system,55

s(A) = max{qk}, while the limiting behavior with a faster time scale of dispersal is56

the u-weighted average, s(A) =
∑n
k=1 ukqk, where u = (u1, u2, . . . , un)> is the nor-57

malized right null vector of L. As pointed out in [12], these results also are related58

to the reduction principle in evolution biology [2, 25] and the evolution of dispersal59

in patchy landscapes [27]. For many heterogeneous infectious disease models, the60

network basic reproduction number R0, a threshold determining whether the disease61

dies out or persists, can be approximated as the u-weighted average of the individual62

patch reproduction numbers R(k)
0 , R0 =

∑n
k=1 ukR

(k)
0 , when the dispersal among63

geographic regions is faster than the disease/population dynamics; see, e.g., [17, 44]64

for waterborne diseases, [12, 19, 21] for general diseases of SIS or SIR type, and [8]65

for the analog in a continuous spatial landscape.66

In this paper, we investigate the impact of varying community networks on disease67

invasion in a heterogeneous environment. Our motivation comes from the spread of68

a waterborne–disease such as cholera in a heterogeneous network [17, 44], in which69

the pathogen (the bacterium Vibrio cholerae) moves along water in a hydrological70

landscape (e.g., a river network), or the spread of directly transmitted diseases for71

which the host moves between regions [1]. If the network structure changes, our goal72

is to determine how this affects the network basic reproduction number R0 for the73

spatial spread of the disease. The quantity R0 is important as it usually determines74

a threshold for disease extinction (when R0 < 1) or persistence (when R0 > 1), and75

gives guidance for disease control strategies.76

First, we consider a toy model of a 4–node path graph network with counter–77

intuitive numerical results showing opposite monotonicity of R0 corresponding to a78

bypass from upstream to downstream (e.g., due to flooding). For the reader’s conve-79

nience, we include in the Supplementary Material (A) the model and related results80

from [17, 44]. As depicted in Figure 1, we consider the spread of a pathogen (e.g.,81

cholera) on a path network of 4 patches (vertices) with vertices 1, 2, 3, 4 sequen-82

tially located along a river, where vertex 1 is upstream and vertex 4 is downstream.83

We assume that each nonzero movement rate, mij from vertex j to vertex i, on the84

path has value 1. As shown in [17, 44] the associated next generation matrix takes85

the form K = FV −1 = DqG
−1
W DrG

−1
I , where F is the matrix of new infections, V86
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is the matrix of transitions, Dq = diag{qi}, GW = diag{δi} + L, Dr = diag{ri}87

and GI = diag{µi}. Here the parameters qi, δi, ri and µi are the linearized in-88

direct transmission rate (from pathogen to host), pathogen decay rate, pathogen89

shedding rate and decay rate of infectious host individuals in patch i, respectively,90

(i = 1, 2, 3, 4). The matrix L is the 4 × 4 Laplacian matrix associated with M ,91

i.e., L = diag{
∑
j 6=imji} − M , where M = (mij) with mij ≥ 0 representing the92

pathogen/host dispersal from patch j to patch i. Then the exact network basic repro-93

duction number is R0 = ρ(FV −1) = ρ(DqG
−1
W DrG

−1
I ), where ρ denotes the spectral94

radius. For simplicity, we set ri/µi = 1, δi = 1 in each patch, with the base qi value95

taken to be q = 0.195. In this case, the basic reproduction number in patch i is equal96

to qi. We consider two scenarios in which the network has a “hot spot”, i.e. a vertex97

i at which the linearized indirect transmission rate qi (or equivalently R(i)
0 ) is higher98

than those of the other vertices, and an arc that bypasses the hot spot. In the first99

case (see the left plot in Figure 1), the hot spot is assumed to be located at vertex100

2 with an additional bypass downstream from vertex 1 to vertex 3 being included,101

specifically, q1 = q3 = q4 = q, q2 = 10q, and L =


1 +m31 −1 0 0
−1 2 −1 0
−m31 −1 2 −1

0 0 −1 1

. In the102

second case (see the right plot in Figure 1), the hot spot is located at vertex 3 and a103

new bypass from vertex 2 to vertex 4 is included with q1 = q2 = q4 = q, q3 = 10q and104

L =


1 −1 0 0
−1 2 +m42 −1 0
0 −1 2 −1
0 −m42 −1 1

.105
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Fig. 1. With the hot spot at 2, R0 decreases as m31 increases (left plot); with the hot spot at
3, R0 increases as m42 increases (right plot).

In both cases the hot spot is bypassed, in the same direction, but the effects on106

R0 are markedly different, as shown in Figure 1. Although symmetric movement is107

used in the simulations for Figure 1, the inclusion of a small amount of advection108

(i.e., changing the subdiagonal entries to a common value slightly less than −1 to109

reflect the upstream-downstream movement) gives the same monotone properties of110

R0. Similar behavior also occurs in the simulations of other patch disease models111

such as the directly transmitted disease (SIS) model in [1]; see the Supplementary112

Material for R0. These unexpected behaviors motivate our investigation of the effect113
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of network structure on R0.114

The remainder of the article is organized as follows. Some preliminary results are115

provided in section 2. Two different methods, one combinatorial and one algebraic,116

are employed to investigate the impact of varying community networks on disease117

invasion, in sections 3 and 4, respectively. Applications to specific networks are il-118

lustrated in section 5, including an explanation of the counter–intuitive numerical119

results above. Disease control strategies involving varying the community network120

are considered in section 6, and concluding remarks are given in section 7.121

2. Preliminaries. From consideration of a system of ordinary differential equa-122

tions governing the dynamics of cholera under the assumptions that humans become123

infected through contact with pathogens in the water, and that the water movement124

is faster than the pathogen decay rate, it has been established [17, 44] that R0 is125

approximated (from the exact value, given by the spectral radius of the next gen-126

eration matrix) by a linear combination of the basic reproduction numbers in each127

patch in isolation. The constants in this linear combination are the components of128

the normalized right eigenvector of the Laplacian matrix of the community network.129

The specific aim of this work is to determine how this eigenvector and R0 change with130

alterations in the network structure. We consider a strongly connected network, and131

assume that the network maintains this property when changed.132

To be more precise, let M = (mij) ≥ 0 denote an n × n irreducible matrix rep-133

resenting the pathogen/host movement in a heterogeneous environment of n patches.134

In particular, when 1 ≤ i, j ≤ n are distinct, mij ≥ 0 represents the pathogen/host135

dispersal from patch j to patch i. We assume that mii = 0 for i = 1, . . . , n. Let136

G = G(M) be the weighted digraph associated with M . That is, in G there is an arc137

j → i from vertex j to vertex i of weight mij if and only if mij > 0. Let L be the138

Laplacian matrix of G(M), i.e.,139

(2.1) L = diag
(∑
i 6=1

mi1,
∑
i6=2

mi2, . . . ,
∑
i 6=n

min

)
−M.140

Notice that each column sum of L is 0, and thus 0 is an algebraically simple eigenvalue141

of L (since M is irreducible). Evidently the all ones vector, 1>, is a left null vector for142

L. For each k = 1, . . . , n, let Ckk = det(L(k,k)) be the principal minor of L formed by143

deleting its k–th row and column. Consider the vector u = (u1, u2, . . . , un)>, where144

(2.2) uk =
Ckk
n∑̀
=1

C``

, k = 1, . . . , n.145

Denote the adjugate of L by adj(L), and recall that Ladj(L) = adj(L)L = det(L)I =146

0. Hence adj(L) = x1>, where x is a nonzero vector in the right null space of L. It147

now follows that u is the right null vector of L, normalized so that 1>u = 1.148

As shown in [17, 44] (also see [8]), when the time scale of movement is substan-149

tially larger than the time scale of the disease dynamics, the coefficients uk defined150

above serve as weights to aggregate the disease dynamics from each patch. For this151

reason, uk is called the network risk of patch k. In particular, the network basic re-152

production number R0 can be approximated by the u–weighted average of the patch153

basic reproduction numbers R(k)
0 ; that is,154

(2.3) R0 ≈
n∑
k=1

ukR(k)
0 .155
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This expression (2.3) separates the structure of the movement network and the within–156

patch disease dynamics, and thus provides a new approach to investigate the impact157

of changes in the network on disease invasion. Specifically, we first investigate how158

a change to the network structure affects the network risks uk, and then utilize the159

aggregation in (2.3) to understand how varying the network affects the disease inva-160

sibility (i.e., the value of R0).161

Since uk depends on the cofactor Ckk as in (2.2), it can be expressed in terms162

of the sum of weights of spanning rooted trees [11, 36] by using Kirchhoff’s Matrix–163

Tree Theorem. Calculating the weights of such trees gives a combinatorial method164

for finding the sign of duk

dmij
, the derivative of uk with respect to a change in the arc165

j → i. This combinatorial approach is developed in section 3, and may be convenient166

for some cases, such as small networks or networks with specific structures.167

In addition, there is a well–established algebraic tool for understanding how168

changes in the movement matrix M affect the entries in the right null vector u of the169

Laplacian matrix L. Since L is a singular and irreducible M–matrix, the eigenvalue 0170

of L is algebraically simple; so, while L is not invertible, it has a group inverse, that171

is, a unique matrix L# such that LL# = L#L,LL#L = L, and L#LL# = L#. The172

group inverse has been used effectively to analyse how changes in an irreducible non-173

negative matrix affect its Perron eigenvalue and eigenvector (see for example [14, 34])174

and our results in section 4 are informed by that approach. We refer the interested175

reader to [7] for background on generalized inverses in general, and to [28] for the use176

of the group inverses in the study of M–matrices in particular.177

With the group inverse method developed in generality, in section 5.1, we illustrate178

this method with a star network in which one patch is the hub connected to several leaf179

vertices. Such a network structure is appropriate as a model for a large city connected180

to smaller cities or suburbs, with humans commuting in each direction. Then in181

section 5.2, we illustrate the general results for a path network, which models cholera182

outbreaks in communities living along a river. For these two network structures, we183

consider control strategies for restricted cases of the two networks (section 6), and184

derive results on how changes to the network can help to minimize disease invasion.185

3. Combinatorial method: counting spanning rooted trees. It follows186

from Kirchhoff’s Matrix–Tree Theorem [11, 36] that the cofactor of the (k, k) entry187

of L can be interpreted in terms of spanning rooted trees:188

(3.1) Ckk =
∑
T ∈Tk

w(T ) =: Wk,189

where Tk is the set of spanning in–trees rooted at vertex k and w(T ) =
∏

(j,i)∈E(T )

mij190

is the weight of a spanning in–tree T rooted at k. The notation Wk introduced in191

(3.1) is convenient for tracking how uk = Wk∑
`W`

, defined in (2.2), behaves as the192

network structure changes. Specifically, we consider a small change of the mij value193

(for a fixed ordered pair (i, j)) in the movement network, say mij → mij + ε, and194

explore how the value of uk responds; to do so, we focus on the sign of duk

dmij
. (We195

note in passing that if mij is zero, we only consider positive values of ε, and in that196

setting duk

dmij
is interpreted as the derivative from the right.) Notice that such a change197

mij → mij + ε affects two entries of L; the (i, j) entry and the (j, j) entry.198

Before establishing our main results, we introduce some additional notation and199

tools from matrix theory and graph theory. Let L(ij,k`) denote the matrix obtained200

from L by deleting the i–th and j–th rows and k–th and `–th columns. Let W ij
k201
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denote the sum of the weights of all spanning in–trees rooted at k containing the arc202

j → i, and let W∼ijk denote the sum of the weights of all spanning in–trees rooted at203

k that do not contain the arc j → i. Notice that Wk = W ij
k +W∼ijk .204

First we prove the following two lemmas.205

Lemma 3.1. Assume i 6= j. Then206

(3.2) W ij
k = mij |det(L(ij,kj))|.207

Proof. From the all–minors Matrix–Tree Theorem [11], |det(L(ij,kj))| is the sum208

of the weights of all spanning forests F that contain exactly two in–tree components,209

one rooted at k containing vertex i and the other rooted at j. Adding the arc j →210

i of weight mij in F , yields a spanning in–tree T rooted at k containing j → i;211

in particular, mijw(F) = w(T ). The identity (3.2) follows after performing this212

operation for all spanning forests.213

We note here that strictly speaking, the right side of (3.2) is not defined in the214

case that k = j. However, we may adopt the convention that det(L(ij,kk)) = 0, and215

then (3.2) will also hold when k = j.216

Lemma 3.2. Let Wk = Ckk = det(L(k,k)). Then, for any i 6= j,217

(3.3)
dWk

dmij
= |det(L(ij,kj))|.218

Proof. Straightforward calculations, along with (3.2), yield219

dWk

dmij
= lim
ε→0

(W ij
k +W∼ijk )|mij+ε − (W ij

k +W∼ijk )|mij

ε
220

= lim
ε→0

(mij + ε)|det(L(ij,kj))|+W∼ijk −mij |det(L(ij,kj))| −W∼ijk

ε
221

= |det(L(ij,kj))|,222223

resulting in (3.3).224

As with (3.2), when k = j, we interpret both sides of (3.3) as being zero.225

In particular, if mij > 0 for i 6= j, it follows from Lemmas 3.1 and 3.2 that226

(3.4)
dWk

dmij
=
W ij
k

mij
.227

228

Now we are ready to prove the main result arising from this combinatorial method.229

Theorem 3.3. For any given k, i, j, i 6= j,230

(3.5) sgn
( duk
dmij

)
= sgn

(∣∣det(L(ij,kj))
∣∣∑
` 6=k

W` −Wk

∑
6̀=k

∣∣ det(L(ij,`j))
∣∣).231

If, in addition, mij > 0, then232

(3.6) sgn
( duk
dmij

)
= sgn

(
W ij
k

∑
` 6=k

W∼ij` −W∼ijk

∑
6̀=k

W ij
`

)
.233
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Proof. Taking the derivative on both sides of (2.2) with respect to mij yields234

(3.7)
duk
dmij

=
1

(
∑
`W`)2

( dWk

dmij

∑
`

W` −Wk

∑
`

dW`

dmij

)
.235

Substituting (3.3) into (3.7), after the cancellation of the case ` = k, yields (3.5).236

Additionally, if mij > 0, then it follows from (3.4) that237

duk
dmij

=
1

(
∑
`W`)2

(W ij
k

mij

∑
` 6=k

W` −Wk

∑
` 6=k

W ij
`

mij

)
(3.8)238

=
1

mij(
∑
`W`)2

(
W ij
k

∑
` 6=k

(W ij
` +W∼ij` )− (W ij

k +W∼ijk )
∑
` 6=k

W ij
`

)
(3.9)239

=
1

mij(
∑
`W`)2

(
W ij
k

∑
` 6=k

W∼ij` −W∼ijk

∑
` 6=k

W ij
`

)
,(3.10)240

241

resulting in (3.6).242

The sign identities (3.5) and (3.6) characterize how the network risk at patch k243

changes as a function of the movement from patch j to patch i. If more information244

on the movement network is provided, the exact sign of duk

dmij
may be able to be245

determined. If patch k is the head of the altered arc j → i (i.e., j = k), then the sign246

of the change in the network risk duk

dmij
is determined in the following result, regardless247

of the network structure.248

Theorem 3.4. For any given k, i, i 6= k,
duk
dmik

< 0.249

Proof. Since there is no spanning in–tree rooted at k that contains the arc k → i250

(i.e., leaving the root vertex k), W ij
k = 0. It follows from the irreducibility of M that251

there exists at least one spanning in–tree rooted at k, which certainly does not contain252

the arc k → i; thus W∼ikk > 0. If mik > 0, then there exists at least one vertex ` 6= k253

at which a spanning in–tree containing k → i is rooted, and hence W ik
` > 0. It follows254

from (3.6) that duk

dmik
< 0.255

If mik = 0, then (3.5) can be utilized to establish the result. Specifically, there256

is no spanning forest of two components both of which are rooted at k, which is257

reflected in our convention that det(L(ij,kk)) = 0. Similarly, the irreducibility of M258

implies that Wk > 0 and |det(L(ij,`k))| > 0 for some ` 6= k.259

Notice that none of the in–trees rooted at k include the arc k → i, so any increase260

of mik does not alter Wk but increases all other W`, ` 6= k. Consequently, all terms261

in the first sum of (3.5) or (3.6) vanish, as shown in the proof of Theorem 3.4. In262

contrast, perturbations of mkj change Wk and other W`, ` 6= k, which requires more263

discussion.264

If patch k is the tail of the altered arc j → i (i.e., k = i), and the restriction is265

added that the only path from j to k is the arc j → k, then the proof of the following266

result proceeds by an analysis similar to that used to prove Theorem 3.4.267

Theorem 3.5. For any given k, j, j 6= k, if the arc j → k is the only path from268

j to k, then W∼kjk = 0, and
duk
dmkj

> 0.269

In section 4, we generalize Theorem 3.5 by using the group inverse to remove the270

restriction on the number of paths from j to k.271
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4. Algebraic method: computing the group inverse. Suppose that L is an272

irreducible Laplacian matrix with zero column sums, as in (2.1). Recall from section273

2 that there is a unique group inverse L# such that LL# = L#L, LL#L = L, and274

L#LL# = L#. The left and right null spaces of L are necessarily one–dimensional,275

and are spanned by 1
> and u, respectively, where u = (u1, . . . , un)T is the right null276

vector of L, normalized so that 1>u =
∑n
i=1 ui = 1. From Corollary 7.2.1 of [7], it277

now follows that L#L = I − u1>.278

Consider a perturbation L̃ = L + E of L such that L̃ is also a singular and279

irreducible M–matrix with 1
>L̃ = 0. We seek the normalized right null vector of L̃;280

i.e., the vector ũ such that L̃ũ = 0 and 1
>ũ = 1. Since (L + E)ũ = 0, we have281

L#(L + E)ũ = 0, and hence (I − u1>)ũ + L#Eũ = 0. Thus (I + L#E)ũ = u. Since282

I + L#E is invertible (see [34], or Lemma 5.3.1 in [28]), this gives283

(4.1) ũ =
(
I + L#E

)−1
u.284

At the end of this section, we provide an explicit expression for L#.285

The following technical results (e.g., see [24, p.19] [35, p.475]) are useful in proving286

Theorem 4.2 below.287

Lemma 4.1. Let x and y be column vectors of dimension n, then288

det(I+xy>) = 1+y>x. If in addition, y>x 6= −1, then (I+xy>)−1 = I− 1
1+y>x

xy>.289

290

Here is one of the main results in this section.291

Theorem 4.2. Let L be an irreducible M–matrix as defined in (2.1).292

a) Suppose that L + εF is an irreducible M–matrix with 1
>F = 0 for all ε in a293

neighborhood of 0. Then the directional derivative of u with respect to F is −L#Fu.294

b) Perturb mij → mij +ε (where ε ≥ 0 when mij = 0) with 1 ≤ i 6= j ≤ n, and denote295

the corresponding right null vector for the Laplacian (normalized to have sum 1) by296

ũ. Then for k = 1, . . . , n,297

(4.2) ũk − uk = − ε uje
>
k L

#(ej − ei)
1 + ε e>j L

#(ej − ei)
= −

εuj(L
#
kj − L

#
ki)

1 + ε(L#
jj − L

#
ji)
.298

Moreover,299

(4.3)
duk
dmij

= −uje>k L#(ej − ei) = −uj(L#
kj − L

#
ki), k = 1, . . . , n,300

and
1

uj

duk
dmij

= − 1

ui

duk
dmji

, k = 1, . . . , n.301

Proof. a) For ε sufficiently small,302

(4.4)
(
I + εL#F

)−1
= I − εL#F +O(ε2).303

Taking E = εF in (4.1) and using (4.4) yields304

(4.5) ũ = (I + L#E)−1u =
(
I − εL#F

)
u+O(ε2) = u− εL#Fu+O(ε2).305

Hence limε→0
ũ−u
ε = −L#Fu, as desired.306

b) Set E = ε(−ei + ej)e
>
j . From (4.1), it follows that ũ =

(
I + L#E

)−1
u, and307

Lemma 4.1 gives
(
I + L#E

)−1
= I − ε

1+εe>j L
#(−ei+ej)

L#(−ei + ej)e
>
j . Observe that308
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since I + εL#(−ei + ej)e
>
j is invertible, 1 + εe>j L

#(−ei + ej) = det(I + εL#(−ei +309

ej)e
>
j ) 6= 0, following Lemma 4.1. The conclusions now follow readily.310

Next we discuss how to find L#. From the hypotheses on L, it is easy to see that311

L may be partitioned as312

L =

(
1̄
>z −1̄>B
−z B

)
313

where the submatrix B of L is an (n − 1) × (n − 1) invertible matrix, u1 is the first314

entry of u, ū = (u2, . . . , un)>, z =
1

u1
Bū, and 1̄ is the all ones column vector of315

dimension n− 1.316

It follows from Observation 2.3.4 of [28] that317

(4.6) L# = (1̄>B−1ū)u1> +

(
0 −u11̄>B−1

−B−1ū B−1 −B−1ū1̄> − ū1̄>B−1
)
.318

Let ēj denote the unit column vector in Rn−1 with all zero entries except the jth319

entry, which is one. Suppose that 1 ≤ i < j ≤ n; partitioning out the first entry as320

above gives321

(4.7)

L#(ej − ei) =



(
−u11̄>B−1ēj−1

B−1ēj−1 − ū1̄>B−1ēj−1

)
, if i = 1,(

−u11̄>B−1(ēj−1 − ēi−1)

B−1(ēj−1 − ēi−1)− ū1̄>B−1(ēj−1 − ēi−1)

)
, if 2 ≤ i ≤ n.

322

From (4.7), we find that e>1 L
#(e1 − ej) > 0, j = 2, . . . , n. The rows and columns of L323

can be simultaneously permuted to place any index in the first position, and hence324

(4.8) L#
jj − L

#
ji > 0, i, j = 1, . . . , n, i 6= j.325

Suppose that 1 ≤ i < j ≤ n. If we perturb mij → mij + ε (where ε ≥ 0 when326

mij = 0), it follows from (4.2) and (4.7) that327

ũ1 − u1 =


εu1uj 1̄

>B−1ēj−1

1 + εē>j−1
(
B−1ēj−1 − ū1̄>B−1ēj−1

) , i = 1,

εu1uj1̄
>B−1(ēj−1 − ēi−1)

1 + εē>j−1
[
B−1(ēj−1 − ēi−1)− ū1̄>B−1(ēj−1 − ēi−1)

] , 2 ≤ i ≤ n.
328

For 2 ≤ ` ≤ n, we have329

ũ` − u` =


−
εuj ē

>
`−1
(
B−1ēj−1 − ū1̄>B−1ēj−1

)
1 + εē>j−1

(
B−1ēj−1 − ū1̄>B−1ēj−1

) , i = 1,

−
εuj ē

>
`−1
[
B−1(ēj−1 − ēi−1)− ū1̄>B−1(ēj−1 − ēi−1)

]
1 + εē>j−1

[
B−1(ēj−1 − ēi−1)− ū1̄>B−1(ēj−1 − ēi−1)

] , 2 ≤ i ≤ n.
330

Remark 4.1. By considering (4.3) and (4.8) for the cases j = k and i = k, we331

find an alternate proof for Theorem 3.4, and an extension of Theorem 3.5 that goes332

through without the path restriction.333

5. Applications to specific networks. In this section, we apply our general334

results to two different networks: a star network for human transportation between335

one hub and several leaves, and a path network for communities along a river.336
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5.1. Star network. First, we consider a star network with vertex 1 as the hub,337

and 2, 3, . . . , n as leaf vertices, with corresponding weights m1j ,mj1 > 0, j = 2, . . . , n.338

Assuming that a new arc from leaf j > 1 to leaf i > 1 is added, the following result339

shows that the direction of change of the network risk uk at any other vertex (i.e.,340

k 6= i, k 6= j) depends only on m1i and m1j .341

Theorem 5.1. For a star network, let i, j be any two distinct leaf vertices and k342

be another vertex. Then sgn
(
duk

dmij

)
= sgn(m1i −m1j).343

To illustrate both combinatorial and algebraic methods in sections 3 and 4, we344

prove the above result using two different approaches.345

Combinatorial Proof of Theorem 5.1: By Theorem 3.3, it suffices to determine the346

sign of347

(5.1) W ij
k

∑
` 6=k

W∼ij` −W∼ijk

∑
` 6=k

W ij
` ,348

which involves the weights of certain specific spanning rooted trees. As depicted in349

Figure 2, W ij
k = mk1m1imij

∏
sm1s and W∼ijk = mk1m1im1j

∏
sm1s, where s takes350

all values except 1, k, i, j, corresponding to the unique spanning in–tree rooted at k351

that contains the arc j → i and does not contain the arc j → i, respectively. Now352

we consider spanning in–trees rooted at ` 6= k, containing j → i or not, which con-353

tributes terms appearing in the sums of (5.1). Specifically, we consider three cases:354

` = i, ` = j, and all other possible values (i.e., ` = r, where r 6= k, i, j). As de-355

picted in Figure 2, W∼iji = mi1m1jm1k

∏
sm1s, W

∼ij
j = mj1m1im1k

∏
sm1s, W

∼ij
r =356

mr1m1im1jm1k

∏
sm1s/m1r; W

ij
i = mi1mijm1k

∏
sm1s +mijmj1m1k

∏
sm1s,357

W ij
j = 0, W ij

r = mr1m1imijm1k

∏
sm1s/m1r. Here s takes all values except 1, k, i, j,358

and notice that there are two spanning in–trees rooted at i containing j → i while no359

spanning in–tree rooted at j contains j → i. There is immediate cancellation in (5.1)360

since W ij
k W

∼ij
r = W∼ijk W ij

r , for all r. After simplification, (5.1) becomes361

W ij
k

∑
` 6=k

W∼ij` −W∼ijk

∑
6̀=k

W ij
` = W ij

k [W∼iji +W∼ijj ]−W∼ijk [W ij
i +W ij

j ]362

= mk1m1imij

∏
s

m1s

[
mi1m1jm1k

∏
s

m1s +mj1m1im1k

∏
s

m1s

]
363

−mk1m1im1j

∏
s

m1s

[
mi1mijm1k

∏
s

m1s +mijmj1m1k

∏
s

m1s

]
364

= mk1m1imj1m1kmij

(∏
s

m1s

)2
(m1i −m1j),365

366

completing the proof. �367

Algebraic Proof of Theorem 5.1: Consider a star network with vertex 1 as the hub,368

and 2, 3, . . . , n as leaf vertices. From the hypothesis,369

(5.2) L =



∑
i 6=1mi1 −m12 −m13 . . . −m1n

−m21 m12 0 . . . 0
−m31 0 m13 . . . 0

...
...

−mn1 0 0 . . . m1n

370
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W ij
k

1

i

j

k

W∼iji

1

i

j

k

W∼ijj

1

i

j

k

W∼ijr

1

i

j

k

r

W∼ijk

1

i

j

k

W ij
i

1

i

j

k

1

i

j

k

W ij
r

1

i

j

k

r

Fig. 2. Spanning rooted trees with certain specific restrictions in a star network (1 is the hub).

Notice that there is no spanning in–tree rooted at j that contains the arc j → i, so W ij
j = 0.

For concreteness, consider i = 2 and j = 3. It follows from (4.3) that371

(5.3)
du

dm23
= −u3L#(−e2 + e3).372

To determine the sign of du
dm23

, we need to compute the right hand side of (5.3). As373

u3 > 0, sgn
(

du
dm23

)
= sgn(−L#(−e2+e3)). Since B = diag(m12, . . . ,m1n) is diagonal,374

u11̄
>B−1(−ē1 + ē2) = u1

(
− 1
m12

+ 1
m13

)
, which implies that375

(B−1 − ū1̄>B−1)(−ē1 + ē2) =


− 1
m12
1
m13

0
...
0

−

u2
u3
u4
...
un


(
− 1

m12
+

1

m13

)
.376

So377

−L#(−e2 + e3) = −



−u1
(
− 1

m12
+ 1

m13

)

− 1
m12
1
m13

0
...
0

−

u2
u3
u4
...
un


(
− 1

m12
+ 1

m13

)

.378

Thus,379

sgn(ũ1 − u1) = sgn(m12 −m13),

sgn(ũ2 − u2) = −sgn
(−m13 − u2(m12 −m13)

m12m13

)
= sgn(m13 + u2(m12 −m13)),

sgn(ũ3 − u3) = −sgn
(m12 − u3(m12 −m13)

m12m13

)
= sgn(−m12 + u3(m12 −m13)),

sgn(ũ` − u`) = sgn
(u`(m12 −m13)

m12m13

)
= sgn(m12 −m13), ` = 4, . . . , n.

380
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�381

Corollary 5.2. For a star network with vertex 1 as the hub, the direction of382

change of the the network risk uk is given by the following:383

sgn

(
duk
dmij

)
= sgn(m1i −m1j), k 6= i, j, i 6= 1, j 6= 1,

sgn

(
dui
dmij

)
> 0, sgn

(
duj
dmij

)
< 0.

(5.4)384

5.2. River network. Consider a path network with vertices labeled 1, 2, 3, . . . , n385

consecutively located along a river, where 1 denotes the vertex that is farthest up-386

stream and n is the vertex that is farthest downstream. Suppose further that the387

associated movement matrix M is constant along its superdiagonal and constant388

along its subdiagonal. (This corresponds to constant dispersal rates for upstream389

and downstream movement.) The corresponding Laplacian matrix L̂ is given by390

(5.5) L̂ =



a −b 0 · · · 0 0
−a a+ b −b · · · 0 0
0 −a a+ b · · · 0 0
...

...
0 0 0 · · · a+ b −b
0 0 0 · · · −a b


391

for a > 0 and b > 0. It suffices to consider the case that a ≥ b; see Supplementary392

Material (B) for a justification. Henceforth we restrict to the case that a ≥ b.393

Setting α = a
b yields394

(5.6) L̂ = b



α −1 0 · · · 0 0
−α α+ 1 −1 · · · 0 0
0 −α α+ 1 · · · 0 0
...

...
0 0 0 · · · α+ 1 −1
0 0 0 · · · −α 1


:= bL.395

Our assumption that a ≥ b gives α ≥ 1, and we note that this fits with our interpre-396

tation of 1 being an upstream vertex and n being a downstream vertex. It is readily397

verified that the vector u = (u1, u2, . . . , un)> =
1∑n−1

`=0 α
`
(1, α, α2, . . . , αn−1)> is the398

right null vector of L normalized so that 1>u = 1. Let B denote the principal sub-399

matrix of L formed by deleting the first row and column. A proof by induction on n400

shows that the (k, j) entry of B−1 is given by401

ē>k B
−1ēj =

{
1 + α+ α2 + · · ·+ αk−1, 1 ≤ k ≤ j ≤ n− 1,

αk−j(1 + α+ α2 + · · ·+ αj−1), 1 ≤ j < k ≤ n− 1.
402

It can be shown by induction on n that the sum of the entries in column j of B−1 is403

1̄
>B−1ēj = j

n−j−1∑
`=0

α` +

n−2∑
`=n−j

(n− 1− `)α`, j = 1, 2, . . . , n− 1404

where the empty sum is interpreted as zero.405

The following is straightforward.406
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Lemma 5.3. Suppose that m ≥ 0 and n ∈ N. Then407 (
m∑
`=0

α`

)(
n−1∑
`=0

α`

)
=

m∑
`=0

(`+ 1)α` + (m+ 1)

n−1∑
`=m+1

α` +

n+m−1∑
`=n

(n+m− `)α`.408

The following can be deduced from (4.7) and our expression for B−1.409

Lemma 5.4. For a path network, if 1 ≤ i < j ≤ n, then410

L#
jj − L

#
ji =

∑j−i−1
`=0 (`+ 1)α` + (j − i)

∑j−2
`=j−i α

`∑n−1
`=0 α

`
.411

Lemmas 5.3 and 5.4, along with (4.7) establish the following result.412

Theorem 5.5. On a path network, if 1 ≤ k ≤ j ≤ n, then413

e>k L
#(ej − e1) =414

1∑n−1
`=0 α

`

k−2∑
`=0

(`+ 1)α` − (j − k)

n+k−j−1∑
`=k−1

α` −
n−2∑

`=n−j+k

(n− `− 1)α`

 .415

For j < k ≤ n,416

e>k L
#(ej − e1) = αk−je>j L

#(ej − e1) =
αk−j∑n−1
`=0 α

`

(
j−2∑
`=0

(`+ 1)α`

)
.417

418

Theorem 5.5 yields the following result.419

Corollary 5.6. For 1 ≤ k ≤ j − 1,420

(e>k+1 − e>k )L#(ej − e1) =
αk−1∑n−1
`=0 α

`

(
j +

n−j∑
`=1

α`

)
> 0.421

For j ≤ k ≤ n− 1, (e>k+1− e>k )L#(ej − e1) =
αk−j∑n−1
`=0 α

`

(∑j−2
`=0(`+ 1)α`

)
(α− 1) > 0.422

Remark 5.1. Set L̃ = L + ε(ej − e1)e>j with 1 < j ≤ n and ε > 0 so that423

ũ− u = −cL#(ej − e1) where c =
εuj

1+ε(L#
jj−L

#
j1)

> 0 by Theorem 4.2 b). By Theorem424

5.5, ũ1−u1 > 0 and ũk−uk < 0, j ≤ k ≤ n. It follows from Corollary 5.6 that ũk−uk425

is decreasing in k if α > 1. If α = 1, ũk − uk is decreasing in k for 1 ≤ k ≤ j and426

constant for j ≤ k ≤ n.427

Next we consider L#(ej − ei) for j, i > 1. The proofs again rely on (4.7) and our428

expression for B−1.429

Lemma 5.7. For a path network with 2 ≤ i < j ≤ n,430

ē>k B
−1(ēj−1 − ēi−1) =


0, if 1 ≤ k ≤ i− 1,∑k−i
`=0 α

`, if i− 1 < k ≤ j − 1,

αk−j+1
∑j−i
`=0 α

`, if j − 1 < k ≤ n,

431
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Theorem 5.8. On a path network, if 2 ≤ i < j ≤ n, then432

e>k L
#(ej − ei) = − αk−1∑n−1

`=0 α
`

(j − i)
n−j∑
`=0

α` +

n−i−1∑
`=n−j+1

(n− i− `)α`
433

for 1 ≤ k ≤ i. For i < k ≤ j,434

e>k L
#(ej − ei) =

1∑n−1
`=0 α

`

(
k−i−1∑
`=0

(`+ 1)α` + (k − i)
k−2∑
`=k−i

α`435

− (j − k)

n+k−j−1∑
`=k−1

α` −
n−2∑

`=n−j+k

(n− 1− `)α`
 .436

For j < k ≤ n, e>k L
#(ej − ei) = αk−je>j L

#(ej − ei) = αk−j∑n−1
`=0 α

`

(∑j−i−1
`=0 (`+ 1)α`437

+(j − i)
∑j−2
`=j−i α

`
)
.438

Corollary 5.9. If 2 ≤ i < j ≤ n, then (ek+1 − e>k )L#(ej − ei) =439 

− αk−1∑n−1
`=0 α

`

(j − i)

n−j∑
`=0

α` +

n−i−1∑
`=n−j+1

(n− i− `)α`

 (α− 1) ≥ 0, 1 ≤ k ≤ i− 1,

1∑n−1
`=0 α

`

(
i−2∑
`=0

α` + (j − i+ 1)αi−1 +

n+i−j−1∑
`=i

α`

)
> 0, k = i,

1∑n−1
`=0 α

`

(
k−2∑

`=k−i

α` + (j − i+ 1)αk−1 +

n+k−j−1∑
`=k

α`

)
> 0, i < k ≤ k + 1 ≤ j,

αk−j∑n−1
`=0 α

`

(
j−2∑
`=0

(l`+ 1)α`

)
(α− 1) ≥ 0, j ≤ k ≤ n− 1.

440

Remark 5.2. Let 2 ≤ i < j ≤ n and ε > 0. Set L̃ = L + ε(ej − ei)e>j . It follows441

from Theorem 4.2 b) that442

(5.7) ũ− u = −cL#(ej − ei)443

where c =
εuj

1+ε(L#
jj−L

#
ji)

> 0 (observe that L#
jj−L

#
ji > 0 by (4.8)). In view of Theorem444

5.8, we see that445

ũk − uk =


cαk−1∑n−1
`=0 α

`

(
(j − i)

∑n−j
`=0 α

` +
∑n−i−1
`=0 (n− i− `)α`

)
> 0, 1 ≤ k ≤ i,

−cαk−j∑n−1
`=0 α

`

(∑j−i−1
`=0 (`+ 1)α` + (j − i)

∑j−2
`=j−i α

`
)
< 0, j ≤ k ≤ n.

446

Observe that if i ≥ 2 and 1 ≤ k ≤ n − 1, (ũk+1 − uk+1) − (ũk − uk) = −c(ek+1 −447

e>k )L#(ej − ei). It now follows from Corollary 5.9 that if α > 1, then (ũk+1−uk+1)−448

(ũk − uk) < 0. Hence, if α > 1 then ũk − uk is decreasing as a function of k for449

1 ≤ k ≤ n.450

Assume that a new arc from vertex j to vertex i is added, where i < j; the451

following result shows that the network risk uk decreases at all vertices downstream452

from j and increases at all vertices upstream from i. The result follows readily from453

Theorems 4.2 and 5.8.454
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Theorem 5.10. Consider a path network, and suppose that 1 ≤ i < j ≤ n. For455

any k ≤ i, sgn( duk

dmji
) < 0, while for any j < k, sgn( duk

dmji
) > 0.456

For the vertices k between j and i (i.e., i < k < j), the change of the network457

risk uk depends on the position of the vertices as well as the magnitude of mij .458

We now revisit the toy model of a path graph network described in section 1.459

Example 1. In this example we show how the results developed in section 4 yield460

insight into the toy example presented in Figure 1. We suppose that the time scale of461

movement greatly exceeds that of the disease dynamics, so that the asymptotic approx-462

imation R0 =
∑4
k=1 ukqk applies, where u denotes the null vector of the Laplacian463

matrix L, normalised so that
∑4
k=1 uk = 1. Taking α = 1 yields464

L =


1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

 , and L# = 1
8


7 1 −3 −5
1 3 −1 −3
−3 −1 3 1
−5 −3 1 7

 . A bypass from465

vertex 1 to vertex 3 corresponds to the perturbing matrix E = m31(e1 − e3)e>1 , and466

a computation now reveals that the normalised null vector of the perturbed Laplacian467

matrix is given by ũ = 1
41 −

m31

16+20m31


5
1
−3
−3

 . If the hot spot is at vertex 2, with468

qi = q, i = 1, 3, 4, q2 = 10q, then R0 =
∑4
k=1 ũkqk = q( 13

4 −
9m31

16+20m31
); evidently this469

is decreasing and concave down as a function of m31, as is clearly reflected in Figure470

1 (left plot) by computing R0 numerically.471

Next, considering a bypass from vertex 2 to vertex 4, (so that E is given by472

m42(e2 − e4)e>2 ) an analogous argument shows that ũ = 1
41 −

m42

16+12m42


3
3
−1
−5

 .473

With vertex 3 as the hot spot and qi = q, i = 1, 2, 4, q3 = 10q, it now follows that474 ∑4
k=1 ũkqk = q( 13

4 + 9m42

16+12m42
). Evidently this last is increasing and concave down as475

a function of m42, as depicted in Figure 1 (right plot).476

Alternatively, as uk encodes the weights of spanning in–trees rooted at k, as shown477

in section 3, both bypasses (from vertex 1 to vertex 3 or from vertex 2 to vertex 4)478

increase u1 and u2 but decrease u3 and u4. For example, with the bypass from vertex479

1 to vertex 3 of weight m31, we have480

u1 =
m12m23m34

∆
=

1

4 + 5m31
=

1

4
−

5
4m31

4 + 5m31
,481

u2 =
m21m23m34 +m23m31m34

∆
=

1 +m31

4 + 5m31
=

1

4
−

1
4m31

4 + 5m31
,482

u3 =
m34m32m21 +m34m31m12 +m34m31m32

∆
=

1 + 2m31

4 + 5m31
=

1

4
+

3
4m31

4 + 5m31
,483

u4 =
m43m32m21 +m43m32m31 +m43m31m12

∆
=

1 + 2m31

4 + 5m31
=

1

4
+

3
4m31

4 + 5m31
,484

485

where ∆ is the sum of weights of spanning in–trees rooted at any vertex, that is, ∆ =486

m12m23m34 +m21m23m34 +m23m31m34 +m34m32m21 +m34m31m12 +m34m31m32 +487
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16 S. KIRKLAND, Z. SHUAI, P. VAN DEN DRIESSCHE, AND X. WANG

m43m32m21 + m43m32m31 + m43m31m12 = 4 + 5m31. A location of a hot spot at488

vertex 1 or 2 leads to the decrease of R0 due to the bypass, while a hot spot at vertex489

3 or 4 leads to the increase of R0.490

Example 2. Consider a path network on 5 vertices with an additional arc from491

vertex 2 to vertex 4 being added. All other settings are the same as in Example 1.492

Figure 3 shows how R0 responds to this addition in the scenarios of the disease hot493

spot, located at various different vertices. It turns out that when vertex 3 is the hot494

spot, there is no change in R0, no matter how large the value of m24 is. When the495

time scale of movement greatly exceeds that of the disease dynamics, the results of496

sections 3 and 4 explain Figure 3. For example, the bypass decreases u1 and u2 but497

increases u4 and u5. Therefore, a hot spot at vertex 1 or 2 leads to a decrease of R0498

while a hot spot at vertex 4 or 5 leads to an increase of R0, due to the bypass.499

1 2 3 4 5

m42

0 2 4 6 8 10 12 14
1

1.05

1.1

1.15

1.2

1.25
Hotspot at 1

0 2 4 6 8 10 12 14
0.2

0.4

0.6

0.8

1
Hotspot at 2

0 2 4 6 8 10 12 14
0.92

0.94

0.96

0.98

1
Hotspot at 3

0 2 4 6 8 10 12 14

1

1.05

1.1
Hotspot at 4

0 2 4 6 8 10 12 14
1

1.05

1.1

1.15

1.2

1.25

1.3
Hotspot at 5

Fig. 3. The impact of a bypass in a path network of 5 vertices.

Motivated by the observation made in Example 2 for the case that vertex 3 is500

the hot spot, we use the exact network basic reproduction number to prove a general501

result below, from which the observation is readily recovered.502

Theorem 5.11. Suppose that M is an irreducible movement matrix and that L503

is the corresponding Laplacian matrix. Let c > 0 and V = L + cI. Suppose further504

that there is a permutation matrix Q and indices i, j such that: a) F and L both505

commute with Q, and b) Qej = ei. Then for any ε > 0, the basic reproduction numbers506

corresponding to M and M + ε(ej − ei)e>j are equal.507

Proof. Let E = ε(ej−ei)e>j . The network basic reproduction number correspond-508

ing to M is ρ(FV −1), while that corresponding to the perturbed network M + E is509

ρ(F (V + E)−1). We have510

(5.8) F (V + E)−1 = FV −1
(
I + ε(ej − ei)e>j V −1

)−1
.511

Observe that V is a column diagonally dominant M–matrix. From Lemma 3.14 in512

Chapter 9 of [5], it follows that the maximum entry in any row of V −1 occurs on the513
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diagonal. In particular, e>j V
−1(ej − ei) ≥ 0. It now follows that514 (

I + ε(ej − ei)e>j V −1
)−1

= I − ε

1 + εe>j V
−1(ej − ei)

(ej − ei)e>j V −1.(5.9)515

Substituting (5.9) into (5.8) yields516

F (V + E)−1 = FV −1

[
I − ε

1 + εe>j V
−1(ej − ei)

(ej − ei)e>j V −1
]

517

= FV −1 −
εFV −1(ej − ei)e>j V −1

1 + εe>j V
−1(ej − ei)

.518

519

Next, consider a positive left Perron vector y for FV −1, i.e. y>FV −1 = R0y
>.520

Since F and V both commute with Q, so does FV −1. Consequently, y>QFV −1Q> =521

R0y
>, implying that (y>Q)FV −1 = R0(y>Q). Hence y>Q is also a left Perron vector522

for FV −1. Since that Perron vector is unique up to a scalar multiple, we find that523

necessarily y>Q = y>. In particular, yi = y>Qej = y>ej = yj .524

Now consider525

y>F (V + E)−1 = y>FV −1 −
εy>FV −1(ej − ei)e>j V −1

1 + εe>j V
−1(ej − ei)

526

= R0y
> −

εR0(yj − yi)e>j V −1

1 + εe>j V
−1(ej − ei)

= R0y
>.527

528

Hence y is a positive left eigenvector of F (V + E)−1, (with corresponding eigen-529

value R0), from which it follows that F (V + E)−1 has y as a left Perron vector and530

R0 as its Perron value.531

Remark 5.3. Inspecting the proof of Theorem 5.11, we find that the conclusion532

holds also for negative values of ε, provided that ε > −mij and ε > − 1
e>j V

−1(ej−ei)
.533

As an application of Theorem 5.11, consider a river network on 2k + 1 vertices534

with α = 1, and suppose that F is the diagonal matrix whose `–th diagonal entry is535

1 for ` 6= k + 1, and whose k + 1–st diagonal entry is x > 1. Setting V = L + cI for536

some c > 0, we see that V and F commute with the “back diagonal” permutation537

matrix P , where the (`, 2k+ 2− `) entry of P is 1 for ` = 1, . . . , 2k+ 1. Fix an index538

j = 1, . . . , 2k + 1, and note that Pej = e2k+2−j . From the above theorem, for any539

ε > 0, the basic reproduction numbers associated with the movement matrices M540

and M + ε(ej − e2k+2−j)e
>
j are equal. In particular, for a river network on 5 vertices541

with α = 1, adding a weighted arc from vertex 4 to vertex 2 does not affect the value542

of R0. This justifies the observation made in Example 2 for the hot spot locating at543

vertex 3.544

6. Control strategies. The techniques developed in sections 3 and 4 inform545

a strategy for controlling invasibility. Given an irreducible movement matrix M ,546

the control strategy corresponds to a perturbation of M, say M + E which is also547

irreducible and nonnegative. Denoting the corresponding Laplacian matrices and548

normalized right null vectors by L, u and L̃, ũ respectively, we find that the associated549

network basic reproduction numbers are approximately R0 =
∑n
k=1 ukR

(k)
0 and R̃0 =550 ∑n

k=1 ũkR
(k)
0 . Our goal is then to find a suitable perturbing matrix E so as to ensure551

that R̃0 −R0 is negative and, ideally, large in absolute value.552
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From the results in section 4, we find that553

(6.1) R̃0 −R0 =

n∑
k=1

(ũk − uk)R(k)
0 =

n∑
k=1

e>k ((I + L#E)−1 − I)uR(k)
0 .554

In particular, for a perturbing matrix E, the effectiveness of the corresponding control555

strategy in mitigating the invasion can be quantified using (6.1).556

In this section, we focus on a restricted set of perturbations: for distinct indices557

i, j and fixed ε, we consider the effect of increasing the movement rate from patch j558

to patch i from mij to mij + ε. In this case, (6.1) simplifies considerably: from the559

results of section 4, it follows that in this restricted setting,560

(6.2) R̃0 −R0 = − εuj

1 + ε(L#
jj − L

#
ji)

n∑
k=1

(L#
kj − L

#
ki)R

(k)
0 .561

Our challenge is then to select the indices i, j so as to minimize the expression562

(6.3) − εuj

1 + ε(L#
jj − L

#
ji)

n∑
k=1

(L#
kj − L

#
ki)R

(k)
0 .563

We remark here that for ε > 0, the expression (6.2) is always valid. However, for564

negative values of ε, another hypothesis is required in order for the derivation of565

(6.2) to hold. In that case, we need to assume that −mij < ε (otherwise there is a566

danger that the network is no longer strongly connected). Evidently that additional567

hypothesis is satisfied if, for example, we assume that when ε is negative, its absolute568

value is sufficiently small. For ease of exposition in the sequel, we only deal with the569

case ε > 0 in the remainder of this section.570

While we focus only on perturbing a single entry in the movement matrix M, note571

that these special perturbations are building blocks: any admissible perturbation can572

be written as a linear combination of these restricted perturbations.573

From (6.3) it is clear that the specific values of R(k)
0 , k = 1, . . . , n are needed574

in order to assess the effect on the basic reproduction number of changing mij to575

mij + ε. However, we restrict ourselves to the following situation, in which the anal-576

ysis simplifies even further. Imagine that one patch, say `, is a “hot spot” for the577

disease, and that the patch reproduction numbers R(k)
0 , k 6= ` take on a common578

value. Formally we assume that for some index `, we have R(k)
0 = r0 whenever k 6= `,579

with R(`)
0 > r0. Then R̃0 − R0 =

∑
k=1,...,n,k 6=`(ũk − uk)R(k)

0 + (ũ` − u`)R(`)
0 =580

r0
∑
k=1,...,n,k 6=`(ũk − uk) + (ũ` − u`)R(`)

0 . The fact that
∑n
k=1(ũk − uk) = 0, gives581

(6.4) R̃0 −R0 = (ũ` − u`)(R(`)
0 − r0).582

For our restricted family of perturbations, we have R̃0 − R0 = − εuj

1+ε(L#
jj−L

#
ji)

(L#
`j −583

L#
`i)(R

(`)
0 − r0). Hence it suffices to select the indices i, j that maximize the expres-584

sion
uj

1+ε(L#
jj−L

#
ji)

(L#
`j − L

#
`i). In subsections 6.1 and 6.2, we revisit the star and river585

networks and discuss how these perturbations affect the basic reproduction number.586

6.1. Star with a hot spot. In what follows, we assume that ε > 0, and we con-587

sider a special case. We assume that m12 ≥ m13 ≥ . . . ≥ m1n, and impose the further588
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assumption that m1k = mk1, k = 2, . . . , n. We note that when this is the case, u = 1
n1.589

590

Case 1: the hot spot is located at the hub (vertex 1):591

We claim that the best strategy to reduce the infection risk is to increase mn1 when592

m1k = mk1 for 2 ≤ k ≤ n. Perturb m1j → m1j + ε for ε > 0 and 1 < j ≤ n. Then593

ũ1 − u1 = − ε uje
>
1 L

#(ej − e1)

1 + ε e>j L
#(ej − e1)

=
εu1uj 1̄

>B−1ēj−1

1 + εē>j−1
(
B−1ēj−1 − ū1̄>B−1ēj−1

)594

=
εu1uj/m1j

1 + ε(1− uj)/m1j
> 0.595

Perturb mi1 → mi1 + ε for 1 < i ≤ n. Since B−1 = diag(m12, ...,m1n),596

ũ1 − u1 = − ε u1e
>
1 L

#(e1 − ei)
1 + ε e>1 L

#(e1 − ei)
=

ε u1e
>
1 L

#(ei − e1)

1− ε e>1 L#(ei − e1)
=
−εu211̄>B−1ēi−1

1 + εu11̄>B−1ēi−1
597

= − εu21/m1i

1 + εu1/m1i
< 0.598

Since u = 1
n1, this gives ũ1−u1 = − 1

n

ε/(nm1i)

1 + ε/(nm1i)
. Since m1n is the smallest among599

{m1k : 2 ≤ k ≤ n}, the minimum of ũ1 − u1 is achieved at k = n, i.e.,600

min
2≤k≤n

(ũ1 − u1) = − 1

n

ε/(nm1n)

1 + ε/(nm1n)
.601

This result indicates that the optimal strategy to reduce the infection risk is to increase602

mn1 when m1k = mk1 for all k.603

Additionally, we claim that, in this special case where only changing weights604

between leaves is permitted, then the best strategy is to increase mn2, as we now605

show. Perturbing mij → mij + ε for 2 ≤ i 6= j ≤ n, we find that606

ũ1 − u1 = − ε uje
>
1 L

#(ej − ei)
1 + ε e>j L

#(ej − ei)

=
εu1uj1̄

>B−1(ēj−1 − ēi−1)

1 + εē>j−1
[
B−1(ēj−1 − ēi−1)− ū1̄>B−1(ēj−1 − ēi−1)

]
=

ε 1
n2

(
1
m1j
− 1

m1i

)
1 + ε

(
1
m1j
− 1

n

(
1
m1j
− 1

m1i

)) =
ε 1
n2 (m1i −m1j)

m1im1j + ε 1n ((n− 1)m1i +m1j)
.

(6.5)607

Note that ũ1 − u1 < 0 only if i > j and hence this is the only interesting case.608

It is straightforward to show that
ε 1
n2 (m1i −m1j)

m1im1j + ε 1n ((n− 1)m1i +m1j)
is increasing609

in m1i and decreasing in m1j . Thus the minimum is obtained at i = n and j = 2.610

Hence, min1≤j<i≤n(ũ1 − u1) =
ε 1
n2 (m1n −m12)

m1nm12 + ε 1n ((n− 1)m1n +m12)
which implies that611

the most effective strategy to reduce the risk of infection is to increase mn2.612

613

Case 2: the hot spot is located on a leaf (vertex ` 6= 1):614

We claim that the best strategy is to increase mn1 when m1`

m1n
> n− 1 and n 6= `, and615
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to increase m1` when m1`

m1n
< n− 1, as we now show. Perturbing m1` → m1` + ε yields616

ũ` − u` = − ε u`e
>
` L

#(e` − e1)

1 + ε e>` L
#(e` − e1)

= −
εu`e

>
`−1
(
B−1ē`−1 − ū1̄>B−1ē`−1

)
1 + εē>`−1

(
B−1ē`−1 − ū1̄>B−1ē`−1

)
= − εu`(1− u`)/m1`

1 + ε(1− u`)/m1`
= − 1

n

εn−1n
1
m1`

1 + εn−1n
1
m1`

< 0.

(6.6)617

Perturbing mi1 → mi1 + ε leads to618

ũ` − u` = − ε u1e
>
` L

#(e1 − ei)
1 + ε e>1 L

#(e1 − ei)
=

ε u1e
>
` L

#(ei − e1)

1− ε e>1 L#(ei − e1)
.619

Hence, if i 6= `, ũ` − u` =
εu1ē

>
`−1(B−1ēi−1 − ū1̄>B−1ēi−1)

1 + εu11̄>B−1ēi−1
= − 1

n

ε
n

1
m1i

1 + ε
n

1
m1i

< 0,620

and if i = `, ũ` − u` =
εu1ē

>
`−1(B−1ē`−1 − ū1̄>B−1ē`−1)

1 + εu11̄>B−1ē`−1
= n−1

n

ε 1n
1
m1`

1 + ε
n

1
m1`

> 0. If621

i 6= `, then the minimum of ũ`−u` is achieved at i = n. To compare the two different622

strategies (i.e., m1` and mn1), we have the following conclusion: If m1`/m1n < n− 1,623

the most effective strategy is to increase m1`; If m1`/m1n > n− 1, the most effective624

strategy is to increase mn1 provided that n 6= `.625

6.2. River with a hot spot. As in section 6.1, we introduce a simplifying626

hypothesis in order to make the analysis more tractable. We assume that α = 1 (i.e.,627

a = b), and observe that when this is the case, u = 1
n1.628

We now have the following result.629

Lemma 6.1. Suppose that 1 ≤ i < j ≤ n. If α = 1, then630

e>k L
#(ej − ei) =


− 1

2n (j − i)(2n− i− j + 1), 1 ≤ k ≤ i,
(k − j) + 1

2n (j − i)(i+ j − 1), i < k ≤ j,
1
2n (j − i)(i+ j − 1), j < k ≤ n.

631

Remark 6.1. By Lemma 6.1 and equation (5.7), it is clear that ũk − uk is a632

continuous, piecewise linear function and decreasing in k for 1 ≤ k ≤ n. For 1 ≤ k ≤ i,633

ũk − uk is positive and constant in k, while for j ≤ k ≤ n, ũk − uk is negative and634

constant in k.635

Assume that we have distinct indices i, j with 1 ≤ i, j ≤ n. By (6.4), to minimize636

the infection risk, it suffices to minimize ũ` − u`, where ` is the hot spot. Perturb637

mij → mij + ε with ε > 0. We have638

ũ` − u` = −ε uj e
>
` L

#(ej − ei)
1 + ε(L#

jj − L
#
ji)

:= −ujg(i, j).639

When α = 1, ui = 1
n for all 1 ≤ i ≤ n and mini,j,i 6=j(ũ` − u`) = − 1

n
maxi,j,i 6=j g(i, j).640

Hence, minimizing R̃0 − R0 is equivalent to maximizing g(i, j) over distinct i and j641

with 1 ≤ i, j ≤ n. It turns out that if ` ≥ n+ 1

2
, then maxi,j=1,...,n,i6=j g(i, j) =642

ε`(`− 1)

2n+ ε`(`− 1)
, with the maximum being attained when i = 1, j = `, while if ` ≤643
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n+ 1

2
, then maxi,j=1,...,n,i 6=j g(i, j) =

ε(n+ 1− `)(n− `)
2n+ ε(n+ 1− `)(n− `)

, with the maximum644

being attained when i = n, j = `. (See Supplementary Material (C) for the details.)645

Consequently, the most effective strategy to reduce the risk of infection is to increase646

m1` if the distance between vertices 1 and ` is at least as large as the distance between647

vertices n and `, and to increase mn` otherwise.648

On the other hand, if 1 ≤ i < j ≤ n are fixed, by Lemma 6.1, min`(ũ` − u`) can649

be achieved at any j ≤ ` ≤ n. Thus, for fixed i < j, an increase in mij will have an650

equal and largest effect when the hot spot ` is such that ` ≥ j.651

7. Concluding remarks. Our study, which focuses on disease dynamics, is652

motivated by modeling directly transmitted diseases [1] and waterborne diseases [17,653

44] on patches, under the hypothesis that dispersal between patches is faster than654

the disease/population dynamics. Our results also shed new insights on many spatial655

ecological studies, for example, the evolution of dispersal in patchy landscapes as656

studied in [2, 27] in a discrete time model.657

Our methods give qualitative and quantitative information about the behavior of658

the basic reproduction number R0 as the topology of the network changes, and have659

applications to control strategies for mitigating disease spread among the patches.660

Our analysis can be thought of as the introduction of connections on the network, or661

changing the weight of existing connections. In the case that the change in a weight662

is positive, we have considered optimal strategies for a star and a river network. Our663

formula (4.2) is valid for all positive perturbations of a network connection, but a664

negative perturbation must be small for this to remain valid. Optimal strategies665

can also be formulated for a small negative change, as long as the network remains666

strongly connected. The effect of breaking this strong connectivity, and thus breaking667

the network topology, remains to be considered.668

In patch models, the monotonicity of R0 with respect to travel frequency or the669

diffusion coefficient on a static network has been studied in several papers, for ex-670

ample [1, 18]; by contrast our results focus on the network topology. The network671

threshold parameter R0 governs the invasibility of the disease, but not the final size or672

endemicity of an invading disease. To consider this, it is necessary to use the original673

dynamical model.674
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Supplementary Material. (A) A version of the multi-patch cholera model in [17,807

44], simplified by ignoring host movement, takes the following form:808

dSi
dt

= Ai − gi(Si,Wi)− diSi,

dIi
dt

= gi(Si,Wi)− (di + αi + γi)Ii,

dRi
dt

= γiIi − diRi,

dWi

dt
= riIi − δiWi +

n∑
j=1

(
mijWj −mjiWi

)
,

809

with variables and parameters summarized in the following list:

Si, Ii, Ri : susceptible, infectious and recovered host population in patch i
Wi : the concentration of cholera bacteria in the water source in patch i

Ai > 0 : constant recruitment into patch i
di > 0 : natural death rate in patch i
αi ≥ 0 : cholera induced death rate in patch i
γi > 0 : recovery rate of infectious individuals in patch i
ri ≥ 0 : pathogen shedding rate in patch i
δi > 0 : removal rate of pathogen in patch i

mij ≥ 0 : travel rate of pathogen from patch j to patch i
gi(Si,Wi) ≥ 0 : incidence function for cholera transmission in patch i

Linearization at the disease-free equilibrium (A1

d1
, 0, 0, 0, · · · , An

dn
, 0, 0, 0) and reducing810

to the disease compartments (i.e., Ii andWi) yield the Jacobian matrix J = F−V with811

F =

(
0 Dq

0 0

)
and V =

(
GI 0
−Dr GW

)
. Here Dq = diag{qi} := diag{ ∂gi∂Wi

(Ai

di
, 0)},812

GW = diag{δi} + L with L being the Laplacian matrix as defined in (2.1), Dr =813

diag{ri} and GI = diag{µi} := diag{di + αi + γi}. Thus the basic reproduction814

number R0 is defined as the spectral radius of the next generation matrix FV −1; that815

is, R0 = ρ(FV −1) = ρ(DqG
−1
W DrG

−1
I ).816

For directly transmitted disease models such as the SIS model in [1], the basic817

reproduction number R0 = ρ(diag{βi}(diag{ηi} + dIL)−1), where βi is the disease818

transmission coefficient for the standard incidence, ηi is the rate of infectious indi-819

viduals becoming susceptible again, and dI represents the scale of movement rate of820

infectious individuals.821

(B) Suppose that L̂ is given by (5.5). We claim that it suffices to consider the822

case that a ≥ b. To see the claim, first note that L̂ = PLP>, where823

L =



b −a 0 · · · 0 0
−b a+ b −a · · · 0 0
0 −b a+ b · · · 0 0
...

...
0 0 0 · · · a+ b −a
0 0 0 · · · −b a


824

and P is the n× n “back diagonal” permutation matrix such that pj n+1−j = 1, j =825

1, . . . , n. If it happens that a < b, we then work with L instead of L̂.826
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(C) Here we derive the expression for maxi,j=1,...,n,i 6=j g(i, j) given at the end of827

section 6.2. We begin by supposing that 1 ≤ i < j ≤ n. If 1 ≤ ` ≤ i, then by Lemma828

6.1, g(i, j) =
ε
[
− 1

2n (j − i)(2n− i− j + 1)
]

1 + ε 1
2n (j − i)(i+ j − 1)

. Hence, for 1 ≤ ` ≤ i, the maximum value829

of g(i, j) is achieved when i = n− 1 and j = n, with g(n− 1, n) = − ε

n+ ε(n− 1)
.830

If j ≤ ` ≤ n, then by Lemma 6.1, g(i, j) =
ε
[

1
2n (j − i)(i+ j − 1)

]
1 + ε 1

2n (j − i)(i+ j − 1)
. Thus when831

j ≤ ` ≤ n, the maximum value of g(i, j) is achieved when j = ` and i = 1, with832

g(1, `) =
ε`(`− 1)

2n+ ε`(`− 1)
.833

For the intermediate case where i < ` ≤ j, using Lemma 6.1, we have834

g(i, j) =
ε
[
(`− j) + 1

2n (j − i)(i+ j − 1)
]

1 + ε 1
2n (j − i)(i+ j − 1)

≤
ε
[

1
2n (j − i)(i+ j − 1)

]
1 + ε 1

2n (j − i)(i+ j − 1)
.835

From the considerations above, it follows that for 1 ≤ i < j ≤ n, the maximum value836

of g(i, j) is
ε`(`− 1)

2n+ ε`(`− 1)
, which is achieved when j = ` and i = 1.837

Next, consider the case that 1 ≤ j < i ≤ n. A parallel argument (which pro-
ceeds by considering the indices n + 1 − j, n + 1 − i and n + 1 − `) shows that

max1≤j<i≤n g(i, j) =
ε(n+ 1− `)(n− `)

2n+ ε(n+ 1− `)(n− `)
. We deduce that

max
i,j=1,...,n,i 6=j

g(i, j) = max

{
ε`(`− 1)

2n+ ε`(`− 1)
,

ε(n+ 1− `)(n− `)
2n+ ε(n+ 1− `)(n− `)

}
.

More specifically, if ` ≥ n+ 1

2
, then maxi,j=1,...,n,i6=j g(i, j) =

ε`(`− 1)

2n+ ε`(`− 1)
, and838

the maximum is attained for i = 1, j = `; on the other hand, if ` ≥ n+ 1

2
, then839

maxi,j=1,...,n,i 6=j g(i, j) =
ε(n+ 1− `)(n− `)

2n+ ε(n+ 1− `)(n− `)
, and the maximum is attained for840

i = n, j = `.841
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