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Abstract—In this paper, we address the problem of appli-
cation placement in MEC systems that takes into account the
risk of exceeding the energy budget of the edge servers. We
formulate the problem as a chance-constrained program, where
the objective is to maximize the total quality of service in
the system, while keeping the expected risk of exceeding the
edge servers’ energy budget within an acceptable threshold.
We develop a learning-based method to solve the problem
which requires a very small execution time for large size
instances. We evaluate the performance of the proposed method
by conducting an extensive experimental analysis.
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I. INTRODUCTION

Mobile Edge Computing (MEC) has been introduced

with the aim of providing services to mobile users with

a lower latency compared to the centralized data centers,

which is based on the idea of bringing servers closer to the

end users [1], [2]. Thus, a lower communication latency is

expected to be achieved by locating the servers at the edge

of the network. Due to the fact that MEC servers are more

restricted in terms of computational capacity compared to

the cloud servers, the resources must be utilized efficiently

in order to take full advantage of these systems. One of the

key decisions determining the efficiency of MEC systems

is how to allocate applications to servers. Given the fact

that MEC servers have a restricted energy budget, allocating

too many tasks to those servers can result in the failure

of services. On the other hand, an inefficient application

placement employed by service providers can significantly

impact the Quality of Service (QoS).

What makes the application placement in MEC systems

more challenging is the existence of nondeterministic pa-

rameters such as the size of requests, the reliability of

the network, and the movement of users. Due to the high

volatility of the MEC systems, any optimal application

placement might turn to a non-optimal or even infeasible

placement in few seconds. Thus, to make an application

placement reliable one needs to take the uncertainties of

the network into account when placing applications on edge

servers.

Several researchers have recently addressed the applica-

tion placement problem in MEC from different perspectives

and employed a wide range of methods. Due to the fact

that the main goal of MEC systems is to reduce latency,

many researchers have devoted their efforts to developing

methods for improving the QoS. Ouyang et al. [3] proposed

a service placement method which jointly optimizes users’

perceived-latency and service migration costs. Maia et al. [4]

proposed two algorithms for IoT service placement, where

the objective is to minimize the potential violation of QoS

requirements. Wang et al. [5] modeled the application place-

ment as a graph problem and proposed an algorithm to find

the optimal placement of a linear application graph. They

also proposed online approximation algorithms for applica-

tion placement. Sodhro et al. [6] proposed an algorithm for

optimization of QoS in MEC-based medical video stream

applications.

The necessity of improving the efficiency of energy con-

sumption in MEC systems motivated researchers to take the

energy consumption into account in the design of application

placement algorithms [7]. Bahreini et al. [8] addressed the

problem of energy-aware capacity provisioning and resource

allocation in MEC systems. The objective in their proposed

algorithm is to maximize the net profit of the service

provider, where the profit is the difference between the

aggregated users’ payments and the total operating cost

due to energy consumption. Badri et al. [9] considered the

mobility of users in MEC as a non-deterministic parameter

and proposed a multi-stage stochastic program for energy-

aware application placement.Yang et al. [10] proposed an

algorithm for resource management in MEC networks where

the objective is to minimize the power utilization. The

authors took latency and coverage into account in their

proposed algorithm.

One of the key assumptions in the above-mentioned works

is that the workload of mobile applications is known prior

to allocating it to servers. However, this assumption might

not be valid for many applications, that is, when a request

is received by the MEC system, the workload is unknown.

Compared to the cloud servers, MEC servers are expected

to be more restricted in terms of capacity, that is, the



risk of exceeding the energy budget of servers is higher

in MEC servers. Exceeding the energy budget may result

in increased failure risk. One possible solution is to have

a recovery scheme in place and offload the workload of

an overloaded edge server to other servers with enough

available capacity [11]. However, this approach does not

manage the risk and might result in higher latency due to

migrations. In order to manage the risk of exceeding the

energy budget, one has to take the variance of workloads

into account when allocating requests to MEC servers.

Disregarding the stochasticity of applications’ workloads

might end up in either under-utilized servers or high failure

risk. To the best of our knowledge, no application placement

algorithm has been proposed that takes uncertainty of the

loads into account and manages the risk of exceeding the

energy budget of servers in MEC systems.

Contributions. We propose a novel risk-based optimization

approach to application placement in MEC that takes into

account the risk of exceeding the energy budget of edge

servers when making allocation decisions. Our objective

is to maximize the QoS of the system which is defined

with respect to the communication latency and is the sum

of QoS of individual requests who receive services. We

also take into account the risk of exceeding the energy

budget of edge servers with the aim of controlling the

failure risk. Because the resource requirements of mobile

applications are stochastic parameters, and in order to con-

trol the risk of exceeding the energy budget of the edge

servers, we formulate the application placement problem as

a chance-constrained stochastic program. To solve the prob-

lem, we employ the Sample Average Approximation (SAA)

method [12] and develop a fast machine learning-based

optimization method to solve fairly large size instances.

We develop a model using some basic features that can be

used for application placement without having to solve any

optimization problems online. We also propose a method

where in addition to the basic features, some additional

features from the solution of the linear programming (LP)

relaxation of the problem are used to train the placement

model. We evaluate the efficiency of the proposed approach

by conducting an experimental analysis on instances with

various problem settings based on real-world data.

Organization. The rest of this paper is organized as follows.

Section II defines the problem and presents the risk-based

optimization model. Section III is devoted to the description

of our learning-based application placement method. Sec-

tion IV describes the experimental setup and analyzes the

results. Finally, Section V concludes the paper and presents

possible directions for future research.

II. RISK-BASED OPTIMIZATION MODEL

We consider a MEC system composed of edge servers and

a cloud data center. The cloud servers situated in the data

center are abstracted as a single cloud server of large capac-

ity denoted by Sc. There are Me servers at the edge level.

The set of servers at the edge level is denoted by Me =
{S1, S2, . . . , SMe}, while the set of all servers including

the cloud server is denoted by M = {S1, S2, . . . , SMe , Sc}.

These servers provide computing resources to a set U =
{U1, U2, . . . , UN} of N independent requests from mobile

users. The MEC network model assumes that all cell towers

are accessible to all users in the network, and that the cloud

server is accessible through the cell towers. Our model is

analogous to the network model considered in [3]. In our

model, edge server Sj is co-located with a base station and

is characterized by its computational capacity, Cj , and its

energy budget, Ej expressed in Joules. The computational

capacity Cj is the maximum number of unit-size containers

that server Sj can host. The unit-size containers have a fixed

resource configuration which is determined by the provider.

The cloud server is located in a geographical area at a large

distance from the users, and the cloud server is assumed

to have enough capacity to handle all the requests from

mobile users. We denote the distance from user i to server Sj

by dij . The request Ui of user i is to offload and execute

an application (a single container) on the edge or the cloud

servers via 4G/5G/WiFi access networks. The request Ui

is characterized by two parameters, (i) the amount of trans-

ferred data ti, and (ii) the size of the requested container Ri,

which is expressed in terms of the equivalent number of unit-

size containers needed to execute the application. We assume

that each created container serves only one request. We

formulate the energy-aware application placement problem

in MEC systems as a chance-constrained stochastic program.

Chance-constrained stochastic programming was introduced

by Charnes et al. [13] and has been employed extensively

in a variety of applications.

The objective function is to maximize the quality of

service of the system, which is defined as the sum of the

QoS of individual requests who receive services. Here, we

define the QoS based on two important factors that determine

the latency, the distance between user and server, and the

size of the transferred data from the mobile device to the

system. Thus, the quality of service that user Ui receives

from server Sj is defined as, Qij = ti
dij

, where, ti is the

size of data transferred from user i, and dij is the distance

between user i and server Sj . In other words, the quality

of service Qij that request Ui receives from server Sj is

inversely proportional to the distance between the user and

the server that provides the service, and directly proportional

to the size of the transferred data. Here, we assume that

the distance between users and servers is the Manhattan

distance. Therefore, if user i is located at (au, bu) and

server Sj is located at (as, bs), then the distance between the

user and the sever is given by |au−as|+|bu−bs|. We assume

that the amount of energy utilized by the request Ui when



it runs on server Sj is given by γ·Ri

Cj
, where γ is a constant

coefficient. Thus, the energy utilized by the request Ui when

it runs on server Sj is directly proportional to the fraction

of Sj’s capacity utilized by the request [14].

We formulate the energy-aware application placement as

a chance-constrained integer program as follows.

Maximize
∑

i∈U

∑

j∈M

ti
dij

· xij (1)

Subject to:

p

{

∑

i∈U

γ ·Ri

Cj

· xij ≤ Ej

}

≥ (1− α), ∀j ∈ Me

(2)
∑

j∈M

xij = 1, ∀i ∈ U (3)

xij ∈ {0, 1}, ∀i ∈ U , j ∈ M (4)

where xij is a binary variable, that is 1 if the request of user i
is allocated to server Sj and, 0 otherwise. Constraint (2)

ensures that the probability of loading an edge server beyond

its energy budget is not greater than the risk factor α.

Constraint (3) ensures that each request is satisfied and is

not allocated to more than one server. Finally, Constraint (4)

guarantees the integrality of the decision variables.

Chance-constrained stochastic programs may be ex-

tremely hard to solve, due to the nonconvexity and feasibility

checking issues. Several approaches have been proposed

to solve chance-constrained programs efficiently [12], [15],

[16]. Here, we employ the Sample Average Approximation

(SAA) method which is a Monte Carlo simulation-based

approach to solve chance-constrained programs [17]. In

SAA, the actual distribution in the chance constraint is

replaced by an empirical distribution of a random sample.

In the following, we present the SAA formulation of the

problem.

Let us define the unutilized energy budget of server Sj

as,

Gj(x,Θ
ξ) = Ej −

∑

i∈U

γ · R̃ξ
i

Cj

· xij , ∀j ∈ Me (5)

where, R̃ξ
i is the realization of parameter Ri based on

scenario ξ on the size of requests. Then, we can formulate

the SAA problem as a mixed-integer program (MIP),

Maximize
∑

i∈U

∑

j∈M

ti
dij

· xij (6)

Subject to:

Gj(x,Θ
ξ) ≥ W · zξ, ∀j ∈ Me, ξ ∈ Θ (7)

∑

ξ∈Θ

zξ ≤ α · ϕ (8)

∑

j∈M

xij = 1, ∀i ∈ U (9)

xij ∈ {0, 1}, ∀i ∈ U , j ∈ M (10)

zξ ∈ {0, 1}, ∀ξ ∈ Θ (11)

where the objective function in Equation (6) is the same

as that of the original chance-constrained model in Equa-

tion (1). In Constraint (7), W is a very large negative integer,

and zξ is a binary variable. If zξ is 1, the energy budget con-

straint can be violated under realization of scenario ξ, and if

it is 0, otherwise. Also, Θ is the independent identically dis-

tributed (iid) sample of ϕ realizations of R̃ξ
i . Constraint (8)

guarantees that the number of violated capacity constraints is

not greater than α·ϕ. Constraints (9) and (10) were described

in the chance-constrained model. Constraint (11) guarantees

the integrality of zξ.

III. LEARNING-BASED APPLICATION PLACEMENT

An efficient application placement algorithm for MEC

systems has to be very fast to be useful in practice. Since

the proposed SAA program is a MIP model, it might not

be feasible to obtain the optimal solution in a reasonable

amount of time, especially with a large number of users.

In this research, we develop a fast machine learning-based

algorithm to solve the SAA model.

In recent years, several researchers have attempted to

leverage machine learning techniques to either solve combi-

natorial optimization problems or improve the performance

of solvers on these problems. Alvarez et al. [18] developed

a method for variable branching in branch-and-bound which

is based on imitating the decisions taken by a strong branch-

ing strategy with an approximation. The approximation

is obtained via a machine learning technique from a set

of observed branching decisions taken by strong branch-

ing. Khalil et al. [19] also proposed a machine learning

framework for variable branching in MIP. Kool et al., [20]

proposed an algorithm based on reinforcement learning to

solve combinatorial optimization problems. Nazari et al. [21]

also developed a framework for solving the vehicle routing

problem using reinforcement learning. Bertsimas and Stel-

lato [22] focused on Mixed-integer Quadratic Optimization

problems and transformed the optimization algorithm to

a multi-class classification problem. They proposed a fast

online optimization algorithm consisting of a feedforward

neural network evaluation and a linear system solution.

Bengio et al. [23] surveyed the recent attempts at leveraging

machine learning to solve combinatorial optimization prob-

lems.



Figure 1: Learning-based Application Placement (LBAP) Framework.

Here, we leverage machine learning techniques to develop

a Learning-based Application Placement (LBAP) algorithm

which is a very fast algorithm to solve the SAA model for

the energy-aware application placement in MEC systems.

The framework of the LBAP algorithm is illustrated in

Figure 1. It consists of two major components, offline and

online. The role of the offline component is to create a

classification model based on the historical data on the size

of the transferred data as well as the resource requirements

of applications. In this classification model, each request is

considered as an observation, a server is considered as a

class, and the true class of each observation (request) is the

allocated server according to the optimal solution. Later in

this section, we will describe the features, the target vari-

ables, and the structure of the training set. The output of the

offline component, which is a trained classification model,

is employed in the online component for the placement of

requests.

The first step in the offline component is to estimate

the Probability Distribution Function (PDF) of the resource

utilization of applications. Then, the PDF is used to generate

scenarios for the resource requirements of applications (R̃ξ
i ).

Once the scenarios are generated using the PDF, a problem

instance is created. Since in the classification model, the

true class of each observation (request) is the allocated

server according to the optimal solution, an exact solution

method has to be employed in order to label observations.

We also solve the Linear Programming (LP) relaxation

model of the problem to extract some features from the

solution of this model which will be used to improve the

accuracy of the classification model. The LP relaxation

model is created by replacing Constraint (10) and (11) with,

xij ≥ 0, ∀i ∈ U , j ∈ M, and zξ ≥ 0, ∀ξ ∈ Θ. Finally,

features and the target values corresponding to the current

problem instance are added to the training set. The process

described above is repeated multiple times and for instances

of different sizes. Once the training set is large enough,

we use a multi-class classification method to create the

classification model. Since this procedure is performed in an

offline fashion, the complexity of the solution algorithm and

the classification method is not a challenge. In our proposed

approach, it is assumed that the number of servers is fixed,

but every time, the MEC system might receive a different

number of requests.

The online component of the LBAP uses the classification

model for application placement in an online fashion. Every

time the MEC system receives a batch of requests, it gener-

ates scenarios for the resource requirements of the received

requests. We should note that the size of the transferred

data is deterministically known at this stage. Then the LP

relaxation model is solved and the value of all the features

are obtained. The trained classification model is then used

for application placement.

Training set. In the training set, each row (observation)

corresponds to one request. Let us denote the observation

corresponding to request Ui by tuple (Fi, yi), where Fi

is the set of features corresponding to user i, and yi is

the target variable which is the label of each request. The

label of each request is the index of the allocated server

and is obtained by solving the SAA model of the applica-

tion placement problem and finding the optimal placement.

Therefore, yi = argmaxj x̄ij , where, x̄ij is the optimal

solution of the SAA problem. The set of features needs to

be carefully created such that the structure of the instance

and the main characteristics of each request are captured

accurately. Since the LBAP model should be capable of

solving instances of different sizes without having to be

trained for all the possible sizes, all the features should be

defined to be independent of the size of the instance.

The first subset of features is created using statistics of

the chance constraint. We denote by

f
(1)
ijξ =

γ · R̃ξ
i /Cj

Ej

, ∀j ∈ Me, ξ ∈ Θ, (12)

the ratio of the energy consumed by request Ui on

server Sj and the energy budget of Sj . The features in this

subset are, mini∈U

{

f
(1)
ijξ

}

, maxi∈U

{

f
(1)
ijξ

}

, σi∈U

{

f
(1)
ijξ

}

,

µi∈U

{

f
(1)
ijξ

}

, where σi and µi denote the standard deviation



and the mean value. The values of the features in this subset

are identical across all the requests.

The second subset of features consists of statistics of

requests. We normalize these features to make them inde-

pendent of the size of instances. We denote by

f
(2)
ijξ =

γ · R̃ξ
i /Cj

∑

i∈U
γ · R̃ξ

i /Cj

, ∀j ∈ Me, ξ ∈ Θ, (13)

the normalized energy consumed by request Ui on

server Sj . The features in this subset are, mini∈U

{

f
(2)
ijξ

}

,

maxi∈U

{

f
(2)
ijξ

}

, σi∈U

{

f
(2)
ijξ

}

, µi∈U

{

f
(2)
ijξ

}

, where σi

and µi denote the standard deviation and the mean value

of the feature. Similar to the first subset of features, the

value of the features in this subset are identical across all

the requests.

The third subset of features captures the main statistics

corresponding to each request. We denote by

f
(3)
ijξ =

ti/dij

γ · R̃ξ
i /Cj

, ∀j ∈ Me, ξ ∈ Θ, (14)

the ratio of the QoS of user i when the request is allo-

cated to server Sj and the energy consumed by request Ui

on Sj . In contrast to the first two sets of features, this

subset consists of features that might have different values

across requests. These features are normalized to make them

independent of the size of instances. The features in this

subset are, minξ∈Θ

{

f
(3)
ijξ

}

, maxξ∈Θ

{

f
(3)
ijξ

}

, σξ∈Θ

{

f
(3)
ijξ

}

,

µξ∈Θ

{

f
(3)
ijξ

}

, where σi and µi denote the standard deviation

and the mean value of the feature.

The fourth subset of features consists of the normalized

value of the transferred data size that is generated for all

possible combinations of (Ui, Sj). The features in this subset

are,

f
(4)
ij =

ti/dij
∑

k∈U
tk/dkj

, ∀i ∈ U , j ∈ Me. (15)

The last subset of features corresponds to the value of

the decision variables in the optimal solution of the LP

relaxation model,

f
(5)
ij = ẋij , ∀i ∈ U , j ∈ M, (16)

where ẋij is the value of xij in the optimal solution of the

LP relaxation model.

Machine learning algorithm. In LBAP, we employ multi-

class classification to obtain allocation of requests to servers.

The multi-class classification problem is to assign each

observation into one of the classes [24]. In LBAP, each

request is considered as an observation, and servers are the

classes. Since each request can be allocated to any server,

we take the allocation obtained in the optimal solution of the

SAA model as the true classification. To create the LBAP

function, we use the XGBoost package [25] which is based

on a tree boosting algorithm and has been widely employed

for classification problems in several applications.

IV. EXPERIMENTAL ANALYSIS

To evaluate the performance of the proposed application

placement algorithm (LBAP), we perform an extensive

experimental analysis using real-world data. We aim at

evaluating the quality of solutions and the running times

of the proposed method for problem instances of different

sizes. We investigate the performance of the LBAP model

when only basic features are considered in the classification

model, and evaluate the impact of considering features from

the solution of the LP relaxation model in addition to the

basic features.

A. Experimental setup

For our analysis, we consider a MEC system with five

edge servers and a cloud server which is located far from the

users’ area. We consider that the edge servers are co-located

with the base stations. For the edge servers, we choose the

Dell PowerEdge R740 Rack Server (Intel Xeon Gold 6240,

2.4GHz, 24 cores, 32GB RAM).

In our analysis, the number of requests ranges from 100 to

1000. In order to ensure high quality services, we define the

unit-size container according to the computational capacity

of a single core, and at most one container is allocated to a

core. Therefore, the computational capacity, Cj , of a server

is equivalent to the number of CPU cores. According to a

survey on data centers energy consumption [26], the idle

power of an edge server accounts for 60% of the full state

power. Thus, in our setting, the energy budget of a server

(in Joules) for a time slot is: Ej = 0.4 × 495W × 120s =
23, 760 J, where 495 W is the total power consumption of

a Dell PowerEdge R740 Rack Server, and 120 seconds

represents the length of the time slot considered in the

experiments.

We assume that if a core is utilized, it requires full

power. Therefore, the power of each core is obtained by

dividing the total power of a server by the number of

cores. Based on this assumption the power of each core of

the PowerEdge R740 Rock server is 20.625 W. We also

assume that when a container is allocated to multiple cores,

all the cores are fully utilized. Therefore, the utilization

rate of a server can be simply obtained by dividing the

allocated cores by the total number of cores. We use the

dataset on smartphones [27], to estimate the PDF of the size

of the containers requested by users. In order to generate

scenarios, we use the Categorical distribution, where each

category corresponds to each possible size of requests. The

probability of each category is obtained by dividing the

number of observations of that category in the dataset by

the total number of observations in the dataset. Throughout

the experiments, the sample size is 50 scenarios.
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Figure 2: Service ratio & QoS ratio vs. number of users
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Figure 3: Service ratio & QoS ratio vs. number of users: unobserved size of instances

We compare the performance of LBAP with that of the

optimal placement obtained by solving the problem with

CPLEX [28] considering two main metrics. The first metric

is the Service Ratio (SR) which is defined as the fraction

of the total requests allocated to edge servers, that is,

SR =
∑

i∈U

∑
j∈Me xij

N
, where, xij is 1 if request Ui is

allocated to the edge server Sj , and 0 otherwise. The second

metric is the QoS Ratio, which is defined as, ρ = Q
LBAP

QCPLEX

where, QCPLEX is the optimal value of the QoS obtained

by CPLEX, and QLBAP is the value of the QoS obtained

by LBAP. For the experiments involving CPLEX, we use the

CPLEX 12 solver provided by IBM ILOG CPLEX optimiza-

tion studio for academics initiative [28]. Each experiment is

performed five times and the analysis is conducted based on

the average value of the metrics.

B. Experimental results

We perform our analysis using two different approaches.

First, we investigate the performance of the proposed method

by not considering the features from the solution of the

LP relaxation model. We aim at investigating the accuracy

of the LBAP model when only features from the SAA

MIP model are included in the classification model. In this

approach, we do not need to solve the LP relaxation model,

and the placement is obtained without having to solve any

optimization model in the online fashion. In the second

part of our experimental analysis, we include the features

from the solution of the LP relaxation model. Based on

this approach, once the system receives the requests, the

LP relaxation model is solved and the optimal value of

the decision variables are used as features to generate the

placement using the LBAP model.

We perform our analysis on instances of various sizes,

where the size of an instance is specified by the number

of users. In these experiments, the number of users ranges

from 100 to 1000. Figure 2 compares the service and QoS

ratios obtained by LBAP with the optimal ratios obtained

by solving the MIP model using the CPLEX solver. In

Figure 2a, we observe that the service ratio decreases as the

number of users increases. The reason is that the capacity

of the edge servers is fixed, and therefore as the number of

users increases, a smaller fraction of them can be allocated

to the edge servers. In most cases, the performance of

the LBAP method based on the service ratio is within 0.1

distance from the optimal solution. Figure 2b shows the

service ratio obtained by LBAP, where the LP relaxation

features are used in addition to the basic features in the

classification model. As expected, LBAP performs signifi-

cantly better when the LP relaxation features are used in the

classification model, and the service ratio obtained by LBAP

is fairly close to that of CPLEX. In few instances, we

observe that LBAP obtains a slightly higher service ratio

compared to CPLEX. One possible reason for this is that

a higher service ratio might not necessarily yield a higher

QoS, which is the objective of the problem. Given this fact,

CPLEX might obtain a solution that has a smaller fraction

of users allocated to edge servers, but QoS of the system is

maximized.

Figure 2c shows the performance of LBAP in terms

of QoS. In this figure, we observe that considering only



the basic features, the QoS obtained by LBAP is within

an acceptable distance from the optimal QoS obtained by

CPLEX. In most instances, the QoS obtained by LBAP

considering only the basic features is within 0.5 distance

from the optimal QoS. We do not observe any significant

decrease in ρ with the increase in the number of users.

By including the LP relaxation features, the QoS obtained

by LBAP gets very close to the optimal. We observe that

in few cases the QoS ratio is slightly greater than 1, that

is, the QoS obtained by LBAP is slightly greater than the

optimal QoS obtained by using CPLEX. This indicates that

the placement obtained by LBAP might have a higher risk

of exceeding the energy budget than the placement obtained

by CPLEX. This is not a significant issue, given that the

risk is a soft constraint and could be violated under some

scenarios. This also could be tackled through training the

LBAP classification model with a higher value for the risk

factor, α.

Generalization analysis. In the first set of experiments, the

classification model was trained for all the sizes of instances

in the test set. In the real world, it might not be practical

to train the classification model using all possible sizes of

instances. Therefore, we might need to train a model using

only a subset of sizes. Here, we investigate the performance

of LBAP when it is used for instances with sizes that were

not included in the training set. For this purpose, we train

the model using instances with 100, 300, 500, 700, and 900

requests and test it on instances with 200, 400, 600, 800,

and 1000 requests. We should emphasize that none of the

instances in the test set were included in the training set of

the classification model. This setup provides an insight on

the generalization power of LBAP.

Figure 3 shows the performance of LBAP for unobserved

instances based on the service and QoS ratios. Figure 3a

shows the service ratio versus the number of users when

only basic features are used in the classification model.

We observe that the service ratio of LBAP for unobserved

instances is fairly close to that in the optimal solution.

Figure 3b shows the service ratio when basic and LP

relaxation features are used. We observe that LBAP performs

very well when it is used for the sizes of instances that were

not included in the training set. Similarly to the results in

Figure 2b, we observe that in some instances the service

ratio of LBAP is greater than that of the optimal solution

obtained by CPLEX. The same justification applies here, the

objective is to maximize QoS of the system, and a higher

service ratio does not necessarily result in a higher QoS.

Figure 3c shows the performance of LBAP in terms of the

QoS ratio for unobserved instances. We observe that when

only basic features are used in the classification model, the

QoS obtained by LBAP is within 0.5 distance from the

optimal QoS obtained by CPLEX. Based on these results,

the size of instances does not have a significant impact on ρ.
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Figure 4: Execution time vs. number of users

We observe that with the complete set of features, i.e., basic

and LP relaxation features, the performance of LBAP in

terms of QoS is very close to the optimal solution.

Our experimental results on the generalization power

of LBAP confirm that this method performs very well

when applied to unobserved instances. These results indicate

that LBAP can be trained for a subset of instances and be

efficiently used for any unobserved instances. It is important

to note that the selection of the subset of instances to train

the classification model is of high importance, and can

impact the performance of the method. For example, it might

not be efficient to train the model using only small size of

instances and use it for significantly larger sizes.

Execution time analysis. We now investigate the execution

time of LBAP. Since the execution time for extracting the

features is negligible, we focus our analysis on the execution

time of LBAP with LP relaxation features. For the sake of

fairness, we use the CPLEX solver to solve the MIP model

of the SAA method and the LP relaxation model in LBAP.

Figure 4 compares the execution time required for solving

the MIP model of the SAA method, labeled as CPLEX,

with that of solving LBAP with LP relaxation features. We

observe that the execution time for solving the MIP model

increases at a much higher rate than that of the LBAP

method. We observe that for an instance with 1000 users,

the MIP model is solved in about 100 seconds, while the

LBAP method is solved in about one second. These results

imply that the execution time of LBAP with basic and LP

relaxation features is within an acceptable amount of time

and this method is suitable for deployment in real MEC

systems.

V. CONCLUSION

We developed a risk-based optimization model for appli-

cation placement in edge computing systems and proposed

a Learning-based Application Placement (LBAP) method

which is capable of solving large size problem instances

within a second. We performed an extensive experimental

analysis to investigate the performance of the proposed

method compared to the optimal solution obtained by solv-

ing the MIP model using the CPLEX solver. Our results



showed that LBAP is very efficient for solving large size

problem instances. As a future research, we plan to apply

the proposed method to solve other resource management

problems in MEC systems, where parameters are nondeter-

ministic.
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