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Abstract—In this paper, we address the Multi-Component Application Placement Problem (MCAPP) in Mobile Edge Computing (MEC)

systems. We formulate this problem as a Mixed Integer Non-Linear Program (MINLP) with the objective of minimizing the total cost of

running the applications. In our formulation, we take into account two important and challenging characteristics of MEC systems, the

mobility of users and the network capabilities. We analyze the complexity of MCAPP and prove that it is NP -hard, that is, finding the

optimal solution in reasonable amount of time is infeasible. We design two algorithms, one based on matching and local search and

one based on a greedy approach, and evaluate their performance by conducting an extensive experimental analysis driven by two

types of user mobility models, real-life mobility traces and random-walk. The results show that the proposed algorithms obtain

near-optimal solutions and require small execution times for reasonably large problem instances.

Index Terms—Mobile edge computing, application placement, heuristic algorithm.

✦

1 INTRODUCTION

The widespread usage of mobile devices generates an un-
precedented amount of data that often requires real-time
processing. This processing necessitates computational re-
sources and storage capacity not available on mobile de-
vices. Cloud computing is a promising technology that
allows the mobile applications to offload their computations
on cloud servers [1], [2], [3]. The main objective of offloading
is to extend the battery life of mobile devices by executing
heavy-computational components of the applications on
remote servers. However, in cloud settings, computing ser-
vices are usually far away from the end-user, and therefore,
the communication between mobile devices and servers
requires many network hops and results in high latencies.
This is unfeasible for applications that require a very low
latency or transmit large amounts of data [4].

In order to resolve this issue, several paradigms such
as Cloudlet [5], Fog Computing [6], Follow Me Cloud [7],
and Mobile Edge Computing (MEC) [8] have been recently
proposed. The core idea of these paradigms is to offload
a portion of data/computation to the edge of the network
rather than offloading it to the cloud data-centers. Satya-
narayanan et al. [5] proposed Cloudlet with the aim of
bringing the cloud closer to the end user. A Cloudlet, also
known as a micro-cloud, is a cluster of multi-core computers
with high internal connectivity that is available to nearby
mobile devices and provide computing, bandwidth, and
storage services. Users access the Cloudlet servers via a
local area network such as Wi-Fi. MEC [8] has been recently
introduced to provide the required infrastructure for low
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latency computing services through running mobile appli-
cations at the edge of the network, where an edge can be
any computing resources of the network. In MEC, the edge
nodes are widely distributed in the network and available to
all mobile users. On the other hand, being co-located with
base stations, edge nodes have access to some additional
information such as location and mobility of users.

One of the challenging issues in MEC systems is the
resource scarcity. Compared to the cloud data centers, edge
nodes have more restricted capacity. Therefore, it is not
feasible to run a large size application on a single edge node.
An efficient way to resolve this issue is to allow users to
run the components of their applications on multiple edge
nodes. Platforms such as Open Edge [9] and Open Fog [10]
are developed for this purpose. They deploy virtualization
techniques to share the resources of the edge nodes that are
located in the same geographical region. In these platforms,
finding an efficient placement for the components of an
application on the multiple nodes is a major challenge.

Mobile users change their locations dynamically and the
current assignment of the application to the edge nodes
might not be the best in terms of the costs involved. In
addition to the mobility of users, the resource availabil-
ity and network conditions may also change dynamically.
Therefore, in order to provide high quality services with the
minimum costs, the application may need to migrate from
one edge/core node to another, dynamically. The problem
becomes more complex when an application has multiple
components with heterogeneous requirements. The problem
of assigning components of an application to the edge/core
nodes such that the total cost of execution is minimized
is called the Multi-Component Application Placement Problem
(MCAPP). The components of a users’ application can be
run either on the core cloud, or on the edge of the network.

In MCAPP, an application can be represented as a graph
in which the components of the application are the vertices,
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and the edges between two vertices represent the commu-
nication between the corresponding components. Similarly,
physical resources can be represented as a graph in which
vertices are the computing resources (i.e., servers) and the
edges between two vertices represent the communication
links between the corresponding physical resources. Thus,
MCAPP can be viewed as the problem of mapping the
application graph onto the resource graph.

Our main contributions are as follows:

(1) Formulate the MCAPP problem as a Mixed Integer
Non-Linear Program (MINLP). Our formulation of
the problem departs from the existing work since it
does not impose any restrictions on the topology of
the graphs characterizing both the applications and
the physical resources.

(2) Prove that MCAPP is NP -hard, which means that it
is not solvable in polynomial time, unless P = NP .

(3) Design two efficient algorithms for solving MCAPP.
Our goal is to design heuristic algorithms based on
purely combinatorial techniques such as matching
and local search, and to avoid the use of stochastic
control-based approaches. The proposed algorithms
have low complexity, and thus, add a negligible
overhead to the execution of the applications.

(4) Evaluate the performance of the proposed algo-
rithms by an extensive experimental analysis. The
experiments are driven by two types of user mo-
bility models, one derived from real-life mobility
traces [11] and the other one based on the random-
walk model [12]. We compare the performance of our
algorithms against the optimal solution under the
two types of mobility models. Our experimental re-
sults show that the proposed algorithms obtain near
optimal solutions and require very small execution
times.

The rest of the paper is organized as follows. In Section 2,
we review the related work on the placement problem
in cloud and edge computing. In Section 3, we introduce
the multi-component application placement problem and
present its MINLP formulation. In Section 4, we present the
proposed heuristic algorithms. In Section 5, we illustrate the
execution of the algorithms on a small instance of the prob-
lem. In Section 6, we present and analyze the experimental
results. In Section 7, we conclude the paper and suggest
possible directions for future research.

2 RELATED WORK

Edge nodes’ proximity to users is a promising feature of
MEC that can be exploited to improve the latency of the
system. On the other hand, the mobility of users, the limited
capacity of resources, and the dynamic nature of demands
are critical issues that can affect the performance of the
system. The existing techniques for application placement
developed for cloud computing/data centers settings [13],
[14] cannot be applied directly in the MEC setting because,
when making the placement decisions, they do not con-
sider the mobility of users and the differences in latency
experienced by users at different locations. In this section,
we review the existing literature on computation offloading

and application placement problems in MEC addressing the
above critical issues.

Many studies focused on computation offloading, where
the computation requirements of applications and network
conditions are taken into account to decide which tasks must
be run locally and which tasks must be migrated to remote
servers. In some studies [15], [16], [17], [18], [19], [20], energy
consumption and computing latency have been considered
as important performance metrics in optimizing computa-
tion offloading. The revenue of the service providers [21]
and system’s utility [22] were also considered as objectives
in the computation offloading problem.

Several approaches for solving variants of the appli-
cation placement problem in MEC have been proposed
recently. Many of the dynamic application placement ap-
proaches formulated the problem as a sequential decision
making problem in the framework of Markov Decision
Processes (MDPs). Ksentini et al. [23] modeled the applica-
tion/service migration problem considering the mobility of
users in the Follow Me Cloud paradigm using MDPs [7]. In
their formulation, they considered one dimensional mobility
patterns. They implemented the value iteration algorithm in
MATLAB to find the optimal application migration policy.
Urgaonkar et al. [24] modeled the application placement
problem as an MDP. To reduce the state space, they con-
verted the problem into two independent MDP problems
with separate state spaces and designed an online algo-
rithm for the new problem that is provably cost-optimal.
Wang et al. [25] presented a novel online algorithm for the
application placement problem in the context of MEC. They
modeled the problem as an MDP in which states are defined
only based on the distance between user and servers.

Some researchers studied application placement prob-
lems for specific types of application graphs. Wang et
al. [26] designed an online approximation algorithm for
the placement problem in which both the application and
the resource graphs are trees. The considered objective is
to minimize the maximum weighted cost on each physical
node and link of the system. Pei et al. [27] and Zou et al. [28]
investigated the service chain embedding problem in MEC
systems in which the application graph is a linear chain.

A few studies have focused on the placement of both
servers and applications in a given network to improve
the system performance [29], [30], [31], [32]. Balancing the
load of servers and minimizing the delay of applications are
two objectives that are considered in these studies. Several
solutions have been proposed for the application placement
problem that minimize the cost or the latency [33], [34], [35],
[36]. These studies focused on the placement of the whole
application on a single server and did not consider the pos-
sibility of assigning different components of an application
to different edge servers.

However, the settings and objectives of the placement
and offloading problems considered in the papers discussed
above are different from those we consider in this paper
and the algorithms do not directly apply to the multi-
component application placement problem in MEC. They
either considered a restricted topology for the application
and resource graphs or considered different objectives. We
aim at minimizing the total cost of the placement which
includes the cost of running components on servers, the cost
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of relocating a component from a server to another server,
the communication cost between the user and a component,
and the communication cost between components. We focus
our efforts on designing efficient application placement
algorithms that are suitable for implementation in real MEC
systems.

3 MULTI-COMPONENT APPLICATION PLACEMENT

PROBLEM

In this section, we formulate the multi-component application
placement problem (MCAPP) in MEC systems. We consider
a time slotted system, where T is the total number of time
slots required to complete the execution of the application.
The goal of the system is to determine the allocation of the
components of the application in each time slot so that the
total cost over T time slots is minimized. We formulate the
problem for each time slot, where the relocation costs are
determined by the allocation on the previous time slot. To
make the formulation easier to understand and to avoid the
use of an additional index to indicate the time slot for each
variable, we present the problem only for one time slot.

In this formulation, we consider a two-dimensional grid
area managed by an edge provider that periodically runs
a resource manager. The system is composed of m servers
{S1, . . . , Sm} that are located at the edge of the network
(e.g., at base stations). Note that in the rest of the paper, we
use Si and i interchangeably when referring to server Si.
We assume that the location of users may change from one
time slot to another, where the location of a user is specified
by its coordinates in a two-dimensional grid of cells.

The user requests to offload an application with n com-
ponents {C1, . . . , Cn}. In the rest of the paper, we use Cj

and j interchangeably when referring to component Cj . The
processing requirement of component j is denoted by pj .
This represents the amount of component j’s load that
needs to be processed. We do not impose any restrictions
on the communication between the components, any com-
ponent can communicate with any other component of the
application (i.e., the graph modeling the application is not
restricted). We also assume that a server can communicate
with any other server (e.g., via internet) incurring different
costs for different servers. Here, the objective is to find an
assignment of components to servers, such that the total
placement cost of the application is minimized. The total
placement cost is composed of four types of costs:

(i) γij : the cost of running component j on server i. This cost
is defined as the product of the cost of processing a
unit load at server i and the amount of load that
needs to be processed:

γij = ci · pj (1)

(ii) ρii′j : the cost of relocating component j from server i to
server i′. In MEC, the locations of users may change
during the execution of their applications. Also, the
workload of the edge servers and other conditions of
the network may vary from time to time. Therefore,
it may be required to change the location where

TABLE 1: Notation

Notation Description
m Number of servers.
n Number of components.
γij Cost of running component j on server i.
ci Cost of processing one unit of load on server i.
pj Processing requirement of component j.
ρii′j Cost of relocating component j from server i

to server i′.
lii′ Distance between servers i and i′.
qj Size of component j.
r Cost of transferring one unit of data over a unit

of distance.
δij Communication cost between component j (assigned

to server i) and the user.
di Distance between server i and the user.
hj Size of data that needs to be transferred between

component j and the user.
τii′j′ Communication cost between components j and j′

that are located on servers i and i′, respectively.
gjj′ Size of data that needs to be transferred between

components j and j′.
xij Binary variable associated with the assignment of

component j to server i.

the components are running. The relocation cost is
defined as follows:

ρii′j = lii′ · qj · r (2)

where lii′ is the distance between servers i and i′, qj
is the size of component j that would migrate, and r
is the cost of transferring one unit of data over one
unit of distance. Since the managed area is a two-
dimensional grid, the distance between servers is the
Manhattan distance, that is, if server i is located in
cell (x, y) and server i′ is located in cell (x′, y′), then
the distance between the two servers is given by
lii′ = |x− x′|+ |y − y′|.

(iii) δij : the communication cost between component j (as-
signed to server i) and the user. In each time slot, data
communication between components and the user
may be required. This cost is defined as follows:

δij = di · hj · r (3)

where hj is the size of data that must be transferred
between component j and the user, and di is the
distance between server i (that runs component j)
and the user. The distance between the server and
user is the Manhattan distance as defined in (ii)
above.

(iv) τii′jj′ : the communication cost between components j
and j′ that are located on servers i and i′, respectively.
Suppose that component j is located on server i and
component j′ is located on server i′. The communica-
tion cost between components is defined as follows:

τii′jj′ = lii′ · gjj′ · r (4)

where gjj′ is the size of data that must be transferred
between component j and component j′.
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Considering these, the total cost of the placement, which
is the objective function of MCAPP, is given by,

m∑

i=1

n∑

j=1

(γij + δij) · xij +
m∑

i=1

m∑

i′=1

n∑

j=1

ρii′j · x̄i′j · xij +

m∑

i=1

m∑

i′=1

n∑

j=1

n∑

j′=1

τii′jj′ · xij · xi′j′ (5)

The decision variables xij are defined as follows: xij = 1, if
component j is assigned to server i in the current time slot;
and 0 otherwise. Furthermore, x̄i′j is not a decision variable
but a parameter denoting the assignment of component j
in the previous time slot, that is, x̄i′j = 1 if component j
was assigned to server i′ in the previous time slot, and 0,
otherwise. Note that in any time slot, the assignment of
components in the previous time slot is known. Therefore,
the objective function can be rewritten as,

m∑

i=1

n∑

j=1

(ωij · xij +
m∑

i′=1

n∑

j′=1

τii′jj′ · xij · xi′j′) (6)

Note that to make it easier to work with the objective
function, we define ωij as ωij = γij+δij+(

∑m
i′=1

ρii′j ·x̄i′j).
In the rest of the paper, we call ωij the server-component cost
and τii′jj′ the inter-component cost. In Table 1, we present
the notation that is used throughout the paper. We now
formulate MCAPP as a Mixed Integer Non-Linear Program
(MINLP) and show that it is NP -hard. Then, we provide
two heuristic algorithms to solve it.

MCAPP-MINLP:

min
m∑

i=1

n∑

j=1

(ωij · xij +
m∑

i′=1

n∑

j′=1

τii′jj′ · xij · xi′j′) (7)

subject to:
n∑

j=1

xij ≤ 1 i = 1, . . . ,m (8)

m∑

i=1

xij = 1 j = 1, . . . , n (9)

xij ∈ {0, 1} i = 1, . . . ,m; j = 1, . . . , n (10)

According to the above formulation, the objective func-
tion of MCAPP is to minimize the total placement cost. The
set of constraints (8) guarantees that each server is used by
at most one component. The set of constraints (9) ensures
that each component is assigned to exactly one server. The
set of constraints (10) represents the integrality requirement
for the decision variables. The optimal solution obtained by
solving MCAPP-MINLP will be used in the experimental
results section as a lower bound for the solution obtained
by our proposed algorithms.

3.1 Complexity of MCAPP

We show that the decision version (MCAPP-D) of MCAPP

is NP -complete. This implies that MCAPP is NP -hard. An
instance of MCAPP-D is defined by: an application graph,
a resource graph, server-component cost, ωij , component-
component cost, τii′jj′ , and a bound B ∈ R

+. In the appli-
cation graph, each vertex corresponds to a component and

the weight of the edge between every two verices j and j′

gives the total amount of inter-component communication
between the corresponding components (i.e., (gjj′+gj′j)·r).
In the resource graph, each vertex corresponds to a server
and the weight of the edge between every two vertices i
and i′ gives the distance between the corresponding servers
(i.e., lii′ ). The decision question is whether there is an
assignment of components to servers such that the total
cost of the assignment defined by Equation (6) does not
exceed B.

Theorem 1. MCAPP-D is NP -complete.

Proof. We prove that MCAPP-D is NP -complete by showing
that: (i) MCAPP-D belongs to NP , and, (ii) the Traveling
Salesman Problem (TSP), a well-known NP -complete prob-
lem, can be reduced to this problem in polynomial time.

It is easy to show that MCAPP-D is in NP . We only
need to guess an assignment from components to servers,
and then, compute the total cost of the assignment (using
Equation (6)) in polynomial time and check if it exceeds B
or not.

For the second condition, we show that TSP is reduced
to MCAPP-D in polynomial time. Let us define an arbitrary
instance of TSP with bound L on the length of a tour, graph
G = (V,E), where V is the set of cities, E is the set of edges,
and the weights wii′ for each edge (i, i′) (i.e., the distance
between cities i and i′).

Now, we construct an instance of MCAPP-D, called P ,
based on G, such that the total cost of the assignment is
less than B, if and only if we can find a tour in G with the
total length less than L. Instance P has m servers and n
components such that m = n =| V |. We also set B = L. In
this instance, the resource graph, G′, is the same as G and
therefore, the distance between each pair of servers is the
same as the distance between each pair of cities in G. For
the application graph, we consider a ring graph in which
the weight of the edge between each pair of adjacent vertices
is 1 and the weight of edge between non-adjacent vertices is
zero. Also, we assume that server-component computation
costs, ωij , are zero.

We claim that G has a tour of total length less than L if
and only if there is a solution for P , where the total cost is
less than B. Let us consider a tour in G with total length
less than L. We can consider this tour in G′ and assign
components to this tour in the order that they appear in
the ring. Obviously, the total cost of this assignment is the
same as the total length of the tour, and therefore, is less
than B.

Conversely, suppose that there is an assignment from
components to servers in P with total cost less than B. We
assign these components to the corresponding cities in G
and define a tour based on the order of the component in the
ring. Clearly, the total length of this tour is the same as the
total cost of the assignment, which does not exceed L.

4 ALGORITHMS FOR MCAPP

In the previous section, we showed that MCAPP is NP -
hard. Therefore, it is not possible to find an optimal solution
for it in polynomial time, unless P = NP . Thus, we need
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Fig. 1: Matching components to servers: (a) in the first time slot; (b) in other time slots.

to design efficient algorithms that obtain near-optimal solu-
tions to MCAPP in polynomial time. For this purpose, we
design two efficient heuristic algorithms MATCH-MCAPP

and G-MCAPP. MATCH-MCAPP is an algorithm based on
matching and local search techniques. This algorithm is very
efficient for MEC systems with a relatively low number of
servers and components, and applications with less inten-
sive communication among components. In the absence of
inter-component communications, MATCH-MCAPP obtains
the optimal allocation. G-MCAPP is a greedy algorithm that
is more suitable for MEC systems with a large number of
servers and components, as well as for applications with in-
tensive communication among components. Thus, in prac-
tice they can be deployed based on the types of instances
that need to be solved. In the following, we describe the
algorithms and discuss their properties.

4.1 MATCH-MCAPP Algorithm

We observe that the only factor that makes MCAPP NP -
hard, is the existence of communication among components.
Without this type of communication, the problem can be
viewed as a matching problem (Fig. 1a) which is solvable
in polynomial time. In the first time slot, the problem is
to match components to servers, where each assignment of
component j to server i has a specific cost given by:

ωij = δij + γij (11)

The relocation cost is not considered in the first time slot,
since ρikj = 0. In the next time slots, the problem is to reas-
sign components to servers taking users’ location dynamics
and other mentioned factors into account. In other words,
the algorithm must decide whether a component stays on
the current server or migrates to another one (Fig. 1b). The
cost of assigning component j to server i must include the
relocation cost and thus, it is given by:

ωij = δij + γij + ρkij (12)

where k is the location of component j in the previous time
slot.

Based on this fact, we design our first algorithm, called
MATCH-MCAPP. This algorithm operates in two phases. In
the first phase, it determines the best matching between
components of the application and the servers without

considering the communication requirements among the
components (i.e., τii′jj′ = 0). For this purpose, the algorithm
uses the Hungarian algorithm [37] which finds the mini-
mum cost assignment of the components to servers. In the
second phase, the algorithm considers the communication
requirements among the components and uses a local search
procedure to improve the solution.

The Hungarian algorithm is a polynomial time algorithm
that solves the assignment problem optimally. The algo-
rithm has as input the weights ωij of the edges of the bi-
partite graph in which one partition is composed of vertices
corresponding to the servers, and the other composed of
vertices corresponding to the application components. The
algorithm finds a perfect matching that gives the minimum
computation cost of components to servers. Once the as-
signment is determined, the algorithm takes into account
the communication costs between the components, τii′jj′

and performs a local search procedure that obtains the final
solution to MCAPP.

MATCH-MCAPP is given in Algorithm 1. The algorithm
is executed in each time slot for each application. The
input to the algorithm consists of the cost parameters,
ωij , and τii′jj′ . To make it easy to describe the algorithm,
we use the following notation: ω is the array of server-
component costs; and τ is the array of inter-component
costs. The values of these parameters are determined during
the previous time slot and are used as input to the algorithm
in the current time slot. The output of the algorithm is the
assignment matrix X = {xij}, and the total cost of running
the application on the assigned servers, cost.

In the first phase, the algorithm determines the optimal
assignment of the components to servers by calling the func-
tion HUNGARIAN(ω) (Line 1). This function implements a
variant of the Hungarian algorithm and takes as input the
cost ω and returns the assignment as the vector y; where
yj = i if component j is assigned to server i. Since the
Hungarian algorithm is well known we will not describe it
here, but we refer the reader to Kuhn [37] .

Since the inter-component cost is not considered, the
Hungarian algorithm is able to determine the optimal as-
signment of components to servers. This optimal assign-
ment is not a solution for the MCAPP problem, it is an
optimal assignment for the MCAPP with zero costs for
the communication between components (i.e., τii′jj′ = 0).
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Algorithm 1 MATCH-MCAPP Algorithm

{Executed every time slot }
Input: ω: server-component costs

τ : inter-component costs
1: y ← HUNGARIAN(ω)
2: cost←

∑n

j=1(ωyjj +
∑n

j′=1 τyjyj′ jj′)

3: toV isit← {1, . . . , n}
4: while toV isit 6= ∅ do
5: for each j ∈ toV isit do
6: Λj ←

∑n

j′=1 τyjyj′ jj′

7: b← argmaxj∈toV isit{Λj}
8: toV isit← toV isit \ {b}
9: for i = 1, . . . ,m do

10: y ← SWAP-COMPONENTS(yb, i)
11: new cost←

∑n

j=1(ωyjj +
∑n

j′=1 τyjyj′ jj′)
12: if new cost < cost then
13: cost← new cost
14: else
15: y ← SWAP-COMPONENTS(i, yb)

16: for j = 1, . . . , n do
17: xyjj ← 1

Output: (X, cost)

Then, in the second phase, MATCH-MCAPP performs a local
search that takes into account the cost of communication
between components (Lines 2-15).

In the second phase, first, MATCH-MCAPP computes the
cost of the current assignment determined by the Hungarian
algorithm and also adds the inter-component costs to obtain
the total cost (Line 2). Then, the algorithm defines a set,
toV isit, and initializes it with the set of all components
(Line 3). Next, it computes the total inter-component cost,
Λj , of each component j in the toV isit set (Lines 5-6).
Then, in line 7, it determines the index of the bottleneck
component, denoted by b. The bottleneck component is the
component that has the maximum value for the total inter-
component cost, Λj . The algorithm removes this component
from the toV isit set (Line 8). Thus, this component will
not be selected as the bottleneck in the next iterations.
After that, it executes a for loop (Lines 9-15) in which it
tries to find a lower total cost assignment by swapping
the component that is currently placed on server i with
the bottleneck component. This is done by calling the func-
tion SWAP-COMPONENTS(yb, i). This function swaps the
components that are located at servers yb and i, that is,
assigns the bottleneck component to i and the component
that is currently placed on server i to the server in which b
resided. If there is no component on server i, then b is
assigned to i and the server on which b resided is marked as
available. The function outputs a new assignment vector y.
After this, in line 11, MATCH-MCAPP computes new cost,
the total cost of the system under the new assignment. If
there is an improvement in the cost, it updates the total
cost, cost, otherwise it restores the previous assignment by
calling the SWAP-COMPONENTS function (Lines 12-15).
The algorithm continues this procedure as long as there is
an unvisited component. Then, it updates the assignment
matrix X based on the assignment vector y (Lines 16-17).

We now investigate the time complexity of MATCH-

MCAPP. The time complexity of the first phase, Hungarian
algorithm, is O(max (m3, n3)). Since, we assume that the

Algorithm 2 G-MCAPP Algorithm

{Executed every time slot }
Input: ω: server-component costs

τ : inter-component costs
1: S ← ∅
2: for i = 1, . . . ,m do
3: for j = 1, . . . , n do
4: σij ← ωij

5: S ← S ∪ {(i, j)}

6: while (S 6= ∅) do
7: (i∗, j∗)← argmin(i,j)∈S{σij}
8: xi∗j∗ ← 1
9: for each (i, j) ∈ S do

10: if i = i∗ or j = j∗ then
11: S ← S \ {(i, j)}

12: for each (i, j) ∈ S do
13: σij ← σij + τii∗jj∗ + τi∗ij∗j

14: cost←
∑m

i=1

∑n

j=1 ωij · xij + (
∑m

i′=1

∑n

j′=1 xij · xi′j′τii′jj′)
Output: (X, cost)

number of servers is greater than the number of compo-
nents, the time complexity of the Hungarian algorithm is
O(m3). The most computational expensive section of the
second phase consists of lines 4-15. The time complexity
of the first part of this section (Lines 5-8) is O(n2) while
that of the second part (Lines 9-15) is O(mn2). Further-
more, since each component is not chosen as the bottleneck
more than once, these two parts are not executed more
than n times. Thus, the time complexity of the second
phase is O(mn3). Therefore, the time complexity of MATCH-

MCAPP is O(m3 +mn3).

4.2 G-MCAPP Algorithm

G-MCAPP is a greedy algorithm that finds the assignment of
components to servers iteratively. To determine the assign-
ment, the algorithm considers both the server-component
and the inter-component costs simultaneously. The idea of
G-MCAPP is to assign a component to a server in each
iteration in such a way that the minimum cost is added to
the total cost. For this purpose, the algorithm employs the
assignment cost variable, σij .

In the first iteration, since the assignment of none of
the components has been determined yet, G-MCAPP only
decides based on the server-component cost (i.e., σij = ωij).
The algorithm selects a server-component pair (i∗, j∗) that
has the minimum value of σi∗j∗ . Then, for each unassigned
server-component pair, (i, j), the algorithm updates the
assignment cost by adding the inter-component cost be-
tween the previously selected component and the current
component (i.e., σij = ωij + τii∗jj∗ + τi∗ij∗j). In the next
iterations, G-MCAPP decides the assignment based on the
updated costs and continues the procedure of selecting the
server-component pair with the minimum assignment cost.

G-MCAPP is given in Algorithm 2. The input to the
algorithm consists of: ω, the server-component cost ma-
trix; and τ , the array of inter-component costs. In this
algorithm, S is the set of all possible pairs of servers and
components. For each pair (i, j), variable σij is initialized
to ωij (Lines 2-5). Then, iteratively, the algorithm finds
the assignment of each component. First, the algorithm
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selects a server-component pair (i∗, j∗) that has the mini-
mum server-component cost and assigns component j∗ to
server i∗ (Lines 7-8). Since each component is assigned to
exactly one server and each server is used by at most one
component, the algorithm removes all pairs that contain i∗

or j∗ from set S (Lines 9-11). Then, for each unassigned
component j and server i, the algorithm updates the as-
signment cost by considering the inter-component commu-
nication between the component j∗ and component j (i.e.,
σij ← σij + τii∗jj∗ + τi∗ij∗j) (Lines 12-13). Therefore, in
the next iteration of the algorithm, the assignment costs are
updated and the inter-component communication costs are
considered. The algorithm continues this procedure until all
the components are assigned. Finally, it determines the total
cost based on the assignment of components (Line 14).

Now, we investigate the time complexity of G-MCAPP.
The algorithm executes n iterations. The most time con-
suming part of each iteration consists of computing the
minimum pair and updating the cost of the remaining
pairs. In the first iteration, since there are m · n pairs, the
time complexity of these operations is O(mn). In the next
iteration, the number of pairs reduces to (m − 1)(n − 1).
Generally, in the i-th iteration, the number of pairs is
O((m− i+1)(n− i+1)). Therefore, the time complexity of
G-MCAPP is O(

∑n
i=1

(m− i+ 1)(n− i+ 1)) = O(mn2).

5 AN ILLUSTRATIVE EXAMPLE

We provide a numerical example to show how our algo-
rithms work. We consider an edge system consisting of
three servers S = {S1, S2, S3}, and an application with
three components C = {C1, C2, C3}. Fig. 2a shows the user-
server and server-server distances (i.e., di and lii′ ) in the
previous time slot. In this figure, the weights on solid line
edges are the server-server distances and the weights on the
dashed line edges are the user-server distances. We assume
that in the previous time slot, components C1, C2, and C3

have been assigned to servers S2, S1, and S3, respectively.
In the next time slot, as the user’s location changes, the

user-server distances change too (See Fig. 2b). Therefore,

TABLE 2: Example: The values of the cost parameters (r,
data transmission cost rate; gjj′ , size of data transferred
between components j and j′; hj , size of data transferred
between user and component j; pj , processing requirement
of component j; ci, cost of processing of one unit load on
server i).

Parameter Value
r 1
< g12, g13 > < 12, 15 >
< g21, g23 > < 13, 20 >
< g31, g32 > < 20, 30 >
< h1, h2, h3 > < 5, 10, 10 >
< q1, q2, q3 > < 4, 2, 2 >
< p1, p2, p3 > < 2, 3, 2 >
< c1, c2, c3 > < 5, 10, 12 >

TABLE 3: Example: The values of the server-component
costs, ωij .

i/j 1 2 3
1 72 115 122
2 32 66 62
3 51 76 54

the algorithms may need to change the assignment. Fig. 2b
and Fig. 2c show the new assignment of the components in
the next slot obtained by MATCH-MCAPP and G-MCAPP,
respectively. In these figures, we observe that MATCH-

MCAPP changes the location of components C1 and C2

while G-MCAPP decides not to change the location of any
component. In the rest of this section, we show how these
two algorithms decide on their assignment. The values of
the parameters are provided in Table 2. Based on these
parameters, we obtain ωij given in Table 3.

5.1 MATCH-MCAPP

In the first phase of MATCH-MCAPP, the Hungarian al-
gorithm is employed to determine the placement, which
is C1 to S1, C2 to S2, and C3 to S3 (Fig. 3a). According
to Equation (7), the total cost of this assignment is 757.
In the second phase of MATCH-MCAPP, the local search,
takes the inter-component communication (τii′jj′ ) into ac-
count. In each iteration of the local search, the total inter-
communication cost, Λj , of each component j is computed
and the component with the maximum value of Λj is
selected as the bottleneck. In the first iteration, the total com-
munication cost of each component is computed: Λ1 = 285,
Λ2 = 325, Λ3 = 460. Therefore, component C3 is selected
as the bottleneck. In the figures, the bottleneck component
is represented by a solid black square. Then, the algorithm
swaps the bottleneck with the component in the next server
if it leads to a reduction in the total cost. In this case,
the algorithm assigns C3 to S1 and C1 to S3, because it
reduces the total cost from 757 to 714 (Fig. 3b). In the next
iteration, the algorithm skips swapping the bottleneck with
component C2 because the total cost of this possible assign-
ment is 758 which is greater than the total cost obtained
from the previous assignment. Since all possible swaps for
the current bottleneck have been tried, the algorithm starts
the next iteration to select another bottleneck. In the next
iteration, the total inter-component communication costs
of the remaining components are calculated: Λ1 = 335,
Λ2 = 275. Therefore, C1 is selected as the bottleneck. The
algorithm skips swapping server S3 with S1 since it will not
reduce the total cost (Fig. 3d). In the next step, the algorithm
again skips swapping S3 and S2, because it will not reduce
the total cost (Fig. 3e).

In the next iteration of the algorithm, component C2 is
selected as the bottleneck. The algorithm swaps S2 with S1

because it reduces the total cost from 714 to 703 (Fig. 3f).
The algorithm skips swapping S1 with S3 because it will
not reduce the total cost (Fig. 3g) and it stops because
all the components have been visited. Therefore, the total
placement cost obtained by MATCH-MCAPP is 703.

5.2 G-MCAPP

Now, we show how G-MCAPP determines the placement of
the components. The algorithm initializes the assignment
cost between each pair of components and servers, σij ,
based on the values of the server-component costs (i.e.,
σij = ωij). In each iteration, the algorithm selects a pair
of server i∗ and component j∗ for which the value of σi∗j∗

is minimum and assigns component j∗ to server i∗. Then,
it updates the value of σij for the unassinged pairs of
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Fig. 2: Example: (a) The placement of components on servers in the previous slot; (b) The placement of components
obtained by MATCH-MCAPP; (c) The placement of components obtained by G-MCAPP.
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Fig. 3: Example: Second phase (local search) of MATCH-

MCAPP on an instance with three components and three
servers.

servers and components. Table 4 shows the values of the
assignment costs in each iteration of G-MCAPP. The algo-
rithm selects (C1, S2) with the cost of 32 as the pair with
the minimum server-component cost and assigns C1 to S2.
Then, it updates the assignment cost of each remaining
pair (i, j) by adding the inter-component cost between C1

and component Cj (i.e., σij = ωij + τi2j1+ τ2i1j). Therefore,
for example the cost of assigning component C2 to server S1

is updated to σ12 = ω12 + τ1221 + τ2112. The values of the
assignment costs obtained in the second iteration of the
algorithm are given in the second row of Table 4. In this

TABLE 4: Example: Assignment costs, σij , in each iteration
of G-MCAPP

iteration σ11 σ12 σ13 σ21 σ22 σ23 σ31 σ32 σ33

1 72 115 122 32 66 62 51 76 54
2 − 190 227 − − − − 201 189
3 − 490 − − − − − − −

table, the pairs that are not allowed to be selected (due to
the Constraints (8) and (9)) are marked with “− ”.

In the second iteration, the pair (C3, S3) with a cost
of 189 is selected as the pair with the minimum cost and
therefore, C3 is assigned to S3. Then, the assignment costs
of the remaining pairs are updated (i.e., σij = ωij + τi3j3 +
τ3i3j). In the last iteration, the algorithm assigns compo-
nent C2 to server S1. Therefore, based on Equation (7), the
total placement cost obtained by G-MCAPP is 765.

Comparing the results obtained by the two algorithms,
the total cost obtained by G-MCAPP is 8.8% higher than
that obtained by MATCH-MCAPP. In Section 6, we show
that the quality of solutions obtained by MATCH-MCAPP

is better than G-MCAPP for small-size problem instances,
specifically, when the amount of inter-component commu-
nication is not high.

6 EXPERIMENTAL RESULTS

We perform extensive experiments in order to investigate
the properties of the proposed algorithms. We compare the
performance of the algorithms against that of the optimal
solution obtained by solving MCAPP-MINLP and that of an-
other placement algorithm. In the following, we describe the
experimental setup and analyze the experimental results.

6.1 Experimental Setup

Because the development of MEC is still in the early stages,
there are no MEC workload traces that are publicly avail-
able. Therefore, for our experiments, we have to rely on
synthetically generated instances for the MCAPP problem.
In the following, we describe how we generate the prob-
lem instances that drive our simulation experiments and
describe the experimental setup.

We consider a time slotted system in which the locations
of users in the network may change from one time slot to
another, but do not change during one time slot. To evaluate
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Fig. 4: Distribution of the edge servers (blue squares) and
the frequent paths of the users (red dots))[Images generated
using GPS Visualizer [38]].

the efficiency of the algorithms, we consider two different
mobility models for the users: (i) Trace-Driven (TD), based
on real-world mobility data [11], and (ii) Random Walk
(RW) model [12].

For the trace-driven experiments, we use the CRAW-
DAD data set containing mobility traces of taxi cabs in
San Francisco, CA [11]. The data set contains the GPS
coordinates of about 500 taxi cabs collected over 30 days. We
randomly choose the traces of 150 taxi cabs whose locations
are updated every 10 seconds and use them as mobility
traces for the users in our experiments. We also consider 200
edge servers that are co-located with 200 selected cell towers
in the San Francisco area. The locations of these towers are
obtained from antennasearch.com. In our experiments we
do not consider towers with height less than 100 feet. Fig. 4
shows the distribution of towers in San Francisco and the
most frequent paths that are used by the selected 150 taxis in
the area. For the trace-driven experiments, we set the length
of a time slot to 5 minutes. Every experiment is repeated
ten times and each time, we select a taxi randomly from the
data set and run the experiments.

For the second sets of experiments, those using the
random walk mobility model, we assume that the mobility
of users is based on the random walk model in a two-
dimensional space. The users and servers are located within
a two-dimensional grid of 50× 50 cells. In fact, we consider
the area of the San Francisco taxi traces as a 50 × 50 grid.
Initially, a user can be in any cell of the grid network and
its location is drawn randomly from a uniform distribution
over the locations of the grid. In our setting, in every new
time slot, a user can stay in its place or move into any of
neighboring cells with equal probability. The servers are
located within the same two-dimensional grid network and
the coordinates of their positions are the same as those of
servers we considered in the experiments with the trace-

TABLE 5: Simulation parameters

Parameter Description Distribution
ci Cost of processing one unit N(µi, 0.2µi),

of load on server i. µi ∼ U [1, 10]
pj Processing requirement of N(µj , 0.2µj),

component j. µj ∼ U [0, 10]
r Data transmission cost. U [0, 1]
qj Size of component j. U [10, 40]
hj Size of data transferred U [1, 20]

between user and server j.
Size of data transferred low :U [1, 10]

gjj′ between components j medium: U [10, 100]
and j′ high: U [1000, 10000]

driven data set. The distance between servers and users is
the Manhattan distance (as defined in Section 3).

We generate several problem instances with different
values for n, the number of components of the application,
and m, the number of servers in the network. The number
of components for each application ranges from 2 to 100,
while the number of servers ranges from 10 to 200. The
reason for choosing these ranges is that in practice the
number of components of an average application rarely
exceeds 100 and most likely is on the lower part of the range
considered here. Also, we assume that the number of time
slots needed to run an application is 10. To generate the cost
parameters defined in Section 3 we take into account the
type of applications we consider.

Since the determinant factors in the performance of any
algorithm for solving MCAPP are the server-component
costs and the inter-component costs, we decided to generate
the instances according to the value of a metric called
Inter-component cost to Server-component cost Ratio (ISR).
This metric is defined as the ratio of the average inter-

component cost of each component (i.e.,
∑n

j=1

∑n

j′=1
l̄·gjj′ ·r

n
)

and the average server-component cost per assignment (i.e.,∑m
i=1

∑n
j=1

ωij

n·m
), where, l̄ is the average distance between

servers. Based on the value of ISR, we define three classes
of applications with low, medium, and high ISR.

Table 5 shows the type of distributions used to generate
the parameters characterizing the problem instances used
in our simulation experiments. We consider different ranges
for the distribution for three classes of applications. All
the cost parameters for these three types of applications
are the same, except for parameter gjj′ . This parameter
indicates the inter-component communication intensiveness
of the application. In Table 5, we denote by U [x, y], the
uniform distribution within interval [x, y], and by N(µ, v),
the normal distribution with mean µ and variance v. We
assume that the cost of processing one unit of load on
the servers is within the same range for all servers and
does not vary significantly. Therefore, we use the normal
distribution for the cost of processing. Similarly, we use the
normal distribution for the processing requirement of the
components.

We compare the performance of our algorithms, MATCH-

MCAPP and G-MCAPP, with that of another algorithm
called MATCH and with that of the optimal solution ob-
tained by solving MCAPP-MINLP. The MATCH algorithm
implements a variant of the Hungarian algorithm [37] and
does not take into account the communication among com-
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ponents when making the placement decisions. We compare
with this algorithm in order to investigate the improvement
in the quality of the solution due to considering the com-
munication among components in the local search phase of
MATCH-MCAPP.

For each type of instance, we determine the number of
runs based on the observed variance of the results [39]. We
observe that the standard deviation of the results for ten ran-
dom instances is low. Thus, we execute MATCH-MCAPP, G-

MCAPP, and MATCH algorithms for ten random instances
(all the plots presented in the next section show the average
values). The performance of the algorithms is evaluated by
computing the performance ratio, PR, which is defined as the
ratio of the value V ∗ of the optimal solution for MCAPP-

MINLP, and V , the value of the solution obtained by a
given algorithm, (i.e., PR = V ∗

V
). To obtain the optimal

solution, we transform MCAPP-MINLP into an equivalent
mixed integer linear program (called MCAPP-MILP) and
solve it with the CPLEX solver. The transformation is per-
formed by replacing xij · xi′j′ in the objective with a binary
variable yiji′j′ , and adding the following constraints to the
program,

xij + xi′j′ − 1 ≤ yiji′j′ ∀i, j, i′, j′ (13)

yiji′j′ ∈ {0, 1} ∀i, j, i′, j′ (14)

These constraints guarantee that binary variable yiji′j′ is 1,
if both variables xij and xi′j′ are 1; and 0 otherwise.

The MATCH-MCAPP, G-MCAPP, and MATCH algo-
rithms are implemented in C++ and the experiments are
conducted on an Intel 1.6GHz Core i5 with 8 GB RAM
system. For solving MCAPP-MILP we use the CPLEX 12
solver provided by IBM ILOG CPLEX optimization studio
for academics initiative [40].

6.2 Analysis of Results

In this section, we study the total placement cost of applica-
tions and compare the performance and the scalability of the
algorithms for different types of applications with varying
number of components and servers.

Performance with respect to the number of servers. We
investigate the effect of the number of servers on the
performance of MATCH-MCAPP and G-MCAPP algorithms
considering the two mobility models. We characterize the
performance of the algorithms using two main metrics, the
performance ratio, and the execution time on a set of in-
stances that runs the application over 10 time slots (T = 10)
and consists of n = 4 components. We chose this type of
instances in order to be able to solve them optimally using
CPLEX and compare the performance of our algorithms
with that of the optimal solution. We vary the number of
servers from 10 to 100. These servers are chosen randomly
from the data set. We select three types of instances for these
experiments, instances with high inter-component costs, in-
stances with medium inter-component costs, instances with
low inter-component costs, and perform a detailed analysis
of the results.

In Fig. 5, we plot the average execution time per time slot
obtained by MATCH-MCAPP, G-MCAPP, and CPLEX under
both mobility models and on those instances for different

values of m using a logarithmic scale. In the plots, we denote
by MATCH-MCAPP(TD) the cases in which MATCH-MCAPP

is executed on instances generated using the trace-driven
data sets, and by MATCH-MCAPP(RW), the cases in which
MATCH-MCAPP is executed on the instances generated
using the random-walk mobility model. We use a similar
notation in the cases of G-MCAPP and CPLEX.

The execution time of CPLEX is several orders of mag-
nitude higher than the execution times of both MATCH-

MCAPP and G-MCAPP algorithms for all three types of
instances. The execution time of MATCH-MCAPP and G-

MCAPP, is under 1 millisecond for problem instances with
small number of servers (m < 40), making them very
suitable for deployment in real MEC systems.

We observe an increase of the execution time of MATCH-

MCAPP with the increase in the number of servers. This is
because of the cubic growth in terms of m of the running
time of the algorithm. For example, in the case of instances
with low inter-component communication, with m = 20
under the trace-driven model, the average execution time
obtained by MATCH-MCAPP is around 0.08 milliseconds,
while for m = 80, the average execution time is around 15
milliseconds. However, this execution time is reasonable
because it is much less than the duration of a slot. Therefore,
it will not make our algorithm a significant contributor to
the overhead of placing the application components on edge
servers.

Generally, the G-MCAPP algorithm obtains a lower exe-
cution time than MATCH-MCAPP. In all instances, the exe-
cution time obtained by G-MCAPP is under 1 millisecond.
Also, we observe that in most cases, the total execution time
of MATCH-MCAPP, G-MCAPP, and CPLEX under trace-
driven data set is slightly greater than that under the ran-
dom walk model. In fact, under the random walk model, a
user changes his/her direction with the same probability in
each time slot. Therefore, his/her distance from the servers
may not change as significantly as the trace-driven case in
which the user may only follow one direction for multiple
consecutive time slots. Therefore, under the random walk
model, the execution time of the algorithms is lower than
that of trace-driven case, because the algorithms may not
need to relocate components in each time slot.

In Fig. 6, we plot the performance ratio obtained by
MATCH-MCAPP and G-MCAPP. In the case of low inter-
component communication instances (Fig. 6a), the perfor-
mance ratio obtained by MATCH-MCAPP is very close to 1,
thus this algorithm obtains optimal solutions or solutions
that are very close to the optimal. The reason is that the
inter-component communication is low, and therefore, the
solution obtained by the Hungarian algorithm (inside the
MATCH-MCAPP) is very close to the optimal solution. For
those instances, G-MCAPP has a lower performance ratio.
However, the performance ratio obtained by this algorithm
is higher than 0.87 in all cases. Furthermore, by increasing
the number of servers, the quality of solutions obtained
by G-MCAPP improves. The reason is that by increasing
the number of servers, a higher percentage of servers are
available for components at each iteration of G-MCAPP.
Therefore, G-MCAPP explores more alternative placements
and can make better decisions.
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Fig. 5: Execution time (microseconds) vs. number of servers: (a) instances with low inter-component communication; (b)
instances with medium inter-component communication; (c) instances with high inter-component communication.
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Fig. 6: Performance ratio vs. number of servers: (a) instances with low inter-component communication; (b) instances with
medium inter-component communication; (c) instances with high inter-component communication.

As the amount of inter-component communication in-
creases, the performance ratios of MATCH-MCAPP and G-

MCAPP increase (Fig. 6b and 6c). We observe that G-

MCAPP has a better performance compared to MATCH-

MCAPP for higher inter-component communication cases.
That means that G-MCAPP is able to obtain solutions that
are closer to the optimal solution than those obtained by
MATCH-MCAPP. As an example, for m = 40, for high inter-
component communication case, the performance ratio of
MATCH-MCAPP is 0.48, while that of G-MCAPP is 0.63.
Also, we observe that the performance ratio decreases with
the number of servers. Therefore, MATCH-MCAPP and G-

MCAPP exhibit completely different behaviors compared to
the low inter-component communication cases where the
performance ratio increases by the increase of the number
of servers. In fact, when the amount of inter-component
communication is relatively high, each inefficient greedy
decision can incur a significant amount of cost to the system.
Thus, when the number of servers increases, there is a
higher risk for local search/ greedy algorithms to make less
efficient decisions.

Another important observation from Fig. 6b and 6c is
that the performance ratio obtained by MATCH-MCAPP

decreases faster than the performance ratio obtained by G-

MCAPP. Also, from Fig. 6, we observe that the performance
of MATCH-MCAPP and G-MCAPP under both trace-driven
mobility data set and random walk model are consistent.
In other words, the performance ratios obtained by the
algorithms do not vary significantly under the considered

mobility models. One reason for this consistency is the fact
that our algorithms are relatively robust to the mobility
behavior of users.

Performance with respect to the number of components.
Next, we analyze the performance of MATCH-MCAPP and
G-MCAPP by varying the number of components. We con-
sider a set of instances that require running the application
for 10 time slots (T = 10) and consist of 20 servers (we
randomly choose 20 towers from the data set). We chose
this type of instances in order to be able to solve them
optimally using CPLEX and compare the performance of
our algorithms with that of the optimal solution. We vary
the number of components from 2 to 20. CPLEX was not
able to solve some of the instances in feasible time, and thus,
we were not able to determine the performance ratios for
MATCH-MCAPP and G-MCAPP algorithms. In those cases
we do not display the bars in the corresponding plots.

In Fig. 7, we plot the average execution time per time slot
obtained by MATCH-MCAPP, G-MCAPP and CPLEX. The
average execution time of the algorithms increases with the
number of components. For example for instances with low
inter-component communication and n = 2, the average
execution time of MATCH-MCAPP is about 0.01 milliseconds
under the trace-driven model, while for n = 20, it is about
0.1 milliseconds. Also, we observe that the execution time
of G-MCAPP is much lower than the execution time of
MATCH-MCAPP.

In Fig. 8, we plot the performance ratio obtained by
MATCH-MCAPP and G-MCAPP algorithms under the both
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Fig. 7: Execution time (microseconds) vs. number of components: (a) instances with low inter-component communication;
(b) instances with medium inter-component communication; (c) instances with high inter-component communication.
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Fig. 8: Performance ratio vs. number of component: (a) instances with low inter-component communication; (b) instances
with medium inter-component communication; (c) instances with high inter-component communication. (CPLEX was not able
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mobility models. We observe that for instances with low or
medium inter-component communication (Fig. 8a, Fig. 8b),
MATCH-MCAPP outperforms G-MCAPP. Also, the perfor-
mance ratio obtained by MATCH-MCAPP is very close to
1. For these instances, the performance ratio obtained by
G-MCAPP decreases with the number of components. The
reason is that, as the number of components increases, a
smaller number of servers are available after each iteration
of G-MCAPP. Therefore, the algorithm explores a smaller
number of possible placements for each component.

Large-scale problem instances. We investigate the perfor-
mance of the proposed algorithms for large-scale problem
instances under the two mobility models. We consider large
instances with a fixed number of components and servers
(n = 100, m = 200) and fixed number of time slots
(T = 10), and several values for ISR, ranging from 0.12 to
674. These instances with large number of components and
servers are not expected to be encountered in practice, but
we still consider them here to investigate the scalability of
the algorithms. Since CPLEX is not feasible to use for solving
such large instances, we will not compare the performance
of our algorithms against the performance of the optimal
solution obtained by CPLEX. Instead, we will compare
the performance of our algorithm against that of MATCH

(described in Section 6.1). In order to do this, we redefine
the performance ratio as the ratio of the total cost obtained
by MATCH and the total cost obtained by our proposed

algorithms.
In Fig. 9a, we plot the average execution time per time

slot obtained by MATCH-MCAPP and G-MCAPP. As ex-
pected, the average execution time per time slot of MATCH-

MCAPP and G-MCAPP is not very sensitive to the value
of ISR. The execution time of MATCH-MCAPP increases
slowly with ISR. This is because more swaps may be
performed in the local search when the inter-component
communication increases. However, we observe that the
execution time of G-MCAPP is not sensitive to the value
of ISR. This is because the number of operations in the
algorithm does not depend on the value of ISR. We also
observe that, for large scale instances, the execution time
of G-MCAPP is about two times greater than the execution
time of MATCH-MCAPP; but it is still in a reasonable range
compared to the duration of each time slot.

In Fig. 9b, we plot the performance ratio of MATCH-

MCAPP and G-MCAPP under the two mobility models.
We observe that both algorithms obtain better solutions
compared to the MATCH algorithm. MATCH-MCAPP ob-
tains solutions with a total cost around 45% lower than
MATCH for most cases. For small values of ISR, since
there is almost no communication among the components,
MATCH-MCAPP behaves similarly to the Hungarian algo-
rithm, that is, the local search step is not actually able to
improve the solution beyond that obtained by matching.
By increasing the value of ISR, the performance ratio of
MATCH-MCAPP increases. This means that, the local search
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Fig. 9: The effect of ISR (large-scale instances): (a) Average execution time (microseconds) per time slot; (b) Performance
ratio with respect to MATCH.

improves the solution obtained by the Hungarian algorithm.
Furthermore, we observe that the performance of G-MCAPP

is much better than MATCH-MCAPP. In most cases, the total
cost obtained by G-MCAPP is around 60% less than total
cost obtained by MATCH algorithm. This means that G-

MCAPP obtains a better performance for large scale problem
instances while it has a reasonable execution time.

According to the experimental results, MATCH-MCAPP

and G-MCAPP obtain solutions that are very close to the
optimal and require very low execution time per slot for
reasonably large instances. For the average size instances,
the ones we expect to encounter in practice, the proposed
algorithms perform very well with respect to both the
quality of the solutions and the execution time per time slot.
Also, the performance of both algorithms is consistent under
both the trace-driven mobility data set and the random walk
model which indicates that the proposed algorithms are rel-
atively robust to the mobility behavior of the users. MATCH-

MCAPP is more suitable for MEC systems with a relatively
low number of servers and components, and applications
with less intensive communication among components. On
the other hand, G-MCAPP is more suitable for MEC systems
with a large number of servers and components, as well
as for applications with intensive communication among
components.

7 CONCLUSION

We addressed the problem of placement of multi-
component applications in MEC systems. We formulated the
problem as a Mixed Integer Non-Linear Program (MINLP)
and developed two efficient algorithms for solving it. We
performed extensive experiments to investigate the per-
formance of the proposed algorithms. The results of these
experiments indicated that the proposed algorithms obtain
very good performance and require very low execution
time, making them very suitable for deployment on MEC
systems. For future work, we plan to design placement algo-
rithms that take into account both the users’ and providers’
economic incentives when making placement decisions. A
direct extension of this work is to consider settings in which
a subset of the components of a single application are
offloaded to a single server.
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