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We study the off-diagonal matrix elements of observables that break the translational symmetry
of a spin-chain Hamiltonian, and as such connect energy eigenstates from different total quasimo-
mentum sectors. We consider quantum-chaotic and interacting integrable points of the Hamiltonian,
and focus on average energies at the center of the spectrum. In the quantum-chaotic model, we find
that there is eigenstate thermalization; specifically, the matrix elements are Gaussian distributed
with a variance that is a smooth function of w = Eo — Eg (E4 are the eigenenergies) and scales as
1/D (D is the Hilbert space dimension). In the interacting integrable model, we find that the matrix
elements exhibit a skewed log-normal-like distribution and have a variance that is also a smooth
function of w that scales as 1/D. We study in detail the low-frequency behavior of the variance
of the matrix elements to unveil the regimes in which it exhibits diffusive or ballistic scaling. We
show that in the quantum-chaotic model the behavior of the variance is qualitatively similar for
matrix elements that connect eigenstates from the same versus different quasimomentum sectors.
We also show that this is not the case in the interacting integrable model for observables whose
translationally invariant counterpart does not break integrability if added as a perturbation to the

Hamiltonian.

I. INTRODUCTION

The emergence of thermalization under unitary dy-
namics in generic isolated quantum systems has been in-
tensively explored over the past decade [1-4]. On the ex-
perimental side, where high levels of control and isolation
in ultracold atomic gases have recently enabled the study
of quantum dynamics over long time scales [5-7], both
thermalization and the lack thereof have been observed in
chaotic [8-11] and (near-)integrable [11-14] quantum sys-
tems, respectively. Thermalization in quantum chaotic
systems is generally understood in the context of the
eigenstate thermalization hypothesis (ETH) [1, 15-17].
On the integrable side, thermalization is precluded by an
extensive set of local conserved quantities, though equi-
libration in these systems has also been the subject of
much interest [18-22].

As the outcomes of quantum dynamics are ultimately
determined by properties of matrix elements, the con-
tent of the ETH is usually expressed through a matrix-
element ansatz for few-body operators (observables) in
the eigenstates of chaotic Hamiltonians [1, 23]:

Oap = O(E)ap + e 5BV f0(E,w)Rap, (1)

where the average energy E = (E, + Fz)/2, the fre-
quency w = E, — Es, and S(E) is the thermodynamic
entropy at energy E. The functions O(E) and fo(FE,w)
are smooth, and R,g is a Gaussian distributed variable
with zero mean and unit variance (variance 2) for a #
(o = B) in Hamiltonians that exhibit time-reversal sym-
metry, namely, in Hamiltonians that can be represented
by real matrices. Hence, the ETH states that the diag-
onal matrix elements of observables in the energy eigen-
basis are smooth functions of the energy. This is what
makes thermalization (the agreement between long-time
results and statistical mechanics predictions) possible.

The ETH also states that the off-diagonal matrix ele-
ments are exponentially small, and this ensures equili-
bration (the time fluctuations of observables about the
time average are small) at long times [1]. The smooth
function |fo(E,w)|? is central to fluctuation-dissipation
relations [1], and can be probed experimentally by mea-
suring heating rates in periodically driven systems [24].

In quantum integrable systems, the presence of exten-
sive sets of local conserved quantities is manifest in the
properties of the matrix elements of observables. It is
known that the diagonal matrix elements have both a
support that does not vanish in the thermodynamic limit
and average fluctuations that decay as a power law in sys-
tem size [18, 25-37], and thus defy Eq. (1). In an inter-
acting integrable system (the spin-1/2 XXZ chain), the
off-diagonal matrix elements were recently found to be
nearly log-normally distributed [36]. In addition, it was
found that the variance is a smooth function of w (for £
at the center of the spectrum) that scales as prescribed by
the ETH (as a result, it can also be probed experimen-
tally by measuring heating rates in periodically driven
systems [24]). The scaling of other moments, of course,
is not determined by the scaling of the variance, which
means that there is no equivalent of the off-diagonal part
of Eq. (1) in integrable models.

Using that in interacting integrable systems one
can define a smooth scaled variance Vp(E,w) =
eSE)Var(O,p) [36], recent works have unveiled proper-
ties of that function at low values of w (for E at the
center of the spectrum of spin-1/2 lattice Hamiltonians,
E =~ 0) [38-41]. Via the computation of the adiabatic
gauge potential (AGP) norm, in Ref. [39] it was shown
that at exponentially small (in system size) frequencies
Vo(0,w) vanishes for observables that do not break in-
tegrability if added as perturbations to the Hamiltonian,
while it scales as in quantum chaotic models for observ-
ables that do. Such behaviors were observed in Ref. [40]



at frequencies that are polynomially small in the system
size. There it was also shown that observables for which
Vo(0,w — 0) scales as in quantum chaotic models do not
exhibit eigenstate thermalization at integrability.

By now, several studies have explored properties of
the off-diagonal matrix elements of observables in quan-
tum chaotic [1, 17, 26, 28, 30, 36, 38-50] and inte-
grable [26, 28, 36, 3843, 47-50] models. In this work
we aim to contribute to that existing body of literature
by studying the off-diagonal matrix elements (in the en-
ergy eigenbasis) of observables that break symmetries of
the Hamiltonian. Specifically, we study the off-diagonal
matrix elements of observables that break translational
symmetry in the eigenstates of translationally invariant
Hamiltonians. This means that the off-diagonal matrix
elements are nonvanishing between eigenstates from dif-
ferent total quasimomentum sectors. We are not aware of
previous studies of the structure of such matrix elements.

We compute these matrix elements in the eigenstates
of both a quantum-chaotic model and an interacting in-
tegrable model, for average energies at the center of the
spectrum. In the quantum-chaotic model, we find that
the off-diagonal matrix elements exhibit all of the prop-
erties prescribed by the ETH. We also find that finite-size
effects are larger in matrix elements that connect eigen-
states from different total quasimomentum sectors (the
overwhelming majority of the matrix elements) than in
matrix elements that connect eigenstates from the same
quasimomentum sector. Since, for eigenstates from the
same quasimomentum sector, the matrix elements of op-
erators that break translational symmetry are identical to
those of the corresponding translationally invariant oper-
ator, another way to phrase the latter finding is that non-
translationally invariant observables exhibit larger finite-
size effects than their translationally invariant counter-
parts. In the interacting integrable model, we find that
the distribution of the matrix elements of the nontrans-
lationally invariant observables is skewed log-normal-like
with zero mean and a variance that scales as 1/D (D is
the Hilbert space dimension), as found in Ref. [36] for
translationally invariant observables.

Another major goal of this work is to understand
the low-frequency behavior of the scaled variances. For
quantum-chaotic systems, for which the ETH (1) is ex-
pected to be valid, we refer to the scaled variances as
|fo(E,w)|?. For integrable systems, for which there is
no well defined fo(E,w) function (the scaling of the mo-
ments of the distribution of O,p is not determined by
the scaling of the variance, as mentioned before), we re-
fer to the scaled variances as Vo (E,w). We focus on E at
the center of the spectrum (E = 0), which is where the
overwhelming majority of matrix elements is located in
our local Hamiltonians. In the quantum-chaotic model,
we find |fo(0,w)|? to be consistent with random matrix
theory, namely, to exhibit a plateau as w — 0 (with a dif-
fusive scaling) [1]. In the interacting integrable model, we
find the behavior and scaling of Vp(0,w) to be rich and
observable dependent. For matrix elements that connect

energy eigenstates from within the same total quasimo-
mentum sector, we find two possible behaviors as w — 0.
Either Vo (0,w) goes to a nonzero value proportional to L
(as in quantum-chaotic models), or it vanishes. For ma-
trix elements that connect energy eigenstates from differ-
ent quasimomentum sectors, we find that Vo (0, w) always
goes to a nonzero value proportional to L. Hence, there
are observables for which the w — 0 behavior of Vo (0,w)
is qualitatively different between matrix elements that
connect energy eigenstates from the same quasimomen-
tum sector and those that connect eigenstates from dif-
ferent quasimomentum sectors. In Sec. IV, we discuss
the connection between these findings and the results in
Refs. [38-41].

The presentation is organized as follows: In Sec. II, we
introduce the spin-1/2 chains and the specific observables
studied, and discuss details of our numerical calculations.
In Sec. III, we report our results for the off-diagonal
matrix elements of observables in the quantum-chaotic
model, which include a characterization of their distri-
butions and the study of their variances. In Sec. IV, we
carry out a parallel analysis for the interacting integrable
model. In Sec. V, we summarize our results.

II. MODEL

We study the same spin-1/2 chains as in Ref. [36],
namely, the XXZ chain with the addition of next-nearest
neighbor interactions and periodic boundary conditions.
The Hamiltonian reads

H=>" [; (S;f i1 + H.c.) +AS; }11]

i=1
L
=1

where S are spin-1/2 operators in the v € {z,y, 2} di-
rections on site i (represented by Pauli matrices), S'li =
S’f :I:ZS? are the corresponding ladder operators, and L is
the number of lattice sites. A is the so-called anisotropy
parameter in the XXZ chain, and A # 0 breaks the in-
tegrability of the XXZ chain [51]. In Sec. III, we set
A = 1 to study matrix elements of Hamiltonian (2) in the
quantum-chaotic regime, while in Sec. IV we set A = 0 to
study matrix elements at integrability. We mostly com-
pare results for A = 0.55 (easy-plane regime of the XXZ
chain) and A = 1.1 (easy-axis regime of the XXZ chain).

To study the matrix elements of observables in the en-
ergy eigenstates of Hamiltonian (2), it is important to re-
solve all of its symmetries [1, 28]. First, we note that the
Hamiltonian commutes with M?* = Do Sz, which is the
total magnetization in the z-direction. We focus on the
zero magnetization sector of chains with an even num-
ber of lattice sites. This sector has an additional spin
inversion (Z2) symmetry; we focus on the even-Z, sec-
tor. Next, translational symmetry allows us to block-



diagonalize the Hamiltonian in different total quasimo-
mentum k sectors. Lastly, within the kK = 0 and 7 sectors,
we resolve the space reflection (P) symmetry.

We study the matrix elements of three local operators
that break the translation symmetry of Hamiltonian (2):
the nearest-neighbor z-interaction

U, = 5753, (3)
the next-nearest-neighbor z-interaction
Uan = 5755, (4)
and the next-nearest-neighbor flip-flop operator
Kon = SF85 + 8§57 (5)

These local operators connect all total quasimomentum
sectors of the Hamiltonian. Since the Hamiltonian is
translationally invariant, the sites used to define U, Unn,
and K, do not influence the results.

The first important consequence of the translational
symmetry of the Hamiltonian is that the diagonal matrix
elements of Uy, Upny, and Ky, (referred to in what follows
as “symmetry-breaking” operators) are identical to the
diagonal matrix elements of the corresponding transla-
tionally invariant operators (referred to in what follows
as “symmetry-preserving” operators)

L

2 1 Gz &z

UnT:ZZSi i+1s (6)
=1

T 1 - Gz Gz

Unn = z ZSI 342 (7)
i=1

T 1 ¢ &+ &— &+ &—

K., = T Z (Si Si+2 + Sz‘-i-ZSi ) : (8)
=1

In addition, within a given total quasimomentum sector,
the off-diagonal matrix elements of Uy, Uny, and Ky, are
identical to those of UL, UL , and K1, respectively.

The diagonal and the off-diagonal matrix elements
of symmetry-preserving operators were studied in de-
tail (within the & = 0 sector) in Ref. [36]. In this
work our focus will be on off-diagonal matrix elements.
In our discussions, by way of comparing the set of all
matrix elements with the set of matrix elements that
connect energy eigenstates from the same quasimomen-
tum sector, we contrast the behaviors of matrix elements
of the symmetry-breaking operators with those of their
symmetry-preserving counterparts, respectively.

The off-diagonal matrix elements (Ong) of symmetry-
breaking operators in the energy eigenstates are obtained
using full exact diagonalization within the even-Zs sector
of the M* = 0 sector (with dimension D%_) that, in turn,
is split in L total quasimomentum k sectors. Whenever
ko or kg are neither 0 nor m, one generally has On5 #
0. For the off-diagonal matrix elements within the k =
0, 7 sectors and between them, for which space reflection

symmetry is resolved, we remove from our analyses the
blocks of matrix elements that are zero [52]. We note
that, when reporting the k., = kg results for O,g, we
exclude the £ = 0 and 7 sectors (two out of L sectors)
due to the extra symmetry present in those sectors.

The dimension D of the Hilbert space used in our nor-
malization for each observable is the square root of the to-
tal number of matrix elements that do not vanish for sym-
metry reasons. Since the number of blocks with vanishing
off-diagonal matrix elements is only O(1), D ~ Dy . We
carry out calculations for chains with up to L = 22, in-
cluding all quasimomentum sectors. For matrix elements
that connect eigenstates from the same quasimomentum
sectors, we carry out calculations up to L = 24. For
our low-frequency analyses, we also report results for the
k =0, even-P, even-Zs sector up to L = 26 [36].

IIT. QUANTUM-CHAOTIC CHAIN

In this section, we study the off-diagonal matrix ele-
ments of our observables of interest in the eigenstates of
Hamiltonian (2) with A = 0.55, 1.1, and A = 1. We focus
on the regime E = (E, + Eg)/2 =~ 0, namely, on aver-
age energies at the center of the spectrum (the so-called
infinite-temperature regime).

A. Distributions

Here we characterize the distribution of |O,s|. We take
the absolute value because O,p is complex whenever k,
or kg are neither 0 nor m. In addition to considering
E ~ 0, we first focus on the regime in which w = |E, —
Eg| ~ 0. In the context of the ETH ansatz, |fo(E,w)|
exhibits a plateau in this regime [1], and the distribution
of |Onpl is expected to be the same as in random matrix
theory.

Figure 1 shows the probability distributions of [(U,)as]
[(a), (b)] and |(Unn)agl [(c), (d)] for Hamiltonian (2) with
A = 0.55, in a chain with L = 22 (qualitatively similar
results were obtained, not shown, for |(Kun)agl). Fig-
ures 1(a) and 1(c) show the distributions for pairs of en-
ergy eigenstates with k, = kg, and Figs. 1(b) and 1(d)
show the distributions for pairs that connect all quasi-
momentum sectors. In all panels in Fig. 1 we also show
half-normal distributions, for which the variances are the
same as those of the numerical results, as continuous
black lines.

Overall, the results in Fig. 1 show that |(Uy)as| and
|(Unn)ap| are normally distributed regardless of whether
one looks at eigenstate pairs for which k., = kg (i.e.,
at symmetry-preserving operators) or at all eigenstate
pairs (i.e., at symmetry-breaking operators). A compar-
ison between the results in the left columns (k, = kg)
and the right columns (all eigenstate pairs) of Fig. 1 sug-
gests that the variances of the distributions are gener-
ally different between the symmetry-preserving and the
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FIG. 1. Probability distributions P(|Oas|) for observables Uy [(a), (b)] and Unn [(c), (d)] for Hamiltonian (2) with A = 0.55
(similar results were obtained for A = 1.1) and A = 1 (quantum-chaotic regime). We consider pairs of energy eigenstates for
which |E|/L < 0.025, and choose the 40,000 matrix elements with the lowest w (this results in w < 0.001). We show results
for matrix elements with ko, = kg (excluding the k = 0 and 7 sectors, we do the same in all plots that follow) [(a), (c)] and
matrix elements that mix all quasimomentum sectors [(b), (d)], in the L = 22 chain. The continuous lines are half-normal
distributions with the same variance as the distributions P(|Oa.g|).

symmetry-breaking versions of any given observable, and
that the magnitude of the difference depends on the ob-
servable. We continue to explore those observations in
the next subsections.

Next, we probe the Gaussianity of the distributions of
matrix elements for w > 0. For that purpose we calculate
the ratio [36]

To(w) = [0aslP/0us] - (9)
In Eq. (9), (...) denotes a coarse-grained average (over
small éw windows) for pairs of energy eigenstates that
satisfy |E|/L < 0.025. If O, has a Gaussian distri-
bution with zero mean, then I'p(w) = 7/2. T'p(w) has
been computed recently for various models and observ-
ables [36, 38, 40, 49], as the normality of the distribution
of off-diagonal matrix elements of observables has been
used to probe eigenstate thermalization.

In Fig. 2(a), we show 'y, (w) for matrix elements that
connect energy eigenstates with the same quasimomen-
tum (ko = kg), and in Fig. 2(b) we show I'y,  (w) for
matrix elements that connect all sectors. The results in
Fig. 2(a) appear to have converged to 'y, (w) = /2,
with deviations at large values of w occurring because of
finite-size effects (the curves move toward 7/2 with in-
creasing L). Figure 2(b) contains deviations from Gaus-
sianity (small bumps) for w < 6, but overall exhibits

the same behavior as Fig. 2(a). Both other observables
we studied (Un and Knn) exhibited qualitatively simi-
lar behaviors for both sets of matrix elements, indicating
that, for the chain sizes accessible to us: (i) the distri-
butions of matrix elements appear to be Gaussian at all
frequencies and (ii) finite-size effects (in the form of de-
viations from Gaussianity at intermediate values of w)
are stronger for symmetry-breaking observables than for
symmetry-preserving ones.

(b) All sectors

- w2

FIG. 2.
of Hamiltonian (2) with A = 0.55 for different chain sizes
(similar results were obtained for A = 1.1). We show results
for pairs of energy eigenstates with ko = kg (a) and pairs that
mix all quasimomentum sectors (b). All pairs of eigenstates

T'v,. [see Eq. (9)] at a nonintegrable point (A = 1)

satisfy |E|/L < 0.025. The averages |(Unn)ags| and |(Unn)as|?
were coarse-grained in windows of width dw = 0.025.



In Ref. [36], for translationally invariant observables
within the £ = 0 quasimomentum sector, a small nearly
L-independent deviation in I'p (w) from 7 /2 was observed
for 5 < w < 8 (for the chain sizes available). That de-
viation was argued to be consistent with strong finite-
size effects. In Fig. 2(a), which includes results from
all pairs of energy eigenstates with k, = kg, one can
see that 'y, (w) approaches m/2 with increasing L in
that frequency regime. This further strengthens the case
that the deviations from Gaussianity seen in Ref. [36]
for translationally invariant observables are the result of
finite-size effects. In Fig. 2(b), and for U, and K,, (not
shown), we see similar small nearly L-independent de-
viations from 7/2. No such deviations have been ob-
served in recent full exact diagonalization calculations in
systems with broken translational symmetry [38, 40], so
we attribute them here to strong finite-size effects for
symmetry-breaking observables in our translationally in-
variant energy eigenstates. To further test this, we per-
formed calculations for larger [but still O(1)] values of A
and found that the deviations from 7/2 decrease deeper
in the quantum chaotic regime.

B. Variances

Next we study the behavior of the off-diagonal matrix
elements and their variances as functions of the frequency
w, as well as the scaling of the variances with system size.
Since the average O,3 = 0, the variances are given by the

averages |Oqp|?, namely, Var(Oyg) = |Oqs/?.

e 10°
(b) All sectors

FIG. 3.

Normalized 2D histograms of log, |(Unn)as|?® vs w
at a nonintegrable (A = 1) point of Hamiltonian (2) with A =
0.55 for L = 22 (qualitatively similar results were obtained for
A = 1.1). We consider pairs of energy eigenstates with ko =
ks (a) and pairs that mix all quasimomentum sectors (b). All
pairs of energy eigenstates satisfy |E|/L < 0.025. The (red)
solid lines are running averages log,q |(Unn)ap|? calculated in
windows of width dw = 0.175 centered at points separated
by Aw = 0.025. The vertical dashed lines show the values of
w up to which results for |Onp|? are included in the scaling
analysis of Fig. 4.
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FIG. 4. Scaling of [(Un)asP® [(a), (b)] and [Uan)asl? [(0)
(d)] vs D at the nonintegrable (A = 1) point of Hamilto-
nian (2) with A = 0.55 and 1.1. We consider pairs of energy
eigenstates with ko = kg [(a), (c)] and pairs that mix all
quasimomentum sectors [(b), (d)]. The straight lines show
power-law fits to the results for L = 18 through L = 22. The
average over |Oqp|? for different chain sizes was calculated us-
ing pairs of energy eigenstates that satisfy |E|/L < 0.025. We
restricted the average to pairs of eigenstates for which w < 4,
the regime in which the variances exhibit a plateau-like be-
havior in Fig. 3 (see Ref. [36] for scalings when one averages
over all frequencies).

In Fig. 3, we visualize the distribution of
logyo |(Unn)apl® as a function of w using normal-
ized 2D histograms for matrix elements between pairs
of energy eigenstates with k, = kg [Fig. 3(a)] and
between pairs that connect all quasimomentum sectors
[Fig. 3(b)]. In both panels, we have included matrix
elements for pairs of energy eigenstates for which
E/L < 0.025, and used A = 0.55 for chains with
L = 22. The results are qualitatively similar in Fig. 3(a)
and 3(b), and they are qualitatively similar to the
results for translationally invariant operators in the
k = 0 sector reported in Ref. [36]. This reveals that the
matrix elements of symmetry-breaking operators are not
qualitatively affected by the block diagonal structure of
the Hamiltonian matrix.

In Fig. 3, we also plot the variances |(Unn)ag|? (solid
lines) versus w for the two sets of matrix elements con-
sidered. Comparing these variances makes apparent that
they are qualitatively similar, but quantitatively differ-
ent. The differences are best seen for w < 5. For w 2 5,
both variances exhibit a similar exponential decay. Qual-
itatively similar results were obtained, not shown, for U,
and K.

Next, we study the scaling of the variances. Figure 4
shows |(Un)as|? [(a), (b)] and [(Unn)asl® [(c), (d)] for
A = 0.55, 1.1 in chains with L = 16 — 22. The averages
are calculated over frequencies w < 4 (qualitatively sim-
ilar results were obtained averaging over other intervals
of frequencies, see also Ref. [36]). The ETH ansatz (1)



advances that the variances should scale as 1/D in the
“infinite-temperature” regime, where e5(¥) ~ D. The re-
sults in Fig. 4 confirm that the variances for both observ-
ables and both sets of matrix elements (those for which
ko = ks [(a), (c)] and those that connect all k-sectors
[(b), (d)]) scale as 1/D. In this respect, matrix elements
of symmetry-breaking observables are no different than
those of symmetry-preserving ones, despite the fact that
the latter are nonvanishing only for k, = k3.

C. Scaled Variances

The results in Fig. 4 suggest that, for £ ~ 0, one can
define a Hilbert-space-size independent scaled variance

|fo(0,w)]? = DVar(Ougp), (10)

as advanced by the ETH (1).

In Fig. 5, we plot the scaled variance |fy,, (0,w)|* for
three chain sizes. One can see that there is excellent
data collapse away from the exponential regime at high
w. In the latter regime, the scaled variances for con-
tiguous chain sizes collapse over a larger w window with
increasing L. This points to finite-size effects as the
reason for the lack of data collapse at high w. Larger
finite-size effects are expected in finite chains at high
frequencies because the matrix elements probe pairs of
energy eigenstates at opposite edges of the energy spec-
trum [36]. Qualitatively similar results were found for all
three observables studied irrespective of the Hamiltonian
parameter A. Altogether, our calculations show that for
symmetry-breaking observables the function |fo(0,w)|?
is a well-defined smooth function of w.

We note that, for translationally invariant intensive
observables such as the ones in Eqs. (6)—(8), which have
a Hilbert-Schmidt norm that scales as 1/ \/Z, the scaled
variance was computed in Ref. [36] as

| 2

T T
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FIG. 5. Scaled variance |fu,,(0,w)|* at the nonintegrable

(A = 1) point of Hamiltonian (2) with A = 0.55 for different
chain sizes L (qualitatively similar results were obtained for
A = 1.1). We show results for pairs of energy eigenstates
with ko = ks (a) and pairs that mix all quasimomentum
sectors (b). All pairs of eigenstates satisfy |E|/L < 0.025.
The averages |(Unn)ag|? were coarse-grained in windows of
width dw = 0.025.

where D was the dimension of the specific symmetry sec-
tor considered. The results from Eq. (11) are consis-
tent with the results from Eq. (10) when one restricts
the variance in the latter to only include pairs of states
with k, = k. This is the case because, for k, = kg,
Var(Oup) = Var(OZ:ﬁ) and D ~ DL.

D. Low-Frequency Scaling

For local operators in quantum chaotic systems, be-
cause of diffusion, one expects all dynamics to occur
within times that scale with L2. In the frequency do-
main, this means that |fo (E,w)|? is expected to exhibit a
plateau as w — 0 whose size (which defines the so-called
Thouless energy) scales as 1/L?. Below the Thouless
energy, the ETH ansatz coincides with the (featureless)
predictions of random matrix theory. The magnitude of
|fo(E,w)|? in the plateau is expected to be proportional
to L [1]. Such expectations have been confirmed in lat-
tice systems with no translational symmetry (but no dis-
order) [1, 40], and the plateau has also been observed and
its size characterized in systems with weak disorder [53].

Next, we study the low-frequency behavior of
|fo(E,w)|?> for translational symmetry-breaking and
symmetry-preserving operators in the energy eigenstates
of the translationally invariant Hamiltonian (2) with
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FIG. 6. Low-frequency plots of the scaled variances

|f0(0,w)[?/L vs wL? for observables U, [(a), (b)] and Unn
[(c), (d)] at the nonintegrable (A = 1) point of Hamilto-
nian (2), with A = 0.55 (main panels) and 1.1 (insets), for
different chain sizes L. We consider pairs of energy eigen-
states with ko = kg [(a), (c¢)] and pairs that mix all quasi-
momentum sectors [(b), (d)]. All pairs of eigenstates satisfy

|E|/L < 0.025. The running averages |Oqg|? were calculated
in windows of width dw = 0.009 centered at points separated
by Aw = 0.001.
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FIG. 7. Low-frequency plots of the scaled variances
|fo(0,w)|?/L vs wL?® for observables U, (a) and K. (c),
and of | f5(0,w)|?/L for observables UL (b) and KL, (d), at
the nonintegrable (A = 1) point of Hamiltonian (2), with
A = 0.55 (main panels) and 1.1 (insets), for different chain
sizes L. We consider pairs of energy eigenstates with ko = kg
[(a), (c)] and within the even-Z,, even-P subsector of the
k = 0 sector [(b), (d)]. Al pairs of eigenstates satisfy
|E|/L < 0.025. The running averages |Oqg|? were calculated
in windows of width dw = 0.009 centered at points separated
by Aw = 0.001.

A =1 (in the quantum-chaotic regime).

In Fig. 6, we plot |fo(0,w)[?/L versus wL? for U,
[(a), (b)] and Upy [(c), (d)] using pairs of energy eigen-
states with k, = kg [(a), (¢)] and pairs that connect
all quasimomentum sectors [(b), (d)]. The main panels
(insets) show results for A = 0.55 (A = 1.1). All the
results reported in Fig. 6 are consistent with the func-
tion |fo(0,wL?)|?/L becoming system-size independent
for large systems at low w. Namely, they are consis-
tent with the scaling advanced for quantum chaotic sys-
tems [1]. From Fig. 6, given the finite-size effects, it
remains a challenge to extract the Thouless energy.

Since the results in Fig. 6 for pairs of energy eigen-
states with ko, = kg [(a), (c)] are qualitatively similar
to those of pairs that connect all quasimomentum sec-
tors [(b), (d)], albeit with smaller finite-size effects in the
former (i.e., for symmetry-preserving observables) than
in the latter (i.e., for symmetry-breaking observables),
we focus on symmetry-preserving observables next. In
Figs. 7(a) and 7(c), we plot |fo(0,w)|?/L versus wL? for
U, and Knn, respectively, in pairs of energy eigenstates
with ko = kg for chains with up to L = 24, for A = 0.55
(main panels) and for A = 1.1 (insets). The agreement
between the results for A = 1.1 (insets) in the two largest
chains is much better than in Fig. 6 [finite-size effects re-
main large for A = 0.55 (main panels)]. The results

in Figs. 7(a) and 7(c) further strengthen the expecta-
tion that the function |fo(0,wL?)|?/L becomes, at low
w, system-size independent for large systems.

In Figs. 7(b) and 7(d), we plot |f2(0,w)|?/L versus
wL? for UnT and KrlTn, in the even-Z,, even-P subsector
of the k£ = 0 sector for chains with up to L = 26, for
A = 0.55 (main panels) and for A = 1.1 (insets). These
are low-frequency results corresponding to the scaled
variances reported in Ref. [36] for intermediate and large
values of w. Figures 7(b) and 7(d) show that the behavior
in the k = 0 sector is qualitatively similar to the behavior
for all pairs of energy eigenstates with k,, = kg [Figs. 7(a)
and 7(c)], but exhibits stronger finite-size effects. This
suggests that, in exact diagonalization studies of matrix
elements of translationally invariant operators, it may be
better (in terms of reducing finite-size effects) to study
averages over all quasimomentum sectors (excluding the
k = 0 and 7 sectors) in smaller chains than to focus on
the k = 0 sector in larger ones.

IV. INTERACTING INTEGRABLE CHAIN

Next, for the interacting integrable XXZ chain [A = 0
in Hamiltonian (2)], we carry out an analysis parallel to
the one in the previous section. We show that the key
results of Ref. [36] remain valid for symmetry-breaking
observables, including a skewed log-normal-like distribu-
tion of off-diagonal matrix elements and a variance that is
a smooth function of w that scales as 1/D. Additionally,
we extend the analysis of Ref. [36] by identifying low-
frequency ballistic and diffusive scalings of the variance
of the off-diagonal matrix elements of both symmetry-
breaking and symmetry-preserving observables. Lastly,
we highlight differences between integrability-breaking
and integrability-preserving observables, supporting the
findings of Refs. [39, 40].

A. Distributions

Figure 8 shows the distributions of |Oas| for U, [(a),
(b)] and Upnyn [(c), (d)] for matrix elements for which
E ~ 0and w ~ 0. One can see that, regardless of whether
matrix elements connect pairs of eigenstates from the
same quasimomentum sectors [(a), (¢)] or from all sec-
tors [(b), (d)], the distributions are close to log-normal
(the solid black lines are log-normal distributions with
the same mean and variance as In|Oyg|). Qualitatively
similar results were obtained (not shown) for other fre-
quencies, and for Rnn.

A closer inspection of the distributions of In |Oqg| (in-
sets) reveals the nature of the differences between the
P(|Oqp|) and log-normal distributions. Specifically, the
insets show that the In|O,p| distributions are skewed
normal, with a skewness that depends both on the ob-
servable [compare the insets in Figs. 8(a) and 8(c)] and
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FIG. 8. Probability distributions P(|Oas|) for observables Uy [(a), (b)] and Unn [(c), (d)] for Hamiltonian (2) with A = 0.55
(similar results were obtained for A = 1.1) and A = 0 (the integrable XXZ chain). We consider pairs of energy eigenstates for
which |E|/L < 0.025, and choose the 40,000 matrix elements with the lowest w (this results in w < 0.001). We show results
for matrix elements with ko = kg [(a), (c)] and matrix elements that mix all quasimomentum sectors [(b), (d)] in the L = 22
chain. The insets show the probability distributions P(In|Oq.g|), along with Gaussian distributions (continuous lines) with the
same mean and variance. The continuous lines in the main panels are the corresponding log-normal distributions.

on whether one looks at matrix elements that connect
energy eigenstates from the same [Figs. 8(a) and 8(c)]
or from all [Figs. 8(b) and 8(d)] quasimomentum sec-
tors. For the three observables and the two values of
A (A = 0.55 and 1.1) studied, we found that the dis-
tributions of matrix elements involving eigenstates from
all quasimomentum sectors are the ones that exhibit a
higher skewness. In Appendix A, we report a preliminary
analysis that suggests that the distributions are skewed
log-normal-like in the thermodynamic limit.

B. Variances

The lack of normality in the distribution of off-diagonal
matrix elements of observables in integrable models
means that the variance of the distribution does not
determine other moments. Thus, there is no meaning-
ful equivalent of the off-diagonal part of the ETH (1)
in integrable systems. Still, the variance Var(O,g) =
|Oap|? (because O,5 = 0) is what is physically rele-
vant, e.g., for fluctuation-dissipation relations [1, 42],
heating rates [24], transport properties [30, 38], and
the multipartite entanglement structure of energy eigen-
states [54]. Thus, next, we seek to characterize the
variance of the distribution of off-diagonal elements for
symmetry-breaking observables and compare it to that of

symmetry-preserving ones in the integrable XXZ chain.

In Fig. 9, we show normalized 2D histograms of
1og1 |(Unn)ap|? for pairs of energy eigenstates that sat-
isfy |E|/L < 0.025 in chains with L = 22. We report
results for A = 0.55 (the ones obtained for A = 1.1, not
shown, are qualitatively similar) between pairs of eigen-
states with k, = kg [Fig. 9(a)] and between pairs that
connect all quasimomentum sectors [Fig. 9(b)]. We note
that the results in Fig. 9(a) are qualitatively similar to
those reported in Ref. [36] for translationally invariant
observables in the k& = 0 sector. As in Ref. [36], the
support of the distribution for Uy, is much broader for
the interacting integrable system [Fig. 9(a)] than for the
nonintegrable one [Fig. 3(a)]. Also, in Fig. 9(a), no signif-
icant fraction of matrix elements has a vanishing magni-
tude as seen in quadratic models [42]. Because of this, for
interacting integrable models, one can define a meaning-
ful average |Onp)? at each value of w. Figure 9(b) shows
that the same is true for symmetry-breaking observables
that connect all quasimomentum sectors.

The (red) solid lines in Fig. 9 show the w-resolved
variances of |(Unn)ag|- As in the quantum chaotic case
(Fig. 3), differences can be seen in the variances of matrix
elements connecting the same quasimomentum sectors
[Fig. 9(a)] and all sectors [Fig. 9(b)] for w < 4. The ex-
ponential and Gaussian regimes at high w (see Ref. [36])
are similar in both sets of matrix elements.
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FIG. 9. Normalized 2D histograms of log,, |(Unn)as|?® vs w
in the XXZ chain with A = 0.55 for L = 22 (qualitatively
similar results were obtained for A = 1.1). We consider pairs
of energy eigenstates with ko = kg (a) and pairs that mix
all quasimomentum sectors (b). All pairs of energy eigen-
states satisfy |E|/L < 0.025. The (red) solid lines are run-
ning averages 1og;, |(Unn)ag|? calculated in windows of width
dw = 0.175 centered at points separated by Aw = 0.025. The
vertical dashed lines show the values of w up to which results
for |Oas|? are included in the scaling analysis of Fig. 10.

Next, we study how the variances scale with increasing
chain size. In Fig. 10, we show finite-size scaling analyses
of the variance |Oqg|? versus D for U, [(a), (b)] and Uny
[(c), (d)] for chains with L = 16 — 22. The average is
calculated over frequencies w < 3.5 (qualitatively similar

1074 (;;) k= k,B 1 (b) All sectors 4
* A=0.55
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FIG. 10. Scaling of |(Un)ag|? [(a), (b)] and |(Unn)as|? [(c),
(d)] vs D in the (integrable) XXZ chain with A = 0.55 and
1.1. We consider pairs of energy eigenstates with ko, = kg
[(a), (c)] and pairs that mix all quasimomentum sectors [(b),
(d)]. The straight lines show power-law fits to the results for
L = 18 through L = 22. The average over |Os|> for different
chain sizes was calculated using pairs of energy eigenstates
that satisfy |E|/L < 0.025. We restricted the average to pairs
of eigenstates for which w < 3.5, the regime in Fig. 9 in which
the variances exhibit a plateau-like behavior (see Ref. [36] for
scalings when one averages over all frequencies).

results were obtained averaging over other intervals of
frequencies, see also Ref. [36]). As found in Ref. [36] for
translationally invariant observables in the £ = 0 sector
of the XXZ chain, all variances in Fig. 10 scale as 1/D
(as they do in the quantum chaotic system in Fig. 4).
This occurs regardless of whether the matrix elements are
computed between pairs of energy eigenstates from the
same quasimomentum sector [(a), (c)] or between pairs
that mix all quasimomentum sectors [(b), (d)].

C. Scaled Variances

The results in Fig. 10 suggest that, for £ ~ 0, one can
define a Hilbert-space-size independent scaled variance

VO(O,w) = DV&I‘(OQQ), (12)

as for quantum-chaotic systems (10). Note that we use
a different label for the scaled variance in integrable sys-
tems to emphasize that there is no equivalent of the off-
diagonal part of the ETH (1) for them.

In Fig. 11, we plot the scaled variance Vi, (0,w) for
three chain sizes. The results in Fig. 11(a) confirm
the data collapse expected from Ref. [36] for symmetry-
preserving observables, while the results in Fig. 11(b)
demonstrate that the same is true for symmetry-breaking
ones. We note that, for translationally invariant inten-
sive observables such as the ones in Egs. (6)—(8), which
have a Hilbert-Schmidt norm that scales as 1/v/L, the
scaled variance was computed in Ref. [36] as

VA (0,w) = DL Var(Ogﬁ), (13)

where D was the dimension of the specific symmetry sec-
tor considered. The results from Eq. (13) are consistent
with the results from Eq. (12) for states with ko, = kg
because Var(Oap) = Var(Of ;) and D ~ DL.

In Fig. 11, finite-size effects are smaller for the smallest
values of Vi7,_ (0, w) computed than in nonintegrable sys-
tems (see Fig. 5). The reason is that Vy, (0,w) decays
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FIG. 11. Scaled variance Vy,, (0,w) in the XXZ chain with

A = 0.55 for different chain sizes L (qualitatively similar re-
sults were obtained for A = 1.1). We show results for pairs
of energy eigenstates with ko = kg (a) and pairs that mix all
quasimomentum sectors (b). All pairs of eigenstates satisfy
|E|/L < 0.025. The averages |(Unn)as|? were coarse-grained
in windows of width dw = 0.025.



more quickly with w in integrable systems [24, 36] so that,
for the smallest values of V7, (0,w) computed (limited by
the machine precision) for the largest chains, the matrix
elements are not probing the edges of the spectrum.

Overall, the results in Fig. 11 strengthen the conclu-
sion in Ref. [36], explored recently in nontranslationally
invariant XXZ chains [38, 40], that in interacting inte-
grable systems there is a well defined scaled variance
Vo(E,w). As per our results here, the scaled variance
is well defined even for observables that break Hamilto-
nian symmetries.

D. Low-Frequency Scaling

Next we study the low-frequency behavior of the scaled
variances Vo (0,w). Two recent works [38, 40] have stud-
ied the low-frequency behavior of scaled variances of
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FIG. 12. Low-frequency plots of the scaled variances

Vo (0,w)/L vs wL for observables Uy, [(a), (b)], Unn [(c), (d)],
and K,y [(e), (f)] in the (integrable) XXZ chain with A = 0.55
(main panels) and 1.1 (insets), for different chain sizes L. We
consider pairs of energy eigenstates with k. = ks [(a), (c), (e)]
and pairs that mix all quasimomentum sectors [(b), (d), (f)].
All pairs of eigenstates satisfy |E|/L < 0.025. The averages
|Oap|? were coarse-grained in windows of width dw = 0.025.
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nontranslationally invariant operators like the ones in
Egs. (3)—(5), and of averages like the ones in Egs. (6)—
(8), in the XXZ chain with open boundary conditions
(namely, without translational symmetry). For the aver-
age spin current operator per site, in Ref. [38] it was
shown that the scaled variance exhibits a large low-
frequency peak in the easy-plane regime (A = 0.55)
whose height is proportional to L and location in fre-
quency scales as 1/L. The area under the peak does not
change with increasing system size, and in the thermody-
namic limit it is expected to signal ballistic DC transport
(the peak would be at w = 0 and it would have a nonzero
weight) [55, 56]. Such a peak was absent in the scaled
variance in the easy-axis (A = 1.1) regime [38]. For other
observables, the results in Ref. [40] are qualitatively simi-
lar to results that we report here so we will mention them

W

10°V,, (0.w)/L
O

® Ao,
0 m—— t
T T T T B
0.5} M y /\<
~ K
g - 1 r 0 Il Il 7 1 i 1 1 7
>b= 0 30 60 90 0 30 60 90
o g
=)
— - = d
. . . . ()
- - - —
é: — ' Brirensb? )
=) ; 0 X 1 X 1 X 0 [ 1
>;<= 0 30 60 90 0 30 60 90
=

FIG. 13. Low-frequency plots vs wa of the scaled variances
Vo(0,w)/L for observables U, (a), Unn (¢), Kun (€), and of
V& (0,w)/L for observables UL (b), UL, (d), and KL, (f), in
the XXZ chain with A = 0.55 (main panels) and 1.1 (insets),
for different chain sizes L. We consider pairs of energy eigen-
states with ko = kg [(a), (c), (e)] and within the even-Zs,
even-P subsector of the k = 0 sector [(b), (d), (f)]. All pairs
of eigenstates satisfy |E|/L < 0.025. The running averages
|Oap|? were calculated in windows of width dw = 0.009 cen-
tered at points separated by Aw = 0.001.
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of energy eigenstates with ko = kg. All pairs of eigenstates satisfy |E|/L < 0.025. The running averages |Oazs|? were calculated
in windows of width dw = 0.009 centered at points separated by Aw = 0.001.

along with our discussion.

In Fig. 12, we plot Vi (0,w)/L versus wL in chains with
up to L = 22 for U, [(a), (b)], Unn [(¢), (d)], and Kyy [(€),
(f)]. In the left column [(a), (c), ()], we show results for
pairs of energy eigenstates from the same quasimomen-
tum sectors and, in the right column [(b), (d), (f)], we
show results for pairs that connect all quasimomentum
sectors. In the main panels (insets), we show results for
A = 0.55 (A = 1.1). All plots in Fig. 12 exhibit good
data collapse. In particular, one can see that the loca-
tion of small features (e.g., peaks and valleys) does not
change for different chain sizes (see also the results in
Appendix B). This shows that in the XXZ chain, both
in the easy-plane and easy-axis regimes, as well as for
both symmetry-preserving and symmetry-breaking ob-
servables, there is a robust regime in which the vari-
ances Vo (0,w)/L exhibit ballistic scalings. Qualitatively
similar results were reported in Ref. [40] for the XXZ
chain with open boundary conditions. Ballistic scalings
of variances have also been observed in quantum-chaotic
systems [1, 38]. The collapse of the scaled variances
Vo(0,w)/L when plotted versus wL degrades as w in-
creases and one enters the L independent regime depicted
in Fig. 11. Characterizing the transition between these
two regimes is an interesting problem that should be tack-
led in future works.

Let us focus first on the behavior of Vp(0,w)/L for
matrix elements that connect energy eigenstates from
the same quasimomentum sectors (symmetry-preserving
observables).  Comparing the results in Fig. 12(a)
with those in Figs. 12(c) and 12(e), one can see that
Vi, (0,w — 0)/L vanishes while Vi, (0,w — 0)/L and
Vk,.(0,w — 0)/L converge to a nonzero system-size-
independent value (see also the results in Appendix B).
This behavior is qualitatively similar to the one reported
in Ref. [40] for the XXZ chain with open boundary con-
ditions. There, the scaled variance was found to vanish
as w — 0 for observables that do not break the integra-

bility of the XXZ chain (as is the case here for UT), while
Vo(0,w)/L was found to converge to a nonzero system-
size-independent value for observables that do (as is the
case here for U;ﬂl and K T'). This is consistent with the re-
sults from Ref. [39] for frequencies that are exponentially
small in system size. However, we must emphasize that
the results in Fig. 12 and in Ref. [40] are for frequencies
that are polynomially small in system size and, as such,
involve an average over a rapidly (exponentially) growing
number of matrix elements with increasing system size.
An interesting feature in the behavior of Vi (0,w)/L
in Figs. 12(a), 12(c), and 12(e), for both A = 0.55
(main panels) and 1.1 (insets), is that there is a wors-
ening of the data collapse as w — 0 (it is difficult to
see in the plots because it occurs at small values of wL).
This was also noticed in results reported in Ref. [40].
In Figs. 13(a), 13(c), and 13(e), we replot (using a
finer coarse graining) the lowest frequency results from
Figs. 12(a), 12(c), and 12(e) but against wL?. The excel-
lent data collapse in Figs. 13(a), 13(c), and 13(e) at the
lowest frequencies (see also the results in Appendix B)
suggests that, no matter whether the XXZ chain is in the
easy-plane or easy-axis regimes, the variances exhibit dif-
fusive scalings. For completeness, in Figs. 13(b), 13(d),

and 13(f), we plot VZ'(0,w)/L versus wL? for UL, UL,
and K7 in the even-Z,, even-P subsector of the k = 0
sector for chains with up to L = 26 for both A = 0.55
(main panels) and A = 1.1 (insets). The results resemble
the ones from Figs. 13(a), 13(c), and 13(e), but exhibit
larger finite-size effects, as found in Fig. 7 for quantum-
chaotic systems.

To further explore the role of A in the low-frequency
behavior of the scaled variances of symmetry preserv-
ing operators, in Fig. 14 we plot Vy, (0,w)/L (a),
V.. (0,w)/L (b), and Vg, (0,w)/L (c) versus wL? for
different values of the anisotropy parameter A for lat-
tices with L = 22 [57]. The main panels show results in
the easy-plane regime, while the insets show results in
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FIG. 15. Low-frequency plots of the scaled variances Vo (0,w)/L vs wL? for observables Uy (a), Unn (b), and Kun (c), in the
XXZ chain with A = 0.55 (main panels) and 1.1 (insets), for different chain sizes L. We consider pairs of energy eigenstates that

mix all quasimomentum sectors. All pairs of eigenstates satisfy |E|/L < 0.025. The running averages |Ons|2 were calculated
in windows of width dw = 0.009 centered at points separated by Aw = 0.001.

the easy-axis regime. For U, which is the integrability-
preserving observable, Vi (0,w — 0)/L vanishes ir-
respective of A.  Conversely, for the integrability-
breaking observables Uy, and Ky,, Vi, (0,w — 0)/L
and Vg, (0,w — 0)/L do not vanish for any A. In the
lowest frequency regime for the latter observables, a ro-
bust plateau is seen in the scaled variances for A > 1,
and the results for A < 1 are consistent with a plateau.
Hence, our results suggest that, as in quantum chaotic
systems, diffusion puts the ultimate limit on the equili-
bration time for integrability-breaking observables in the
XXZ chain.

To conclude, let us discuss the behavior of the vari-
ances for the operators that break translational sym-
metry. In Figs. 12(b), 12(d), and 12(f), we show re-
sults for Vp(0,w)/L versus wL when averaging over all
matrix elements (i.e., for the symmetry-breaking oper-
ators). The scaled variances for the three observables,
for A = 0.55 (main panels) and 1.1 (insets), are all
qualitatively similar. The contrast with the results in
Figs. 12(a), 12(c), and 12(e) for matrix elements within
the same quasimomentum sectors (symmetry-preserving
operators) is remarkable. Breaking translational symme-
try does not affect the ballistic scaling of the variances
but erases many features in Vp(0,w)/L, especially the
vanishing [Fig. 12(a)] or the fast decrease [Figs. 12(c),
and 12(e)] seen in Vp(0,w)/L as w — 0. For all re-
sults in Figs. 12(b), 12(d), and 12(f), Vo(0,w — 0)/L is
seen to plateau to a (close to) system-size-independent
value. Since ﬁn, Unm and K,, break the integrability of
the XXZ chain if added as perturbations, the observed
behavior is consistent with our previous discussion for
integrability-breaking observables. In Figs. 15(a), 15(b),
and 15(c), we replot (using a finer coarse-graining)
the lowest frequency results from Figs. 12(b), 12(d),
and 12(f), respectively, but against wL?. They are quali-
tatively similar to the results shown in Fig. 6 for quantum
chaotic systems. As in Fig. 6, larger finite-size effects for

the symmetry-breaking observables appear to disrupt the
expected scaling for the magnitude of the variance.

V. SUMMARY AND DISCUSSION

We studied the off-diagonal matrix elements of observ-
ables that break translational symmetry in eigenstates
of translationally invariant Hamiltonians. In contrast to
translationally invariant observables, the matrix elements
of the observables considered here connect sectors with
different total quasimomentum. We probed properties
of the matrix elements in a quantum-chaotic Hamilto-
nian, as well as in an interacting integrable one (the XXZ
chain).

In the quantum-chaotic model, we found that the qual-
itative behavior of the off-diagonal matrix elements is
unaffected by the block diagonal structure of the Hamil-
tonian in quasimomentum space. Namely, they exhibit
all the properties prescribed by the ETH for pairs of
eigenstates that mix quasimomentum sectors and pairs
of eigenstates that do not. Also, the scaled variances
|fo(E,w)|? exhibit the expected diffusive scaling in both
sets of matrix elements as w — 0. We do find that there
are quantitative differences between matrix elements that
mix or do not mix quasimomentum sectors; specifically,
the scaled variances were found to be generally different,
and finite-size effects appear to be stronger in the ones
that mix quasimomentum sectors.

A much richer behavior was found in interacting in-
tegrable models. While the main findings of Ref. [36]
for translationally invariant observables still apply to
observables that break translational symmetry, namely
that the off-diagonal matrix elements exhibit skewed
log-normal-like distributions and the scaled variances
Vo(E,w) are well-defined smooth functions, new behav-
iors were found for symmetry-breaking operators at low
frequencies. Most notably, for the operators that have a



translationally invariant counterpart that does not break
integrability if added as a perturbation to the Hamilto-
nian, Vo (E,w) vanishes as w — 0 for matrix elements
that do not mix quasimomentum sectors while it ap-
proaches a nonvanishing value proportional to L for ma-
trix elements that do. For other observables, Vo (E,w)
approaches a nonvanishing value proportional to L as
w — 0 regardless of whether or not the matrix ele-
ments mix quasimomentum sectors. However, the low-
frequency behavior of Vo (E,w) for those other observ-
ables is still clearly different between the two sets of
matrix elements. For matrix elements that do not mix
quasimomentum sectors, there is a dip at low frequen-
cies in Vo(E,w) that is absent for those that do. The
scaled variances in the latter exhibit a behavior that is
qualitatively similar to the one seen in quantum chaotic
systems.

We also showed that, for the observables studied in
the integrable XXZ chain (which do not include the spin
current [38]), the lowest frequency scaling of Vp(FE,w)
is consistent with being diffusive regardless of whether
the chain is in the easy-plane or easy axis regimes.
For integrability-breaking observables, our results sug-
gest that diffusion puts the ultimate limit on the equili-
bration time in the XXZ chain. In addition, we found a
robust frequency regime in which the scaling of Vo (E, w)
is ballistic for all observables. These results are com-
plementary to the rich recent literature on the interplay
between ballistic, superdiffusive, and diffusive spin trans-
port in the XXZ chain and other lattice models [58-65]
(see Ref. [66] for a recent review on this topic).
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Appendix A: Skewed log-normal-like distributions
in the XXZ Chain

In order to probe whether the skewness observed in
Fig. 8 is a finite-size effect or remains in the thermody-
namic limit, we consider P(In|O,3|) to be a more general
function of In |O,s| than just a Gaussian. Specifically, we
take

P 0ns]) xexp [(mD)f (M52 ) ] ()

InD

where f(z) is an unknown concave function (quadratic
for the log-normal distribution). This form is motivated
by studies of multiplicative noise and multifractals in
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FIG. 16.  Probability distributions P(In|(Knn)ag|)/(In D)

plotted as functions of In |(Knn)ag|/(In D) in XXZ chains with
A = 0.55 and L = 20, 22, and 24. We show results for matrix
elements with ko = ks selected as explained in Fig. 8.

which similar skewed log-normal-like distributions ap-
pear [67]. We focus on matrix elements that connect
pairs of eigenstates from the same quasimomentum sec-
tors as those are the ones that have been found to exhibit
smaller finite-size effects.

In Fig. 16 we plot In P(In |(Knn)ag|)/(In D) as a func-
tion of In | (Knn)as|/(In D) for the three largest chain sizes
considered in this work. The data collapse observed sug-
gests that P(In |(Knn)agl) is described by the ansatz (A1)
with an f(z) function that is not quadratic, namely, that
P(ln |(Kun)agl) is a skewed log-normal-like distribution
in the thermodynamic limit. We defer finding the f(z)
function to future studies. Similar results were obtained
for the other integrability-breaking observable U, which,
like K,,, has a well defined plateau at low frequency in
which the scaled variance Vo (F,w) is nonvanishing.

Appendix B: Ballistic versus Diffusive Scalings
in the XXZ Chain

Here we show the low-frequency behavior of the
scaled variances Vi, (0,w)/L [Figs. 17(a) and 17(b)] and
Vk,.(0,w)/L [Fig. 17(c) and 17(d)] plotted versus wL
[Figs. 17(a) and 17(c)] and versus wL? [Figs. 17(b)
and 17(d)] side-by-side for the two largest (integrable)
XXZ chains studied (L = 22 and L = 24). The main
panels show results for A = 0.55 while the insets show
results for A = 1.1. Figure 17 makes apparent that the
data collapses discussed in the main text improve with in-
creasing chain size. Also, plotting only two chain sizes in
Fig. 17 allows one to better see the level of detail at which
the data collapses occur, including the various features in
the scaled variances whose location remains system-size
independent in the plots versus wl and versus wL?.
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FIG. 17. Low-frequency plots of the scaled variances

Vo (0,w)/L vs wL [(a), (c)] and vs wL? [(b), (d)] for observ-
ables U, [(a), (b)] and Kun [(c), (d)] in the integrable XXZ
chain with A = 0.55 (main panels) and 1.1 (insets). The re-
sults are for the two largest chain sizes studied (L = 22 and
24) for matrix elements between pairs of energy eigenstates
with ko = kg. All pairs of eigenstates satisfy |E|/L < 0.025.
The averages |Oqg|? in (a) and (c) were coarse-grained in win-
dows of width dw = 0.025. The running averages |Oag|? in
(b) and (d) were calculated in windows of width dw = 0.009
centered at points separated by Aw = 0.001.
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