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ABSTRACT: Although the natural occurrence of arsenic-containing
lipids (arsenolipids) in marine organisms is now well established, the
possible role of these unusual compounds in organisms and in the
cycling of arsenic in marine systems remains largely unexplored. We
report the finding of arsenolipids in 61 plankton samples collected
from surface marine waters of high- and low-nutrient content along a
transect spanning the Gulf Stream in the North Atlantic Ocean. Using
high-performance liquid chromatography (HPLC) coupled to both
elemental and molecular mass spectrometry, we show that all 61
plankton samples contained six identifiable arsenolipids, namely, three
arsenosugar phospholipids (AsPL9S8, 10—13%; AsPL978, 13—25%;
and AsPL1006, 7—10% of total arsenolipids), two arsenic-containing
hydrocarbons (AsHC332, 4—10% and AsHC360, 1-2%), and a
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methoxy-sugar arsenolipid that contained phytol (AsSugPhytol, 1—3%). The relative amounts of the six arsenolipids showed clear
dependence on the nutrient status of the ambient water with plankton collected from high-nutrient waters having less of the
arsenosugar phospholipids and more of the three non-P containing arsenolipids compared to low-nutrient waters. By combining
these first field data of arsenolipids in plankton with reported global phytoplankton productivity, we estimate that the oceans’
phytoplankton transform per year 50 000—100 000 tons of arsenic into arsenolipids.

B INTRODUCTION

Naturally occurring arsenic-containing lipids (arsenolipids) are
abundant in marine algae as a consequence of the uptake and
biotransformation of arsenate naturally present in seawater.
Research on the various arsenolipids in algae has mostly been
performed with macroalgal species and has shown the presence
of two main classes, namely, arsenic-containing hydrocarbons
(AsHCs) and arsenosugar phospholipids (AsPLs)," ™ whereas
in cyanobacteria, only AsPLs have been discovered to date.”’

Arsenolipids in unicellular algae and marine cyanobacteria
have been much less investigated, and all studies so far have
worked with cultured species experimentally exposed to
elevated concentrations of arsenate in their growth
media.'’”"* These studies have shown that unicellular algae
produce the same arsenolipids found in macroalgae in addition
to a novel phytol arsenosugar (AsSugPhytol), which has not
been reported in rnacroalgae.11 There has been, however, no
investigation on the arsenolipids in unicellular algae or
cyanobacteria under natural conditions, namely, phytoplankton
from oceanic waters; this lack of field data reflects the difficulty
in measuring arsenolipids when sample masses are small
Recent developments in methods for analyzing arsenolipids,
based on high-performance liquid chromatography coupled to
mass spectrometry (HPLC-MS), have enabled the use of
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smaller sample amounts typical of phytoplankton collec-
tion, 101314

The biosynthesis of arsenolipids by phytoplankton is
relevant to the biogeochemical cycling of arsenic. It is
presumed that algae and cyanobacteria take up arsenate from
seawater because their membrane transporters for the essential
nutrient phosphate are unable to distinguish the two very
similar oxyanions and arsenate is mistakenly incorporated into
biosynthetic schemes designed for phosphate.'”™"? A likely
outcome of this interaction is that the formation of
arsenolipids is influenced by the phosphate/arsenate ratio in
the plankton’s ambient water, and this has already been
demonstrated in two laboratory studies, one using a macro-
alga® and the other using a unicellular alga."” The observed
effects, however, showed intriguing differences: when the
phosphate/arsenate ratio was low, a macroalgal Ectocarpus
species produced more arsenosugar phospholipids, whereas the
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Figure 1. Path of scientific cruise with corresponding 61 sampling sites (high-nutrient sites: HN1—HN27, intermediate-nutrient sites: IN1-IN7,

low-nutrient sites: LN1—LN27; numbering from northwest to southeast).

unicellular alga Dunaliella tertiolecta produced less. Another
clear difference was the dominance of the AsSugPhytol in D.
tertiolecta and its apparent absence in Ectocarpus.

These results are likely to have environmental relevance to
the type of arsenolipid found in phytoplankton because in
contrast to arsenic concentrations, which are fairly constant at
ca. 13-27 nM (1-2 ug As L7') throughout the world’s
oceans, phosphate concentrations can vary widely (<0.1-3.2
umol L™') with typically lower concentrations (<0.005—1.5
pmol L") in surface seawater.”’”>*> We hypothesize that the
arsenolipid profile for oceanic phytoplankton varies depending
on the phosphate concentrations in the water. To test this
hypothesis, we collected plankton from marine surface waters
of high- and low-nutrient content along a transect spanning the
Gulf Stream in the North Atlantic Ocean, and determined their
arsenolipid profiles using HPLC-mass spectrometry. The
results are discussed in terms of the origin of arsenolipids,
their possible biochemical roles, and their significance to the
biogeochemical cycling of oceanic arsenic.

B MATERIALS AND METHODS

Sample Collection. Seawater and plankton samples were
collected during the cruise KN207-01 in the North Atlantic
between Woods Hole and Bermuda, which took place from
April 21 to May 05, 2012 and covered two distinct maritime
regions separated by the Gulf Stream (Figure 1). The first
region, northwest of the Gulf Stream, was located in the
Labrador Current and is characterized by higher nutrient
(HN) levels, resulting in high primary production.””** The
second region, the Sargasso Sea, southeast of the Gulf Stream,
was subdivided into an intermediate-nutrient (IN) zone at the
southeastern boundary of the Gulf Stream featuring seasonal
circular systems of water currents and a zone close to Bermuda
featuring lower levels of nutrients (LN) with corresponding
lower primary production.””** Marine plankton samples were
collected at a depth of ca. S m by continuously pumping
seawater (40—120 L) through four glass fiber filters (Whatman
GF/F, 47 mm diameter, 0.7 ym pore size) arranged in parallel

(Figure S1). As the plankton built up on the filter surface, the
seawater flow continuously decreased from its initial flow of
about 175 L h™'; we stopped the sampling when the flow had
dropped to about 20 L h™", which took usually 1—2 h for the
HN sites and 3—4 h for the IN and LN sites. Collected filters
from each site were frozen (—70 °C), transported to Graz, and
stored (—80 °C) until further sample preparation. At the time
of analysis, a filter containing the plankton was briefly held at
room temperature and by use of a metal punch (12 mm
diameter), a subsample from each was taken for total carbon
analysis; the remaining filter was used for the determination of
arsenic species.

Chemicals and Standards. Water (18.2 MQ cm) used for
all laboratory procedures was obtained from a Milli-Q_system
(Merck Millipore GmbH, Vienna, Austria). Dichloromethane
(299.9%, DCM) and methanol (>99.9%, MeOH) were
obtained from VWR (Vienna, Austria). Formic acid (>98%)
and aqueous ammonia (25%, NH;) were purchased from Carl
Roth GmbH (Karlsruhe, Germany), as were the standard
solutions (1000 + 2 mg L™" each) of germanium, indium, and
tellurium. For a certified reference material, we used NMIJ
CRM 740S-a (Trace Elements and Arsenic Compounds in
Seaweed—Hijiki) from the National Metrology Institute of
Japan (Tsukuba, Ibaraki, Japan). Six arsenolipids used as
standards, namely, AsFA362, AsFA388, AsFA418, AsHC332,
AsHC360, and AsHC444 (Figure S2) were synthesized in-
house according to Taleshi et al,”® and standard solutions of
these species, each at 0.1 mM (=7.5 mg As L™"), were prepared
in MeOH. Additionally, arsenolipids AsPL958, AsPL986,
AsPL1014, AsPL1042, and AsPL1070, which are present in
the NMIJ CRM 7405-a, were used as reference species.”® We
also implemented our in-house reference material (D.
tertiolecta), produced during a previous study in our laboratory
in Graz,'' to further validate the applied methods for those As
species absent in CRM Hijiki, namely, AsSugPhytol, AsPL978,
AsPL980, AsPL982, and AsPL984. Figure S2 shows the
structures for all relevant arsenolipids available as standards in
our study.
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Instrumentation. Solvents were evaporated on a cen-
trifugal lyophilizer (Christ RVC 2—33 CD plus, Martin Christ
GmbH, Osterode am Hartz, Germany). Separation of arsenic
species was carried out on an Agilent 1100 series HPLC
system prior to post column passive splitting directing 10% of
the outflow for online elemental determination to an
inductively coupled plasma mass spectrometer (ICPMS; an
Agilent 7900 series instrument from Agilent Technologies,
Waldbronn, Germany), and the remaining 90% outflow was
directed to an electrospray ionization triple quadrupole mass
spectrometer (ES-QQQ-MS; Agilent 6460 series instrument)
for molecular determination. The ICPMS was equipped with a
MicroMist concentric glass nebulizer (Glass Expansion, West
Melbourne, Australia) and a Peltier cooled Scott-type double-
pass spray chamber with standard Ni interface cones. The ES-
QQQ-MS was furnished with a jet-stream atmospheric
pressure electrospray ionization source using nitrogen as
both nebulizer and drying gas. Measurements were performed
in a positive ionization mode. Accurate mass measurements
were performed with an electrospray ionization high-resolution
mass spectrometer (HR-ESMS; Q-Exactive Hybrid Quadru-
pole-Orbitrap MS from Thermo Fisher Scientific, Erlangen,
Germany) after HPLC on a Dionex Ultimate 3000 series
instrument (Thermo Fisher). The HR-ESMS was furnished
with a heated atmospheric pressure electrospray ionization
source (HESI-II) using nitrogen as both nebulizer and drying
gas.

Determination of Nutrients, Biophysical Parameters
in Seawater, Chloropigments, and Total Carbon in
Biomass. Nutrients were determined in seawater collected
along the transect at 18 sites (nine samples at LN, three at IN,
and six at HN sites) at depths of 2—8 m and treated as
described before.”” In brief, a portion of filtered seawater,
collected in acid-washed bottles, was analyzed for phosphate,
silicate, nitrate, nitrite, and ammonia by the Marine Chemistry
Laboratory at the University of Washington. The analyses were
performed on a colorimetric auto analyzer (Technicon AAII;
SEAL Analytical Inc.,, Wisconsin) following the protocols of
the World Ocean Circulation Experiment (WOCE) hydro-
graphic program. In addition, high sensitivity phosphate
analyses were conducted at the Woods Hole Oceanographic
Institution using the magnesium-induced coprecipitation
method (MAGIC) for the IN and LN regions; these data
were reported by Martin et al.”” Additional seawater
parameters at 5—11 m depths were determined using in situ
instrumentation at 27 HN, 6 IN, and 27 LN sites. Chlorophyll-
a fluorescence determination was performed using a WET
Labs ECO-AFL/FL fluorometer at wavelengths of ex/em =
470/695 nm (Seabird Electronics). Seawater temperature,
salinity, and turbidity were measured using a CTD Sea-Bird
SBE 911 plus instrument (Seabird Electronics). An SBE 43
sensor (Seabird Electronics) was used to measure dissolved
oxygen concentrations. In situ chlorophyll fluorescence
measurements were validated by direct measurement of
chloropigments in filtered biomass by HPLC-HR-ESMS, as
described by Becker et al.*® Both chlorophyll-a and divinyl
chlorophyll-a were detected in all samples.

As a measure of the total biomass on each filter, the
punched-out pieces (12 mm; representing 7.1% of the whole
filter surface covered with plankton) were analyzed for their
total carbon content. These measurements were performed by
the company Bioenergy 2020+ GmbH (Graz, Austria) using a
RC612 Multiphase Carbon and Hydrogen/Moisture Determi-

nator. The limit of detection was 0.01 mg C; our measured
values ranged from 0.09 to 0.35 mg C. The precision of total C
determinations for our samples and experimental method was
0.7—4.7%, evaluated by triplicate measurements of punch outs
from three different filters.

Sample Preparation and Arsenolipid Measurements.
After total C analysis of the plankton on the punched-out filter
piece, the remaining filter from each site was extracted
sequentially three times with a mixture of DCM/MeOH (2
+1,v/v) containing 1.0% ammonia (3 mL, v/w); extracts were
filtered (0.2 pum, nylon), combined, and evaporated to dryness
under vacuum (25 °C, 10 mbar, 20 h). Prior to analysis by
HPLC-ICPMS/ES-QQQ-MS, samples were redissolved in
MeOH (250 uL).

Samples were measured by HPLC-ICPMS/ES-QQQ-MS in
split mode (passive splitter; fixed ratio), whereby 10% of the
HPLC outflow was directed to the ICPMS (Agilent 7900) and
the remaining 90% to the ES-QQQ-MS (Agilent 6460). After
the splitter, the flow to the ICPMS was augmented by a
support flow (water incl. 1 vol % formic acid and 20 ug L™" Ge,
In, Te; 0.4 mL min™') to compensate for the lower flow, as
well as to introduce Ge, In, and Te as internal standards. For
separation of arsenic species by reversed-phase HPLC, a
Shodex Asahipak ODP-50 column (150 X 4.6 mm; S um
particle size) was used under gradient elution conditions
(mobile phase A: water incl. 0.1 vol % formic acid and B:
MeOH incl. 0.1 vol % formic acid): 0—25 min, 60—100% B;
25—32 min, 100% B; 32—32.1 min, 100—60% B; and 32.1—40
min, 60% B. The column was operated at 40 °C; the mobile
phase flow was set to 0.5 mL min™", and the injection volume
was S0 uL.

The ES-QQQ-MS was operated in multiple reaction
monitoring (MRM) mode where the first quadrupole was
adjusted to the precursor ion of relevant arsenolipids and the
second quadrupole was set on either m/z 105 or 123 for AsFAs
and AsHCs; m/z 111 or 269 for AsSugPhytol; and m/z 97 or
409 for AsPLs (see below for more details). Source parameters
for the ionization were: gas temp. 350 °C; gas flow 12 L min™/;
nebulizer pressure 25 psi; sheath gas temp. 300 °C; sheath gas
flow 10 L min~'; capillary voltage 5.0 kV; and nozzle voltage
2.0 kV. ICPMS was operated under no-gas condition
monitoring m/z 75 (7As and “Ar**Cl), 53 (*Cr and
YAr3C), 77 ("’Se and *ArCl), 82 (¥3Se), 74 ("*Ge), 115
(*°In), and 125 ("*°Te). Spray chamber temperature was set
to —4 °C and gradient compensation was achieved by
introducing a solution of water incl. 10 vol % MeOH via the
rotatory pump of the ICPMS at a flow of 0.1 mL min™" directly
into the spray chamber. Arsenolipids in the samples were
quantified from HPLC-ICPMS measurements and external
calibration using three synthetic AsHCs (AsHC332, AsHC360,
and AsHC444); the data are reported as ng As g~' carbon.

To obtain more details on the identity of arsenolipids
present in the plankton samples, we used high-resolution
molecular mass spectrometry. HR-ESMS determinations of
arsenolipids were performed on a combined algal extract
sample to ensure adequate concentrations for accurate mass
recording. This extract was prepared by extracting six whole
filters with a mixture (15 mL) of DCM/MeOH (2 + 1, v/v)
containing 1.0% ammonia (v/w) two times sequentially;
combined extracts were filtered (0.2 pm, nylon) and
evaporated to dryness under vacuum (25 °C, 10 mbar, 10
h). Prior to analysis by HPLC-HR-ESMS, the sample was
redissolved in MeOH (250 pL). We used the same HPLC
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Figure 2. Principal component analysis (PCA) of arsenolipid species with environmental variables. Samples are indicated by dots and colored
according to sample site regions that are outlined in the methods section: high-nutrient (HN), intermediate-nutrient (IN), and low-nutrient (LN).
Arrows indicate the level of which each variable loaded on principal component 1 and 2 (PC1 and PC2). Latitudinal nutrient and physical water
properties were heavily loaded on PC1. High-nutrient characteristics were negatively associated with PC1 and low-nutrient characteristics positively
associated with it. PC2 was negatively associated with all arsenolipid species. Notably, all three AsPLs were positively loaded on PC1, opposite to
the PO4 concentration, while other arsenolipids were negatively loaded. Furthermore, divinyl chlorophyll-a was loaded nearly identically on PC1

and PC2 as the AsPLs.

conditions as described earlier in this work, and directed the
entire outflow of the HPLC-column into the mass
spectrometer. HR-ESMS measurements were performed in a
positive ionization mode, with a drying gas temperature of 350
°C, spray voltage of 4.0 kV, and a resolution of 70 000 (fwhm).
The observed mass ranges were set to m/z 100—305, 300—
905, and 900—1300 with data-dependent fragmentation at
various normalized collision energies (NCE: 15, 30, and 45)
and subsequent recording of MS/MS fragment ions. The
combined algal extract was also analyzed by HPLC-ICPMS/
ES-QQQ-MS, as described earlier in this work.

Statistical Analyses. One-way ANOVA with least
significant difference post-hoc test was performed to test
differences of the means between sampling sites of different
nutrient levels. Significance levels were: *P < 0.05 and **P <
0.001.

Principal components analysis (PCA) was conducted using
the concentration of the six detected arsenolipids, as well as the
aforementioned inorganic nutrient, chloropigment, and sea-
water parameter metadata. The locations and times of the
arsenolipid sampling were not exactly coincident with the
other seawater metadata. Thus, the arsenolipid data and

metadata were paired based on the proximity between where
they were collected, no more than 50 km away. Statistical PCA
analysis was conducted using the open-source R (4.0.3) “stats”
package and “prcomp” method based on correlation. All
variables were scaled to have unit variance before analysis,
thereby ensuring that no variable dominated the analysis.
Additionally, all variables were unit centered. Sample IN1 was
excluded from analysis, as incomplete location data prevented
pairing with metadata. Graphing was done using the R package

“ggplot2.”

B RESULTS AND DISCUSSION

We divided the transect into three nutrient regions, namely,
high-nutrient (HN), intermediate-nutrient (IN), and low-
nutrient (LN) sites according to nutrient concentrations
determined in the corresponding water bodies (Table S1).
Phosphate concentrations dropped from 0.105 + 0.015 pmol
L™ (HN; n = 27) to 0.010 £ 0.005 ymol L™! (LN; n = 27)
after crossing the Gulf Stream; the six IN sites had phosphate
concentrations of 0.016 =+ 0.004 umol L™'. Arsenate
concentrations, however, remained constant on both sides of
the Gulf Stream. For example, our previously reported data for
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Figure 3. Chromatograms of the combined algal extract showing the six major identified arsenolipids. HPLC conditions: Asahipak ODP-50 (4.6 X
125 mm, 5 pm particles); 40 °C; 50 uL inj. vol; flow rate 0.5 mL min~"; mobile phase A: 0.1 vol % formic acid in water and B: 0.1 vol % formic
acid in MeOH; gradient: 0—25 min, 60—100% B and 25—32 min, 100% B; flow split post column: 90% to ES-QQQ-MS and 10% to ICPMS;
sheath flow: 1 vol % formic acid in water at 0.4 mL min~’; and gradient compensation: 10 vol % MeOH in water at 1.0 mL min™". ES-QQQ-MS
detection was performed in positive MRM mode monitoring transitions mentioned above (nitrogen was used as collision gas) with a resolution of
0.3 (fwhm). Arsenic species were identified based on retention time matching with authentic arsenolipid standards and corresponding mass
transitions of molecular ions. Furthermore, we used HR-ESMS to determine accurate masses (Am < 1 ppm) and thereby confirm the identity of
individual As species (Table S2). The peak at ca. 12.5 min in the HPLC-ICPMS chromatogram is an artifact of remaining DCM (*’Ar**Cl) in the
sample and was identified by observing a peak at the same RT at m/z 77 (*Ar*’Cl).

samples collected during the same cruise and from the same
waters as the phytoplankton as part of a depth profile sampling
showed mean arsenate concentrations of 1.22 + 0.04 ug As L
(n=7) and 1.20 + 0.05 ug As L™" (n = 8) from high- and low-
nutrient areas, respectively.29 These results were consistent
with those reported by Wurl et al. from nearby sites in the
North Atlantic showing similar concentrations of arsenate
within depth profiles and across sampling sites (1.18 & 0.21 ug
As L7}, reported as 15.7 + 2.8 nM, n = 8).3'0

Silicate and nitrate featured highest concentrations at HN,
intermediate concentrations at IN, and lowest concentrations
at LN sites. We obtained further support for our subdivision of
the transect by comparing the waters’ salinities, temperatures,
and chlorophyll-a concentrations (Table S1 and Figure S3).

We observed a clear increase of salinity (from 33.7 + 0.4 PSU
to 36.6 + 0.3 PSU) and temperature (from 12.5 + 0.4 to 20.2
+ 02 °C) from HN to LN sites, whereas chlorophyll-a
concentrations dropped from 0.4—1.6 mg m™> at HN sites to
0.05—0.2 mg m™* at LN sites. IN sites featured intermediate
salinity and chlorophyll-a values but they had much higher
amounts of divinyl chlorophyll-a relative to HN or LN sites
(see below). Water temperature was slightly elevated and more
variable at IN compared to LN and HN sites, likely due to the
influence of the warm Gulf Stream waters. Principal
component analysis showed clear delineation of the sites in
these three regions (Figure 2). Notably, all three AsPLs were
positively loaded on principal component one (PC1), which
explained 57% of the variance in the data, while concentrations
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Figure 4. Arsenolipids featured in this study: arsenic hydrocarbons (AsHC332 and AsHC360), arsenosugar phospholipids (AsPL9S8, AsPL978,
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show only one possible isomer of the lipophilic sidechains.

of phosphate and the other arsenolipids were negatively
loaded.

Analytical Aspects. The quantitative determination of
arsenolipids presents analytical challenges because of the
multitude of compounds and low concentrations. Our current
study provided the additional challenge of handling small
sample biomass (1—6 mg C per sample; Table S3) collected
on glass fiber filters from oceanic plankton sampling. Because it
was not practical to quantitatively scrape off the green biomass
deposit from the filter, we decided to use the whole plankton/
filter sample and optimize the extraction procedure accord-
ingly. A mixture of DCM/MeOH, previously used to extract
arsenolipids from macroalgae,”® was not successful for the
plankton/glass fiber filters owing to a strong interaction
between the basic Me,As(O)-group in the compounds and the
silica surface of the filters.

These interactions preventing extraction were overcome by
adding 1% NH; (v/w) to the DCM/MeOH mixture
(Figure S4). The efficiency of the method was assessed by
spiking three plankton samples with standards of three AsHCs
at concentrations comparable to those in the natural samples;
returned spike recoveries were 97 + 5% (AsHC332), 104 +
9% (AsHC360), and 93 + 9% (AsHC444) within three

replicates each (Figure SS).

Identification of Arsenolipids in Plankton from the
North Atlantic. HPLC-MS revealed a multitude of
arsenolipids in plankton samples collected from 61 sites
encompassing high-, intermediate-, and low-nutrient waters
along a transect spanning the Gulf Stream in the Atlantic
Ocean (Figure 3). Six of the major compounds present were
identified and quantified in all samples, namely, three
arsenosugar phospholipids (AsPL9S8, 10—13%; AsPL978,
13—25%; and AsPL1006, 7—10% of total arsenolipids), two
arsenic-containing hydrocarbons (AsHC332, 4—10% and
AsHC360, 1—2%), and one phytyl methoxy-arsenosugar lipid
(AsSugPhytol, 1—-3%) (Figure 4). The compounds were
identified based on both retention time matching with
authentic standards and reference materials using ICPMS/
ES-QQQ-MS and with HR-ESMS confirming the identities
with Am < 1 ppm. Among the identified arsenolipid species,
we revealed the presence of a novel arsenosugar phospholipid,
namely, AsPL1006 (C,oHgsAsO,P; [M + H]* = 1007.5200,
Am = +0.6 ppm), an analogue of AsPL978 with an additional
ethyl group, using HR-ESMS and subsequently ES-QQQ-MS
in MRM mode. There was no indication of the presence of
arsenic-containing long-chain fatty acids in any of the samples
tested.

Arsenolipid Distribution in Plankton from High-,
Intermediate-, and Low-Nutrient Sites in the North
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Atlantic Ocean. We found a similar qualitative profile of
arsenolipids for plankton sampled from all nutrient level
waters, with the same six compounds predominating and
comparable patterns of minor, unidentified compounds
(Figure S). The quantitative data, normalized per g of total

AsPL1006
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| AspL958
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Figure 5. HPLC-ICPMS chromatograms of lipid extracts from
plankton collected from typical high-nutrient (3.7 mg total C
extracted), intermediate-nutrient (2.5 mg total C), and low-nutrient
(3.0 mg total C) sites showing the four identified arsenolipids and the
major unidentified ones. HPLC conditions, as described in Figure 2.
The peak at 12.5 min is an artifact of remaining DCM (**Ar®Cl) in
the samples.

C, showed similar levels of total arsenolipids for the HN (1050
+ 270 ng As ¢ ' C) and LN (1160 + 320 ng As g~' C) sites
(Table 1). There were, however, clear and significant
differences in the relative amounts of the major individual
arsenolipids between the HN and LN sites; plankton from the
LN sites had 17—50% higher levels of each of the three
arsenosugar phospholipids and correspondingly lower levels of

the other three non-P containing arsenolipids (Table 1 and
Figure 6; also see Table S3 for complete data set).

Plankton from the IN sites had a 2-fold higher mean
concentration of total arsenolipids (2060 + 320 ng As g~' C)
compared to the other two sites. This large difference was
almost entirely due to greatly increased levels of all three
arsenosugar phospholipids (Table 1). The levels of non-P
arsenolipids were also generally higher than those at the HN or
LN sites, but the differences, in terms of absolute
concentrations, were small, and there was no clear pattern in
the data (Table 1 and Figure 6). The IN sites also differed
from the HN or LN sites by showing 10-fold higher levels of
divinyl chlorophyll-a, a biomarker for cyanobacteria of the
Prochlorococcus genus (Figure S3). In culture experiments,
cyanobacteria are known to biosynthesize arsenosugar
phospholipids, but other arsenolipids have not been
detected.®” Prochlorococcus possess a broad complement of
arsenic detoxification genes,31 and these genes are more
prevalent in low-phosphate regions of the ocean.’”

The PCA recapitulated the distinct differences in arsenolipid
concentrations between regions, showing that higher concen-
trations of arsenosugar phospholipids at the IN region
contributed significantly to the variance in the overall data
set (Figure 2). The amounts of divinyl chlorophyll-a loaded in
the PCA were almost identical to the arsenosugar phospho-
lipids.

Environmental Considerations. Although our sampling
method provided only a combined plankton sample, the pore
size of our GF/F filters (0.7 ym) likely allowed most bacterial
organisms to pass through, and therefore we assume we
collected mainly cyanobacteria and unicellular algae. The
collection period corresponded to the spring phytoplankton
bloom in the North Atlantic, increasing the likelihood that the
major sample components were cyanobacteria and unicellular
algae.”™** Furthermore, arsenic hydrocarbons and arsenosugar
phospholipids, characteristic arsenicals in algae,”'*** were
dominant in our plankton samples, whereas arsenic fatty acids
(bound and free), commonly reported in marine animals,*~>*
were not present. Also present in all our samples was the
recently discovered phytol derivative (AsSugPhytol), which is a
product from unicellular algae like D. tertiolecta,'”"" but was
also recently found in other marine and hypersaline/hyper
alkaline environments.'>'**’

While there are no data clearly demonstrating a biological
role for arsenic, it is increasingly being reported in molecules
that play important roles in biology, for example, bound into
phosphatidylcholines as constituents of membrane lipids.*’
The various arsenolipids produced by marine plankton
possibly reflect the needs of the organism to discriminate P
from other elements and reserve the P for biosynthesis of
nucleic acids. Such an interplay between P and other elements
(e.g, N and S) in phytoplankton has been reported in a study
showing that when oceanic phosphate levels were low,

Table 1. Arsenolipid Concentrations (ng As g~ carbon) Present on Filters Obtained from High-, Intermediate-, and Low-

Nutrient Areas in the Atlantic Ocean (Mean + s.d.)”

sample AsHC332 AsHC360 AsSugPhytol
HNI1-27 10§ + 32 17 £ 4 26 £ 7
IN1-7 86 + 18 29+ 6 30£S
LN1-27 68 + 22 11 +4 10+ 4

“For significant statistical differences between sites, see Figure 6.

AsPL978 AsPL1006 AsPL9S8 total AsLip
135 + 34 81 + 20 104 + 26 1050 + 270
507 + S1 188 + 38 277 + 68 2060 + 320
203 + 61 9§ + 28 151 + 46 1160 + 320
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are indicated with *P < 0.05 or **P < 0.001.

phytoplankton produced more S- and N-containing lipids in an
effort to preserve essential P for nucleic acid synthesis.*"**
Based on previous laboratory experiments with Dunaliella,
we expected to find that in low-phosphate waters, non-P
arsenolipids, such as AsHCs and AsSugPhytol, would
predominate. Our field results, however, show the opposite
effect with AsPLs being the major arsenolipids when phosphate
levels were low. We note that in our field study, there could be
changes in the planktonic community along the transect,
especially in the intermediate-nutrient zone, as mentioned
above, and as previously reported.*”** Indeed, cyanobacteria of
the genus Prochlorococcus were very abundant (indicated by its
biomarker divinyl chlorophyll-a) at the IN stations where
AsPL concentrations were the highest (Figure S3). Cyanobac-
teria produce arsenosugar phospholipids to the apparent
exclusion of other arsenolipids,”” and thus the relative
contributions of cyanobacteria and algae to the plankton
biomass could greatly influence the relative amounts of P- and
non-P arsenolipids.

The difference in results between the laboratory- and field-
based studies with unicellular algae highlights the practical
limitations with both types of experiments. The laboratory
experiment could precisely control arsenate exposure covering
high to low values, but phosphate levels needed to be kept

10,11

rather high (1 gmol L™") to maintain algal growth to produce
sufficient biomass for subsequent measurements.'’ In the
current field study, on the other hand, arsenate concentrations
were fairly constant (typical for oceanic waters), and it was not
possible to obtain samples covering a wide range of natural
arsenate exposures. In contrast to arsenate, phosphate levels
can vary widely among oceanic water bodies, and with depth.
The Gulf Stream creates a clear division with waters north of
the stream (our HN sites, ca. 0.10 gmol L™") having phosphate
levels 10-fold higher than those south of the Gulf stream (LN
sites, ca. 0.01 gmol L™".). Within our HN or LN sites, however,
there was little variation in phosphate levels of surface waters,
and thus there was no opportunity to investigate changes to
arsenolipids at phosphate exposures between ca. 0.01 and 0.10
umol L™". We note that Wurl et al. observed, through seawater
depth profiles at sites in the North Atlantic, that the relative
amounts of small arsenic species, such as methylarsonate and
dimethylarsinate, in seawater were influenced by phosphate
concentrations.”

Our data can be used to provide a first global estimate of
arsenolipids for future models of arsenic biogeochemistry. The
global phytoplankton productivity has been estimated at 45—
50 billion tons of carbon (50 X 101S g C) per year, a value that
represents almost half the world’s total primary production
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including all land plants.** Combining this phytoplankton
productivity value with our data on arsenolipid content in
phytoplankton (Table 1), we estimate that each year, the
oceans’ phytoplankton incorporate 50 000—100 000 tons of
arsenic into arsenolipids. When speculating on the fate of this
large quantity of arsenolipids, it is important to consider the
rapid turnover rate of phytoplankton in the sea, which results
in only about 2% of the total annual production of
phytoplankton being alive at any one time.*® Phytoplankton
are constantly being consumed by the oceans’ heterotrophs
leading to phytoplankton debris and fecal material, which sink
slowly through the water column. Microbes may then degrade
the arsenolipids to simpler arsenic species that are released into
the water. Such a scenario would be consistent with depth
profiles of arsenic species in North Atlantic waters, where
arsenobetaine and several other small arsenicals were
associated mainly with the photic zone but were also found
at depths of 200 m and beyond.*

In summary, we report that arsenolipids were present in all
61 natural phytoplankton samples collected from areas of
high-, intermediate-, and low-nutrient contents in the North
Atlantic. The sum of arsenolipids remained fairly constant
between samples collected at low- and high-nutrient sites,
although the type of arsenolipids produced varied substantially
with the seawater’s nutrient content. It is most likely that
arsenolipids will prove to be widespread among unicellular
algae and cyanobacteria in the global oceans, and thus their
biosynthesis and degradation, under conditions of varying
ocean chemistries, will play a pivotal role in understanding the
biogeochemical cycling of arsenic.
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Optimization of the extraction procedure

A preliminary attempt to extract the arsenolipids employing DCM/MeOH mixtures was
inefficient for the phytoplankton samples because the active silica (SiO;) surface of the filter
interacted with the basic Me;As(O)-group of the arsenolipids and retained them. Thus, the
extraction procedure was optimized by testing solvent mixtures with Hijiki CRM alone, and
with Hijiki CRM in the presence of glass fiber filter. In each test, 3 mg (weighed to a precision
of 0.01 mg) of Hijiki and 3 mL solvent was used, and the extractions were performed in 15 mL
polypropylene tubes. The sample containing only Hijiki was extracted with DCM/MeOH
(2+1, v/v), whereas the samples containing Hijiki plus filters were extracted with DCM/MeOH
(2+1, v/v), or DCM/MeOH (2+1, v/v) containing 0.1 % NHs (v/w), or DCM/MeOH (2+1, v/v)
containing 1.0 % NHs (v/w), as described in the following section. Recoveries were tested by
spiking three high nutrient (HN) samples at levels comparable to the natural level of three
arsenolipids with standards of AsHC332 (100 ng As g 1), AsHC360 (20 ng As g!), and AsHC444

(20 ng As g1) prior to extraction.

S2



36

Table S1. Nutrient concentrations (umol L), chlorophyll-a (mg m™3; fluorescence), divinyl chlorophyll-a (108 peak

37 area L'Y; HPLC/HR-MS)and temperature (°C) in surface seawaters from high nutrient (HN; n = 27, except for divinyl
38 Chl-a), intermediate nutrient (IN; n = 6), and low nutrient (LN; n = 27, except for divinyl Chl-a) sampling sites
39 along the transect in the North Atlantic Ocean (mean #* s.d.; adopted from Van Mooy and Rauch?).
Site Phosphate Silicate Nitrate Nitrite Ammonia Chlorophyll Divinyl-Chl- Water
-a a temp.
HN 0.105 + 1.13+0.21 0.084 + 0.007 0.063 1.10+0.35 24+13 12.5+0.3
0.015 0.022 0.003 0.058 (n=8)
IN 0.016 + 0.99 +0.02 0.043 0.023 £ 0.010 % 0.27 £0.08 36+30 21.2+1.4
0.004 0.036 0.005 0.001 (n=6)
LN 0.010 = 0.55+0.17 0.016 + 0.011 0.014 + 0.10+0.03 2.3+0.6 20.4+0.1
0.005 0.014 0.004 0.014 (n=3)
40
41 Table S2. High-resolution mass spectral data for arsenolipid species identified in plankton samples collected in
42  the North Atlantic Ocean.
Compound  Elemental Calculated mass Measured mass  Mass difference
composition [M+H]* [M+H]* [ppm]
AsHC332 C17H37AsO 333.2133 333.2133 +0.1
AsHC360 C19H41AsO 361.2446 361.2449 +0.9
AsSugPhytol  CgHss5AsOs 547.3338 547.3340 +0.4
AsPL958 CasHggAsO14P 959.5200 959.5201 +0.1
AsPL978 Ca7HgsAsO14P 979.4887 979.4891 +0.3
AsPL1006 CagHgsAsO14P 1007.5200 1007.5206 +0.6
43
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44 Table S3. Organic biomass (mg carbon per filter) and arsenolipids (ng As g* carbon) present on filters containing

45 plankton collected from high (HN), intermediate (IN) and low nutrient (LN) areas in the Atlantic Ocean (n = 1).

Sample Biomass AsHC332 AsHC360 AsSugPhytol AsPL978 AsPL1006 AsPL958 Total AsLip

HN1 3.3 111 17 35 136 92 75 1152
HN2 4.1 63 11 26 92 68 78 767
HN3 4.7 83 14 29 132 76 103 964
HN4 5.9 61 10 13 87 56 69 675
HN5 3.7 109 16 35 152 97 115 1287
HN6 4.8 77 12 28 112 73 81 886
HN?7 3.6 83 13 29 143 90 108 1068
HNS8 3.8 102 14 29 130 83 93 1129
HN9 3.5 176 17 40 214 123 138 1693
HN10 33 146 17 39 194 117 141 1624
HN11 4.1 98 13 29 146 89 108 1259
HN12 4.4 71 13 23 82 47 62 669
HN13 3.1 129 19 26 146 84 112 1036
HN14 2.8 155 23 32 169 94 123 1281
HN15 3.1 160 27 28 172 113 165 1357
HN16 2.8 157 23 27 162 89 129 1213
HN17 4.2 113 18 26 159 90 130 1058
HN18 3.7 92 17 23 156 82 127 1078
HN19 3.5 109 18 20 143 90 98 1051
HN20 4.1 120 18 16 109 76 93 926
HN21 2.9 117 22 21 143 88 121 1195
HN22 5.2 74 14 14 83 50 72 689
HN23 3.5 93 20 24 111 60 84 883
HN24 3.9 100 19 21 118 67 89 873
HN25 3.9 82 18 18 102 61 86 866
HN26 5.7 79 14 22 91 51 73 722
HN27 3.7 77 18 26 160 86 125 963

46
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47  Table S3 continued.

Sample Biomass AsHC332 AsHC360 AsSugPhytol AsPL978 AsPL1006 AsPL958 Total AsLip

IN1 2.5 71 29 32 575 274 274 2061
IN2 2.8 63 22 26 483 138 187 1593
IN3 2.4 72 29 29 530 150 184 1680
IN4 2.0 96 31 33 516 245 360 2223
IN5 13 89 23 39 553 208 284 2134
IN6 1.3 101 27 25 440 212 325 2204
IN7 1.2 111 39 28 448 197 321 2491
LN1 2.0 57 14 12 282 134 199 1294
LN2 1.9 59 8 11 244 98 187 1258
LN3 2.3 65 15 11 270 102 199 1435
LN4 3.2 49 9 8 219 97 158 1125
LN5 2.5 73 13 10 222 98 158 1417
LN6 2.0 71 16 14 298 122 182 1480
LN7 1.7 71 13 12 178 89 112 1074
LN8 1.6 84 19 14 235 108 166 1326
LN9 1.7 78 17 10 227 115 187 1327
LN10 4.8 21 4 4 88 39 63 477
LN11 2.4 61 11 7 179 79 108 929
LN12 1.7 74 16 13 267 112 200 1471
LN13 1.5 75 18 19 259 111 192 1427
LN14 5.0 23 5 5 126 58 140 658
LN15 2.7 59 11 10 184 82 147 1066
LN16 4.6 32 6 6 103 49 80 552
LN17 2.6 37 5 111 43 63 631
LN18 3.1 43 5 6 91 45 70 579
LN19 2.2 94 13 7 184 102 184 1392
LN20 2.4 84 7 175 92 164 1239
LN21 3.0 75 8 11 238 118 186 1255
LN22 1.6 102 10 11 223 116 135 1248
LN23 1.7 92 8 11 201 105 122 1118
LN24 2.0 85 8 6 198 108 134 1185
LN25 2.1 82 11 12 206 124 165 1374
LN26 1.6 102 12 17 301 139 240 1710
LN27 2.1 80 5 13 173 88 124 1162

48
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50
51
52
53

Figure S1. Sampling set-up used for collecting plankton samples onboard the cruise ship (left) and typical

plankton containing filters obtained (right). The samples were collected at a depth of ca 5 m by continuously

pumping seawater (40-120 L) through four glass fiber filters (Whatman GF/F, 47 mm diameter, 0.7 um pore size)

arranged in parallel.
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Figure S2. Arsenolipid standard compounds available in this study. AsHCs and AsFAs were synthesized in-house,

while AsSugPhytol and AsPLs were previously determined in CRM-Hijiki (NM1J 7405-a) and our in-house reference

material D. tertiolecta. Double bond positions of AsSugPhytol, AsPL978, AsPL980, AsPL982, and AsPL984 were

not determined; we show one possible isomer for the AsPLs’ lipophilic sidechains.
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Figure S3. Surface seawater salinity (top), temperature (center), fluorescence (chlorophyll-a; bottom), and divinyl

chlorophyll a from low nutrient (LN), intermediate nutrient (IN), and high nutrient (HN) sampling sites along the

transect in the North Atlantic Ocean (mean % s.d. of n = 2; s.d. is represented as grey areas).
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Figure S4. HPLC-ICPMS chromatograms of CRM Hijiki (7405-a). Black: extracted with DCM/MeOH (2+1, v/v); blue:
glass fiber filter added, then extracted with DCM/MeOH (2+1, v/v); red: glass fiber filter added, then extracted
with DCM/MeOH (2+1, v/v) containing 0.1 % ammonia (v/w); green: glass fiber filter added, then extracted with
DCM/MeOH (2+1, v/v) containing 1.0 % ammonia (v/w). Asahipak ODP-50 (4.6 x 125 mm, 5 um particles); 40 °C;
50 pl inj. vol.; flow rate 0.5 mL min’l; mobile phase A: 0.1 %vol formic acid in water, B: 0.1 %vol formic acid in
MeOH; gradient: 0-15 min, 60-100 % B; 15-20 min, 100 % B; 10 % split to ICPMS; sheath flow 1 %vol formic acid

in water at 0.4 mL min%; gradient compensation 10 %vol MeOH in water at 0.1 mL min™.

S9



72

73
74
75
76
77
78

3000

——HN-sample

[
w
o
o

DCM ' ------- HN-sample spiked

2000

1500

Signal intensity m/z 75 [counts]

0 5 10 15 20 25 30 35 40
Retention time [min]

Figure S5. HPLC-ICPMS chromatograms of an extract of plankton from a typical high nutrient site and the same
extract spiked with arsenolipid standards AsHC332 spiked at 100 ng As g'; and AsHC360 and AsHC444 spiked at
20 ng As g'1. HPLC conditions (also described in Figure 2) were: Asahipak ODP-50 (4.6 x 125 mm, 5 um particles);
40 °C; 50 pL inj. vol.; flow rate 0.5 mL min''; mobile phase A: 0.1 %vol formic acid in water, B: 0.1 %vol formic
acid in MeOH; gradient: 0-25 min, 60-100 % B; 25-32 min, 100 % B; flow split post column. Peak at 12.5 min is an

artefact of remaining DCM (*°Ar3>Cl) in the samples.
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