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Eigenstate thermalization is widely accepted as the mechanism behind thermalization in generic
isolated quantum systems. Using the example of a single magnetic defect embedded in the inte-
grable spin-1/2 XXZ chain, we show that locally perturbing an integrable system can give rise
to eigenstate thermalization. Unique to such setups is the fact that thermodynamic and transport
properties of the unperturbed integrable chain emerge in properties of the eigenstates of the per-
turbed (nonintegrable) one. Specifically, we show that the diagonal matrix elements of observables
in the perturbed eigenstates follow the microcanonical predictions for the integrable model, and
that the ballistic character of spin transport in the integrable model is manifest in the behavior of
the off-diagonal matrix elements of the current operator in the perturbed eigenstates.

How do statistical ensembles and thermal behavior
emerge from the fundamental unitary dynamics of iso-
lated quantum systems? This question, first posed in the
earliest days of quantum mechanics [1–3], is still at the
forefront of modern research in quantum statistical me-
chanics [4–6]. The current interest in this foundational
topic can be attributed to advances in ultracold atomic
experiments where many-body systems can be time prop-
agated coherently over unprecedented time scales [7–9].
In particular, seminal experiments have demonstrated
that integrability inhibits thermalization [10], and that
integrability breaking perturbations can be used to con-
trollably bring a system to thermal equilibrium [11].
The latter experimental results are consistent with the

expectation that generic isolated quantum systems ther-
malize to a microcanonical distribution consistent with
their energy density. The accepted mechanism for this
is eigenstate thermalization, as prescribed by the eigen-
state thermalization hypothesis (ETH) [4, 12–15]. For an
observable Ô, the ETH for the matrix elements Onm =
〈n|Ô|m〉 in the energy eigenbasis (Ĥ|m〉 = Em|m〉) reads

Onm = O(Ē)δnm + e−S(Ē)/2fO(Ē, ω)Rnm, (1)

where Ē ..= (En+Em)/2 and ω ..= Em−En. S(Ē) is the
thermodynamic entropy at energy Ē, Rnm is a random
variable with zero mean and unit variance, and O(Ē) and
fO(Ē, ω) are smooth functions. The first term in Eq. (1)
advances that the diagonal matrix elements of observ-
ables are smooth functions of the energy En (the eigen-
state to eigenstate fluctuations are exponentially small
in the size of the system [16–22]). From the second term
we see that the off-diagonal matrix elements are expo-
nentially small in the system size (because of e−S(Ē)/2)
and that, up to random fluctuations, they are charac-
terized by smooth functions fO(Ē, ω) [4, 21–25]. Those
functions carry important information on fluctuation dis-
sipation relations [4, 14, 23], and even on the multipartite
entanglement structure of the energy eigenstates [26].
Integrable systems, which possess extensive sets of

nontrivial conserved quantities, do not follow the ETH.

The diagonal matrix elements of observables exhibit
eigenstate to eigenstate fluctuations that do not van-
ish in the thermodynamic limit [15, 16, 18, 22, 27–29],
while their variance vanishes as a power law in the sys-
tem size [22, 30–32]. Because of this, in general, inte-
grable systems do not thermalize [33]. They do equili-
brate and, after equilibration, they are described by gen-
eralized Gibbs ensembles (GGEs) [29, 34–36]. For the
off-diagonal matrix elements of observables in interact-
ing integrable systems, it was recently shown that their
variance is a well-defined (exponentially small in the sys-
tem size) function of the average energy and the energy
difference of the eigenstates involved [22, 37], like in sys-
tems that satisfy the ETH.
Integrability is believed to be unstable to perturba-

tions [4]. Surprisingly, it has been shown that even a
single magnetic impurity perturbation at the center of
the integrable spin-1/2 XXZ chain is enough to induce
level repulsion and random matrix statistics in the spec-
trum [38–44]. Recently, a study of both linear response
and steady-state transport showed that this model dis-
plays ballistic spin transport [44], challenging our expec-
tation that quantum chaotic systems (those exhibiting
random matrix statistics in the spectrum) should exhibit
diffusive transport. In this Letter we show that the ma-
trix elements of observables in such a model are fully
consistent with the ETH. Unique to breaking integra-
bility with local perturbations, we argue that statistical
mechanics and transport properties of the unperturbed
integrable model can end up embedded in properties of
the eigenstates of the perturbed (quantum chaotic) one.
The Hamiltonian of the spin-1/2 XXZ (in short, the

XXZ) chain can be written as (we set ~ = 1):

ĤXXZ =

N−1
∑

i=1
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, (2)

where σ̂ν
i , ν = x, y, z, correspond to Pauli matrices in

the ν direction at site i in a chain with N (taken to be
even) sites and open boundary conditions. In Eq. (2), ∆
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times (as in the limit of vanishingly small but extensive
integrability breaking perturbations [33, 48]).
Off-diagonal ETH.— Next we study the off-diagonal

matrix elements of the total kinetic energy per site T̂
[Eq. (5)], and of the spin current operator per site Ĵ ,

Ĵ ..=
1

N

N−1
∑

i=1

(

σ̂x
i σ̂

y
i+1 − σ̂y

i σ̂
x
i+1

)

. (6)

Since T̂ and Ĵ have Hilbert-Schmidt norms that scale
as 1/

√
N , the off-diagonal part of the ETH needs to be

modified to read [22, 49]

Onm =
e−S(Ē)/2

√
N

fO(Ē, ω)Rnm. (7)

We focus on the “infinite-temperature” regime, in which
Ē ≈ 0 and S(Ē) ≈ lnD.
In Figs. 2(a) and 2(b), we show the off-diagonal ma-

trix elements |Tnm|2 in the XXZ and single-impurity
models, respectively. As expected, their overall disper-
sion is larger in the former (integrable) model than the
latter (nonintegrable) one. For both models, Figs. 2(a)
and 2(b) show that the coarse-grained average |Tnm|2
(which corresponds to the variance of the off-diagonal
matrix elements as Tnm = 0) is a smooth function of
ω [22]. In Ref. [22], it was shown that the variance of
the off-diagonal matrix elements of observables like the
ones of interest here satisfies |Onm|2 ∝ (ND)−1 both for
integrable interacting and nonintegrable models. Fig-
ures 2(c) and 2(d) for |Tnm|2, and Figs. 2(e) and 2(f)
for |Jnm|2, show that such a scaling is satisfied by our
observables in the XXZ and single-impurity models.
Figures 2(c) and 2(d) [Figs. 2(e) and 2(f)] also show

that the variances |Tnm|2 (|Jnm|2) are very similar in the
two models (the differences are consistent within present
finite-size effects). For |Jnm|2, see insets in Figs. 2(e)
and 2(f), the similarity extends to features that occur at
low frequencies (see also Fig. 4). This opens the ques-
tion of whether there is any difference between the off-
diagonal matrix elements of observables in both models.
We find that the off-diagonal matrix elements of ob-

servables are normally distributed in the single-impurity
model (qualitatively similar results have been obtained in
other nonintegrable models [22, 24, 25]), while they are
close to log-normally distributed in the XXZ chain [22].
To test the normality of the distribution in the single-
impurity model for different values of ω, and to contrast
it to the results for the XXZ chain, we compute [22]

ΓÔ(ω)
..= |Onm|2/|Onm|2. (8)

ΓÔ = π/2 for normally distributed matrix elements.
In Fig. 3, we show results for ΓT̂ (ω) [Figs. 3(a)

and 3(b)] and ΓĴ(ω) [Figs. 3(c) and 3(d)] in the XXZ
[Figs. 3(a) and 3(c)] and single-impurity [Figs. 3(b)
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FIG. 2. [(a), (b)] Off-diagonal matrix elements of T̂ , and
the corresponding coarse-grained average [continuous (black)
line], plotted vs ω for chains with N = 18. [(c), (d)] Coarse-
grained averages of Tnm, including the ones reported in (a)
and (b), for different chain sizes. [(e), (f)] Coarse-grained av-
erages of Jnm for different chain sizes (the insets show results
at low ω, see also Fig. 4). The left panels [(a), (c), and (e)]

show results for ĤXXZ , while the right ones [(b), (d), and (f)]

show results for ĤSI (∆ = 0.55). The matrix elements were
computed within a small window of energy around Ē ≈ 0
(center of the spectrum) of width 0.05ε (0.075ε for the in-
sets), where ε ..= Emax − Emin. The coarse-grained averages
were computed using a window δω = 0.1 [δω = 0.075 and
δω = 0.01 for the insets in (e) and (f), respectively].

and 3(d)] models. For all values of ω shown in Figs. 3(b)
and 3(d) for the single-impurity model, ΓT̂ (ω) and ΓĴ(ω),
respectively, approach π/2 as N increases, i.e., Tnm and
Jnm are well described by a normal distribution. On the
other hand, in Figs. 3(a) and 3(c) for the XXZ model,
ΓT̂ (ω) and ΓĴ(ω), respectively, depend on the system
size, i.e., Tnm and Jnm are not normally distributed.

The results discussed so far for the matrix elements of
local operators in the single-impurity model show that
they are fully consistent with the ETH. The fact that
the off-diagonal matrix elements are normally distributed
(the variance sets all central moments) means that one
can define a meaningful fO(Ē, ω), while this is not the
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ĤSI

(b)

0

20

40

60

80

100

0 5 10 15 20 25 30
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FIG. 3. Γ
Ô
(ω), see Eq. (8), for the total kinetic energy per site

[(a), (b)] and for the current operator [(c), (d)], in the XXZ
[(a), (c)] and single-impurity [(b), (d)] models (∆ = 0.55).
The horizontal line in (b) and (d) marks π/2. The matrix
elements were computed using the same energy window as in
Fig. 2, while the coarse-graining parameter is δω = 0.05.

case for the XXZ chain. The question we address next
is related to the ballistic spin transport in the single-
impurity model [44], which is in stark contrast to the
usual diffusive transport found in nonintegrable models.
Ballistic transport.— Within linear response, the real

part of the conductivity reads (kB = 1) [45, 50–53]

Re[σN (ω)] = πDNδ(ω)+ (9)

π

N

(

1− e−βω

ω

)

∑

εn 6=εm

pn|Jnm|2δ(εm − εn − ω),

where DN is known as the Drude weight, β is the inverse
temperature, pn = e−βEn/Z is the Boltzmann weight of
eigenstate |n〉, and Z is the partition function. Jnm are
the matrix elements of the spin current operator. In inte-
grable systems with open boundary conditions (e.g., our
XXZ chain), DN can be proved to be identically zero no
matter the nature of the spin transport [53]. When trans-
port is ballistic, a peak (or peaks) appear in Re[σN (ω)] at
a nonzero frequency (frequencies) proportional to 1/N .
When N → ∞, the peak (peaks) move toward ω → 0 re-
sulting in a peak in Re[σN (ω = 0)] that signals ballistic
transport [53]. Exactly the same was shown to occur in
our single impurity model in Ref. [44]. Therefore, in our
integrable and nonintegrable models ballistic transport
emerges because of the ω → 0 behavior of the off-diagonal
matrix elements of the current operator.
In Fig. 4(a), we show the scaled variances of the ma-

trix elements of Ĵ in XXZ chains with N = 16, 18, and

0

0.4

0.8

1.2

1.6
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FIG. 4. Scaled variances of the off-diagonal matrix elements of
Ĵ in the eigenstates of ĤXXZ (a) and ĤSI (b) plotted vs Nω.
The main panels (insets) show results for ∆ = 0.55 (∆ = 1.1).
The matrix elements were computed within a small window
of energies around Ē ≈ 0 of width 0.075ε. For the binned
averages, we used δω = 0.075 in (a) and δω = 0.01 in (b).

20 as functions of Nω for ∆ = 0.55. A large peak can
be seen at a frequency that scales as 1/N whose area
does not change with increasing N . This is consistent
with the behavior of Re[σN (ω)] [44, 53] signaling coher-
ent transport [54]. The position of the smaller (second)
peak is nearly N independent [see inset in Fig. 2(e)], ap-
pearing to mark the onset of the N -independent behavior
shown in Fig. 2. The variances of the matrix elements
of Ĵ in the (nonintegrable) single-impurity model, which,
remarkably, define a novel N -independent ETH function
|fJ(Ē ≈ 0, Nω)|2/N [Fig. 4(b)], display the same low-
frequency behavior as in the (integrable) XXZ chain.
In contrast, as shown in the insets in Fig. 4, the scaled
variances of the matrix elements of Ĵ behave completely
differently for ∆ = 1.1 (for which spin transport is dif-
fusive). The nature of the spin transport in the absence
and presence of the single magnetic defect, for ∆ in the
easy-plane and easy-axis regimes, is something that can
readily be probed in ultracold gases experiments [55].

Conclusions.— We showed that the ETH is fully ful-
filled when breaking integrability with a local pertur-
bation and that, in such setups, it can inherit statisti-
cal mechanics and transport properties of the integrable
model. Specifically, we showed that the diagonal matrix
elements of observables in the perturbed energy eigen-
states can follow the microcanonical predictions for the
integrable model, and that ballistic transport in the inte-
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grable model can result in a novel N -independent ETH
function |fJ(Ē ≈ 0, Nω)|2/N that characterizes the off-
diagonal matrix elements of the current operator in the
perturbed energy eigenstates at low frequencies.
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Note added.— Recently, other works have appeared ex-
ploring the structure of the off-diagonal matrix elements
of different classes of observables in integrable and locally
perturbed integrable models such as the ones considered
here [56–58], and in central spin models [59].
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