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ABSTRACT

Gravitational waves provide a unique tool for observational astronomy. While the first LIGO—Virgo catalogue of gravitational-
wave transients (GWTC-1) contains 11 signals from black hole and neutron star binaries, the number of observations is increasing
rapidly as detector sensitivity improves. To extract information from the observed signals, it is imperative to have fast, flexible,
and scalable inference techniques. In a previous paper, we introduced BILBY: a modular and user-friendly Bayesian inference
library adapted to address the needs of gravitational-wave inference. In this work, we demonstrate that BILBY produces reliable
results for simulated gravitational-wave signals from compact binary mergers, and verify that it accurately reproduces results
reported for the 11 GWTC-1 signals. Additionally, we provide configuration and output files for all analyses to allow for easy
reproduction, modification, and future use. This work establishes that BILBY is primed and ready to analyse the rapidly growing
population of compact binary coalescence gravitational-wave signals.

Key words: gravitational waves —methods: data analysis — stars: neutron —stars: black holes — transients: black hole mergers —

transients: neutron star mergers.

1 INTRODUCTION

Gravitational-wave astronomy presents a revolutionary opportunity
to probe fundamental physics and astrophysics, ranging from the
neutron star equation of state and stellar evolution to the expansion
of the Universe. The first direct observations of gravitational-wave
signals have been made by Advanced LIGO (Aasi et al. 2015) and
Advanced Virgo (Acernese et al. 2015); their first gravitational-wave
catalogue of transients (GWTC-1; Abbott et al. 2019f) contains
10 binary black hole coalescences and one binary neutron star
coalescence. The third observing run may yield O(10%) additional
observations (Abbott et al. 2018b), with signals from a second binary
neutron star merger (Abbott et al. 2020d), one merger of a black hole
with a 2.6 My compact object, and an additional two binary black
hole mergers (Abbott et al. 2020a, c) already confirmed.

* E-mail: isobel.romero-shaw @monash.edu
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Gravitational-wave signals encode information about their sources
which can be difficult, if not impossible, to otherwise obtain.
To extract information from the observed signals requires careful
statistical inference. The inferred source parameters can inform
our understanding of binary stellar evolution (Stevenson, Ohme
& Fairhurst 2015; Abbott et al. 2016d, 2017h; Zevin et al. 2017;

Barrett et al. 2018; Belczynski et al. 2018; Bavera et al. 2020), the
equation of state of neutron-star matter (Abbott et al. 2018c, 2020b;
Most et al. 2018; Essick, Landry & Holz 2020), and the nature of
gravity (Yunes & Siemens 2013; Abbott et al. 2016b, 2019h; Yunes,
Yagi & Pretorius 2016; Isi et al. 2019). Multimessenger observations
of gravitational and electromagnetic radiation (Abbott et al. 2017e)
can give an even richer understanding, enabling measurements of
cosmological parameters (Abbott et al. 2017d, 2019d; Cantiello et al.
2018; Chen, Fishbach & Holz 2018; Hotokezaka et al. 2019; Dhawan
et al. 2020), insights into the structures of gamma-ray bursts (Abbott
etal. 2017f; Margutti etal. 2018; Mooley et al. 2018; Fong et al. 2019;
Biscoveanu, Thrane & Vitale 2020b), and identifying the origins of
heavy elements (Abbott et al. 2017g; Chornock et al. 2017; Tanvir
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et al. 2017; Kasliwal et al. 2019; Watson et al. 2019). However,
electromagnetic emission can fade rapidly, necessitating rapid local-
ization of the gravitational-wave source (Abbott et al. 2018b). To
maximize the scientific return of gravitational-wave observations, it
is therefore of paramount importance to make use of and continue to
develop efficient, reliable, and accurate computational inference.

BILBY is a user-friendly Bayesian inference library that can be
used to analyse gravitational-wave signals to infer their source
properties (Ashton et al. 2019). BILBY is modular and can be easily
adapted to handle a range of inference problems in gravitational-
wave astronomy and beyond (e.g. Farah et al. 2019; Goncharov,
Zhu & Thrane 2019; Powell & Miiller 2019; Sarin, Lasky & Ashton
2020). In the context of gravitational-wave astrophysics and compact
binary mergers, it has been used to extract information about short
gamma-ray burst properties (Biscoveanu et al. 2020b), neutron star
parameters (Coughlin & Dietrich 2019; Hernandez Vivanco et al.
2019a, b; Biscoveanu, Vitale & Haster 2019), the formation history
of binary compact objects (Lower et al. 2018; Romero-Shaw, Lasky
& Thrane 2019; Ramos-Buades et al. 2020; Romero-Shaw et al.
2020a; Zevin et al. 2020), population properties using hierarchical
inference (Abbott et al. 2019i; Talbot et al. 2019; Galaudage, Talbot &
Thrane 2019; Kimball et al. 2020), and test general relativity (Keitel
2019; Payne, Talbot & Thrane 2019; Zhao, Lin & Chang 2019;
Ashton & Khan 2020; Hiibner et al. 2020; Wang & Zhao 2020).
This paper concentrates on using BILBY to infer the properties of
individual signals from compact binary coalescences — the inspiral,
merger, and ringdown of binaries composed of neutron stars and
black holes.

We outline the developments included in the BILBY software to
accurately and efficiently infer the properties of compact binary
coalescence (CBC) signals, and demonstrate their validity both
through tests using simulated signals and via comparisons to existing
observational results. In Section 2, we describe the applications of
Bayesian inference to compact binary coalescence events detected
in gravitational waves. In Section 3, we focus on the BILBY package,
with particular emphasis on improvements made since the publica-
tion of Ashton et al. (2019) in Section 3.1. We outline our code
validation tests in Section 3.2, and describe the automation of BILBY
—allowing for efficient and immediate analysis of gravitational-wave
event candidates — in Section 3.3. In Section 4, we reanalyse the 11
signals from GWTC-1, ensuring that we use both identical data and
identical data processing techniques as used to produce the public
GWTC-1 results obtained using the Bayesian parameter estimation
package LALInference (Veitch et al. 2015). We cross-validate our
results for GWTC-1 against these previous results. We defer analysis
of detections from the third observing run in anticipation of a
future BILBY catalogue. Results of the analyses presented here, in
a format matching recent releases of LIGO-Virgo posterior samples,
are provided as accompaniments to this paper. Our investigations
confirm the effectiveness of BILBY as it begins to be used for LIGO-
Virgo parameter estimation Abbott et al. (2020a, d). Throughout this
paper, we use notations for CBC source parameters that are defined
in Appendix E.

2 BAYESIAN INFERENCE FOR COMPACT
BINARIES

In this section, we outline the fundamental procedures carried out by
BILBY and provide a summary of new features implemented since
the first BILBY paper (Ashton et al. 2019). For a thorough and up-
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to-date description of BILBY, the reader is directed to the BILBY
documentation.!

2.1 Applications of Bayesian inference to compact binary
coalescences

The primary objective of gravitational-wave inference for compact
binary merger signals is to recover posterior probability densities
for the source parameters € (defined in Appendix E), like the
masses and spins of the binary components, given the data and
a model hypothesis. The posterior can be computed using Bayes’
theorem (Bayes 1763)

_ LU0 H)m(6]H)
pOld, 1) = ="Zamy €0

where £(d|0, H) is the likelihood, 7 (#|H) is the prior, Z(d|H) is the
evidence, and H is the model. The prior is chosen to incorporate any
a priori knowledge about the parameters. The likelihood represents
the probability of the detectors measuring data d, assuming a signal
(described by the model hypothesis 7{) with source properties 6. The
evidence, or marginalized likelihood

Z(d|H) = /p(dlﬂs H)m (01H)do, @)

serves as a measure of how well the data is modeled by the hypothesis;
it acts as a normalization constant in parameter estimation, but is
important in model selection.

The standard likelihood function used to analyse gravitational-
wave transients is defined in, e.g. Finn (1992) and Romano & Cornish
(2017), where both the data and the model are expressed in the
frequency domain. This likelihood has stationary Gaussian noise,
which is a good approximation in most cases (e.g. Berry et al. 2015;
Abbott et al. 2017a, 2019a) unless one of the instruments is affected
by a glitch (Pankow et al. 2018; Powell 2018). We assume the noise
power spectral density (PSD) is independent of the model parameters
and therefore ignore the normalization term, yielding
In £(d|0) oc — Y, 2ez@F 3)

T Sk

where k is the frequency bin index, S is the PSD of the noise, and 7'is
the duration of the analysis segment. The data d and waveform model
h(@) are the Fourier transforms of their time-domain counterparts.
Given the likelihood and the prior, we can calculate the posterior
probability distribution for the source parameters.

There are multiple approaches to calculating the posterior proba-
bility distribution. For example, RAPIDPE (Pankow et al. 2015) and
its iterative spin-off RIFT (Lange, O’Shaughnessy & Rizzo 2018)
use highly parallelized grid-based methods to compute the posterior
probability distribution, while BAYESTAR (Singer & Price 2016;
Singer et al. 2016) rapidly localizes gravitational-wave sources, cal-
culating probabilities on a multiresolution grid of the sky. Bayesian
inference schemes using various machine-learning algorithms are
also being developed (George & Huerta 2018; Gabbard et al. 2019).
However, the majority of Bayesian inference analysis is done by
stochastically sampling the posterior probability distribution.

Over many years, Markov-chain Monte Carlo (MCMC; Chris-
tensen & Meyer 1998, 2001; Rover, Meyer & Christensen 2006,
2007; van der Sluys et al. 2008b, a) and nested sampling (Veitch
& Vecchio 2008, 2010) algorithms for gravitational-wave inference
have been developed. This work culminated in the development
of LALINFERENCE, a Bayesian inference library using custom-built

!scsoft.docs.ligo.org/bilby/.
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Markov-chain Monte Carlo and nested sampling algorithms (Veitch
etal. 2015).2 LALINFERENCE has been the workhorse of gravitational-
wave inference since the initial LIGO-Virgo era (Aasi et al. 2013),
through the first observation (Abbott et al. 2016c¢) to the production of
GWTC-1 (Abbott et al. 2019f). Other stochastic sampling packages
used for gravitational-wave inference include PYCBCINFERENCE (Bi-
wer et al. 2019) and Zackay, Dai & Venumadhav (2018), which uses
relative-binning (Cornish 2010; Cornish & Shuman 2020) to reduce
the computational cost of the likelihood. In addition to these sampling
packages which fit CBC waveform templates to the data, BAYESWAVE
(Cornish & Littenberg 2015) uses a trans-dimensional MCMC to fit
an a priori unknown number of sine-Gaussian wavelets to the data.
BAYESWAVE also implements the BAYESLINE algorithm (Littenberg &
Cornish 2015) to generate a parametrized fit for the interferometer
noise PSD. Power spectral densities produced by BAYESLINE are
widely used in gravitational-wave parameter estimation and are used
in this work. BILBY has been designed to adapt to the changing
needs of the gravitational-wave inference community, emphasizing
modularity and ease of accessibility.

While LALINFERENCE implements customized stochastic sam-
plers, BILBY employs external, off-the-shelf samplers, with some
adaption. This allows the user to easily switch between samplers
with minimal disruption: a useful feature for cross validating results
using different samplers. Typically, external samplers need to be
tuned and adapted for use in gravitational-wave inference. In some
cases, this is a simple case of choosing sensible settings; we provide
details of the settings that have been verified for gravitational-
wave analysis in Section 4 and Appendix B. However, we also
find cases where the off-the-shelf samplers themselves need to be
adjusted. Where possible, we propagate those proposed changes to
the original sampling packages. Alternatively (e.g. when the change
is perhaps gravitational-wave specific), we adjust the sampler from
within BILBY.

2.2 Stochastic sampling

Various Monte Carlo sampling schemes have been developed to
solve the Bayesian inference problem and estimate the posterior
distribution described by equation (1). For low-dimensional prob-
lems, a solution might be to estimate the best-fitting parameters
by computing the posterior probability for every point on a grid
over the parameter space. However, as the number of dimensions
increases, this becomes exponentially inefficient.* The common
alternative to solve this problem has been to use stochastic samplers,
which fall broadly into two (not mutually exclusive) categories:
MCMC (Metropolis et al. 1953; Hastings 1970) and nested sampling
(Skilling 2006). In general terms, independent samples are drawn
stochastically from the posterior, such that the number of samples in
the range (6, 6 + A@) is proportional to p(@|d, H)A6.

2In this work, we focus on Bayesian inference for ground-based gravitational-
wave detection. Similar techniques have been developed for studying the
gravitational-wave observations of other instruments, such as pulsar timing
arrays (Lentati et al. 2014; Vigeland & Vallisneri 2014) and future space-
based detectors (Babak et al. 2008, 2010; Marsat, Baker & Dal Canton 2020).
3Quasi-circular binary black hole coalescence waveform models typically
have ngim = 15, depending on the number of spin orientations included in
the waveform model. Binary neutron star coalescence models include an
additional two parameters that describe their tides. We provide definitions
of all parameters describing binary compact objects in Appendix E. There
are a further ~20 parameters per interferometer that describe uncertainties in
detector calibration.

BILBY gravitational-wave catalogue 3297

MCMC methods generate posterior samples by noting the po-
sitions of particles undergoing a biased random walk through the
parameter space, with the probability of moving to a new point in the
space given by the transition probability of the Markov chain. Sam-
pling is completed once some user-specified termination condition
is reached, usually a threshold for the number of posterior samples
that should be accumulated to provide an accurate representation of
the posterior.

Nested sampling methods generate posterior samples as a byprod-
uct of calculating the evidence integral Z(d|H). A set of live points
is drawn from the prior distribution, and at each iteration, the live
point with the lowest likelihood is replaced by a new nested sample
that lies in a part of the parameter space with a higher likelihood. The
evidence is approximated by summing the products of the likelihood
at the discarded point and the difference in the prior volume between
successive iterations. The nested samples are converted to posterior
samples by weighting by the posterior probability at that point in the
parameter space. The nested sampling algorithm stops once a pre-
defined termination condition has been reached. The most commonly
used termination condition is when the fraction of the evidence in
the remaining prior volume is smaller than a pre-defined amount.

For more details on both MCMC and nested sampling methods,
we refer the reader to Hogg & Foreman-Mackey (2018) and Speagle
(2020), respectively.

3 THE BILBY PACKAGE

BILBY has a modular structure, allowing users to extend and develop
it to suit their needs; examples include online BILBY (Section 3.3.3),
BILBY _PIPE (Section 3.3) and parallel BILBY (PBILBY; Section 3.3.2;
Smith et al. 2019), amongst others (e.g. Talbot et al. 2019). BILBY
comprises three main subpackages. The core subpackage contains
the basic implementation of likelihoods, priors, sampler interfaces,
the result container class, and a host of utilities. The gw sub-
package builds on core and contains gravitational-wave specific
implementations of priors and likelihoods. These implementations
include a detailed detector and calibration model, an interface to
waveform models, and a number of utilities. Finally, the hyper
subpackage implements hyper-parameter estimation in BILBY, which
in the gravitational-wave context is used for population inference.

3.1 Changes within BILBY

Since the original BILBY paper (Ashton et al. 2019), there have been
a number of significant changes and added features to the code
package. We describe these in the following subsections. We discuss
prior constraints in Section 3.1.1, conditional priors in Section 3.1.2,
and the implementation of cosmological priors in Section 3.1.3.
We detail the custom jump proposals implemented for the CPNEST
(Veitch et al. 2017) and ptMcMC  (Ellis & van Haasteren 2017)
samplers in Section 3.1.5, and the various available prior boundary
conditions in Section 3.1.6. Sampling processes can be accelerated
using likelihood marginalizations and reduced-order quadratures;
we explore how these methods can be applied to BILBY analyses
in Sections 3.1.8 and 3.1.9, respectively. In Section 3.1.10, we
explain how uncertainties in detector calibration are folded into BILBY
parameter estimation. Finally, in Section 3.1.11 we present some of
the gravitational-wave transient-specific plots that BILBY can create.
In addition to the changes described below, BILBY now also supports
the KOMBINE (Farr & Farr 2015), ptMcMC (Ellis & van Haasteren
2017), POLYCHORD (Handley, Hobson & Lasenby 2015a, b), and

MNRAS 499, 3295-3319 (2020)
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ULTRANEST (Buchner 2016, 2019) samplers. A full and up-to-date
list of changes can be found in the BILBY changelog.*

3.1.1 Constrained priors

Each time the sampler chooses a new point to test from the multidi-
mensional parameter space, it selects this point from within the region
specified by the multidimensional prior. It is often advantageous to
be able to cut out parts of the prior space by placing restrictions
on relationships between parameters. For example, in gravitational-
wave inference we frequently wish to specify a prior on the binary
component masses, #; and m,, while enforcing that m; > m,, which
is equivalent to the constraint that the mass ratio g = my/m; < 1.

In BILBY, the collection of priors on all parameters is stored as
a PriorDict object. In order to enforce a constraint, a BILBY
user can add a Constraint prior object to the PriorDict. Itis
necessary to tell the PriorDict how to convert between its sampled
parameters and its constrained parameters; this is done by passing
a conversion_function at instantiation of the PriorDict.
The BILBY default binary black hole and binary neutron star prior
set classes (BBHPriorDict and BNSPriorDict, respectively)
can impose constraints on any of the known binary parameters. This
ensures that users can sample in the set of parameters that best suits
their problem, while ensuring that the relevant indirectly sampled
quantities are constrained. Without applying any prior constraints, all
BILBY prior distributions are correctly normalized. When constraints
are imposed on the prior distribution, the updated normalization is
approximated using a Monte Carlo integral.

3.1.2 Conditional priors

One may choose to make the prior for one parameter conditional
on the value of another. This can increase efficiency, particularly if
large parts of the prior space would be forbidden by an equivalent
constraint prior. A commonly used parametrization of the population
distribution of binary black hole masses is

-

m
pOmy M, Max, o) = (1 — a)ﬁ!

— ml=

max min
1

m1+’9¢1ﬁ
p(qlmy, myin, B) = (1+ﬂ)ﬁ, 4)
n, — Mmin

where my,;, and my,, are the maximum and minimum allowed
masses for the primary component, and « and B are power-law
indices (Fishbach & Holz 2017; Abbott et al. 2019i). If we wish
to use a similar prior to analyse individual binary black hole
coalescences, we require a prior for mass ratio which is conditioned
on the primary mass. We provide a ConditionalPriorDict
and conditional versions of all implemented priors within BILBY
to facilitate analyses of this kind. Further, BILBY is able to handle
nested and multiple dependencies, and automatically resolves the
order in which conditional priors need to be called. The conditional
relationship between different priors can have any functional form
specified by the user.

3.1.3 Cosmological priors
Most previous parameter estimation analyses of CBCs have assumed
a prior on luminosity distance d;, which is 7 (dy.) o d} (e.g. Abbott

4git ligo.org/Iscsoft/bilby/blob/master/CHANGELOG.md.
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Figure 1. Comparison of distance priors out to redshift z = 0.10 (top panel)
and z = 1.02 (bottom panel), respectively, corresponding to d;, = 500 and dy,
= 7000 Mpc, according to Ade et al. (2016) cosmology. The upper and lower
panels show the range of the luminosity distance priors for the default 128 s
and high-mass prior sets, respectively. We display priors that are uniform in
luminosity volume, comoving volume, and the (comoving) source frame. The
probability density of each curve is normalized with respect to the upper limit
cut-off displayed in that panel.

et al. 2016c, 2019f). A 7 (dy) dﬁ prior would distribute mergers
uniformly throughout a Euclidean universe. This is an adequate
approximation at small redshifts, as illustrated in Fig. 1; however,
beyond a redshift of ~1, the difference between a prior which is
uniform in the comoving (source) frame volume and uniform in
luminosity volume is large. We therefore implement a range of
cosmologically informed prior classes.

The Cosmological base class allows the user to specify a prior
in either luminosity distance, comoving distance, or redshift using
any cosmology supported in Ast ropy (Robitaille et al. 2013; Price-
Whelan et al. 2018).°> Additionally, users can specify the prior in
terms of redshift and then convert to an equivalent prior on luminosity
distance if desired. We implement two new source distance priors: a
UniformComovingVolume prior, defined as

dv,
dz’
where V. is the comoving volume, and a UniformSourceFrame
prior, defined as

(&)

7 (z) x

(0o —— ©)
7(z) X .
1+z dz
The additional factor of (1 + z)~! accounts for time dilation.
Additional Cosmological prior classes of the form
dV,
7(2) ¢ = f(2) o)
dz

can be defined by providing f(z).

5By default, BILBY uses the Ade et al. (2016) cosmology.

120Z 1snbny g| uo Jesn Ateiqr] AlsIsAlun UI8ISeaMULION AQ 0Z9606S/S62E/S/661/010N18/SeIuW/Wwoo dno-oiwspese//:sdny Wwolj pepeojumoq



3.1.4 Joint priors

In cases where one requires more complex priors that depend on
multiple parameters we implemented the JointPrior class in
which the user can define a distribution that describes the prior on
multiple parameters. This is implemented in BILBY in the Mul -
tivariateGaussian prior that lets the user define multimodal
and multivariate Gaussian priors. It is also used in the HEALPIXMAP
prior in which a user can implement a prior on the sky position and
optionally distance according to a given HEALPIX (Gorski et al. 1999,
2005) map.

3.1.5 Custom jump proposals

Users of BILBY can define custom jump proposals through its
interface to the CPNEST and PTMCMC samplers. Jump proposals
describe how the sampler finds new points in the parameter space.
CPNEST has a defined cycle of proposals that can be changed by
the user. These proposals can be useful when there are known
degeneracies in the parameter space, e.g. phase ¢ and polarization
angle ¥ under a shift by 7/2 in either parameter (Veitch et al. 2015).
Sampling in right ascension « and declination § can also be improved
using custom jump proposals; degeneracy typically leads to a ring-
shaped 2D posterior in these parameters for signals detected by two
detectors (Singer et al. 2014; Berry etal. 2015). We provide proposals
for the above two cases in the BILBY implementation of CPNEST, while
additional proposals can be defined by the user to suit their needs.

3.1.6 Boundary conditions

For many parameters, such as the mass ratio ¢ and spin magnitudes
ai, ay, posterior distributions have significant support close to the
prior boundaries. This is expected behaviour and a direct result of
the choice of prior (e.g. the choice to fix m; > m, ensures g <
1). In BILBY, Prior objects have boundaries that can be specified
by the user as None, reflective, or periodic. For samplers
that support these settings, these options specify the behaviour of
the sampler when it proposes a point that is outside of the prior
volume. For a None boundary, such a point is rejected. Priors that
have reflective boundaries are reflected about the boundary (a
proposed mass ratio of 1 + € is reflected to 1 — €) while periodic
boundaries wrap around (a proposed phase of = + € is wrapped to
€).

The DYNESTY sampler (Speagle 2020) supports all available
parameters boundary settings. The PYMULTINEST sampler (Feroz &
Hobson 2008; Feroz, Hobson & Bridges 2009; Buchner et al. 2014;
Feroz et al. 2019) can implement periodic boundary conditions,
butnotreflective, whichare treated as None. All other samplers
implemented in BILBY treat all prior boundaries as None.

While reflective boundaries are implemented, their usage
is not recommended due to concerns that they break detailed
balance (e.g. Suwa & Todo 2010). When using the DYNESTY sampler,
we recommend using periodic boundaries for relevant parameters
(e.g. the right ascension and phase). These recommendations are
mirrored in our choices of default priors, discussed in Section 4.1.

3.1.7 Alternative sky and time parameterisations

The most common way to describe the location of the source on
the sky and its time of arrival is with the equatorial coordinates
right ascension « and declination §, and the coalescence time at the
centre of the Earth .. However, particularly when the signal is only
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observed in two detectors, the likelihood is determined primarily by
the time delay between the arrival of the signal at each detector. The
posterior distribution on these parameters often assumes a broken
ring shape misaligned with the equatorial coordinate system (Singer
et al. 2014; Berry et al. 2015), making sampling difficult. A more
natural parametrization of the problem is given by sampling in the
time of arrival at one of the detectors [ideally the one with the largest
signal-to-noise ratio (SNR)], and rotating the sky coordinates such
that the ring structure is uncorrelated in the sampling parameters.

We allow the user to specify a reference_frame and
time_reference. The argument reference_frame can either
be an InterferometerList, a string with the names of two
known detectors, e.g. H1L1, or sky to sample in o and 8. Cases
where sampling in « and 8 is preferred include when the astrophysical
location of the source is exactly known, e.g. by using the location
of the host galaxy of a binary neutron star merger, the user can
sample in « and § by specitying reference_frame=sky. In this
parametrization the zenith angle « is related to the time delay of the
merger between the two detectors and is therefore well measured.
The azimuthal angle € is only weakly constrained for a two-detector
network. The argument t ime_reference can be the name of any
known interferometer, e.g. H1, or geocent to sample in the time at
the geocentre.

The detector-based sampling frame is defined in terms of the
zenith « and azimuthal € angles relative to the vector connecting
the vertices of the two interferometers specified §r. We perform the
transformation from (x, €) to (8, o) by constructing the rotation
matrix R which maps Z to the unit vector 7. The rotation matrix R
can be described by three Euler angles (o, 8, y)

R = R;(y)Ra(B)R; (),
—48ry0r, ory
tanog = ———, cosf =dr,, tany = —. (8)
ory ’ Sry

Here, 67y, .} are the Cartesian components of §r and R, 3 are
rotation matrices about the y- and z-axes respectively.

3.1.8 Analytical likelihood marginalizations

The likelihood in equation (3) can be costly to evaluate for some
signal models, and the size of the coalescence-time posterior relative
to its much wider prior can make sampling the entire space difficult.
Therefore, we reduce the dimensionality of the CBC problem by
analytically marginalizing over certain parameters, speeding up com-
putation and improving the sampler convergence. The parameters we
commonly marginalize over are the coalescence time, binary orbital
phase, and luminosity distance. In the frequency domain, a waveform
of total duration 7"can be written in terms of a reference time #;, phase
¢o, and luminosity distance d, as

hi(A, 1, ¢, dr) = h(X, to, o = 0, dp) x

(t — 10)
T

X exp {—Zm'k ] exp (2i¢)@, (&)
dy
where k indicates the frequency bin and A represents the set of
the other binary parameters, including the masses and spins, whose
contributions to the waveform cannot be separated and thus cannot
be analytically marginalized. The phase dependence can only be
factored out for waveforms that include just the dominant £ = 2,m
= |2| mode; however, this factorization has been shown to be a
reasonable approximation in some cases when precession is not
measurable (Abbott et al. 2017b). The marginalized likelihood is
obtained by integrating the likelihood in equation (3) over phase,
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distance, and coalescence time after using the factorisation in
equation (9). The phase integral simplifies to a modified Bessel
function of the first kind, evaluated at the magnitude of the complex
inner product of the waveform and the data (Veitch & Del Pozzo
2013; Veitch et al. 2015).

The distance marginalization is performed numerically, using a
Riemann sum in matched filter and optimal SNR over the range p €
[1073, 10'°], spaced uniformly in log-space (Singer & Price 2016;
Singer et al. 2016; Thrane & Talbot 2019). To improve efficiency
at run-time, we build a lookup table which is interpolated and then
evaluated. The lookup table is computed before the sampling phase
begins, and can be cached and reloaded from previous analyses that
used the same distance prior.

The marginalization over time involves performing a quadrature
integral over an evenly spaced array of times separated by the
sampling frequency. This marginalization is enabled by the fact that
the inner product of the time-domain waveform and data can be
rewritten as a fast Fourier transform (Farr 2014). The sky location
inferred when sampling in the sky frame and using the time-
marginalized likelihood is not generally correct and we do not
recommend combining these two features.

If the signal is loud and the sampling frequency is too low,
the reconstructed coalescence-time posterior appears discrete, since
each of the generated parameters lies on one of the nodes of the
array. One solution to this is to increase the resolution of the array
times by increasing the sampling frequency. However, this increases
the computational cost of the marginalized likelihood evaluation.
Additionally, gravitational-wave detector data are natively sampled
at 16 kHz (Abbott et al. 2019e), so increasing the time resolution
beyond this level would require a different technique, e.g. zero-
padding. In order to avoid increasing the sampling frequency, we
maintain a continuous coalescence-time posterior by introducing a
time_jitter §r. This parameter varies the position of the time
array over which the numerical integral is performed. We apply a
uniform prior with bounds such that

_—T <t < Z (10)
2 - 2
thus reducing the prior space to be searched.

When using the analytically marginalized likelihood, the sampler
does not produce posterior samples for the marginalized parameters.
However, BILBY is able to generate samples for these parameters
in post-processing. Using BILBY, we recalculate the likelihood by
recomputing the optimal matched filter SNR and the inner product
of the waveform and data. We then obtain a posterior array for
the marginalized parameter in question, evaluated at discrete points
in the parameter’s prior space. We generate posterior samples by
sampling from this interpolated posterior array. By drawing a single
sample for each of the marginalized parameters for each posterior
sample we maintain the degeneracies between, e.g. distance and
binary orbital inclination. For detailed derivations of the analytically
marginalized likelihood and the posterior sample reconstruction
process (see Thrane & Talbot 2019).

3.1.9 Reduced-order quadrature

In order to reduce the number of frequencies at which the likelihood
in equation (3) must be evaluated, we implement the reduced-order
quadrature (ROQ) likelihood (Smith et al. 2016). This method works
by identifying a reduced basis that can describe the signal model well
over a certain range of the parameter space. Application of reduced-
order methods has been crucial for expediting inference for long
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duration signals, such as the binary neutron star merger GW 170817
(Abbott et al. 2019f). Evaluating the ROQ likelihood requires access
to the appropriate basis. A set of bases for the most commonly used
waveform, IMRPHENOMPV2, are publicly available online.®

The ROQGravitationalWaveTransient likelihood class
in BILBY is able to analyse arbitrary reduced-order bases. This
likelihood can also be marginalized over phase and/or distance. A
time-marginalized ROQ likelihood has not yet been implemented.

3.1.10 Calibration

The imperfect nature of the detector calibration introduces a system-
atic error in the measured astrophysical strain (Abbott et al. 2016d).
Following Farr, Farr & Littenberg (2014), we split this error into
frequency-dependent amplitude and phase offsets, SA(f) and d¢(f),
respectively. The observed strain can then be related to the true strain
as

hovs(f) = h(f)[1 + SA(f)]exp [idp(f)]. (11)

Since the calibration error is small, we perform a small angle
expansion in the phase correction

24 i8¢(f)
2—idp(f)

Substituting this, we obtain

exp [isp(f)] = + 0 (5¢%). (12)

2416
hobs(f) = h(f)[1 +8A(f)] %

The amplitude and phase uncertainty are modelled as cubic splines
in BILBY

SACS) = s(f:{f;. 84D, (14)

13)

Sp(f) = s(f:{f;. 85, )

where the spline nodes f; are fixed and distributed uniformly in log-
space between the minimum and maximum frequencies included in
the likelihood, and the values of the splines at the nodes, §A; and 6¢;,
are sampled parameters (Vitale et al. 2012).

The priors on the spline values are taken to be normal distributions,
with means and widths that can either be constant or loaded from a
frequency-dependent calibration envelope file (Cahillane et al. 2017;
Viets et al. 2018). The calibration factor defined in equations (14) and
(15) are applied to the waveform calculated for each prior sample
before the likelihood is computed. Fig. 2 shows an example plot
of the calibration spline posterior for both the amplitude and phase
uncertainties.

3.1.11 Gravitational-wave transient-specific plots

BILBY users can produce sets of posterior plots specific to
gravitational-wave transient analysis. We use the 1igo.skymap
(Singer & Price 2016; Singer et al. 2016) package to produce sky
maps in both the £its format commonly used for electromagnetic
observation and standard image formats. We are also able to produce
plots showing our inferred posterior on the detector calibration and
waveform models, in addition to the parameters describing these
models. We present examples of these plots for GW 150914 in Figs 2
and 3, respectively. In such plots, we show the mean reconstructed
model and symmetric 90 per cent credible intervals.

bgit.ligo.org/Iscsoft/ROQ_data.
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Figure 2. Calibration posteriors for the amplitude (top) and the phase
uncertainty (bottom) for both LIGO Hanford (orange) and Livingston (blue)
detectors for GW150914. The solid curves show the mean, while the shaded
region represents the 90 per cent confidence intervals. The vertical lines show
the locations of the spline points.
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Figure 3. Reconstructed waveform for GW 150914 for LIGO Hanford. The
top panel shows the amplitude spectral density of the signal (blue), data
(light orange), and estimated noise amplitude spectral density (dark orange).
The bottom panel shows the time domain data (light orange) and waveform
estimate (blue). The dark blue curves show the mean recovered waveform
and the light blue shaded region the 90 per cent confidence interval.

3.2 Validation of BILBY

A common consistency test of the performance of sampling algo-
rithms is to check that the correct proportion of true parameter
values are found within a given probability interval for simulated
systems (Cook, Gelman & Rubin 2006; Talts et al. 2018) —i.e. that
10 per cent of events are found within the 0.1 probability credible
interval, 50 per cent are found within the 0.5 probability credible
interval, etc. We generate a set of CBC signals with true parameter
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Figure 4. Results of 100 injections drawn from the four-second prior defined
in Section 4.1. The grey regions cover the cumulative lo, 20, and 3o
confidence intervals in order of decreasing opacity. Each coloured line
tracks the cumulative fraction of events within this confidence interval for a
different parameter. The combined p-value for all parameters, over all tests, is
0.7206, consistent with the individual p-values being drawn from a uniform
distribution. Individual parameter p-values are displayed in parentheses in
the plot legend. The marginalized parameters — geocentre time 7., luminosity
distance dp, and phase ¢ — are reconstructed in post-processing. Other
parameters provided in the plot legend are defined in Appendix E.

values drawn from our prior probability distributions and inject these
into simulated noise. Parameter estimation is then performed on each
signal to determine the credible level at which the true value of
each parameter is found. This test is traditionally used in validating
gravitational-wave inference codes (Sidery et al. 2014; Berry et al.
2015; Pankow et al. 2015; Veitch et al. 2015; Singer & Price 2016;
Del Pozzo et al. 2018; Biwer et al. 2019).

To test BILBY’s parameter estimation, we simulate 100 synthetic
CBC signals for a two-detector Hanford—Livingston network and add
the signals to Gaussian noise coloured to the anticipated Advanced
LIGO design sensitivity (Abbott et al. 2018b). The parameters of the
simulated events are drawn from the default 4 s prior set, detailed in
Section 4.1.

Parameter estimation is performed using the DYNESTY sampler
with the distance, time, and phase-marginalized likelihood. Analysis
of the performance of other samplers is left to future work. Results
of the test are shown in Fig. 4, where the fraction of events for
which the true parameter is found at a particular confidence level is
plotted against that particular confidence interval.” We also show the
individual parameter p-values representing the probability that the
fraction of events in a particular confidence interval is drawn from a
uniform distribution, as expected for a Gaussian likelihood, and the
combined p-value quantifying the probability that the individual p-
values are drawn from a uniform distribution. The combined p-value
obtained with the latest version of BILBY is 0.7206 and the minimum
is 0.183 for ¢, which is entirely consistent with chance for the set of
15 parameters, indicating that the posterior probability distributions

"These plots are referred to as P-P plots, where P could stand for probability,
percent or proportion. Instructions for generating P—P plots are provided in
the BILBY documentation at git.ligo.org/Iscsoft/bilby_pipe/wikis/pp/howto.
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produced by BILBY are well-calibrated. The grey regions show the
1o, 20, and 30 confidence intervals so we expect the lines to deviate
from this region approximately 0.3 per cent of the time, which is
consistent with what we see.

In addition to the procedure described above, we verify the
suitability of the sampler settings for the problem of sampling the
CBC parameter space using a series of review tests. These are
described in detail in Appendix A. The settings used for each of
the tests described here are provided in Appendix B. In addition to
these review tests, BILBY has an extensive set of unit tests, which
scrutinize the behaviour of the software in high detail every time a
change is made to the code; these unit tests can be found within the
BILBY package.®

3.3 Automation of BILBY for gravitational-wave inference

With the improvement in sensitivity and expansion of the
gravitational-wave observatory network comes an increasing rate of
detections. Streamlining the deployment of BILBY analysis is there-
fore vital. We introduce BILBY_PIPE, a PYTHON package providing
a set of command-line tools designed to allow performance of pa-
rameter estimation on gravitational-wave data with all settings either
passed in a configuration file or via the command line.’ This tool was
used to perform the analyses of the GWTC-1 catalogue events pre-
sented in Section 4, and is integral to the automatic online parameter
estimation that is triggered by potential gravitational-wave events.

The BILBY_PIPE workflow consists of two key stages: data gener-
ation and data analysis. These steps are outlined in Section 3.3.1.
The pipelines provided by BILBY_PIPE can be utilized to distribute
analysis of a single event over multiple CPUs using PBILBY (Smith
et al. 2019), which is described in Section 3.3.2. The workflow for
the automated running of BILBY on gravitational-wave candidates is
detailed in Section 3.3.3.

3.3.1 Data generation and analysis

Gravitational-wave detectors record and store time-domain strain
data and information about the behaviour internal to the detectors,
as well as data from a suite of environmental sensors. To obtain
gravitational-wave strain data, we recommend using the GWPY
library (Macleod et al. 2018). GWpy can retrieve both public data
from the Gravitational Wave Open Science Center (Abbott et al.
2019e), and proprietary data using the Network Data Server protocol
(NDS2) to acquire data from LIGO servers. Given a GPS trigger time
and a required data duration, BILBY_PIPE uses GWPY to extract an
analysis segment of strain data around the trigger, as well as a segment
of strain data used to estimate the noise PSD. The default duration
for the analysis segment is 7' = 4 s, which is considered adequate for
sources with detector-frame chirp masses M 2 15 Mg. Sources with
lower M have longer signals, so longer analysis segments should be
used. A portion of data following the trigger time is required to
encompass the remaining merger and post-coalescence ringdown
signal; this is 2 s by default.

A BILBY_PIPE user can provide pre-generated PSDs, and a range
of design-sensitivity noise spectra for current and future detectors
is available as part of the BILBY package. For the analyses we

8git ligo.org/lscsoft/bilby/tree/master/test.

°The  source-code is  available on  the  git  repository
git.ligo.org/Iscsoft/bilby_pipe. Specifics about the installation, functionality,
and user examples are also provided Iscsoft.docs.ligo.org/bilby_pipe.
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present in Section 4, we use event-specific PSDs produced using
BAYESWAVE (Cornish & Littenberg 2015). When a PSD is not pro-
vided, BILBY_PIPE uses the median-average power spectrum method
described by Allen et al. (2012), and implemented in GWpy, to
calculate the PSD; this method has the advantage of downweighting
outliers in the off-source data (Allen et al. 2012; Veitch et al. 2015). In
order to avoid including any signal in the PSD calculation, BILBY _PIPE
uses a stretch of data preceding the analysis segment. Following
Veitch et al. (2015) and Chatziioannou et al. (2019), we use data
stretches of length min (327, 1024 s) by default, although both of
these values can be altered by the user. The upper limit of 1024 s
is required because the PSD of gravitational-wave detectors is non-
stationary over long time-periods (Chatziioannou et al. 2019). To
further mitigate this issue, the data are divided into segments of
length 7, with each segment overlapping 50 per cent of the previous
segment; this allows a shorter total stretch of data to be used to
calculate the PSD. Following Allen et al. (2012), segments are Tukey
windowed with a 0.4 s roll-off to suppress spectral leakage (Abbott
et al. 2019a), before computing their one-sided power spectra.

The priors for the analysis can be specified by the user, either by
providing a path to a file containing the priors in BILBY syntax, or by
giving the name of one of the default BILBY_PIPE priors described in
Section 4.1. By default, the BILBY GravitationalWaveTran-
sient likelihood is used with the waveform template generated by
LALSIMULATION (LIGO Scientific Collaboration 2018). However,
users can specify their own source models and modified likelihoods
in the configuration file. After saving the necessary data, BILBY _PIPE
launches parameter estimation on the analysis segment in accordance
with the procedure outlined in Section 2.1.

3.3.2 Parallel BiLBY

Parallel BILBY (Smith et al. 2019) is a parallel implementation of
BILBY which uses Message Passing Interface (MPI; Farah et al.
2019) to distribute the DYNESTY nested sampling package over
a pool of CPUs. Nested sampling requires drawing successive
samples satisfying a likelihood constraint from the prior. Faithfully
drawing samples from this constrained prior requires many likelihood
evaluations. We use a CPU pool to draw prior samples in parallel
at each iteration of the algorithm to reduce the wall-time needed to
complete an analysis.

Qualitatively, PBILBY works by using a pool of 71¢4res CPUSs to draw
Neores — 1 samples from the prior in parallel at each iteration of the
sampling algorithm. The 7n.es — 1 proposed samples are ranked by
likelihood and the lowest likelihood live point is replaced. The prior
volume is then updated on all 7.5 processes and the sampling step
is repeated until the algorithm is converged. The speedup S of the
parallel implementation is a function of the number of live points
mive and the number of parallel processes (Smith et al. 2019)

S = njpe In (1 +"—) (16)

Niive

Currently, PBILBY only supports the DYNESTY and PTEMCEE
sampling packages. All of the functionality of BILBY, as described in
Section 3.1, is supported by PBILBY.

PBILBY is highly scalable, and is thus well suited to accelerating
applications in which the gravitational-wave signal or noise models
are computationally expensive to evaluate, e.g. time-domain signal
models such as spin-precessing effective-one-body models with
higher order modes (Bohé et al. 2017; Ossokine et al. 2020),
numerical-relativity surrogate models (Blackman et al. 2017) and
models including tidal effects (Nagar et al. 2018; Lackey et al. 2019).
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Other well-suited applications include those where sampling conver-
gence can be slow due to high dimensionality of the parameter space,
e.g. when calibration (Farr et al. 2014) or beyond-general-relativity
parameters are used (Abbott et al. 2016b, 2019h), or when a large
number of live points is required to effectively estimate the evidence.

In order to facilitate efficient inter-CPU communication with MPI,
PBILBY is a stand-alone package, though it still uses the underlying
BILBY modules.

In addition to the hugely parallel PBILBY, many of the implemented
sampling packages support parallelization through a user specified
pool of processes. For these samplers BILBY natively supports local
parallelization using the PYTHON MULTIPROCESSING package. When
available, the number of parallel computational threads to use is
specified using the nthreads argument.

3.3.3 Online BiLBY

The gravitational-wave candidate event data base GraceDB!®
provides a centralized location for collecting and distributing
gravitational-wave triggers uploaded in real time from search
pipelines. Once uploaded, each trigger is assigned a unique
identifier, and LIGO-Virgo users are notified via an LVALERT
(LIGO—-Virgo Alert Network). GWCELERY (Singer et al. 2020),
a PYTHON-based package designed to facilitate interactions with
GraceDB, responds to an alert by first creating a Superevent, which
groups triggers from multiple search pipelines and then chooses a
preferred event based on the SNR of the triggers. If the preferred
candidate has a false-alarm-rate (FAR) below a given threshold,
GWCELERY automatically launches multiple parameter estimation
jobs. For the case of BILBY, this involves making a call to the
bilby pipe_gracedb executable.

The bilby pipe_gracedb executable takes the GraceDB
event ID as input and generates a configuration file based on the
trigger time of the candidate. A prior file is selected from the set of
default priors using the chirp mass of the gravitational-wave signal
template that triggered the LVALERT. Further details about the default
priors can be found in Section 4.1. These files are then passed
to the bilby_pipe executable, which runs parameter estimation
on the event. PESUMMARY (Hoy & Raymond 2020), a PYTHON-
based package designed to post-process inference package output in
a number of formats, then generates updated source classification
probabilities and webpages displaying diagnostic plots. Once this
step is complete, GWCELERY uploads the posterior samples, post-
processing pages and updated source classification probabilities to
GraceDB. Fig. 5 illustrates the process of automated parameter
estimation from the trigger of a gravitational-wave event to the upload
of BILBY parameter estimation results to GraceDB.

3.3.4 Run times

The overall run time of a BILBY parameter estimation job depends on
the specific input data and can vary considerably based on the chosen
sampler settings and SNR. The overall wall time can be reduced by
allowing for marginalization over certain parameters, as described
in Section 3.1.8, or by using the parallelization methods described
in Section 3.3.2. For a GW150914-like binary black hole merger,
the expected run time for a time, distance, and phase marginalized
BILBY analysis using the default waveform model IMRPHENOMPV2
(Schmidt, Hannam & Husa 2012) is O(10) h. The waveform models

10gracedb.ligo.org.
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Figure 5. Workflow for online BILBY parameter estimation.

needed to analyse binary neutron star merger events are much longer
than those required for binary black holes, and therefore are more
computationally expensive. Hence, for a GW170817-like binary
neutron star merger event, we use PBILBY to distribute the analysis
over a pool of CPUs, as described in Section 3.3.2; the expected run
time in this case is O(10) h.

4 GRAVITATIONAL-WAVE TRANSIENT
CATALOGUE

This section contains our run settings for performing parameter esti-
mation on GWTC-1 events using BILBY, in addition to the results we
obtain from this analysis. We describe our default priors and sampler
settings in Sections 4.1-4.4. Further details about these settings are
given in Appendix B. We provide our results in Section 4.6, where
we assess their statistical similarity to those published in GWTC-
1 (Abbott et al. 2019f).'" All BILBY _PIPE configuration files, posterior
samples and BILBY results files are made available online (Romero-
Shaw et al. 2020b).

"'The LALINFERENCE posterior samples that we show in this section are
taken from the Parameter Estimation Sample Release for GWTC-1 (Abbott
et al. 2018a). The posterior samples from LALINFERENCE are obtained using
a mixture of the nested sampling algorithm of LALInferenceNest and
the Markov chain Monte Carlo algorithm of LALInferenceMCMC (Veitch
etal. 2015).
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Table 1. Summary statistics for each event in GWTC-1, as recovered by BILBY. We quote median values along with the symmetric 90 per cent credible interval
range around the median. For mass ratio g, we quote the 90 per cent lower limit (10 per cent quantile), with all events being consistent with equal mass (¢ =
1). We use a fixed-sky prior on source location for GW 170817, the binary neutron star merger, fixing the source at the right ascension and declination of its
electromagnetic counterpart (Abbott et al. 2017e). The 90 per cent credible areas for sky location are computed using 3000 samples from each posterior. The
final column lists the maximum JS divergence statistic (a measure of the similarity between two distributions) between the BILBY GTWCI samples, and the
LALINFERENCE GWTC-1 posterior samples across the model parameters. We consider JS divergence values greater than 0.002 bit to be statistically significant.

Event Prior M/Mg MU /M ¢ lower limit di./Mpc Xeff A SZ/deg2 Max-JS/bit
GW150914 4s 314! 2812 0.72 420190 _00%0! 169 380, = 0.0019
GW151012 4s 1842 1572 0.41 101528 0.0792 1457 IS = 0.0014
GW151226 8s 9.791 8.9103 0.38 4281196 0.2791 1022 IS, = 0.0017
GW170104 4s 2672 2213 0.48 93504 —-0.0%932 900 ISpm = 0.0007
GW170608 165 8.510:9 7.9%03 0.49 317H3 0.0%0: 1462 JSg = 0.0011
GW170729 High mass 5178 3518 0.43 25481392 0.3793 1050 ISy = 0.0026
GW170809 4s 3012 25+2 0.51 995131 0.1792 300 IS = 0.0010
GW170814 4s 271} 247 0.69 572007 0.1 77 IS, = 0.0009
GW170817 Custom 1.197570 0001 11871000 0.74 4015 0.0010.08 N/A JS; = 0.0019
GW170818 4s 32+ 27+2 0.58 101774907 _0.1+902 29 ISy = 0.0064
GW170823 High mass 3973 2914 0.54 1771757 0.0793 1570 JSg, = 0.0009

GWI150914 0.00016+0.00008 GWI70814 0.00047* 000021 GWI150914 0.00148500008 = GW170818 0.00069 000013

-0.00007 0.00011 0 08
0.08 GWI151012 0.00013+0.00008 GWI170818 0.00635+0.00219 ’ GWI51012 0.00052055%5 = GW170823 0.00027 L5 5500T
e . W1 96+ 000008 el 0.00013
GW170104 0.000363:9995 GW170823 0.00011+5:99907 GW170104 U-UUUZGLU.UUUW = GWI151226 [)-00021lo.uouu?
0.06 GWIT0729 0.00261 09003 GW151226 0.00043+990013 0.06 GWI70729 0.00113555575 = GWVIT0608 00008555555
" 717 7Q+0.00038 W 0.00024
GW170809 0.00053 (90021 GWI170608 0.00046+59%010 GWL170809 0.000781656650 = GWILTO0817 0.00077 6573

0.04 GW170814 0.0002659000%

LALInference CDF - Bilby CDF

0.2 0.4 0.6 0.8 1.0
Bilby CDF

Figure 6. Difference between the right ascension (o) samples recovered by
BILBY and LALINFERENCE for all BBH events. This is the worst recovered pa-
rameter according to the JS divergence. Labels show the mean JS divergence
between « samples, evaluated by random re-sampling over 100 iterations.

4.1 Default priors

The default prior distributions contained in BILBY_PIPE are predom-
inantly tailored to specific signal durations, with the exception of a
high-mass prior tailored to particularly heavy sources with detector-
frame chirp mass M up to 175 Mg, For each event in GWTC-1, we
choose the default prior that best covers the prior volume studied
using LALINFERENCE for the original samples release. This means
that two events (GW150914 and GW151012) are analysed using
priors suited to signals of duration 7' = 4 s, even though we match
the data duration to that used in the original LALINFERENCE analysis
(T = 8s). The prior on M is uniform in the detector frame, while the
prior on dy is uniform in comoving volume and source frame time, as
implemented in the UniformSourceFrame prior class described
in Section 3.1.3. The M, d., and spin magnitude prior limits vary
between prior sets, while the other source parameters are assigned
priors that are consistent between sets. The shapes and limits of all
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N 7

—0.02

LALInference CDF - Bilby CDF

—0.04

0.2 0.4 0.6 08 1.0
Bilby CDF

Figure 7. Difference between the luminosity distance (d1,) samples recov-
ered by BILBY and LALINFERENCE for all events. Labels show the mean JS
divergence between di, samples, evaluated by random re-sampling over 100
iterations.

priors are defined in Appendix B2. The prior files can be found in
the BILBY_PIPE git repository.”

4.2 Likelihood

Our likelihood is marginalized over reference phase and source
luminosity distance, as described in Section 3.1.8. For binary black
hole merger analyses, we use the waveform model IMRPHENOMPV?2
(Schmidtetal. 2012; Hannam et al. 2014; Bohé et al. 2016; Khan et al.
2016) as our signal template. For the binary neutron star GW 170817,
we use the IMRPhenomPv2_NRTidalv2 waveform model with tidal
effects (Dietrich et al. 2019).

4.3 Sampling

We use DYNESTY (Speagle 2020) as our sampler; see Appedix B1 for
the detailed sampler settings. We use the static version of DYNESTY,
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—— GW150914 —== GW170608 — GW170817
—== GW151012 — GW170729 —— GW170818
—— GW151226 — GW170809 —== GW170823
—— GW170104 —-== GW170814

10 20 30 40 50 60 70 80 90
m {ource [Mo]

Figure 8. Comparison of the posterior distributions between the LALINFER-
ENCE (grey) and BILBY (coloured) packages over the source primary mass
mi°"° and source secondary mass m3°*"® parameter space. Each contour
shows the 90 per cent credible area, with the LALINFERENCE posterior samples
reweighted to the BILBY priors.
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Figure 9. Posterior probability distributions for source-frame chirp mass
MU and luminosity distance di, for GW150914. We display posteriors
obtained using BILBY in orange, and LALINFERENCE posteriors in blue. We
reweight the LALINFERENCE posteriors to the BILBY default priors using the
procedure outlined in Appendix C. The 1D JS divergence on chirp mass
M and luminosity distance dj, for this event are JSaq = 0.0017 bit and
IS4 = 0.0015 bit.

as is default for BILBY_PIPE. For each event, we run five analyses in
parallel, merging the resultant posterior samples in post-processing.
When combining results, care must be taken to weight each set of
samples appropriately by its relative evidence. The weight applied to
the ith component of N sets of posterior samples is given by

= =5
Z j=i Zj

where Z; is the evidence of the ith set of samples.

an

Wi
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4.4 Data used

We use detector noise PSDs and calibration envelopes data from
the data releases accompanying GWTC-1 (Abbott et al. 2019b, c,
f). The data for each event are obtained through BILBY_PIPE using
methods from the GWpy (Macleod et al. 2018) package as outlined
in Section 3.3.1. Appendix B contains details of the trigger times and
data segment durations specified for each event, which we choose to
match those used in the original LALINFERENCE analysis.

4.5 Analysis of binary neutron star merger GW170817

The first observation of a binary neutron star coalescence,
GW170817, by LIGO-Virgo (Abbott et al. 2017¢) presented a new
challenge for gravitational-wave transient inference. The longer
signal durations increase the typical computing requirements, and
for systems containing a neutron star, tidal effects become important
in the waveform models. The original discovery (Abbott et al.
2017c) and subsequent follow-up studies (Abbott et al. 2019g)
analysed the data with a variety of waveform models and under
differing assumptions.

We employ PBILBY for this analysis, with BILBY _PIPE default sam-
pler settings. We use priors chosen to match those of the LVC analysis
(Abbott et al. 2019g), but sample in chirp mass and mass ratio rather
than component masses. Our likelihood is computed using the tidal
waveform model IMRPhenomPv2_NRTidalv2 (Dietrich et al. 2019).
This PBILBY analysis took approximately 11 h on 560 cores.

4.6 Results

We make posterior samples and BILBY_PIPE configuration settings
files available online (Romero-Shaw et al. 2020b, c). To directly
compare BILBY posterior samples to those obtained using LALIN-
FERENCE, we reweight the LALINFERENCE posterior distributions by
BILBY_PIPE default priors. Appendix C contains the details of this
reweighting procedure.

To quantitatively assess the similarity between BILBY and LALIN-
FERENCE posterior samples, we measure their Jensen—Shannon (JS;
Lin 1991) divergence. This is a symmetrized extension of the
Kullback—Leibler divergence (Kullback & Leibler 1951) that is used
to quantify the information gain going between two distributions.
The JS divergence is defined to be between 0 bit and 1 bit, where
0 bit represents no additional information going from one distribution
to the other (the two distributions are identical) and 1 bit represents
maximal divergence. For different sets of samples drawn from the
same Gaussian distribution, we find JS divergence values of <
0.0010 bit while the number of samples N = 2000, and JS divergence
values of < 0.0004bit when N 2 5000. To compare BILBY and
LALINFERENCE results, we use N = min(Ny;, 10000), where Ny is
the number of samples left in the LALINFERENCE posterior after the
reweighting procedure.

Our goal is to use the JS divergence as a quantitative indicator that
the BILBY GWTC-1 samples are in agreement with those produced
by LALINFERENCE. To investigate the typical distributions of JS
divergence values due to sampling error, we calculated JS values
for posteriors from two distinct LALINFERENCE runs on GW 150914
with identical configurations. Bootstrapping was used to generate
100 posterior realizations from each run, which were used to obtain
a distribution of JS divergences for each of the binary parameters
included in the public LALINFERENCE GWTC-1 posterior sample re-
lease. Across different parameters, we typically found mean values of
0.0007 bit, with amaximum of 0.0015 bit. As such, we determined the
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Figure 10. Joint posterior distributions for parameters of GW 170817, comparing PBILBY posteriors in orange and LALINFERENCE posteriors in blue. Left:
Posterior probability distributions for tidal parameters A (JSz = 0.0019bit) and §A (JS;z = 0.0008 bit). Right: Posterior probability distributions for inclination

angle 0N (JSg;, = 0.0009 bit) and luminosity distance di, (JSg = 0.0008 bit).

following naive criteria for evaluating the JS divergence values when
comparing the BILBY and LALINFERENCE GWTC-1 posteriors. For a
JS divergence value less than 0.0015 bit, we conclude the samples are,
to within statistical uncertainties, drawn from the same distribution,
and values larger than 0.0015 bit require manual inspection.

In Table 1, we list the maximum JS divergence for the model
parameters for each event. Of these, six pass our naive criterion
described above. For the remaining events, we manually inspect
the posterior distributions to look for discrepancies. The parameter
with the largest JS divergence value across all BBH events is the
right ascension, . Events with large sky areas, such as GW170729,
suffer from large deviations between the BILBY and LALINFERENCE
posteriors in the sky position parameters. The sky position was
fixed to the location of the EM counterpart for GW170817. We
show the difference between the BILBY and LALINFERENCE posterior
cumulative density functions (CDFs) for « in Fig. 6 and for the
luminosity distance di,, which passes the naive criterion on the JS
divergence for all events, in Fig. 7. For GW170818, « has the largest
JS divergence value (0.006 bit) despite the fact that the BILBY and
LALINFERENCE CDFs match at the 20 level. This is because the
distribution is approximated using a kernel density estimate (KDE)
in order to compute the JS divergence, and the posterior for this
particular event has a sharp drop-off, which is difficult to model
faithfully using the KDE.

Upon manual inspection, we find that the posteriors with JS
divergence values up to ~0.002bit are consistent between the
LALINFERENCE and BILBY samples. The remaining parameters with
significant deviations between the two samplers are the sky position
parameters for GW170729. Investigations into the source of these
discrepancies are ongoing. The differences between the BILBY and
LALINFERENCE CDFs for all events and all parameters are shown in
Appendix D. A similar comparison was made in Abbott et al. (2019f)
analysing the posterior distributions obtained using two different
waveform approximants for each event. The maximum difference
between the posteriors assuming the two different waveform models
in that work is typically ~0.02 bit, an order of magnitude larger than
the differences here.

As another way to visualize the differences between the BILBY
and LALINFERENCE samples, in Fig. 8, we compare the 90 per cent
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credible areas of the two posteriors on the source-frame primary
mass m{*" and secondary mass m5°*" for all GWTC-1 events. As
indicated by the low JS divergence values for the mass parameters,
the two samplers produce posteriors on these parameters that agree
within expected statistical fluctuations.

‘We compare BILBY posteriors on source-frame chirp mass M®
and luminosity distance dy. for the first observed gravitational-wave
event, GW150914 (Abbottetal. 2016a), in Fig. 9. The LALINFERENCE
distance posterior here matches the BILBY posterior more closely than
was demonstrated in fig. 2 of Ashton et al. (2019). This is due to an is-
sue in the application of the time-domain window being fixed in LAL-
INFERENCE, which had affected the distance posterior (Talbot 2020).

For the first observed binary neutron-star merger event,
GW170817, we compare the BILBY posterior distributions on tidal
parameters A and SA, as well as Oy and dp, to those obtained
using LALINFERENCE in Fig. 10. The maximum JS divergence for
this event is JS, = 0.0017 bit. Additional posterior probability plots
for all parameters of all 11 CBC events can be found within the online
resources that accompany this paper (Romero-Shaw et al. 2020b).

Based on these results, we conclude that BILBY and LALINFERENCE
produce statistically indistinguishable results for all parameters and
all events reported in GWTC-1 with the exception of the sky area for
GW170729 and GW151226. We emphasize that the differences in the
CDFs for these parameters are still small compared to other sources of
error such as waveform systematics (Abbott et al. 2019f) and uncer-
tainty in the power spectral density (Biscoveanu et al. 2020a). We pro-
vide PESUMMARY comparison pages between BILBY and reweighted
LALINFERENCE posteriors for all GWTC-1 events online.!2

ource

5 SUMMARY

BILBY is a modern and versatile Bayesian inference library, and
has been primed for analysis of gravitational-wave observations.
BILBY performs reliably, producing accurate and unbiased parameter
estimation results when analysing simulated signals. We validate

2bilby-gwtcl.github.io.
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BILBY results for GWTC-1 using the JS divergence statistic between
posterior distributions obtained using BILBY and the previously
published LALINFERENCE results, finding a maximum JS value of
JSe = 0.0026 bit for GW170729. The similarity between the two
results indicates that both the BILBY samples obtained with DYNESTY
and the LALINFERENCE samples are well-converged, and efforts to
further validate these results using alternative samplers within BILBY
are ongoing. Posterior probability distributions generated by BILBY
and LALINFERENCE, when run on the same GWTC-1 data and using
identical analysis settings, are consistent to the level of sampling
noise. The BILBY posterior samples for events in GWTC-1 are
available online (Romero-Shaw et al. 2020c). We conclude that BILBY
is well-suited to meet the challenges of gravitational-wave parameter
estimation in the era of frequent detections.
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APPENDIX A: ADDITIONAL BILBY VALIDATION
TESTS

In addition to the tests described in the main body of the paper,
we performed several additional validation tests that are standard
benchmarks for stochastic sampling codes.

A1 Prior sampling

The initial distribution of samples drawn from the prior must
faithfully represent the shape of the prior function. In addition to
being used for review, the prior sampling test also forms part of
BILBY’s unit test suite. Prior samples can be obtained using BILBY
via two different methods. The first is to use the sample method of
each Prior object, which generates samples by rescaling from a unit
cube. The second is to run the sampler with a null likelihood using
the ZeroLikelihood object so that the returned posterior samples

BILBY gravitational-wave catalogue 3309

actually reflect the prior. To test the consistency of the two methods,
we generate prior samples via both methods for a standard 15D
binary black hole signal injected into simulated Gaussian noise. We
perform a Kolmogorov—Smirnov test (Kolmogorov 1933; Smirnov
1948) to evaluate the similarity of the two sets of samples, calculating
a p-value for each parameter, which quantifies the probability that
the two sets of samples are drawn from identical distributions. A
combined p-value is then computed, representing the probability that
the ensemble of individual-parameter p-values is drawn from a unit
uniform distribution. We consider the test to pass if this combined
p-value is greater than 0.01. For a representative run with the latest
version of BILBY, we obtain a combined p-value of 0.017.

A2 15D Gaussian

Sampling an analytically known likelihood distribution is an impor-
tant test to verify that we can recover the correct posterior. For
this test, we choose the SCIPY implementation of a multivariate
normal distribution (scipy.stats.multivariate normal)
as our likelihood. We choose the distribution to be 15D since this
reflects the typical number of dimensions we encounter in binary
black hole problems. We set the means of all parameters to be zero,
and choose a covariance matrix COV; with standard deviations for
each of the parameters ranging between 0.15 and 0.25 to match past
tests done with LALINFERENCE. Using the BILBY default sampler
settings for a 15D problem, we test if we correctly recover the
posterior distribution by drawing samples from this 15D likelihood
and comparing the obtained means and standard deviations to the
true values. Additionally, we verify that we recover the expected
evidence within the estimated error. Since the likelihood distribution
is normalized and we use uniform priors for each parameter in the
range [ — 5, 5], the evidence can be approximated by the prior volume,
since the standard deviations are small enough that the value of the
likelihood evaluated at the edges of the prior is negligible

InZ~—-InX, (A1)

where X is the prior volume. In Fig. Al on the left-hand side we
find the measured standard deviations and the evidence to be in
broad agreement with analytical expectations. While the evidence
errors quoted by DYNESTY are not truly Gaussian, the 1o credible
interval is consistent with covering the true evidence 68 per cent
of the time if one uses more than 1000 live points. Additionally,
the overshoot at high values of the credible interval indicates that
there are fewer outliers than we would for a Gaussian distribution.
The right-hand side of Fig. A1 demonstrates that the width of the
posterior distribution is correctly recovered. We have thus shown
that the DYNESTY implementation in BILBY has no significant issues
in recovering the shape of posterior distributions and the correct
evidence for this fundamental problem.

We performed the same test using a bimodal Gaussian distribution,
with means separated by eight standard deviations in each dimension.
While it is more difficult to correctly sample a degenerate likelihood
surface, we still find 1000 live points sufficient to reasonably recover
the evidence. Individual runs of the bimodal likelihood may produce
a biased set posterior samples in favour of one of the modes over the
other, which is why multiple runs should be combined. We verified
that none of the modes is preferred if we use all 100 runs. Thus,
there are also no substantial issues that arise in sampling multimodal
distributions with BILBY.
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Figure Al. Left: Illustration of the frequency with which the true evidence is within a given credible interval for the unimodal Gaussian-shaped likelihood.
The legend shows how many live points are used to produce the individual curves. For lower number of live points, systematic errors in the evidence estimation
cause significant underestimates of the error. Starting at 1024 live points, the evidence error reasonably reflects the true uncertainty. The grey band shows the
90 per cent confidence interval. Right: Residuals of the true width of the analytical likelihood minus the average recovered one for 1024 live points in each
dimension based on 100 independent runs. The error bars show the 90 per cent confidence interval of the average mean of the distribution. There is a small
O(0.1 per cent) systematic bias to underestimate the width, i.e. the parameter is on average slighty overconstrained. However, this bias is negligibly small

compared to stochastic sampling uncertainties for individual runs.

Table Al. Our injected and recovered values for the two fiducial event
analyses. Recovered median values are quoted with the symmetric 90 per
cent credible interval around the median.

BBH BNS
Parameter Inject Recover Inject Recover
M/Mg 15.53 154703 1.486 1.48675:9001
q 0.52 0.7793 0.9 0.9%0
a 0.65 0.6%03 0.04 0.02790
a 0.65 0.5704 0.01 0.027002
01 1.24 L1758 1.03 15709
0> 0.80 13705 2.17 16710
b1 L5 31738 5.10 3.2138
o 3.01 3.2%3%8 2.52 3115
di./Mpc 614 10187147 100 8677

B 1.00 0.7+04 0.2 0.3%0]

o 2.00 46739 3.95 3.9+04
0N 1.65 1.8709 0.25 0.6707

v 1.50 L6t 2.70 L5t
¢ 2.00 31738 3.69 317138
taeols 0.04 0.0479% —0.01 —0.0170:59
A - - 1500 752198
Ar - - 750 14371133

A3 Fiducial event simulations

We analyse two fiducial simulated signals; one binary black hole
merger, and one binary neutron star merger with tides. We use a
LIGO Hanford-Livingston detector network and add the simulated
signals into design sensitivity Gaussian noise. For the binary black
hole, we use the IMRPHENOMPV2 waveform and the default 4 s prior
described in Table B1. For the binary neutron star, we use the ROQ
implementation of the IMRPhenomPv2_NRTidalv2 waveform (Bay-
lor, Smith & Chase 2019) with the 128 s tidal low-spin prior. The
binary black hole and neutron star systems have network optimal
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SNRs of 8.8 and 27.9, respectively.'® In Table A1, we show the true
values along with the recovered median and 90 per cent credible
interval values for each parameter. Nearly all the true parameter
values for both systems are recovered within the 90 per cent credible
interval, and those that are not are consistent with deviations due to
the Gaussian noise realization. Full corner plots for both simulated
signals are available online (Romero-Shaw et al. 2020b).

APPENDIX B: RUN SETTING DETAILS

B1 Sampler settings

The default sampler used by BILBY is DYNESTY (Speagle 2020), an
off-the-shelf nested sampling (Skilling 2006) package. The first step
in nested sampling is to draw N random live points from the prior. At
each iteration, the lowest likelihood sample from the initial N points
is discarded in favour of a higher likelihood point, again randomly
chosen from the prior. After every step, the actively sampled region
of the prior shrinks to the volume contained by the hyperplane of
constant minimum likelihood for the current population of live points.
When the live domain has reduced sufficiently, it becomes inefficient
to select higher likelihood points uniformly from the restricted prior
space.

After the uniform sampling becomes sufficiently inefficient, new
points are selected by randomly walking using a custom Markov-
chain Monte Carlo algorithm starting from the sample being replaced.
The transition probability is determined by the distribution of the set
of current live points. The number of steps taken in the chain is
determined such that the length of the chain is at least some multiple
n, of the autocorrelation length of the chain (Sokal 1994). For
the analysis in this paper, we require n,, = 10. A Markov-chain
Monte Carlo walker algorithm then takes at least n steps to draw a

3The binary black hole analysis was performed using BILBY version 0.6.3,
while the neutron star analysis used BILBY 1.0.0. The default Advanced
LIGO design PSD changed between these two versions of BILBY to reflect
the updated detector sensitivity predictions (Abbott et al. 2018b). Parameter
estimation is performed using DYNESTY with the default settings.
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Table B1. Lower and upper limits on chirp mass M, luminosity distance
dp,, and dimensionless spin magnitude a;, ay priors for each of the default
prior sets contained in BILBY_PIPE.

BILBY gravitational-wave catalogue 3311

Table B2. Default prior settings for 10 of the 17 parameters studied for
CBCs observed with gravitational waves. The settings given in this table are
consistent between all default prior sets contained in BILBY_PIPE.

Prior M /Mg di,/Mpc ap, ax Parameter Shape Limits Boundary
High mass 25-175 100-7000  0-0.99 q Uniform 0.125-1 -

4s 12.299703-45 100-5000  0-0.88 01,0 Sinusoidal 0-1 -

8s 7.932707-14.759644 100-5000 0-0.8 D12, P Uniform 0-2m Periodic
16s 5.141979-9.519249 100-4000 0-0.8 N Sinusoidal 0-1 -
32s 3.346569-6.170374 100-3000 0-0.8 W Uniform 0-1 Periodic
64 s 2.184345-4.015883 20-2000 0-0.8 ¢ Uniform 0-27 Periodic
128 s 1.420599-2.602169 1-500 0-0.8 o Uniform 0-2m Periodic
128 s tidal 1.485-1.49 1-300 0-0.89 8 Cosinusoidal —7/2-1/2 -
128 s tidal low spin 1.485-1.49 1-300 0-0.05

new sample from the restricted prior. In order to reduce bottlenecks
while using multiprocessing we impose a maximum length of the
chain. If no point with a higher likelihood than the original point is
found within this number of steps, we return a random point from the
prior distribution. Nested sampling is able to well-resolve multimodal
distributions, making it useful for exploring complicated parameter
spaces. For all events in GWTC-1, we give the sampler N = 2000
live points and n = 100 steps.

B2 Priors

We sample directly in M and ¢ to avoid issues associated with
sampling extremely thin regions of parameter space, which occurs
when sampling in component masses (BILBY and BILBY_PIPE can
easily be made to sample in other parameters such as component
masses; here, we only discuss default parameters and priors used for
analysis of the 11 events in GWTC-1). Our prior on mass ratio is
uniform in the range 0.125 < ¢ < 1.0, with the lower limit determined
due to limitations of the IMRPHENOMPV2 ROQ.

Prior limits used for M, dy, a;, and a, are provided in Table B1.
The chirp mass prior limits are based on those stated in the ROQ git
repository.® We use a luminosity distance prior that is uniform in the
source frame, with limits motivated by the scaling of gravitational-
wave amplitude with both chirp mass and distance. The uniform-
in-source-frame prior, which indicates a uniform distribution of
mergers in our Universe (Ade et al. 2016), differs from the d? power-
law prior used in the LALINFERENCE analyses, which indicates a
uniform distribution in a Euclidean, non-expanding universe. We use
dimensionless component spin priors that are uniform between 0
and an upper limit that is determined by the mass range assumed.
For non-tidal waveform models, we use an upper limit that is either
0.8, 0.88, or 0.99. For tidal approximants, both a low-spin and a
high-spin prior are available. Our component spin prior upper limits
are 0.05 (low-spin) and 0.89 (high-spin) in these cases. The upper
limits on spin magnitude are determined by the training range of the
ROQ basis (e.g. Smith et al. 2016). For analysis of binary neutron
star coalescence signal GW170817, we sample in the dimensionless
tidal parameters A; and A,, which describe the deformability of the
primary and secondary masses. If A; = 0, the neutron star is non-
deformable and thus has no tides. We set our priors on A; and A,
to be uniform between 0 and 5000 to reflect our ignorance of the
neutron star equation of state. The remainder of our priors, which are
standard and geometrically motivated, have limits as given in Table
B2.

Table B3. GPS trigger time and data segment duration used for each event.
By default, the data segment is positioned such that there are 2 s of data after
the trigger time.

Event GPS trigger time g g1 Data duration 7's ™!
GW150914 1126259462.391 8
GW151012 1128678900.400 8
GW151226 1135136350.600 8
GW170104 1167559936.600 4
GW 170608 1180922494.500 16
GW170729 1185389807.300 4
GW170809 1186302519.700 4
GW170814 1186741861.500 4
GW170817 1187008882.430 128
GW170818 1187058327.100 4
GW170823 1187529256.500 4
B3 Data

The data segments we use are accessed using the GWpy (Macleod
et al. 2018) method TimeSeries.get (channel name,
start_time, end_time). The start_time fy, and
end_time f.q are defined relative to the trigger_time #y, of
each event, such that

Tend = tlrig + tposlflrig; Istart = fena — T (Bl)

Here, T is the total duration of the data segment and fposui 1S
the post-trigger duration, which is 2 s in BILBY by default. We
provide the trigger times and data segment durations for all GWTC-
1 events in Table B3. The channel_name used to obtain strain
data from both the LIGO Hanford and LIGO Livingston detectors
is DCS-CALIB_STRAIN_CO02 for all events, with the exception
of GW170817, for which we use the channel_name of DCH-
CLEAN_STRAIN_C02.T1700406_v3 to obtain glitch-subtracted
strain data from LIGO Livingston. We also obtain Virgo data for
events that occurred from 2017 July until mid-August (GW 170729,
GW170809, GW170814, GW170817, and GW170818) using the
channel name of Hrec_hoft V102Repro2A_16384Hz.

Strain data are available from the Gravitational Wave Open
Science Centre (Abbott et al. 2019¢e) sampled at both 16384 Hz (the
native sampling frequency of advanced LIGO and advanced Virgo)
and down-sampled to 4096 Hz. We download the data sampled at
16384 Hz. The LALINFERENCE (LIGO Scientific Collaboration 2018)
analysis of binary black holes in Abbott et al. (2019f) was performed
with data down-sampled to 2048 Hz using a LAL down-sampling
function and integrated to the Nyquist frequency (1024 Hz).

In BILBY_PIPE the user can choose to either not down-sample,
down-sample using the same LAL routine as done in LALINFERENCE
and BAYESWAVE (Cornish & Littenberg 2015), or down-sample

MNRAS 499, 3295-3319 (2020)

120Z 1snbny g| uo Jesn Ateiqr] AlsIsAlun UI8ISeaMULION AQ 0Z9606S/S62E/S/661/010N18/SeIuW/Wwoo dno-oiwspese//:sdny Wwolj pepeojumoq



3312 1. M. Romero-Shaw et al.

I
= L1ASD

2
8

<
©

Strain [strain/V Hz]

102

10-23 4

10-24 4

100 10°
Frequency [Hz]

o |[™ U
W L1ASD

10-21 4

Strain [strainN Hz]

102 5

10-23 4

10-24 4

160 1 63
Frequency [Hz]

Figure B1. The data and PSD in the LIGO Livingston interferometer at the
time of GW170608. In the upper/lower panel we show the data with/without
being low-pass filtered and down sampled to 2048 Hz. We can see the effect
of the low-pass filter in suppressing the data above ~900 Hz. The filtering
and down sampling was applied when computing the PSD and so the data on
the left better matches the PSD.

using the GWpy method. In general, we recommend users do not
down-sample the time domain data, but rather apply cuts directly
in the frequency domain. However, since the PSDs used in this
analysis were made with BAYESWAVE and the LALINFERENCE analysis
we compare with use the LAL down-sampling, we also use this
method.

The default method implemented in LAL and used by LALINFER-
ENCE and BAYESWAVE is done in the time domain and consists of two
stages. First, the data are low-passed using a 20th-order zero-phase
Butterworth filter. The filter is customized such that the power at the
low-pass frequency f is reduced by a factor of 10. The frequency
response of the filter is given by

c

27!
R(f; fesn,ac) = {1 + (a2 —1) (fi) ] : (B2)
The data are then down-sampled by a factor of N by taking every

Nth sample, this aliases the data. This aliasing means that any signal
close to the new Nyquist frequency will be suppressed and aliased

MNRAS 499, 3295-3319 (2020)

which may introduce a bias in our inference. The final frequency
domain strain after downsampling by a factor of N is given by

h(fs5 fesn,ac) = h(FIR(S; fesn, ac)
N
+ Z @+ Dfe = HRG+ Dfe = f feon.ac)

i=odd

N

+ D hGfe+ NRGfe+ [1feoniao).  (B3)
1=even

Here, A(f) is the frequency-domain data without low-pass filtering or

downsampling. Of the events analysed in this work, the lowest mass

events (GW151226, GW170608, and GW170817) have frequency

content close to or above the down-sampled Nyquist frequency. We

expect the bias introduced by this to be small.

In Fig. B1, we show the data containing GW170608 along with
the PSD produced by BAYESWAVE with (left) and without (right)
downsampling the data to a new sampling rate of 2048 Hz for
the LIGO Livingston observatory. On the right we can see the
turnover in the data and the PSD close to the new Nyquist frequency
1024 Hz.

APPENDIX C: PRIOR REWEIGHTING

In order to compare posterior samples that are unbiased by differing
prior choices, we reweight samples obtained using LALINFERENCE
priors 7y by BILBY default priors 75, with weights expressed as

w="8 1
TTLY

‘We must also account for the fact that BILBY_PIPE uses default priors
that are flat in M and ¢, whereas LALINFERENCE uses priors that
are uniform in component masses. We therefore rejection sample
from the released posterior samples with weights given by the
inverse of the Jacobian given in equation (21) of Veitch et al.
(2015),

J = Mz (2)

m

The complete reweighting procedure can be written

Prg = ijnu’ (C3)

where p,, and p,, are the posterior probabilities computed us-
ing BILBY and LALINFERENCE priors, respectively. In practice, we
reweight by rejection sampling in order to preserve the independence
of samples. We also account for a difference in the definition of the
Solar mass Mg, between the current version of BILBY and the version
of LALINFERENCE used to produce the public GWTC-1 samples that
we compare against.

APPENDIX D: CDF COMPARISONS FOR
GWTC-1 EVENTS

In Figures D1-D6, we present the comparisons of the CDFs
obtained using BILBY and LALINFERENCE for all parameters and for
all events. The legend shows the JS divergence and uncertainty for
each parameter, and the shaded regions represent the 1o, 20, and 30
confidence intervals.

1202 1snbny g uo Jasn Aieiqi] AlISIaAlun UIB)SeMULION AQ 0Z29606S/S6ZE/S/661/a10ne/Selul/wo dnoolwspese//:sdy Wol) papeojumoq



BILBY gravitational-wave catalogue 3313

GW150914 N samples=10000

B Opx 0.001867909%3 g 6, 0.001007:99932 5 @ 0.0001650000% 5 ay 0.00143700003
0.04+ B MO00I6THI02 g 6, 0.0005470001T g 5000109109098 5 ay 0.0005400902%
B 0.00143F390033 § dp 0.00148755003
I’ Y
I\\/\”'N/_~ \\
~ /'.I \

0.02 4

=
=
S

LALInference CDF - Bilby CDF
&
5

—0.04 1

—0.06 1 . . . .
0.0 0.2 0.4 0.6 0.8 1.0
Bilby CDF
GW151012 N samples=7131

B 6in 0.00036°0000Y w6 0.00021° 000008 m @ 0.00013*00008  m ar 0.00026700067

0.04+ B MO.00144TIN0 g9, 0.0000955002% g §50.00016509%% g ay 0.0004459000
5 ¢ 0.00054 00001 5 dp 0.000521000008

[] (P \

LALInference CDF - Bilby CDF

0.0 0.2 04 0.6 08 L0
Bilby CDF

Figure D1. CDF comparison between BILBY and LALINFERENCE for GW 150914 and GW151012.
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Figure D2. CDF comparison between BILBY and LALINFERENCE for GW 151226 and GW170104.
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Figure D3. CDF comparison between BILBY and LALINFERENCE for GW 170608 and GW170729.
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Figure D4. CDF comparison between BILBY and LALINFERENCE for GW 170809 and GW170814.
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Figure D5. CDF comparison between BILBY and LALINFERENCE for GW 170817 and GW170818.
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Figure D6. CDF comparison between BILBY and LALINFERENCE for GW170823.

APPENDIX E: PARAMETER DEFINITIONS

BILBY is able to sample in a range of different parametrizations of
compact binaries. In Table E1, we describe the definitions of these
parameters as implemented in BILBY. Unless otherwise specified all
of these parameters can be sampled in, using the standard waveform
model, likelihood, and conversion functions.

Currently, there is a relative lack of support for sampling parame-
ters describing eccentric orbits: the eccentricity e and the argument
of periapsis w. This is because the frequency-domain eccentric
waveforms available in LALSIMULATION are less complete than their
quasi-circular counterparts, containing only the inspiral section of
the signal.

Table E1. Definition of parameters typically considered for CBC inference. Subscript i = 1, 2 indicates whether the parameter pertains to the primary (1) or
secondary (2) binary object. Subscript k = x, y, z refers to a quantity measured in the X, §, or Z direction; Z points along the binary axis of rotation, while the X,
¥ directions are orthogonal to each other and Z, defined at reference phase ¢, and differ by phase offset ¢|2 between the two objects. Additional subscripts: *
— defined at a reference frequency, T — parameter cannot be sampled, only generated in post-processing, * — parameter cannot yet be sampled or generated in

post-processing.

Name Description LATEX label Units
mass_i Detector-frame (redshifted) mass of the ith object m; Mo
chirp.mass Detector-frame chirp mass M = (mm5)*° /(m| + m3)"/° (Finn & Chernoff 1993; Poisson & Will M Mo
1995; Blanchet et al. 1995)

total_mass Detector-frame combined mass of the primary and secondary masses M Mg
mass_ratio The ratio of the secondary and primary masses ¢ = my/m; < 1 q -
symmetric_mass_ratio A definition of mass ratio which is independent of the identity of the primary/secondary n = g/(1 + ¢)* n -
mass_i_source Source-frame mass of the ith object m;*""*® = m; /(1 + z) (Krolak & Schutz 1987) miouree Mo
chirp_mass_source Source-frame chirp mass M*"¢ = M /(1 + z) msouree Mg
total mass_source Source-frame total mass M*""® = M/(1 + z) Movree Mo
a-i Dimensionless spin magnitude of the ith object a; -
tilt_i* Zenith angle between the spin and orbital angular momenta for the ith object 0; rad
cos_tilt_i* Cosine of the zenith angle between the spin and orbital angular momenta for the ith object cos6; -
phi_j1* Difference between total and orbital angular momentum azimuthal angles [ rad
phi_12* Difference between the azimuthal angles of the individual spin vector projections on to the orbital plane b12 rad
chi_i* (ak.a. spin_i_z) ith object aligned spin: projection of the ith object spin on to the orbital angular momentum y; = Xi -

a;cos (0;)
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Table E1 - continued

BILBY gravitational-wave catalogue

3319

Name Description LATEX label Units
chi_i_in_plane*f ith object in-plane spin: magnitude of the projection of the ith object spin on to the orbital plane xit -
xi- = la; sin(9)|
chi_eff*t Effective inspiral spin parameter x.i = (x1 + gx2)/(1 + ¢) (Santamaria et al. 2010; Ajith et al. 2011) X eff -
chi_p*f Effective precession spin parameter x, = max{xi-, ¢(3¢ +4)/(4q + 3)x5-} (Hannam et al. 2014; Xp -
Schmidt, Ohme & Hannam 2015)
spin_i k*f kth component of ith object spin in Euclidean coordinates Si k -
lambda_i Dimensionless tidal deformability of the ith object A -
lambda_-tilde Combined dimensionless tidal deformability (Flanagan & Hinderer 2008; Favata 2014) A -
delta_-lambda_tilde Relative difference in the combined tidal deformability (Favata 2014; Wade et al. 2014) SA -
eccentricity*® Orbital eccentricity defined at a reference frequency e -
argument_of periapsis® The angle between the secondary mass and the ascending node of the orbit when the secondary mass is 3} rad
X at periapsis
ra Right ascension o rad
dec Declination ) rad
zenith Zenith angle in the detector-based sky parametrization K rad
azimuth Azimuthal angle in the detector-based sky parametrization € rad
luminosity-distance Luminosity distance to the source di, Mpc
comoving-distance Comoving distance depending on specified cosmology dc Mpc
redshift Redshift depending on specified cosmology z -
geocent_time GPS reference time at the geocenter, typically merger time te S
IFO_time GPS reference time at the detector with name IFO, e.g. H1_t ime, typically merger time tiro S
time_jitter Shift to apply for time array used in time marginalization 8t S
psi Polarization angle of the source v rad
phase* Binary phase at a reference frequency ¢ rad
theta-jn Zenith angle between the total angular momentum and the line of sight N rad
cos_theta_jn Cosine of the zenith angle between the total angular momentum and the line of sight cos On -
iota* Zenith angle between the orbital angular momentum and the line of sight L rad
cos_iota® Cosine of the zenith angle between the orbital angular momentum and the line of sight cost -
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