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Eigenstate thermalization is widely accepted as the mechanism behind thermalization in generic
isolated quantum systems. Using the example of a single magnetic defect embedded in the inte-
grable spin-1/2 XX Z chain, we show that locally perturbing an integrable system can give rise
to eigenstate thermalization. Unique to such setups is the fact that thermodynamic and transport
properties of the unperturbed integrable chain emerge in properties of the eigenstates of the per-
turbed (nonintegrable) one. Specifically, we show that the diagonal matrix elements of observables
in the perturbed eigenstates follow the microcanonical predictions for the integrable model, and
that the ballistic character of spin transport in the integrable model is manifest in the behavior of
the off-diagonal matrix elements of the current operator in the perturbed eigenstates.

How do statistical ensembles and thermal behavior
emerge from the fundamental unitary dynamics of iso-
lated quantum systems? This question, first posed in the
earliest days of quantum mechanics [1-3], is still at the
forefront of modern research in quantum statistical me-
chanics [4-6]. The current interest in this foundational
topic can be attributed to advances in ultracold atomic
experiments where many-body systems can be time prop-
agated coherently over unprecedented time scales [7-9].
In particular, seminal experiments have demonstrated
that integrability inhibits thermalization [10], and that
integrability breaking perturbations can be used to con-
trollably bring a system to thermal equilibrium [11].

The latter experimental results are consistent with the
expectation that generic isolated quantum systems ther-
malize to a microcanonical distribution consistent with
their energy density. The accepted mechanism for this
is eigenstate thermalization, as prescribed by the eigen-
state thermalization hypothesis (ETH) [4, 12-15]. For an
observable O, the ETH for the matrix elements O,,,, =
(n|O|m) in the energy eigenbasis (H|m) = E,,|m)) reads

Onm = O(E_‘)(Snm + e_S(E)/QfO(E’w)R"W“ (1)

where E = (E, + E,,)/2 and w := E,,, — E,,. S(E) is the
thermodynamic entropy at energy E, R, is a random
variable with zero mean and unit variance, and O(E) and
fo(E,w) are smooth functions. The first term in Eq. (1)
advances that the diagonal matrix elements of observ-
ables are smooth functions of the energy F,, (the eigen-
state to eigenstate fluctuations are exponentially small
in the size of the system [16-22]). From the second term
we see that the off-diagonal matrix elements are expo-
nentially small in the system size (because of e~5(#)/2)
and that, up to random fluctuations, they are charac-
terized by smooth functions fo(E,w) [4, 21-25]. Those
functions carry important information on fluctuation dis-
sipation relations [4, 14, 23], and even on the multipartite
entanglement structure of the energy eigenstates [26].
Integrable systems, which possess extensive sets of
nontrivial conserved quantities, do not follow the ETH.

The diagonal matrix elements of observables exhibit
eigenstate to eigenstate fluctuations that do not van-
ish in the thermodynamic limit [15, 16, 18, 22, 27-29],
while their variance vanishes as a power law in the sys-
tem size [22, 30-32]. Because of this, in general, inte-
grable systems do not thermalize [33]. They do equili-
brate and, after equilibration, they are described by gen-
eralized Gibbs ensembles (GGEs) [29, 34-36]. For the
off-diagonal matrix elements of observables in interact-
ing integrable systems, it was recently shown that their
variance is a well-defined (exponentially small in the sys-
tem size) function of the average energy and the energy
difference of the eigenstates involved [22, 37], like in sys-
tems that satisfy the ETH.

Integrability is believed to be unstable to perturba-
tions [4]. Surprisingly, it has been shown that even a
single magnetic impurity perturbation at the center of
the integrable spin-1/2 X X Z chain is enough to induce
level repulsion and random matrix statistics in the spec-
trum [38-44]. Recently, a study of both linear response
and steady-state transport showed that this model dis-
plays ballistic spin transport [44], challenging our expec-
tation that quantum chaotic systems (those exhibiting
random matrix statistics in the spectrum) should exhibit
diffusive transport. In this Letter we show that the ma-
trix elements of observables in such a model are fully
consistent with the ETH. Unique to breaking integra-
bility with local perturbations, we argue that statistical
mechanics and transport properties of the unperturbed
integrable model can end up embedded in properties of
the eigenstates of the perturbed (quantum chaotic) one.

The Hamiltonian of the spin-1/2 XX Z (in short, the
X XZ) chain can be written as (we set i = 1):
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where 67, v = x,y, 2, correspond to Pauli matrices in
the v direction at site ¢ in a chain with N (taken to be
even) sites and open boundary conditions. In Eq. (2), A



is the anisotropy parameter. We focus on A = 0.55, for
which spin transport is ballistic, but also show results for
A = 1.1, for which spin transport is diffusive [45].

The X XZ chain is a quintessential interacting inte-
grable model [46, 47]. We study properties of its eigen-
states along with those of eigenstates of the nonintegrable
model obtained by perturbing it with a magnetic impu-
rity about the center of the chain. This local perturbation
produces an energy spectrum with a Wigner-Dyson dis-
tribution of nearest-neighbor level spacings [38—-40, 42—
44]. The single-impurity Hamiltonian has the form

Hgp = I:-fxxz+h(}7v/2, (3)

where h is the strength of the magnetic impurity. We
henceforth set h = 1 so that all energy scales in our
perturbed Hamiltonian are O(1).

Both Hamiltonians of interest in this work, Eqs. (2)
and (3), commute with the total magnetization operator
in the z direction, [Hxxz,>; 67] = [Hst, >.; 6] = 0, s0
they are U(1) symmetric. We focus on the zero magne-
tization sector, Y, (67) = 0, which is the largest sector.
Reflection symmetry is present in H xxz. We explic-
itly break it by adding a very weak magnetic field at
site « = 1, hy = 107! (like open boundary conditions,
this perturbation does not break integrability [38]). We
use state of the art full exact diagonalization, and study
chains with up to N = 20 sites, for which the Hilbert
space dimension D = N!/[(N/2)!]? = 184 756.

Diagonal ETH.— Let us first study the diagonal ma-
trix elements of two related local observables. We choose
the local kinetic energy at site ¢ = N/4 (far away from
the boundary and the impurity),

K= Rygp= (0505, +0%0% ), @
and the total kinetic energy per site, the average local

kinetic energy, defined as

| N
~ (67671 +0767,). ()

i=1

T :=

The contrast between the two shows the effect of aver-
aging in nontranslation invariant systems. Qualitatively
similar results were obtained for other local observables.

In Fig. 1, we show the diagonal matrix elements of K
and T in the eigenstates of the Hamiltonians in Egs. (2)
and (3). The results are plotted as functions of the en-
ergy density defined as €, := E,, — Enin/Fmax — Emin,
where E,, is the nth energy eigenvalue, and Fyiy (Emax)
is the lowest (highest) energy eigenvalue. Despite the
quantitative differences in the behavior of the two ob-
servables in each model (at each energy, the spread of
Tyn is smaller than that of K,,), they both exhibit a
qualitatively similar behavior depending on whether the
model is integrable (fIXXZ) or nonintegrable (fISI). In
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FIG. 1. Diagonal matrix elements of 7' [(a), (b)] and K
[(c), (d)] in the eigenstates of Hxxz [(a), (c)] and Hsr
[(b), (d)] (A = 0.55). The black lines show microcanoni-
cal averages (within windows with de, = 0.008) in Hxxz
for the largest chain (N = 20). The insets in (a) and (c)
show the equivalence of the microcanonical predictions in
both models for each observable, while the insets in (b) and
(d) show the (ND)~/2 and D~'/? scalings, respectively, of
|60nn| := |Onn — Ontint1| (the dashed lines are o m_l/g),
where we average over the central 20% of the eigenstates in
chains with N =10, 12, ..., 20.

the integrable model, the spread of T,,,, and K,,, at each
energy does not change with changing system size (the
system does not satisfy the ETH), while in the noninte-
grable model it decreases exponentially fast with increas-
ing N [away from the edges of the spectrum, see insets in
Figs. 1(b) and 1(d) for a variance indicator| suggesting
that T, and K, satisfy the ETH [40, 41].

Since the single impurity is a subextensive local per-
turbation to the X X Z chain, it does not affect the micro-
canonical predictions (away from the edges of the spec-
trum) for local observables (away from the impurity) in
sufficiently large system sizes. This is confirmed in the
insets in Figs. 1(a) and 1(c). Hence, a remarkable conse-
quence of the single impurity producing eigenstate ther-
malization (something that is achieved via mixing nearby
unperturbed energy eigenstates) is that the smooth func-
tions T,,, and K,, are nothing but the microcanonical
ensemble predictions for the integrable model. Another
interesting consequence of it is that if one evolves highly
excited eigenstates of Hgr under the integrable dynamics
generated by Hy xz, thermalization will occur at long



times (as in the limit of vanishingly small but extensive
integrability breaking perturbations [33, 48]).
Off-diagonal ETH.— Next we study the off-diagonal
matrix elements of the total kinetic energy per site T
[Eqg. (5)], and of the spin current operator per site J,

=

J= o Y (670t~ 616%). ©
i=1

Since 7" and J have Hilbert-Schmidt norms that scale

as 1/ VN, the off-diagonal part of the ETH needs to be
modified to read [22, 49]

o~ S(B)/2
VN

We focus on the “infinite-temperature” regime, in which
E~0and S(E) ~InD.

In Figs. 2(a) and 2(b), we show the off-diagonal ma-
trix elements |T,,,|? in the XXZ and single-impurity
models, respectively. As expected, their overall disper-
sion is larger in the former (integrable) model than the
latter (nonintegrable) one. For both models, Figs. 2(a)
and 2(b) show that the coarse-grained average |Tj,,|>
(which corresponds to the variance of the off-diagonal
matrix elements as 7}, = 0) is a smooth function of
w [22]. In Ref. [22], it was shown that the variance of
the off-diagonal matrix elements of observables like the
ones of interest here satisfies |Oy,|2 oc (ND)~! both for
integrable interacting and nonintegrable models. Fig-
ures 2(c) and 2(d) for |Ty.,|?, and Figs. 2(e) and 2(f)
for |Jum|?, show that such a scaling is satisfied by our
observables in the X X Z and single-impurity models.

Figures 2(c) and 2(d) [Figs. 2(e) and 2(f)] also show
that the variances |Tym|? (|Jnm|?) are very similar in the
two models (the differences are consistent within present
finite-size effects). For |Jpnm|?, see insets in Figs. 2(e)
and 2(f), the similarity extends to features that occur at
low frequencies (see also Fig. 4). This opens the ques-
tion of whether there is any difference between the off-
diagonal matrix elements of observables in both models.

We find that the off-diagonal matrix elements of ob-
servables are normally distributed in the single-impurity
model (qualitatively similar results have been obtained in
other nonintegrable models [22, 24, 25]), while they are
close to log-normally distributed in the X X Z chain [22].
To test the normality of the distribution in the single-
impurity model for different values of w, and to contrast
it to the results for the X X Z chain, we compute [22]

Onm = fo(E,w)Rpm. (7)

T () = [Onm /O] - (8)

I'y = 7/2 for normally distributed matrix elements.

In Fig. 3, we show results for I'p(w) [Figs. 3(a)
and 3(b)] and T'j(w) [Figs. 3(c) and 3(d)] in the XX Z
[Figs. 3(a) and 3(c)] and single-impurity [Figs. 3(b)
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FIG. 2. [(a), (b)] Off-diagonal matrix elements of 7', and
the corresponding coarse-grained average [continuous (black)
line], plotted vs w for chains with N = 18. [(c), (d)] Coarse-
grained averages of Tym, including the ones reported in (a)
and (b), for different chain sizes. [(e), (f)] Coarse-grained av-
erages of Jn, for different chain sizes (the insets show results
at low w, see also Fig. 4). The left panels [(a), (c), and (e)]
show results for Hx x z, while the right ones [(b), (d), and (f)]
show results for Hgr (A = 0.55). The matrix elements were
computed within a small window of energy around E =~ 0
(center of the spectrum) of width 0.05¢ (0.075¢ for the in-
sets), where € := Fmax — Emin. The coarse-grained averages
were computed using a window dw = 0.1 [fw = 0.075 and
dw = 0.01 for the insets in (e) and (f), respectively].

and 3(d)] models. For all values of w shown in Figs. 3(b)
and 3(d) for the single-impurity model, I} (w) and I' ; (w),
respectively, approach 7/2 as N increases, i.e., Ty, and
Jnm are well described by a normal distribution. On the
other hand, in Figs. 3(a) and 3(c) for the XX Z model,
I'j(w) and T j(w), respectively, depend on the system
size, i.e., T and Jy,, are not normally distributed.
The results discussed so far for the matrix elements of
local operators in the single-impurity model show that
they are fully consistent with the ETH. The fact that
the off-diagonal matrix elements are normally distributed
(the variance sets all central moments) means that one
can define a meaningful fo(F,w), while this is not the
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FIG. 3. T'5(w), see Eq. (8), for the total kinetic energy per site
[(a), (b)] and for the current operator [(c), (d)], in the XX Z
[(a), (c)] and single-impurity [(b), (d)] models (A = 0.55).
The horizontal line in (b) and (d) marks 7/2. The matrix
elements were computed using the same energy window as in
Fig. 2, while the coarse-graining parameter is dw = 0.05.

case for the X X Z chain. The question we address next
is related to the ballistic spin transport in the single-
impurity model [44], which is in stark contrast to the
usual diffusive transport found in nonintegrable models.

Ballistic transport.— Within linear response, the real
part of the conductivity reads (kg = 1) [45, 50-53]

Re[on(w)] = nDyo(w)+ (9)
T [1—e B 9
N (w> E; pn|Jnm‘ 5(6711 — €p — W)a

where Dy is known as the Drude weight, S is the inverse
temperature, p, = e ?F» /7 is the Boltzmann weight of
eigenstate |n), and Z is the partition function. .J,,, are
the matrix elements of the spin current operator. In inte-
grable systems with open boundary conditions (e.g., our
X X Z chain), Dy can be proved to be identically zero no
matter the nature of the spin transport [53]. When trans-
port is ballistic, a peak (or peaks) appear in Re[oy(w)] at
a nonzero frequency (frequencies) proportional to 1/N.
When N — oo, the peak (peaks) move toward w — 0 re-
sulting in a peak in Re[oy(w = 0)] that signals ballistic
transport [53]. Exactly the same was shown to occur in
our single impurity model in Ref. [44]. Therefore, in our
integrable and nonintegrable models ballistic transport
emerges because of the w — 0 behavior of the off-diagonal
matrix elements of the current operator.

In Fig. 4(a), we show the scaled variances of the ma-
trix elements of J in XX Z chains with N = 16, 18, and
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FIG. 4. Scaled variances of the off-diagonal matrix elements of
J in the eigenstates of Hx x 7 (a) and Hsr (b) plotted vs Nw.
The main panels (insets) show results for A = 0.55 (A = 1.1).
The matrix elements were computed within a small window
of energies around F ~ 0 of width 0.075¢. For the binned
averages, we used dw = 0.075 in (a) and dw = 0.01 in (b).

20 as functions of Nw for A = 0.55. A large peak can
be seen at a frequency that scales as 1/N whose area
does not change with increasing N. This is consistent
with the behavior of Re[on(w)] [44, 53] signaling coher-
ent transport [54]. The position of the smaller (second)
peak is nearly N independent [see inset in Fig. 2(e)], ap-
pearing to mark the onset of the N-independent behavior
shown in Fig. 2. The variances of the matrix elements
of J in the (nonintegrable) single-impurity model, which,
remarkably, define a novel N-independent ETH function
|f7(E =~ 0, Nw)|?/N [Fig. 4(b)], display the same low-
frequency behavior as in the (integrable) XX Z chain.
In contrast, as shown in the insets in Fig. 4, the scaled
variances of the matrix elements of J behave completely
differently for A = 1.1 (for which spin transport is dif-
fusive). The nature of the spin transport in the absence
and presence of the single magnetic defect, for A in the
easy-plane and easy-axis regimes, is something that can
readily be probed in ultracold gases experiments [55].
Conclusions.— We showed that the ETH is fully ful-
filled when breaking integrability with a local pertur-
bation and that, in such setups, it can inherit statisti-
cal mechanics and transport properties of the integrable
model. Specifically, we showed that the diagonal matrix
elements of observables in the perturbed energy eigen-
states can follow the microcanonical predictions for the
integrable model, and that ballistic transport in the inte-



grable model can result in a novel N-independent ETH
function |f;(E ~ 0, Nw)|?/N that characterizes the off-
diagonal matrix elements of the current operator in the
perturbed energy eigenstates at low frequencies.
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Note added.— Recently, other works have appeared ex-
ploring the structure of the off-diagonal matrix elements
of different classes of observables in integrable and locally
perturbed integrable models such as the ones considered
here [56-58], and in central spin models [59].

* Corresponding author: brenesnm@ted.ie
[1] E. Schrodinger, Ann. Phys. (N.Y.) 388, 956 (1927).
[2] J. v. Neumann, Z. Phys. 57, 30 (1929).
[3] S. Goldstein, J. L. Lebowitz, C. Mastrodonato, R. Tu-
mulka, and N. Zanghi, Proc. R. Soc. A 466, 3203 (2010).
[4] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol,
Adv. Phys. 65, 239 (2016).
[5] J. Eisert, M. Friesdorf, and C. Gogolin, Nat. Phys. 11,
124 (2015).
[6] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalat-
tore, Rev. Mod. Phys. 83, 863 (2011).
[7] T. Langen, R. Geiger, and J. Schmiedmayer, Annu. Rev.
Condens. Matter Phys. 6, 201 (2015).
[8] I. Bloch, J. Dalibard, and S. Nascimbene, Nat. Phys. 8,
267 (2012).
[9] M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski,
A. Sen, and U. Sen, Adv. Phys. 56, 243 (2007).
[10] T. Kinoshita, T. Wenger, and D. S. Weiss, Nature 440,
900 (2006).
[11] Y. Tang, W. Kao, K.-Y. Li, S. Seo, K. Mallayya,
M. Rigol, S. Gopalakrishnan, and B. L. Lev, Phys. Rev.
X 8, 021030 (2018).
[12] J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
[13] M. Srednicki, Phys. Rev. E 50, 888 (1994).
[14] M. Srednicki, J. Phys. A 32, 1163 (1999).
[15] M. Rigol, V. Dunjko, and M. Olshanii, Nature 452, 854
(2008).
[16] R. Steinigeweg, J. Herbrych,
Rev. E 87, 012118 (2013).
[17] H. Kim, T. N. Ikeda, and D. A. Huse, Phys. Rev. E 90,
052105 (2014).
[18] W. Beugeling, R. Moessner, and M. Haque, Phys. Rev.
E 89, 042112 (2014).
[19] R. Mondaini, K. R. Fratus, M. Srednicki, and M. Rigol,
Phys. Rev. E 93, 032104 (2016).
[20] T. Yoshizawa, E. Iyoda, and T. Sagawa, Phys. Rev. Lett.
120, 200604 (2018).
[21] D. Jansen, J. Stolpp, L. Vidmar,

and P. Prelovsek, Phys.

and F. Heidrich-

Meisner, Phys. Rev. B 99, 155130 (2019).

[22] T. LeBlond, K. Mallayya, L. Vidmar, and M. Rigol,
Phys. Rev. E 100, 062134 (2019).
[23] E. Khatami, G. Pupillo, M. Srednicki, and M. Rigol,

Phys. Rev. Lett. 111, 050403 (2013).

[24] W. Beugeling, R. Moessner, and M. Haque, Phys. Rev.
E 91, 012144 (2015).

[25] R. Mondaini and M. Rigol, Phys. Rev. E 96, 012157
(2017).

[26] M. Brenes, S. Pappalardi, J. Goold, and A. Silva, Phys.
Rev. Lett. 124, 040605 (2020).

[27] M. Rigol, Phys. Rev. Lett. 103, 100403 (2009); Phys.
Rev. A 80, 053607 (2009).

[28] L. F. Santos and M. Rigol, Phys. Rev. E 82, 031130
(2010).

[29] L. Vidmar and M. Rigol, J. Stat. Mech. (2016), 064007.

[30] G. Biroli, C. Kollath, and A. M. Lauchli, Phys. Rev.
Lett. 105, 250401 (2010).

[31] T. N. Ikeda, Y. Watanabe, and M. Ueda, Phys. Rev. E
87, 012125 (2013).

[32] V. Alba, Phys. Rev. B 91, 155123 (2015).

(33] M. Rigol, Phys. Rev. Lett. 116, 100601 (2016).

[34] M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii,
Phys. Rev. Lett. 98, 050405 (2007).

[35] F. H. L. Essler and M. Fagotti, J. Stat. Mech. (2016),
064002.

[36] J.-S. Caux, J. Stat. Mech. (2016), 064006.

[37] K. Mallayya and M. Rigol, Phys. Rev. Lett. 123, 240603
(2019).

[38] L. Santos, J. Phys. A 37, 4723 (2004).

[39] L. F. Santos and A. Mitra, Phys. Rev. E 84, 016206
(2011).

[40] E. J. Torres-Herrera and L. F. Santos, Phys. Rev. E 89,
062110 (2014).

[41] E. J. Torres-Herrera, D. Kollmar, and L. F. Santos, Phys.
Scr. T165, 014018 (2015).

[42] O. S. Barisi¢, P. Prelovsek, A. Metavitsiadis, and X. Zo-
tos, Phys. Rev. B 80, 125118 (2009).

[43] A. Metavitsiadis, X. Zotos, O. S. Barisié, and
P. Prelovsek, Phys. Rev. B 81, 205101 (2010).

[44] M. Brenes, E. Mascarenhas, M. Rigol, and J. Goold,
Phys. Rev. B 98, 235128 (2018).

[45] B. Bertini, F. Heidrich-Meisner, C. Karrasch, T. Prosen,
R. Steinigeweg, and M. Znidaric, arXiv:2003.03334.

[46] B. S. Shastry and B. Sutherland, Phys. Rev. Lett. 65,
243 (1990).

[47] M. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and
M. Rigol, Rev. Mod. Phys. 83, 1405 (2011).

[48] M. Rigol and M. Srednicki, Phys. Rev. Lett. 108, 110601
(2012).

[49] M. Mierzejewski and L. Vidmar, Phys. Rev. Lett. 124,
040603 (2020).

[50] R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).

[61] R. Kubo, M. Yokota, and S. Nakajima, J. Phys. Soc.
Jpn. 12, 1203 (1957).

[62] S. Mukerjee and B. S. Shastry, Phys. Rev. B 77, 245131
(2008).

[53] M. Rigol and B. S. Shastry, Phys. Rev. B 77, 161101(R)
(2008).

[54] M. Znidari¢, Phys. Rev. Lett. 106, 220601 (2011).

[65] N. Jepsen, J. Amato-Grill, I. Dimitrova, W. W. Ho,
E. Demler, and W. Ketterle, arXiv:2005.09549.

[66] M. Pandey, P. W. Claeys, D. K. Campbell,
A. Polkovnikov, and D. Sels, arXiv:2004.05043.



[57] M. Brenes, J. Goold, and M. Rigol, arXiv:2005.12309. [59] T. Villazon, P. W. Claeys, M. Pandey, A. Polkovnikov,
[58] L. F. Santos, F. Pérez-Bernal, and E. J. Torres-Herrera, and A. Chandran, arXiv:2005.13556.
arXiv:2006.10779.



	Eigenstate Thermalization in a Locally Perturbed Integrable System
	Abstract
	References


