
Entanglement in many-body eigenstates of quantum-chaotic quadratic Hamiltonians
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In a recent Letter [Phys. Rev. Lett. 125, 180604 (2020)], we introduced a closed-form analytic
expression for the average bipartite von Neumann entanglement entropy of many-body eigenstates
of random quadratic Hamiltonians. Namely, of Hamiltonians whose single-particle eigenstates have
random coefficients in the position basis. A paradigmatic Hamiltonian for which the expression is
valid is the quadratic Sachdev-Ye-Kitaev (SYK2) model in its Dirac fermion formulation. Here we
show that the applicability of our result is much broader. Most prominently, it is also relevant for lo-
cal Hamiltonians such as the three-dimensional (3D) Anderson model at weak disorder. Moreover, it
describes the average entanglement entropy in Hamiltonians without particle-number conservation,
such as the SYK2 model in the Majorana fermion formulation and the 3D Anderson model with
additional terms that break particle-number conservation. We extend our analysis to the average
bipartite second Rényi entanglement entropy of eigenstates of the same quadratic Hamiltonians,
which is derived analytically and tested numerically. We conjecture that our results for the entan-
glement entropies of many-body eigenstates apply to quadratic Hamiltonians whose single-particle
eigenstates exhibit quantum chaos, to which we refer as quantum-chaotic quadratic Hamiltonians.

I. INTRODUCTION

Many-body quantum chaos is a phenomenon that
underpins our understanding of quantum ergodicity in
many-body systems, and is studied in different fields
of physics ranging from condensed matter systems [1],
quantum gases and analog quantum simulators [1–3], to
high-energy physics [4]. It is also intimately related to
the eigenstate thermalization hypothesis (ETH) [1, 5–8],
which provides a sufficient criterion to explain thermal-
ization of local observables in isolated quantum systems.
Establishing more rigorous relations between the ETH
and many-body quantum chaos is an active research di-
rection [1, 9–14].

Early studies of quantum chaos focused on single-
particle quantum systems that exhibit chaotic dynamics
in the semiclassical limit [15]. In this context, it was
conjectured [16] that the statistics of the energy level
spacings of quantum systems whose classical counter-
part is chaotic agrees with the random matrix theory
(RMT) predictions [17]. As a result, RMT statistics of
level spacings has become a defining property of quan-
tum chaotic systems. These ideas have been extended
to lattice Hamiltonians in regimes that do not have a
semiclassical limit [18–28].

One can divide lattice Hamiltonians into quadratic
Hamiltonians and interacting ones. Quadratic Hamil-
tonians (our focus here) can be expressed in the diag-

onal form Ĥ =
∑

q εq ĉ
†
q ĉq, where {εq} and {c†q} are

the single-particle eigenenergies and the corresponding
creation operators of the single-particle energy eigen-
states, respectively. The many-body eigenstates of those
Hamiltonians are products of single-particle eigenstates,
|q〉 ≡ ĉ†q|∅〉. As a consequence of this simple structure,
quadratic models do not exhibit quantum chaos at the

many-body level. Instead, RMT-like properties can be
found in their single-particle sector. For example, the
three-dimensional Anderson model below the localization
transition [29–33] is known to exhibit single-particle level
statistics and wave-function delocalization measures that
agree with the RMT predictions. In what follows we re-
fer to Hamiltonians that exhibit single-particle quantum
chaos as quantum-chaotic quadratic Hamiltonians. They
are to be contrasted to other quadratic Hamiltonians,
e.g., translationally invariant ones, which do not exhibit
single-particle quantum chaos.

One of the motivations of our study is to show that it
is possible to identify the underlying presence of single-
particle quantum chaos in the many-body eigenstates of
quadratic Hamiltonians. Recent studies of a class of
quantum-chaotic quadratic models (SYK2 Hamiltonians)
used the spectral form factor to demonstrate that single-
particle quantum chaos manifests in the many-body spec-
trum as a residual repulsion between distant many-body
energy levels [34, 35].

Interacting (generic) Hamiltonians, on the other hand,
cannot be reduced to bilinear forms in creation and an-
nihilation operators. For those Hamiltonians, RMT-like
properties are explored in the many-body context, e.g.,
by studying the spectral statistics of the many-body
eigenenergies [18–28] or the structure of their many-body
eigenstates [9, 26–28, 36–44]. If properties of an interact-
ing Hamiltonian agree with the RMT predictions, one
says that the Hamiltonian is quantum chaotic. Such
Hamiltonians are to be contrasted to integrable ones, for
which exact solutions are available even in the many-
body context in the presence of interactions.

Many studies have shown that entanglement measures
are effective in identifying quantum chaos at the many-
body level. They include, for example, bipartite [9–
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lows one to identify the presence of single-particle quan-
tum chaos in the many-body eigenstates of quadratic
Hamiltonians. We test this conjecture for several
quadratic Hamiltonians, ranging from those with non-
local operators to those with only local operators. The
latter include the well-known 3D Anderson model in the
presence of weak disorder, see the circles in Fig. 1. Go-
ing beyond the von Neumann entanglement entropy, we
derive an analytic expression for the second Rényi entan-
glement entropy (see the dashed line in Fig. 1), and show
numerical results (see the squares in Fig. 1 for 3D Ander-
son model results) that support the expectation that it
is also universal for quantum-chaotic quadratic Hamilto-
nians. Note that the second Rényi entanglement entropy
can be viewed as a purity of a subsystem density matrix
of a quantum state, and has been measured in experi-
ments with ultracold atoms on optical lattices [86, 87].

The presentation is organized as follows. In Sec. II,
we introduce the quantum-chaotic quadratic Hamiltoni-
ans under investigation, and discuss the contrast between
the single-particle and many-body results for the level
spacing statistics when there is single-particle quantum
chaos. We then study numerically, in Sec. III, the valid-
ity of Eq. (7) in the many-body eigenstates of the models
under investigation. In Sec. IV, we derive an analytical
expression for the second Rényi entanglement entropy,
which we then test numerically. We conclude with a sum-
mary and discussion in Sec. V.

II. QUANTUM-CHAOTIC QUADRATIC
HAMILTONIANS

Quantum-chaotic quadratic Hamiltonians can be di-
vided into two classes: local Hamiltonians, i.e., Hamilto-
nians Ĥ that are extensive sums of local operators [oper-
ators that have support on O(1) consecutive lattice sites],
and nonlocal ones. Below we introduce those two classes
separately.

A. Nonlocal Hamiltonians

We consider the quadratic Sachdev-Ye-Kitaev model in
the Dirac fermion formulation (in short, the Dirac SYK2
model),

ĤDSYK2 =

V
∑

i,j=1

Aij f̂
†
i f̂j , (8)

as well as in the Majorana fermion formulation (the Ma-
jorana SYK2 model),

ĤMSYK2 =
2V
∑

i,j=1

iΛijχ̂iχ̂j , (9)

where f̂i (f̂†
i ) is the Dirac fermion annihilation (creation)

operator at site i, V is the number of lattice sites for

Dirac fermions, and χ̂i is the Majorana fermion operator.
We assume that the neighboring Majorana fermions are

paired, f̂i = χ̂2i−1 + iχ̂2i and f̂†
i = χ̂2i−1 − iχ̂2i [88,

89]. The matrix A in Eq. (8) is a complex Hermitian
matrix drawn from the Gaussian unitary ensemble, i.e.,
its diagonal elements are real numbers with zero mean
and 2/V variance, while the off-diagonal elements are
complex numbers with real and imaginary parts having
zero mean and 1/V variance. The matrix Λ in Eq. (9) is
real and antisymmetric with normally distributed entries
having zero mean and (1 + δij) /V variance [61, 90].

We also consider the general quadratic (GQ) model

ĤGQ =

V
∑

i,j=1

Aij f̂
†
i f̂j +

V
∑

i,j=1

(

Bij f̂
†
i f̂

†
j + B∗

ij f̂j f̂i

)

, (10)

for which the matrices A and B are complex Hermitian
and complex antisymmetric, respectively. Their diagonal
elements are normally distributed real numbers with zero
mean and 2/V variance, while their off-diagonal elements
are complex numbers with normally distributed real and
imaginary parts with zero mean and 1/V variance. The
Hamiltonian in Eq. (10) breaks the particle-number con-
servation present in Eq. (8). Note that the Majorana
SYK2 model also breaks the particle-number conserva-
tion, i.e., the Hamiltonian in Eq. (9) can be presented in
the same form as the Hamiltonian in Eq. (10) when writ-
ten in terms of Dirac fermions. However, the matrices
A and B are related and fully determined by Λ in that
case.

B. Local Hamiltonians

We also study the Anderson model on a cubic lattice
with V sites [91],

ĤA = −
∑

〈i,j〉

f̂†
i f̂j +

W

2

V
∑

i=1

εif̂
†
i f̂i , (11)

which is a local Hamiltonian with nearest-neighbor hop-
ping and onsite disorder. The latter is described by in-
dependent uniformly distributed random numbers εi ∈
[−1, 1], so that W is the width of the disorder distribu-
tion. The indices in the sums in Eq. (11) are defined
as i = x + (y − 1)L + (z − 1)L2 where (x, y, z) are the
Cartesian coordinates of a lattice site, each belonging to
the set [1, . . . , L] with the linear size L = V 1/3. In the
first sum in Eq. (11), 〈i, j〉 denotes nearest neighbor sites
i and j. We use periodic boundary conditions so the
Hamiltonian is translationally invariant at W = 0.

The 3D Anderson model in Eq. (11) exhibits a
delocalization-localization transition upon increasing W .
For single-particle eigenstates at the center of the energy
spectrum, the critical value of W is W ∗ ≈ 16.5 [92–94].
In this work we focus on the delocalized regime W < W ∗,
and, in the context of the average eigenstate entangle-
ment entropy, in the regime in which the overwhelming



















12

in one-dimensional bosonic and fermionic systems and
its relation to thermalization, Phys. Rev. E 81, 036206
(2010).

[27] M. Rigol and L. F. Santos, Quantum chaos and ther-
malization in gapped systems, Phys. Rev. A 82, 011604
(2010).

[28] C. Kollath, G. Roux, G. Biroli, and A. M. Luchli,
Statistical properties of the spectrum of the extended
bose–hubbard model, J. Stat. Mech (2010), P08011.

[29] B. Al’tshuler and B. Shklovskii, Repulsion of energy lev-
els and conductivity of small metal sample, Zh. Eksp.
Teor. Fiz. 91, 220 (1986).

[30] B. Al’tshuler, I. Zharekeshev, S. Kotochigova, and
B. Shklovskii, Repulsion between energy levels and the
metal-insulator transition, Zh. Eksp. Teor. Fiz. 94, 343
(1988).

[31] B. I. Shklovskii, B. Shapiro, B. R. Sears, P. Lambrian-
ides, and H. B. Shore, Statistics of spectra of disordered
systems near the metal-insulator transition, Phys. Rev.
B 47, 11487 (1993).

[32] E. Hofstetter and M. Schreiber, Statistical properties of
the eigenvalue spectrum of the three-dimensional An-
derson Hamiltonian, Phys. Rev. B 48, 16979 (1993).

[33] P. Sierant, D. Delande, and J. Zakrzewski, Thouless
time analysis of Anderson and many-body localization
transitions, Phys. Rev. Lett. 124, 186601 (2020).

[34] Y. Liao, A. Vikram, and V. Galitski, Many-body level
statistics of single-particle quantum chaos, Phys. Rev.
Lett. 125, 250601 (2020).

[35] M. Winer, S.-K. Jian, and B. Swingle, Exponential
ramp in the quadratic Sachdev-Ye-Kitaev model, Phys.
Rev. Lett. 125, 250602 (2020).

[36] J. Karthik, A. Sharma, and A. Lakshminarayan, En-
tanglement, avoided crossings, and quantum chaos in
an Ising model with a tilted magnetic field, Phys. Rev.
A 75, 022304 (2007).

[37] E. Torres-Herrera, J. Karp, M. Tvora, and L. Santos,
Realistic many-body quantum systems vs. full random
matrices: Static and dynamical properties, Entropy 18,
359 (2016).

[38] R. Mondaini, K. R. Fratus, M. Srednicki, and M. Rigol,
Eigenstate thermalization in the two-dimensional trans-
verse field Ising model, Phys. Rev. E 93, 032104 (2016).

[39] D. J. Luitz and Y. Bar Lev, Anomalous thermalization
in ergodic systems, Phys. Rev. Lett. 117, 170404 (2016).

[40] Y. Y. Atas and E. Bogomolny, Quantum Ising model
in transverse and longitudinal fields: chaotic wave func-
tions, J. Phys. A 50, 385102 (2017).
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