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The eigenstate entanglement entropy is a powerful tool to distinguish integrable from generic
quantum-chaotic models. In integrable models, the average eigenstate entanglement entropy (over
all Hamiltonian eigenstates) has a volume-law coefficient that generally depends on the subsystem
fraction. In contrast, it is maximal (subsystem fraction independent) in quantum-chaotic models.
Using random matrix theory for quadratic Hamiltonians, we obtain a closed-form expression for
the average eigenstate entanglement entropy as a function of the subsystem fraction. We test it
against numerical results for the quadratic Sachdev-Ye-Kitaev model and show that it describes the
results for the power-law random banded matrix model (in the delocalized regime). We show that
localization in quasimomentum space produces (small) deviations from our analytic predictions.

Introduction. Entanglement, a genuine property of
the quantum world, provides unique ways of charac-
terizing quantum many-body systems [1–4]. Studies of
entanglement indicators have contributed novel insights
into properties of ground states [5, 6], quantum phase
transitions [7, 8], information scrambling in nonequi-
librium quantum dynamics [9, 10], and highly excited
Hamiltonian eigenstates that exhibit eigenstate thermal-
ization [11–13] (see Refs. [14–17] for reviews). Models
that display eigenstate thermalization and random ma-
trix statistics in their spectrum are usually referred to
as quantum-chaotic [15]. Typical eigenstates of those
models have a maximal von-Neumann entanglement en-
tropy [18–20].

Let |m〉 be an eigenket of a lattice Hamiltonian with
two states per site (e.g., spinless-fermion or spin-1/2
Hamiltonians, our focus here) in one dimension. To com-
pute the von-Neumann entanglement entropy (in short,
the entanglement entropy) of |m〉, we bipartition the lat-
tice with L sites into a subsystem A with LA contiguous
sites and the environment B with L−LA sites, and trace
out the environment sites to obtain the reduced density

matrix of subsystem A, ρ̂
(m)
A = TrB{|m〉〈m|}. The en-

tanglement entropy is Sm = −Tr{ρ̂(m)
A ln ρ̂

(m)
A }.

For highly excited eigenstates of quantum-chaotic lat-
tice Hamiltonians, the leading term in Sm has been found
to be proportional to LA (for 1 � LA ≤ L/2) and consis-
tent with the thermodynamic entropy at the correspond-
ing energy [18–36]. Since the overwhelming majority of
energy eigenstates in such systems is at “infinite temper-
ature” [15], this means that typical eigenstates have

Sm(LA) ' lnDA = LA ln 2 , (1)

where DA = 2LA is the subsystem’s Hilbert space dimen-
sion. Sm(LA) in Eq. (1) matches the average [37], as well
as the typical [38], entanglement entropy of random pure
states. The presence of conserved quantities, such as the
particle number, only modifies subleading terms [19].

In sharp contrast, translationally invariant quadratic

fermionic models (or models mappable to them) were
proved to exhibit a qualitatively different behavior of
the average and typical entanglement entropy of their
many-body eigenstates [39–41]. While the leading term
in the average is still proportional to LA (for 1 � LA ≤
L/2), its magnitude depends on the subsystem fraction
f = LA/L, and is smaller than the maximal value for
f > 0. Qualitatively similar results were obtained nu-
merically for free fermions in a superlattice in two di-
mensions [42], and for the translationally invariant inter-
acting integrable spin-1/2 XXZ chain [43]. The results in
the latter model were very close (potentially identical in
the thermodynamic limit) to the ones in Refs. [39–41].

Integrable models are characterized by extensive num-
bers of nontrivial conserved quantities [44–46], and dis-
play distinct properties such as absence of thermaliza-
tion when taken far from equilibrium [47–50]. This is at-
tributed to the fact that their eigenstates do not exhibit
eigenstate thermalization [13, 43, 50–54]. Lack of ther-
malization close to integrable points is robust enough as
to be accessible in experiments with ultracold atoms [55–
58], in which distributions of conserved quantities (ra-
pidities) were recently measured [59]. It is then impor-
tant to develop theoretical tools to distinguish integrable
from quantum-chaotic models. The results in Refs. [39–
43] show that the eigenstate entanglement entropy is one
of such tools. In contrast to traditionally used spectral
properties, it does not require finding and removing all
symmetries of the model [15]. Another recently used
eigenstate-based tool, the AGP norm, involves studying
the response of energy eigenstates to perturbations [60].

For the eigenstate entanglement entropy, a stepping
stone missing for integrable models that is available for
quantum-chaotic ones is a closed-form expression for the
average entanglement entropy, like the one in Ref. [37],
which could serve as a reference point to compare to re-
sults obtained for specific Hamiltonians. We provide such
a stepping stone in this work by computing the average
entanglement entropy of random quadratic Hamiltoni-
ans. We identify properties of the models to which we
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expect it to apply.
The closed-form expression is, for f ≤ 1/2 [61],

S̄(LA, f) =

[

1 − 1 + f−1(1 − f) ln(1 − f)

ln 2

]

LA ln 2 ,

(2)
and we obtain it using random matrix theory (RMT) for
quadratic Hamiltonians. We test Eq. (2) against numer-
ical results for the quadratic Sachdev-Ye-Kitaev (SYK2)
model, and provide evidence that it describes the av-
erage entanglement entropy in the delocalized regime
of the power-law random banded matrix (PLRBM)
model. We also show that localization in quasimomen-
tum space (e.g., because of translational invariance) re-
sults in (small) deviations from Eq. (2). This is in stark
contrast to quantum-chaotic systems, in which transla-
tional invariance is known not to affect the leading term
in the average entanglement entropy [19].
Derivation of Eq. (2). We consider quadratic fermionic

Hamiltonians which, after diagonalization, can always be

written as Ĥ =
∑L

q=1 εq ĉ
†
q ĉq, where εq are the single-

particle eigenenergies and {|q〉 = ĉ†q|∅〉 ; q = 1, ..., L}
are the single-particle energy eigenkets. Let the unitary
transformation between the energy eigenkets and the po-

sition eigenkets {|i〉 = f̂†
i |∅〉 ; i = 1, ..., L} be carried out

by a matrix with elements viq, so that f̂i =
∑L

q=1 viq ĉq.

The many-body eigenkets of Ĥ can be written as
{|m〉 =

∏

{ql}m
ĉ†ql |∅〉 ; m = 1, ..., 2L}, where {ql}m repre-

sents the mth set of occupied single-particle energy eigen-
kets. Introducing N̂q = 2ĉ†q ĉq − 1, for which N̂q|m〉 =
Nm

q |m〉 with Nm
q = 1 (−1) for occupied (empty) single-

particle eigenkets, we can write the generalized one-body
correlation matrix (in short, the correlation matrix) as

(Jm)ij = 2 〈m|f̂†
i f̂j |m〉 − δij =

L
∑

q=1

Nm
q v∗iqvjq , (3)

where i, j ≤ LA, and we denote the eigenvalues as

{λ(m)
j ; j = 1, ..., LA}. In Eq. (3), we used the orthonor-

mality condition: δij =
∑L

q=1 v
∗
iqvjq. Further on, we

shorten the notation Jm → J and λ
(m)
j → λj .

The entanglement entropy of many-body eigenket |m〉
can then be computed as [6, 62],

Sm =−
LA
∑

j=1

(

1 + λj

2
ln

[

1 + λj

2

]

+
1 − λj

2
ln

[

1 − λj

2

])

,

(4)
and the average (over all eigenstates) entanglement en-

tropy is defined as S̄ ≡ 2−L
∑2L

m=1 Sm.
In order to make analytic progress in the evaluation of

S̄, one can write

S̄ = LA ln 2 −
∞
∑

n=1

Tr {J 2n}
2n (2n− 1)

. (5)

This series was proved to converge in Ref. [39]. The fact
that only even powers of the correlation matrix J appear
in the series enabled the computation of upper and lower
bounds for translationally invariant systems in Refs. [39–
41]. In this work we use Eq. (5) to obtain a closed-form
expression for S̄ in random quadratic Hamiltonians.

Our central assumption is a random matrix theory
(RMT) assumption for the single-particle energy eigen-

kets. We assume that viq = uiq/
√
L, where uiq is a nor-

mally distributed complex variable with zero mean and
unit variance. This is equivalent to assuming that the
quadratic Hamiltonians are represented by random ma-
trices drawn from the Gaussian unitary ensemble (GUE).
We note that our (leading-term) results do not change if
we assume uiq to be a normally distributed real variable
with the same mean and variance or, equivalently, the
Hamiltonians to be represented by matrices drawn from
the Gaussian orthogonal ensemble (GOE) [63].

Let us use our assumption to evaluate the first trace
(n = 1) in the series in Eq. (5). Using Eq. (3), we get

Tr{J 2} =
1

L2

LA
∑

i,j=1

L
∑

q1,q2=1

Nm
q1
Nm

q2
u∗
iq1

ujq1u
∗
jq2

uiq2

=
1

L2

LA
∑

i,j=1

L
∑

q=1

|uiq|2|ujq|2 , (6)

where the average over all m is Nm
q1
Nm

q2
= δq1,q2 . Then,

the RMT assumption implies that
∑LA

a=1 |uaq|2 = LA for
a = i, j, which yields

Tr{J 2} =
L2
A

L
= LAf . (7)

Remarkably, this is the universal result one gets for trans-
lationally invariant systems [39].

We have also computed the averages of traces for pow-
ers n = 2, 3, and 4 (see Ref. [63] for details),

Tr{J 4} = LA

(

2f2 − f3
)

, (8)

Tr{J 6} = LA

(

5f3 − 6f4 + 2f5
)

, (9)

Tr{J 8} = LA

[

14f4 + O(f5)
]

. (10)

Plugging these results in Eq. (5), we get

S̄ = LA ln 2 − LA

[

f

2
+

f2

6
+

f3

12
+

f4

20
+ O(f5)

]

. (11)

Equation (11) is an exact expansion in f up to O(f5),

since Tr{J 2n}/LA is in general a polynomial that, in the
thermodynamic limit, contains only powers from fn up
to f2n−1 [39]. The computation of the traces in Eq. (5)
becomes increasingly tedious as n increases [63]. From
the terms in Eq. (11), we conjecture the series to be

S̄ = LA ln 2 − LA

∞
∑

n=1

fn

n (n + 1)
, (12)
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states are not only delocalized but also sufficiently ran-
dom in the position basis. We expect that correlations in
the coefficients of delocalized single-particle wave func-
tions in the position basis, such as those generated by lo-
calization in quasimomentum space, will lead to (small)
deviations from S̄. Our results provide a stepping stone
for studies of the average and typical entanglement en-
tropy of eigenstates of integrable models, whose structure
has been recently unveiled as being much richer than the
one of quantum-chaotic models [43, 60, 80].
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